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ABSTRACT

Both energy-aware, batteryless intermittent systems and signal-aware adaptive sampling

algorithms (ASA) aim to minimize sensor data accuracy under energy constraints in edge

devices. Intuitively, combining both into a signal- & energy-aware solution would yield even

better accuracy. Unfortunately, ASAs and intermittent systems rely on conflicting energy

availability assumptions. So, a straightforward combination cannot achieve their combined

benefits.

Therefore, we propose SEASONS , the first framework for signal- and energy-aware in-

termittent systems. SEASONS buffers signal data in time, monitoring queue dynamics to

ensure the data is reported within a user-specified latency constraint. SEASONS improves

sensor data accuracy by 31% without increasing energy.
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CHAPTER 1

INTRODUCTION

Batteryless intermittent sensing systems are a recent advancement in embedded edge sensing

Maeng and Lucia [2020], Lucia and Ransford [2015], Desai et al. [2022], Colin and Lucia

[2016], Gobieski et al. [2019b], Hester et al. [2017], Yıldırım et al. [2018], Denby and Lucia

[2020], Afanasov et al. [2020], Bakar et al. [2021], Balsamo et al. [2015]. Intermittent systems

sample environmental signals to provide accurate sensor data to a central server while using

only harvested ambient energy stored in small capacitors.

Batteryless operation removes the many disadvantages of batteries (e.g. battery replace-

ment, system size, and environmental concerns), making intermittent systems suitable for

many domains from small satellites Denby and Lucia [2020] to infrastructure monitoring

Afanasov et al. [2020]. However, accurate sensing is challenging given the unreliability of

ambient energy sources such as solar. Thus, energy-awareness—i.e. adapting to scarce and

variable energy—is an essential for intermittent runtime systems.

Signal-awareness, achieved via a family of Adaptive Sampling Algorithms (ASA), is an-

other advancement in the field of sensing systems Silva et al. [2017], Chatterjea and Havinga

[2008], Alippi et al. [2007], Murad et al. [2020], Campos et al. [2017]. ASAs balance the

trade-off between energy and accuracy in an optimal manner by analyzing the sensed envi-

ronmental signals. They ensure that energy is used to collect significant samples—i.e., those

that have the most influence on accuracy—and they avoid spending energy on less signifi-

cant samples. Compared to non-adaptive techniques, ASAs improve the accuracy of sensed

data and reduce the system energy requirements. Overall, both intermittent systems and

ASAs aim to provide accurate sensor data despite energy limitations. Intuitively, these ap-

proaches should be combined into a signal- and energy-aware intermittent system to achieve

the advantages of both.

Unfortunately, despite their shared goals, these two approaches rely on incompatible as-
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sumptions. ASAs achieve their goal through sampling rate variation: significant sensor data

are sampled at higher frequency, whereas less significant ones are sampled less. Since the

sampling rate directly affects energy consumption, varying sampling rates produces fluctu-

ating energy consumption. Windows of significant samples consume more energy and the

less significant ones do the opposite. ASAs assume that these periods of high and low energy

draw will balance over a battery’s lifetime (lasting potentially hours or days). However,

intermittent sensors use capacitors that only store energy for milliseconds of operation Lucia

and Ransford [2015]. Thus, they cannot sustain long periods of high energy consumption nor

can they store the extra energy from low energy consumption windows. In short, existing

intermittent systems cannot support the variable energy consumption required by ASAs.

To address this problem, we introduce SEASONS , a framework that enables signal-aware

ASA operation on energy-aware intermittent systems. An ASA operating via SEASONS

schedules and budgets to achieve a constant energy consumption, regardless of the signal.

To achieve this, SEASONS uses time buffering. When the ASA needs to increase the sam-

pling rate (because it has encountered significant samples), SEASONS collects the data,

and immediately enqueues it, delaying processing and communication to maintain constant

energy consumption. Doing so mitigates a period of high energy consumption typical of an

ASA. When the ASA reduces the sampling rate, SEASONS fast tracks the processing and

communication of the enqueued samples, maintaining the constant rate of energy consump-

tion. The fast tracking uses up the the extra energy that could not be stored over a long

term, avoiding wastage of surplus energy.

While time buffering resolves the incompatibility between the two approaches, it can

cause arbitrarily delays in communicating the sensed data. Expired samples, data that has

not been sent within application defined latency constraints Surbatovich et al. [2021], Hester

et al. [2017], occur more frequently with time buffering. SEASONS avoids such scenarios

by analyzing queue dynamics to adjust sampling rates dynamically and ensure all collected
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data is processed and communicated within the latency constraint.

With SEASONS , energy-aware intermittent systems can employ signal-aware sampling

policies to reduce the impact of low energy operation on sensor data accuracy. We find

SEASONS improves data accuracy by an average of 31% across multiple sensor datasets

and energy budgets compared to prior purely energy-aware intermittent systems.

This work makes the following contributions:

• We analyze how and why straightforward implementation of ASAs on intermittent

systems fail.

• We propose practical solutions that circumvent these failures and present SEASONS ,

a novel framework that enables ASA operation on intermittent systems.

To our knowledge, we are the first to study adaptive sampling on intermittent systems,

formalize the shortcomings of naive adoption, and offer a solution. We provide the first

signal & energy-aware intermittent interface. Furthermore, we are the first to point out the

importance of queue dynamics on an intermittent system and capitalize on it.
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CHAPTER 2

BACKGROUND & MOTIVATION

We consider a common low-power embedded sensing device with the goal of providing ac-

curate and timely data to a central server. This design is common in traditional embedded

sensing Zhang et al. [2004] or even emerging intermittent setups Afanasov et al. [2020].

Purely Energy-aware Intermittent designs achieve this goal by altering sensor data quality

based on available energy. A popular and common approach is uniformly reducing sample

collection rate Bakar et al. [2021], Maeng and Lucia [2020]. In contrast, battery-backed

signal- & energy-aware systems under the same energy constraints use an ASA to improve

data accuracy by devoting energy to the most significant data samples Silva et al. [2017],

Chatterjea and Havinga [2008], Alippi et al. [2007], Murad et al. [2020], Campos et al. [2017].

Figure 2.1 shows a comparison between the two approaches. The blue line shows an

accelerometer signal sampled at 50Hz. The purple and orange lines show the inferred signal

from the intermittent system and the ASA, respectively. Both the intermittent and battery-

backed system are under energy constraints that permit collection of just 60% of possible

samples; however, the ASA strategy results in 88% improvement in data accuracy compared

to the intermittent result.

The improvement is due to the ASA’s selective collection of the samples. Unlike the

intermittent system, the ASA equipped battery-backed system does not uniformly collect 6

samples out of 10 possible samples. Since the accelorometer signal begins with highly volatile

behavior (figure 2.1 (b))—which the ASA considers significant—the ASA collects almost

every possible sample during that time. Later (figure 2.1 (c)), the ASA considers the less

variable signal less significant, so it collects 2 or 3 samples out of 10 possible samples. Over

the entire operation window, the ASA improves accuracy under the same energy constraints.

Combining this higher accuracy with the batteryless benefits of intermittent systems would

be advantageous. However, a straightforward combination of both fails to achieve this higher
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Figure 2.1: (a): Energy-Aware intermittent uniform sampling (purple) vs battery-backed
ASA (orange) of accelorometer data over 6 seconds w/ 60% collection rate. The blue line
(labeled ground truth) represents the real accelerometer signal sampled at 50Hz. (b): Be-
havior of sampling policies over a highly volatile phase. Adaptive sampling collects 10 more
samples and achieves one order of magnitude lower error than uniform sampling. Since the
adaptive method takes more samples, it consumes more energy than the uniform over this
period. (c): Behavior of subsampling policies over a low volatility phase. The uniform strat-
egy collects 10 more samples and achieves 2.2x lower error. Since the adaptive method takes
less samples, it consumes less energy than uniform.
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accuracy.

Typical operation of an ASA assumes a large energy buffer to support variable energy

consumption rates. In figure 2.1 (a), the ASA strategy requires taking significantly more

samples in the 0–3000 ms time range compared to the 4000–6000 ms range. The initial

increase in sampling rate corresponds to a higher draw rate from the system’s energy buffer.

Later, the reduced sampling rate reduces energy draw, balancing the total consumed energy

across the entire operation window. An intermittent system with a buffer that an only

support milliseconds of operation is unable to support the seconds of distance between this

energy balancing. Ported directly to an intermittent system, the ASA cannot reliably alter

the sampling rate without changing the energy consumption rate and causes power failures,

wasting energy and reducing accuracy.
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CHAPTER 3

SEASONS

SEASONS is a novel framework that combines the benefits of batteryless intermittent sys-

tems with signal-aware ASAs. SEASONS resolves the conflicting energy availability as-

sumptions of these system by buffering in time, a concept that relies on the postponability

of processing and communication tasks. Time buffering alone, however, is unaware of la-

tency constraints and can lead to latency violations. Such violations reduce the accuracy,

so SEASONS utilizes sample queue dynamics to anticipate and avoid such violations. This

section explains these two key concepts.

3.1 Adaptive Sampling via Time Buffering

As studied by prior intermittent work, many parts of an intermittent application do not

have a strict deadline Maeng and Lucia [2020]. Samples are numerous and their deadlines

are hard, but processing and communication occur less regularly and their deadlines are

more flexible. Thus, when feasible, a system can postpone processing or communication.

We dub this operation as time buffering. Further, with time buffering, samples must wait

in a non-volatile queue for processing and communication Hester et al. [2017], Maeng and

Lucia [2020], Yıldırım et al. [2018]. We call this queue the sample queue.

With time buffering, an intermittent system can employ an ASA without altering the

energy consumption as follows. Given significant samples, the system increases sampling rate

and enqueues samples until later processing (e.g. 0–3000 ms time range in figure 2.1); given

less significant samples, the system reduces sampling rate, fast-tracks sample processing and

communication to empty the sample queue (e.g. 4000–6000 ms time range in figure 2.1).

However, time buffering maintains no control over the number of samples in the queue.

In general, the system cannot predict when a less significant window of samples will arrive to
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balance the earlier window of significant samples. This unpredictably could cause the latency

or queue size to grow arbitrarily long. This is unacceptable for embedded edge devices as

they are resource (including memory) limited and must operate within an application-defined

latency.

Respecting application latency constraints is vital in modern intermittent runtimes Hester

et al. [2017], Surbatovich et al. [2021]. This concept, dubbed freshness, ensures that samples

are processed in a timely manner, despite potential power failures and energy shortages. Once

a freshness violation has been detected (i.e. a sample has expired its latency constraint),

these systems drop the sample and prevent it from progressing in the application pipeline so

that additional energy is not wasted on processing and communicating an expired sample.

Figure 3.1 depicts the operation of a time buffered intermittent system running and

ASA with freshness enforcement under the same constraints as figure 2.1. While freshness

enforcement is vital to prevent energy wastage from sending expired samples, it results in

many samples being dropped before they are communicated to the server. These sample

drops then reduce the overall accuracy. In figure 3.1, 13% of taken samples expire before

they can be sent, leading to an a signal inference that misses important events in the signal

and an error rate more that of energy-aware intermittent sampling without the ASA (figure

2.1 (a)).

3.2 Expiration Mitigation via Sample Queue Dynamics

Instead of enforcing freshness only when samples expire, we propose anticipating and pre-

venting latency violations by analyzing sample queue dynamics. As intermittent systems

operate, they enqueue and dequeue their sample queue at various rates based on energy

availability and mode of operation. We refer to these rates as sample queue dynamics.

Prior freshness enforcement mechanisms that drop samples do not align well with time

buffering—as shown in 3.1—because expired samples are opportunity costs. Expired samples
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Figure 3.1: Adaptive subsampling with time buffering and freshness enforcement by dropping
samples.

both (1) fail to provide data to the server and (2) consume valuable energy that could have

been better spent to ensure other sample data does get to the server. We can avoid the

opportunity cost by mitigating expirations, ensuring that any energy spent on sampling

contributes to the overall accuracy of the data.

We enforce this mitigation by analyzing sample queue dynamics. As the intermittent

system with time buffered ASA operates, enqueuing and dequeuing rates vary based on the

ASA. Certain enqueuing and dequeuing rates are more likely to fill the sample queue and

cause future sample expirations. For example, a period of significant samples can enqueue

so many samples that no future processing and communication can dequeue in time; these

unsafe rates cause expirations. Hence, if the current queue dynamics match these dangerous

rates, SEASONS limits the ASA to slower rates to avoid sample expirations.

Time buffering is central to ensuring ASA operation on signal-aware intermittent systems

without frequent power failure. But time buffering is not without issues, so analyzing sample

queue dynamics to mitigate expiration keeps the time buffering under control and prevents

it from becoming disadvantageous. Through this combined operation, SEASONS enables

the accuracy of signal-awareness on intermittent systems. The next section discusses the

technical aspects of this design in more depth.
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CHAPTER 4

SEASONS FRAMEWORK

SEASONS requires only small changes to work with existing intermittent frameworks and

adaptive sampling algorithms. Thus, for brevity we focus on SEASONS ’s novel aspects:

a wrapper for interfacing with ASAs (subsection 4.1), a scheduling policy for time buffer-

ing (subsection 4.2), and a controller for analyzing sample queue dynamics and enforcing

expiration mitigation (subsection 4.3).

Figure 4.1 depicts the SEASONS framework on an intermittent setup. The sampling rate

is determined by the ASA (1). The controller considers sampling rate (1) energy availability

(2), and sample queue dynamics (3) to determine a safe sampling rate (4), balancing signal-

awareness and sample expiration mitigation. Finally, the safe sampling rate is communicated

to the scheduler (4), which schedules sampling, processing, and communication based on the

safe sampling rate.

These additional mechanisms can add significant overhead to processing, specially given

the processing limitation of low power MCUs such as MSP430 (e.g. no FLU) MSP. To

minimize this overhead, SEASONS employs preprocessing tools and runtime lookup tables.

Subsection 5.1.3 discusses the overhead in more detail.

4.1 ASA and the Wrapper

The ASA module accomplishes the signal-awareness aspect of SEASONS by determining

the current sampling rate based on prior samples. For instance, the linear ASA Chatterjea

and Havinga [2008] alters its rate based on differences in consecutive samples. This ASA

considers big differences to be significant, so it increases the sampling rate if these differences

are more than expected and reduces sampling rate if they are not. While various ASAs with

their own definitions of significant exist, the majority work based on the above principle of
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comparing recent samples to a threshold that determines significance Alippi et al. [2007],

Chatterjea and Havinga [2008], Silva et al. [2017] To ease communication between system

components and different ASAs, we also introduce an ASA wrapper.

4.2 Scheduler

The scheduler module manages the time buffering. Prior schedulers determined the sampling

rate internally based on energy availability; SEASONS ’s scheduler leaves the sampling rate

determination to the controller. This external sampling rate determines when the scheduler

should schedule sampling tasks. These tasks consume some ratio of the available harvested

energy. The scheduler then uses the rest of the energy to schedule processing and communi-

cation tasks. This strategy maintains a constant energy consumption rate for an intermittent

system and achieves time buffering through postponing processing and communication tasks.

4.3 Controller

The controller module is in charge of analyzing sample queue dynamics to mitigate expira-

tions. Expirations occur when the systems has too many samples in the queue and dequeuing

rate is not sufficient to process and communicate the samples by their latency deadlines. We

refer to the sample queue count in this case as the critical count.

When the system has a critical number of samples in the queue, the controller reduces

the maximum possible ASA rate to a uniform rate which matches the dequeue rate. In

doing so, the system still takes significant samples, but does so at a predictable rate. This

strategy matches the enqueuing and dequeuing rate, ensuring that the queue size does not

increase in the critical phase and thus no expirations can occur (as the oldest sample is

always dequeued). However, when taking less significant samples, the system follows an

adaptive strategy, which reduces the queue size. This rate reduction remains in place until
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the system moves out of the critical phase.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Experimental Setup

We evaluate SEASONS with our in house simulator on a variety of configurations.1 The

simulation operates as follows. We use sensor datasets from table 5.1 as ground truth for our

sensing simulations. These datasets represent a variety of events and exhibit various signal

properties. Sampling policies (either uniform or an ASA) determine which entries should

be taken from these datasets. The intermittent system collects the samples, processes the

collected data and transmits them to a server. At each step, the simulation ensures that

sufficient energy is present to accomplish a task, regardless of whether the simulation is in

battery-backed or intermittent mode. Failure occurs otherwise, reducing accuracy. Latency

violations result in sample expirations, which are not transmitted to the server and thus

reduce accuracy. The server reconstructs the full data sequence using linear interpolation

to infer missing data points and measures the mean absolute error (MAE) between the

reconstructed signal and ground truth.

Table 5.1: Properties of Evaluation Datasets.

Dataset Labels Mean Std. Deviation CV
EOGFang and Shinozaki [2018] 12 101.17 113.81 1.12
EpilepsyVillar et al. [2016] 4 1.39 0.69 0.50
PasswordsPas 5 0.81 0.59 0.73
StrawberryHolland et al. [1998] 2 0.72 0.69 0.95
TiselacIenco et al. [2017] 9 806.43 333.84 0.41
TrajectoriesWilliams et al. [2006] 20 1.45 0.78 0.54
UCIAnguita et al. [2012] 12 1.03 0.19 0.19

1. All code and datasets will public released after the anonymous reviewing.
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Table 5.2: Example Power Cost of Operation in an Example Edge Sensor.

Operation Power Cost (mW) Ratio of Total Power
Sampling 2.1 20%

Encryption 0.2 1%
BLE 8.4 79%
Total 10.7 100%

We use the the power requirements for sampling, encryption, and communication from

table 5.2 over a 1 second window as guide for the power consumption metrics in our simula-

tion. The application samples 50 accelerometer measurements using an IMU IMU, encrypts

them on a TI MSP430 FR5994 MCU MSP and communicates them via a CC2640R2 BLE

chip CC2. The power measurements are taken using the EnergyTrace tool Ene. Table 5.2

displays the measured values. It should be noted that power ratios represented in table 5.2

closely mirror prior deployed intermittent applications Afanasov et al. [2020], Desai et al.

[2022].

We compare the following,

• Energy-Aware Intermittent (EI). This represents state-of-the-art energy aware inter-

mittent systems that use uniform sampling to meet energy constraints, e.g. CatNap

Maeng and Lucia [2020] & REHASH Bakar et al. [2021].

• Signal- & Energy-Aware Battery-backed (SEB). This represents a state-of-the-art ASA

with a battery Chatterjea and Havinga [2008].

• SEASONS no Latency Guarantee (LG). SEASONS without the analysis done by the

controller. This configuration does not anticipate and mitigate sample expirations, but

will not communicate expired samples).

• SEASONS. The approach in this paper: signal- and energy-aware intermittence while

respecting user-defined latency constraints.
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Figure 5.1: Accuracy improvement of SEASONS over energy-aware intermittent w/ uniform
sampling. SEASONS improves the accuracy of intermittent systems and approaches the
feasible accuracy of a battery-backed ASA.

We experiment with the above configurations over a range of latency and energy con-

straints to properly evaluate SEASONS . To compare improvement in accuracy, we measure

improvement over EI normalized to SEB.

5.1.1 Accuracy Improvements w/ SEASONS

We simulate each configuration on the datasets from table 5.1 with 7 different energy con-

straints and reasonable latency constraints to understand SEASONS ’ accuracy improve-

ments over prior work. For each run, we report the accuracy improvement in figure 5.1.

Overall, SEASONS without latency guarantees (brown), SEASONS (red), and the battery-

backed (orange) configuration achieve respectively 22%, 31%, and 35% improvements in

accuracy over the uniform strategy employed by prior intermittent systems (purple).

Compared to the intermittent baseline, SEASONS without latency guarantees improves

accuracy, but does not do so reliably. For instance, with the epilepsy dataset, SEASONS

without latency guarantees results in many sample expirations and produces accuracy be-

low existing intermittent systems. In contrast, SEASONS with latency guarantees reliably

improves accuracy for all datasets, achieving close to existing ASAs, but without a battery.
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Figure 5.2: SEASONS Comparison between EI, SEB, & EI w/ SEASONS as latency con-
straint changes for a collection rate of 60%.

This scenario demonstrates that SEASONS correctly combines an intermittent power setup

with an adaptive sampling algorithm to gain signal-aware accuracy benefits with a batteryless

design.

5.1.2 Latency Sensitivity of SEASONS

We simulated each configuration on a range of latency constraints on the Linear ASA Chat-

terjea and Havinga [2008] to investigate the accuracy impact of the user-specified latency.

For brevity, we only show accuracy improvements for the UCI dataset in figure 5.2 (other

datasets exhibit a similar trend). For very short constraints, SEASONS achieves accuracy

similar to that of an energy-aware configuration, which is reasonable given that there is little

room for postponability. On the other hand, increasing latency constraints improves accu-

racy as SEASONS operates more akin to a battery powered system with an ASA. Moreover,

SEASONS with no latency guarantees follows a similar trend, but performs much worse

given tight constraints

This experiment demonstrates relaxing latency constraints improves SEASONS ’ accuracy

improvement over prior work; however, SEASONS improves accuracy even with tight latency
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constraints. Further, SEASONS ’ latency guarantees are vital in ensuring that SEASONS is

beneficial to accuracy, even given short constraints. In summary, SEASONS is never worse

than existing approaches, and given any latency flexibility improves on existing work.

5.1.3 Overhead of SEASONS

To measure the overhead of SEASONS , we employ a uniform policy (as in prior intermittent

work) and SEASONS on the TI MSP430FR5994 MSP and emulate their operation on the

UCI dataset. SEASONS retains the accuracy improvements of the simulation, but incurs

an overhead of 1.6x in processing cost compared to the uniform policy. However, the 60%

increase in processing power amounts to only 20 µW, less than 0.2% of the entire system’s

power consumption and 2 orders of magnitude less than sampling or communication (table

5.2). Hence, SEASONS’s overhead is negligible.
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CHAPTER 6

RELATED WORK

Intermittent Systems Batteryless deployment and its benefits have been discussed ex-

tensively in prior work Maeng and Lucia [2020], Lucia and Ransford [2015], Desai et al.

[2022], Colin and Lucia [2016], Gobieski et al. [2019b], Hester et al. [2017], Yıldırım et al.

[2018], Denby and Lucia [2020], Afanasov et al. [2020], Bakar et al. [2021]. Frequent check-

pointing Balsamo et al. [2015] and task based programming Colin and Lucia [2016] are

popular methods of ensuring forward progress in prior work. CatNap Maeng and Lucia

[2020] & REHASH Bakar et al. [2021] are state of the art energy-aware intermittent systems

that adapt to scarce energy conditions. To the best of our knowledge, no prior intermittent

systems have deployed adaptive sampling because they could not support variable energy

consumption.

Adaptive Sampling Algorithms ASAs employ signal awareness to balance energy con-

sumption and sensor data accuracy on low power embedded systems. Some algorithms rely

on linear or autoregressive models Alippi et al. [2007], Chatterjea and Havinga [2008], Silva

et al. [2017], while others employ sophisticated methods such as Reinforcement Learning Mu-

rad et al. [2020] or Neural Networks Campos et al. [2017], Kannan and Hoffmann [2021]. To

our knowledge, all prior ASAs assume a large energy buffer and cannot be directly combined

with batteryless systems.

19



CHAPTER 7

CONCLUSION

SEASONS is the first framework to achieve signal- & energy-aware operation on a batteryless

intermittent operation. Through Time Buffering, the ASA employed by SEASONS operates

without requiring a big energy bank (e.g. battery). Further, SEASONS efficiently avoids

expirations via analyzing Sample Queue dynamics. The framework operates with minimal

overhead and can achieve 31% more accuracy compared to traditional energy-aware inter-

mittent sensing. Given the negligible cost and significant improvements in accuracy, taking

smarter samples in intermittent systems via SEASONS is worth the effort.
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CHAPTER 8

FUTURE WORK

8.1 Generalized Queue Dynamics for Granular, Intermittent

Application Degradation

State of the art intermittent systems degrade application quality to maintain reasonable

performance in the face of variable energy conditions. Degradation has been done in small,

granular steps, as demonstrated by Maeng and Lucia [2020], or via limited tiers with big

energy consumption gaps by Bakar et al. [2021]. Small, granular steps can more closely match

performance to energy conditions, but current state of the art solutions degrade performance

without regard for application pipeline latency. In contrast, limited tiers are not energy

optimal. Each tier is individually programmed, so pipeline latency will not deteriorate due

to degradation.

We believe that generalizing queue dynamics to the entire intermittent application pro-

gram flow can achieve granular degradation without adverse effects on latency. Queue dy-

namics inform the system of the application queues that are backlogged due to degradation.

Using this information, the system will be able to make smarter degradation choices with-

out deteriorating application latency. We plan to evaluate our hypothesis by comparing our

idea to state of the art degradation schemes and demonstrating that 1, our solution reduces

application latency and 2, our solution spends less energy on expired data.

8.2 Granular Inference on the Edge

Data transmission has a high energy cost in intermittent systems. Hence, inference on the

edge is highly valuable for intermittent sensors: inference reduces the number of transmitted

bytes, but maintains the quality of the transmitted information Gobieski et al. [2019a]. In

21



short, inference saves energy in resource constrained intermittent systems. Prior work accom-

plishes inference via compressed DNN models Gobieski et al. [2019a], though such models do

not take variable energy conditions into account. Islam and Nirjon [2020], Montanari et al.

[2020] purpose degrading neural network inference with early exit points to accommodate for

changing energy conditions. However, the proposed methodologies are not granular enough

for the varying energy conditions.

We believe that ensemble inference methods such as random forests are a better fit for

intermittent systems. For instance, degradation of random forests can occur via running a

portion of the decision trees and since there are numerous trees, random forests allow for more

granular degradation. We plan to compare ensemble methods to DNNs with multiple exist

points to demonstrate that 1, granular inference on the edge is preferable and 2, ensemble

methods can achieve such granular inference.
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