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ABSTRACT

Producing high-quality forecasts of key climate variables such as temperature and precipi-

tation on sub-seasonal time scales has long been a gap in operational forecasting. Recent

studies have shown promising results using machine learning (ML) models to advance sub-

seasonal forecasting (SSF), but several open questions remain. First, several past approaches

use the average of an ensemble of physics-based forecasts as an input feature of these mod-

els. However, ensemble forecasts contain information that can aid prediction beyond only

the ensemble mean. Second, past methods have focused on average performance, whereas

forecasts of extreme events are far more important for planning and mitigation purposes.

Third, climate forecasts correspond to a spatially-varying collection of forecasts, and differ-

ent methods account for spatial variability in the response differently. Trade-offs between

different approaches may be mitigated with model stacking. This paper describes the ap-

plication of a variety of ML methods to predicting monthly average precipitation and two

meter temperature using physics-based predictions (ensemble members) and observational

data such as relative humidity, pressure at sea level or geopotential height two weeks in ad-

vance for the whole continental U. S. Regression and tercile classification tasks using linear

models, random forests, convolutional neural networks, and stacked models are considered.

The proposed models outperform common baselines such as historical averages and ensemble

averages. This paper further includes an investigation of feature importance and trade-offs

between using the full ensemble or only the ensemble average.
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CHAPTER 1

INTRODUCTION

Nowadays, weather forecasts are routinely available out to a few days [Lorenc, 1986, National

Academies of Sciences, 2016, National Research Council, 2010, Simmons and Hollingsworth,

2002], and seasonal forecasts are routinely available out to a few months [Barnston et al.,

2012a]. These forecasts are based largely on dynamical models that solve partial differen-

tial equations (PDEs) derived from the laws of physics. On the other hand, sub-seasonal

climate forecasting (SSF), which refers to the prediction of key climate variables, e.g., tem-

perature and precipitation on 2-week to 2-month time scales, are not yet routined [Ocean

Studies Board, National Academies of Sciences, Engineering, and Medicine, 2016]. SSF is

challenging for a variety of reasons. Firstly, high-quality SSF is proven difficult to accomplish

compared to both short-term weather forecasting and long-term seasonal forecasting [Vitart

et al., 2012]. Due to the chaotic nature of atmosphere, weather events can not be accurately

predicted beyond two weeks using dynamical models [Lorenz, 1963]. From a physical point

of view, the predictability on sub-seasonal time scales depends on correctly modeling the at-

mosphere, ocean, and land, including their interactions and couplings as well as the memory

effects of land and ocean. However, powerful climate forecasts at sub-seasonal time scales

would be of immense societal value, and would have an impact in a wide variety of domains

including hydrology, agricultural productivity, and water resource management, etc. [Klemm

and McPherson, 2017]

The National Centers for Environmental Prediction (NCEP), part of the National Oceanic

and Atmospheric Administration (NOAA), currently issues a “week 3-4 outlook” for the

continental U.S.1. The NCEP outlooks are constructed using a combination of dynamical

and statistical forecasts, with statistical forecasts based largely on how the local climate

in the past has varied (linearly) with indices of the El Niño-Southern Oscillation (ENSO),

1. https://www.cpc.ncep.noaa.gov/products/predictions/WK34/
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Madden-Julian Oscillation (MJO), and global warming (i.e., the 30-year trend).

There exists great potential to advance sub-seasonal prediction using ML techniques. A

real-time forecasting competition called the Sub-Seasonal Climate Forecast Rodeo [Hwang

et al., 2018], sponsored by the Bureau of Reclamation in partnership with NOAA, USGS,

and the U.S. Army Corps of Engineers, illustrated that teams using ML techniques can

outperform forecasts from NOAA’s operational seasonal forecast system.

This paper focuses on developing ML-based forecasts that leverage ensembles of forecasts

produced by NCEP in addition to observed data and other features. In contrast to past

work, this paper demonstrates that the full ensemble contains important information for

subseasonal climate forecasting outside the ensemble mean. Specifically, we consider the test

case of predicting monthly temperature and precipitation two weeks in advance over 3000

locations over the continental United States using physics-based predictions, such as NCEP-

CFSv2 hindcasts [Kirtman et al., 2014, Saha et al., 2014], using an ensemble of 24 distinct

forecasts. We repeat this experiment for the Global Modeling and Assimilation Office from

the National Aeronautics and Space Administration (NASA-GMAO) ensemble, which has

11 ensemble members [Nakada et al., 2018].

In this context, this paper makes the following contributions:

• We train a variety of ML models (including neural networks, random forests, linear

regression, and model stacking) that input all ensemble member predictions as features

in addition to contemporaneous observations of geopotential heights, relative humidity,

precipitation, and temperature from past months to produce new forecasts with higher

accuracy than the ensemble mean; forecast accuracy is measured with a variety of

metrics Chapter 7. These models are considered in the context of regression and

tercile classification. Systematic experiments are used to characterize the influence of

individual ensemble members on predictive skill in Section 8.1.2.

• The collection of ML models employed allow us to consider different modes of account-
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ing for spatial variability. ML models can account for spatial correlations among both

features and responses; specifically, when predicting Chicago precipitation, our models

can leverage not only information about Chicago, but also about neighboring regions.

Specifically, we consider the following learning frameworks: (a) learning a predictive

model for each spatial location independently; (b) learning a predictive model that

inputs the spatial location as a feature and hence can be applied to any single spa-

tial location; (c) learning a predictive model for the full spatial map of temperature

or precipitation – i.e., predicting an outcome for all spatial locations simultaneously.

Techniques such as positional encoding in ML models helps ensure that the right neigh-

borhood information is used for each location, adapting to geographic features such as

mountains or plains.In addition, ML models present a range of options for accounting

for spatial variability, each with distinct advantages and disadvantages. Our applica-

tion of model stacking allows our final learned model to exploit the advantages of each

method.

• We conduct a series of experiments to help explain the learned model and which features

the model uses most to make its predictions. We systematically explore the impact of

using lagged observational data in addition to ensemble forecasts, positional encoding

to account for spatial variations in Section 8.2.

• The ensemble of forecasts from a physics-based model (e.g., NCEP-CFSv2 or NASA-

GMAO) contain information salient to precipitation and temperature forecasting be-

sides their mean, and ML models that leverage the full ensemble generally outperform

methods that rely on the ensemble mean alone in Section 8.1.1.

• Finally, we emphasize that the final validation of our approach was conducted on data

from 2011 to 2020 that was not used during any of the training, model development,

parameter tuning, or model selection steps. We only conducted our final assessment

3



of predictive skill for 2011 to 2020 after we had completed all other aspects of this

manuscript. Because of this, our final empirical results accurately reflect the antici-

pated performance of our methods on new data.

1.1 Contributions

This thesis reflects a team effort of multiple students. Elena Orlova’s specific contributions

to this effort include:

1. Preparing the interpolation schemes for the ensemble members to align with a grid of

the ground truth data.

2. Regression task: setting up baselines; designing U-Net and linear model experiments.

3. Setting up and implementation of the stacking model approach.

4. Feature importance experiments.

5. Designing and performing the experiments for tercile classification.

6. Full ensemble vs. ensemble average experiments, experiments with the ensemble mem-

bers being sorted, top k best ensemble members experiments.

7. Temperature forecasts analysis in some regions.
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CHAPTER 2

RELATED WORK

While statistical models were common for weather prediction in the early days of weather

forecasting [Nebeker, 1995], purely physics-based dynamic system models have been carried

out since the 1980s and have been the dominant forecasting method in climate prediction

centers since the 1990s [Barnston et al., 2012b]. Skillful ML approaches are developed for

short-term climate prediction [Cofıno et al., 2002, Ghaderi et al., 2017, Grover et al., 2015,

Herman and Schumacher, 2018, Radhika and Shashi, 2009] and longer-term weather forecast-

ing [Badr et al., 2014, Iglesias et al., 2015, Cohen et al., 2019, Totz et al., 2017]. However,

forecasting on the sub-seasonal timescale, with 2-8 week outlooks, has been considered a

far more difficult task than seasonal climate forecasting due to its complex dependence on

both local weather and global climate variables [Vitart et al., 2012]. Seasonal prediction also

benefits from targeting a much larger averaging period.

Some ML algorithms for subseasonal forecasting use purely observational data (i.e., not

using any physics-based ensemble forecasts). He et al. [2020] focuses on the analysis of differ-

ent ML methods, including Gradient Boosting trees and Deep Learning (DL) for SSF. They

propose a careful construction of feature representations of observational data and show that

ML methods are able to outperform a climatology baseline, i.e., predictions corresponding

to the T -year average at a given location and time. This conclusion is made based on the

relative R2 score that represents the relative skill against the climatology. Srinivasan et al.

[2021] proposes a Bayesian regression model based on exploiting spatial smoothness in the

data.

Other works use the ensemble average as features in an ML system. For example, in the

subseasonal forecasting Rodeo [Hwang et al., 2018], a climate prediction challenge for the

western U.S. sponsored by NOAA and the U.S. Bureau of Reclamation, simple yet thoughtful

statistical models consistently outperform NOAA’s dynamical systems forecasts. In partic-
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ular, the authors used a stacked predictor from two nonlinear regression models and created

their own dataset from climate variables such as temperature, precipitation, sea surface

temperature, sea ice concentration, and a collection of physics-based forecast models includ-

ing the ensemble average from various modeling centers in NMME. From the MultiLLR’s

analysis, the ensemble average is the first- or second-most important feature for forecasting,

especially for precipitation. He et al. [2021] perform a comparison of modern ML models

on the Subseasonal Experiment (SubX) project for SSF in the western contiguous United

States. The experiments show that incorporating ensemble average as input features to ML

models leads to a significant improvement in forecasting performance, but that work does not

explore the potential value of individual ensemble members aside from the ensemble mean.

Grönquist et al. [2020] notes that physics-based ensembles are computationally-demanding

to produce, and proposes an ML method can input a subset of ensemble forecasts and gener-

ate an estimate of the full ensemble; then note that the output ensemble estimate has more

prediction skill than the original ensemble. However, their results only cover forecasts lead

up to 48 hours, which is not applicable for sub-seasonal forecasting.

This paper complements the above prior work by developing powerful learning-based

approaches that incorporate both physics-based forecast models and observational data to

improve SSF over the whole U.S. mainland.

6



CHAPTER 3

PROBLEM FORMULATION

Our goal is to predict either the monthly average precipitation or monthly average 2-meter

temperature two weeks in advance (for example, we predict average monthly precipitation

for February on January 15). In this section, we describe the notation used for features and

responses, how spatial features are accounted for, and different formulations of the learning

task.

3.1 Notation

We let T denote the number of monthly samples and L denote the number of spatial locations.

In this manuscript, we consider the tasks of regression and tercile classification. We define

δt = 14 days as our forecast horizon. We define the following variables:

• u
(k)
t,l is the k-th ensemble member at time t and location l, where k = 1, . . . , K, t =

1, . . . , T , l = 1, . . . , L.

• v
(p)
t,l is the p-th observational variable or other features, such as geopotential height,

relative humidity, etc., at time t and location l, with p = 1, ..., P .

• z
(1)
l , z

(2)
l represent information about longitude and latitude of location l, respectively;

each is a vector. More details about this representation can be found in Section 6.

• xt,l := [u
(1)
t,l , ..., u

(K)
t,l , v

(1)
t,l ..., v

(P )
t,l , z

(1)
l , z

(2)
l ] is a set of features at time t and location l.

• yt,l is the “response” – the ground truth monthly average precipitation or temperature

at the target forecast time t + δt at location l.

• ŷt,l is the output of a forecaster for a given task at target forecast time t + δt and

location l.
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The following variables are emphasized more later, but we introduce them to have all nota-

tions in one place:

• sm,l – a 30-year mean of an observed climate variable, such as precipitation or tem-

perature at month m and location l. We also refer to this as “climatology”. It is

defined formally in (5.1), and for each location l, it is calculated as an average monthly

precipitation or temperature over 30 years for each month.

• ŝm,l – a 30-year mean of a predicted climate variable, such as precipitation or tempera-

ture at month m and location l. For each location l and each month m, it is calculated

as a mean of ensemble member predictions over the training period, as defined formally

in (6.6).

The target variable y is observed from 1985 to 2020. Data over time range from January

1985 till October 2005 are used for training (249 time steps), and data over November 2005

to December 2010 are used for validation and model selection (63 time steps). Data from

2011 to 2020 (or from 2011 to 2018 in case of NASA-GMAO data) are used for testing our

methods after all model development, selection, and parameter tuning are completed.

In our case, the number of locations L = 3274, there are K = 24 NCEP-CFSv2 ensemble

members or K = 11 NASA-GMAO ensemble members, and the number of features is usually

P = 41. The details can be found in the next sections.

3.2 Models of spatial variation

We consider three different forecasting paradigms. In the first, which we call the spatial

independence model, we ignore all spatial information and train a separate model for

each spatial location. In the second, which we call the conditional spatial independence

model, we consider samples corresponding to different locations l as independent conditioned

on the spatial location as represented by features (z
(1)
l , z

(2)
l ). In this setting, a training sample

8



corresponds to (xi, yi) = (xt,l, xt,l), where, with a small abuse of notation, we let i index

a t, l pair. In this case, the number of training samples is n = TL. For example, consider

learning a linear model. Under the spatial independence paradigm, no spatial information

is utilized, and the predictor assigns different weights to different ensemble members for at

each location. In contrast, under the conditional spatial independence model, the linear

predictor assigns the same weights to different ensemble members regardless of the spatial

location, and a weighted sum of spatial location features is added to the (fixed) weighted

sum of ensemble members.

In the third paradigm, which we call the spatial dependence model, we consider a

single training sample as corresponding to full spatial information (across all l) for a single t;

that is, (xi, yi) = ([xt,l]l=1,...,L, [yt,l]l=1,...,L]), where now i indexes t alone. Models developed

under the spatial dependence model account for the spatial variations in the features and

responses. For instance, a convolutional neural network might input “heatmaps” representing

the collection of physics-based model forecasts across the continental U.S. and output a

forecast heatmap predicting spatial variations in temperature or precipitation instead of

treating each spatial location as an independent sample.

For purposes of illustration, consider a class of predictors that are weighted sums of

ensemble forecasts and how different models of spatial variation affect what those weights

might be:

• under spatial independence models, the weights may vary spatially but do not account

for spatial correlations in the data;

• under conditional spatial independence models, the interpretation depends on the

model being trained – linear models have the same weights on ensemble predictions re-

gardless of spatial location, while nonlinear models (e.g., random forests) have weights

that may depend on the spatial location;

• under the spatial dependence models, the weights vary spatially, depend on the spatial

9



location, and account for spatial correlations among the ensemble forecasts and other

climate variables.

3.3 Forecast tasks

The learning task can be formulated as learning a predictor fθ : X → Y with parameters θ.

This predictor fθ can be linear regression, the mean of ensemble members, a random forest,

a convolutional neural network, or other learned models.

In particular, suppose the task is to predict the average precipitation for the next month.

Then the input to the predictors can be the ensemble members u(k), k = 1, . . . , K, climate

variables v(p), p = 1, . . . , P such as two meter temperature, relative humidity or geopotential

height, target variable lagged data (ground truth precipitation two, three, four, twelve and

24 month ago), information about location z(1), z(2), principal components (PCs) of sea

surface temperature (SST) – all these features form x in our notation. Usually, the number

of features is P = 41: four climate variables, five lagged variables, eight principal components

of SST and the dimension of every vector z(1) and z(2) is twelve. Using these input features,

the task is to predict the average precipitation for the next month.

We consider two different forecast tasks: regression and tercile classification.

Regression Our goal here is to predict monthly average values of precipitation and two

meter temperature two weeks in the future. This is a point-forecast, providing users with

the precipitation or temperature they can expect, conditional on the inputs. These models

are generally trained using the squared error loss function.

Tercile classification Here our goal is to predict whether the response will be “high”

(above the 66th percentile), “medium” (between the 33rd and the 66th percentile), or “low”

(below the 33rd percentile). These percentiles are dependent on month and location. We

compute these percentile values using 1971-2000 data from the NOAA dataset (see next

10



section for details), and these percentiles are computed for each calendar month m and

location l pair. These models are generally trained using the cross-entropy loss function.
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CHAPTER 4

DATA

Table 4.1 presents a description of variables that are used in the experiments. Historical

average or climatology of precipitation and temperature is calculated using 1971-2000 NOAA

data [NOAA, 2022].

Also, there are many sources of ensembles of physics-based predictions produced by

forecasting systems. NMME provides forecasts from multiple global forecast models from

North American modeling centers [Kirtman et al., 2014]. The NMME project has two

predictive periods: hindcast and forecast. A hindcast period represents the time when a

dynamic model re-forecasts historical events, which can help climate scientists develop and

test new models to improve forecasting as well as evaluate model biases. In contrast, a

forecast period has real-time predictions generated from dynamic models.

Type Variable Description Unit Spatial Coverage Time Range Data Source

C
li
m
at
e
va
ri
ab

le tmp2m
Daily average

temperature at 2 meters
C◦ US mainland

0.5◦ × 0.5◦ grid
1985 to 2020

CPC Global
Daily Temperature

[Fan and Van den Dool, 2008]

precip
Daily average
precipitation

mm
US mainland

0.5◦ × 0.5◦ grid
1985 to 2020

CPC Global
Daily Precipitation [Xie et al., 2010]

SST
Daily sea

surface temperature
C◦ Ocean only

0.25◦ × 0.25◦ grid
1985 to 2020

Optimum Interpolation
SST High Resolution

(OISST) [Reynolds et al., 2007]

rhum
Daily relative humidity

near the surface
Pa

slp
Daily pressure
at sea level

%

US mainland
and North Pacific
& Atlantic Ocean
0.5◦ × 0.5◦ grid

1985 to 2020
Atmospheric Research
Reanalysis Dataset
[Kalnay et al., 1996]

hgt500
Daily geopotential
height at 500mb

m

H
is
to
ri
ca
l

tmp2m
Daily average

temperature at 2 meters
K

Globally
1◦ × 1◦ grid

1971 to 2000 NOAA [NOAA, 2022]

precip
Daily average
precipitation

mm
Globally

1◦ × 1◦ grid
1971 to 2000 NOAA [NOAA, 2022]

Table 4.1: Description of climate variables and their data sources. Our target climate
variables for sub-seasonal climate forecast are precipitation and 2-meter temperature. Since
our ground truth observations only span a short period of time, we used NOAA data to
calculate for historical values from 1971 to 2000 and compute the climatology. We also
perform linear interpolation on the historical values to fit the grid of the ground truth
variables.
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In this paper, we use ensemble forecasts from NMME models: NCEP-Climate Forecast

System version 2 (CFSv2) [Kirtman et al., 2014, Saha et al., 2014], which has K = 24

ensemble members at a 1◦×1◦ resolution over a 2-week lead time. The NCEP-CFSv2 model

has two different products: we use its hindcasts from 1982 to 2010 for training, developing and

tuning our models and its forecasts from March 2011 to December 2020 for final evaluation

of our models.

In order to ensure our results are not unique to a single forecasting model, we also analyze

output from the NASA-Global Modeling and Assimilation (GMAO) from the Goddard Earth

Observing System (GEOS) model version 5 [Nakada et al., 2018], which has K = 11 ensemble

members at a 1◦×1◦ resolution over a 2-week lead time. Similarly, we use its hindcasts from

1981 to 2010 for training, developing and tuning our models and its forecasts from January

2011 to January 2018 for final evaluation.

Different ensemble members correspond to different initial conditions (initialization time)

of the underlying physical model. NCEP-CFSv2 is the operational prediction model currently

used by the U.S. Climate Prediction Center. The NCEP-CFSv2 forecasts are initialized

every five days and include 24 ensemble members in total – four members (0000, 0600, 1200,

and 1800 UTC) every fifth day, starting from the month prior to the month of forecast

time. NASA-GMAO is a fully coupled atmosphere–ocean–land–sea ice model, with forecasts

initialized every five days and includes 11 ensemble members (one member every fifth day).

All data are interpolated to lie on the same 1◦× 1◦ grid, resulting in L = 3274 U.S. loca-

tions. Climate variables that available daily (such as pressure at sea level or precipitation)

are converted to a monthly average values. When data is available as monthly averages only,

we select the month used as a predictor that only uses data available at time t and earlier,

so that our forecast for time t+ δt does not use any information about the interval (t, t+ δt).
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CHAPTER 5

PREDICTION METHODS

5.1 Baselines

Climatology (i.e., historical average) This simple baseline is the 30-year mean of a

variable at a given location and month. It is the fundamental benchmark for climate pre-

dictability. In particular, for a given time t, let m(t) := t mod 12 correspond to the calendar

month corresponding to t; then we compute its 30-year climatology of the target variable

via

ŷhistt,l = sm(t),l. (5.1)

Ensemble average This is the mean of all ensemble members for each location l at each

time step t:

ŷ
ens avg
t,l :=

1

K

K∑
k=1

u
(k)
t,l , t = 1, . . . , T, l = 1, . . . , L.

Linear regression Finally, we consider linear regression model. As a baseline model, we

use ensemble members as input features: xt,l = [u
(1)
t,l , . . . , u

(K)
t,l ]. Then the model’s output is

ŷLRt,l := ⟨θl, xt,l⟩ + θ0l , (5.2)

where θl are the trained coefficients for input features for each location l, and θ0l are the

learned intercepts for each location l. We learn a different model for each spatial location.
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5.2 Learning-based methods

Linear regression (LR) Other climate variables can be added to the input features:

xt,l = [u
(1)
t,l , ..., u

(K)
t,l , v

(1)
t,l , ..., v

(P )
t,l ]. Then the model’s output is

ŷLRt,l := ⟨θl, xt,l⟩ + θ0l , (5.3)

where θl are the trained coefficients for input features for each location l, and θ0l are the

learned intercepts for each location l. Because the feature vector is higher dimensional here

than for the baseline, the learned θl is also higher dimensional here. We learn a different

model for each spatial location. Since linear models are trained independently for each

location, the location information does not modulate weights on ensemble members. In our

experiments with linear models, we do not include positional encodings (z
(1)
l , z

(2)
l ) as input

features.

Random forest We train a random forest that uses the spatial location as additional

features in addition to ensemble predictions and climate data to form the feature vector

xt,l = [u
(1)
t,l , ..., u

(K)
t,l , v

(1)
t,l , ..., v

(P )
t,l , z

(1)
l , z

(2)
l ]

for all location l and time t pairs. One random forest is trained to make predictions for any

spatial location.

Convolutional neural network To produce a forecast map for the U.S. we adapted a

U-Net architecture [Ronneberger et al., 2015], which has an encoder-decoder structure with

convolutional layer blocks. The U-Net maps a stack of images to an output image; in our

context, we treat each spatial map of a climate variable or forecast as an image. Thus, the
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input to our U-Net is

xt = [u
(1)
t , ..., u

(K)
t , v

(1)
t , ..., v

(P )
t , z(1), z(2)].

The model output is a spatial map of the predicted response.

Nonlinear model stacking Model stacking is a popular way to improve model perfor-

mance by combining the outputs of several models (usually called base models) [Pavlyshenko,

2018]. In our case, linear regression, random forests, and the U-Net are substantially different

in terms of architecture and computation, and we observe that they produce qualitatively

different forecasts.

We stack a linear model, random forest, and U-Net using a nonparametric approach:

ŷt,l = h(ŷLRt,l , ŷ
RF
t,l , ŷ

UNET
t,l ), (5.4)

where h is a simple feed-forward neural network with a non-linear activation, ŷLRt,l , ŷ
RF
t,l , ŷ

UNET
t,l

are the predictions of a linear model, random forest and the U-Net correspondingly. Model

stacking can improve the forecast quality by combining predictions from three forecasting

paradigms. One stacking model is trained to make predictions for any spatial location.
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CHAPTER 6

EXPERIMENTAL SETUP

In this section, we provide details on the experimental setup including removing climatology,

positional encoding, evaluation metrics and training scheme for different models. Prepro-

cessing details are presented in Appendix C.

6.1 Positional encoding

Several of our models use the spatial location as an input feature. Rather than directly using

latitudes and longitudes, we use positional encoding (PE) [Vaswani et al., 2017]:

z
(1)
l (i) =PE(l, 2i) = sin(l/100002i/d), (6.1)

z
(2)
l (i) =PE(l, 2i + 1) = cos(l/100002i/d), (6.2)

where l is a longitude or latitude value, d = 12 is the dimensionality of the positional

encoding, and i is the index i = 1, . . . , d.

6.2 Training

RF is known to be yet simple but powerful ML approach, and usually it is easier to train

compared to DL methods. In our experiments, we use default parameters for RF from the

Scikit-learn library [Pedregosa et al., 2011]. For the U-Net, we modify an available PyTorch

implementation [Yakubovskiy, 2020]. We use cross-validation (CV) and grid search to select

parameters such as learning rate, weight decay (the Adam optimizer [Kingma and Ba, 2014]

is used in all experiments), batch size, and number of epochs. We split train part of our

dataset into 10 folds, and perform a regular 10-fold CV algorithm (without shuffling). After

that, having optimal hyperparameters, we train U-Net model with the optimal parameters
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on the full training dataset. The validation data is used to select features and models.

For model stacking, we apply the following procedure: the base models are first trained

on half of the training data, and predicted values on the second half are used to train

the stacking model. Then we retrain the base models on all the training data and apply

the learned stacked model to those prediction take predictions of models that are trained

on all train data, and the pretrained stacking model is applied to these predictions. This

scheme is utilized since machine learning models tend to overfit on the train data (especially

random forest), and the stacking model could simply learn to pay more attention to overfitted

predictions. The proposed procedure helps the stacking model to generalize better. The

stacking model is a simple feed-forward neural network with a non-linear activation function.

The architecture details can be found in Appendix B.2.

6.3 Subtracting climatology

We evaluate our detrended predictions against the detrended true responses, defined as

ydetrendedt,l = yt,l − sm(t),l, (6.3)

ŷdetrendedt,l = ŷt,l − sm(t),l (6.4)

where sm,l is defined in (5.1). However, for the special case of ŷ corresponding to the

ensemble average, the ensemble members may exhibit bias, in which case we also consider

ŷdetrendedt,l = ŷt,l − ŝm(t),l (6.5)

where ŝm(t),l is evaluated on the model’s (ensemble average) predictions:

ŝm,l :=
1

T

T∑
t=1

ŷt,lI{m=m(t)}, l = 1, . . . , L. (6.6)
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The model climatology ŝm,l is evaluated on the train part of data.

Note that we do not apply detrending to the input features and target variables, i.e.,

precipitation and temperature, when training our ML models. We subtract climatology

from the model outputs only at evaluating their performances.

6.4 Evaluation metrics

Regression metrics The forecast skill of our regression models measured using the R2

value. The exact formula for one location l and ground-truth yt,l and predictions ŷt,l at this

location is given below:

R2
l = 1 −

T∑
t=1

(
ydetrendedt,l − ŷdetrendedt,l

)2
T∑
t=1

(
ydetrendedt,l − ȳdetrendedl

)2 , (6.7)

for l = 1, . . . , L and

ȳdetrendedl =
1

T

T∑
t=1

ŷdetrendedt,l .

Then the average R2 for all locations is calculated as

R2 =
1

L

L∑
l=1

R2
l . (6.8)

In addition to the average R2 on the test, we also estimate the median R2 score across all

U.S. locations.

We further report the mean squared error (MSE) of our predictions:

MSEl :=
1

T

T∑
t=1

(
yt,l − ŷt,l

)2
,
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for l = 1, . . . , L, and

MSE =
1

L

L∑
l=1

MSEl. (6.9)

We also report the standard error (SE), median, and 75th percentile of MSEl. The standard

errors provided here should be used with caution, since there are significant spatial corre-

lations in the MSE values across locations, so we do not truly have L independent samples

from an asymptotically normal distribution.

Tercile classification metrics We estimate the accuracy of our tercile classification pre-

dictions as the proportion of correctly classified samples out of all observations.
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CHAPTER 7

EXPERIMENTAL RESULTS

In this section, we report the predictive skill of different models applied to SSF over the

continental U.S. using NCEP-CFSv2 ensemble members for regression and tercile classifica-

tion. The results for the NASA-GMAO dataset are presented in Appendix A. Recall that

all methods are trained on data spanning January 1985 - October 2005, with data spanning

November 2005 - December 2010 used for validation (i.e., model selection and hyperparam-

eter tuning). Test data spanning 2011 to 2020 was not viewed at any point of the model

development and training process, and only used to evaluate the predictive skill of our trained

models on previously unseen data; we refer to this period as the “test period”.

7.1 Regression

In this section, we present results for the regression task for both climate variables.

7.1.1 Precipitation regression

Precipitation regression results using NCEP-CFSv2 data are presented in Table 7.1. Our

methods, especially the stacked model, outperform the baselines such as the ensemble average

or historical average with statistical significance in terms of MSE. In addition, the mean and

median R2 values of the stacked model are the highest compared to all other methods. Note

that the model stacking approach is applied to the models that are trained on all available

features (i.e., ensemble members, positional encoding, lagged data, climate variables; linear

regression is trained on all features except PE). We decide what models to include to the

stacking approach based on their validation performance (for example, LR on ensemble

members only performs worse than LR on all features on validation; Table 8.2). The low

90th percentile error implies that our methods not only have high skill on average, but also
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that there are relatively few samples with large errors.

Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

Historical avg -0.06 -0.01 2.33 0.04 1.59 4.96
Ens avg -0.08 0.01 2.19 0.04 1.55 4.57Baseline

Linear Regr -0.11 -0.07 2.26 0.04 1.54 4.72

LR All features -0.33 -0.25 2.71 0.05 1.91 5.45
U-Net All features -0.10 -0.01 2.18 0.03 1.44 4.62
RF All features -0.11 -0.01 2.17 0.04 1.48 4.45

Stacked LR, U-Net, RF outputs 0.02 0.04 2.07 0.03 1.42 4.38

Table 7.1: Results for precipitation regression using NCEP-CFSv2 dataset over
the test period. LR refers to linear regression on all features including ensemble members,
lagged data, climate variables and SST. Model stacking is performed on models that are
trained on all features. The performance of ensemble average is evaluated with the model
climatology ŝ removed.

Fig. 7.1 illustrates performance of key methods on NCEP-CFSv2 data with R2 heatmaps

over the U.S. The stacked model’s heatmap reveals large areas of land where its predictive

skill exceeds that of all other methods. Note that model stacking yields relatively accurate

predictions even in regions where the three stacked models individually perform poorly (e.g.,

southwestern Arizona), highlighting the generalization abilities of our stacking approach.

These plots demonstrate that random forest, U-Net and linear regression indeed produce

different forecasts in terms of overall skill and spatial variation.

7.1.2 Regression of temperature

Table 7.2 shows results for 2-meter temperature regression using the NCEP-CFSv2 dataset.

The learning-based models, especially random forest and stacked model, significantly outper-

form the baseline models in terms of MSE and R2 score. The random forest also outperforms

linear regression and the U-Net. Note that LR, U-Net and RF are trained without using

SSTs information, since SSTs features yielded worse performance over the validation period

(Table 8.2).

Fig. 7.2 illustrates the performance of key methods on NCEP-CFSv2 data with R2
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Figure 7.1: R2 score heatmaps of baselines and learning-based methods for pre-
cipitation regression using NCEP-CFSv2 dataset over the test period. Positive
values (blue) indicate better performance. The stacked model has the most predictive skill,
including in southern Arizona, where the constituent models each perform worse.

Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

Historical avg -0.66 -0.17 6.57 0.11 5.04 9.99
Ens avg -0.47 0.08 5.51 0.10 3.83 9.16Baseline

Linear Regr 0.04 0.17 3.60 0.03 3.25 5.49

LR All features wo SSTs 0.05 0.16 3.57 0.02 3.33 5.41
U-Net All features wo SSTs 0.01 0.18 3.65 0.02 3.38 5.31
RF All features wo SSTs 0.16 0.25 3.17 0.02 2.99 4.63

Stacked LR, U-Net, RF outputs 0.18 0.27 3.11 0.02 2.93 4.56

Table 7.2: Test results for temperature regression using NCEP-CFSv2 dataset.
LR refers to linear regression on all features including ensemble members, lagged data, land
variables. Model stacking is performed on models that are learned on all features except SST.
The performance of ensemble average is evaluated with a model climatology ŝ removed.

23



heatmaps over the U.S. As expected, the model stacking approach shows the best results

across spatial locations. We notice that there are still regions where all models tend to

achieve negative R2 score.
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Figure 7.2: Test R2 score heatmaps of baselines and learning-based methods for
temperature regression using NCEP-CFSv2 dataset. Positive values (blue) indicate
better performance. The stacked model’s heatmap has many fewer dark red pixels than the
models being stacked.

7.2 Tercile classification

In this section, we present results for the tercile classification task for both climate variables.
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7.2.1 Tercile classification of precipitation

In this case, the proposed learning-based methods are trained on the classification task

directly. Predictions of baselines, such as an ensemble average or a historical average, are

split to three classes according to the 33rd and 66th percentile values. Note that random

forest and U-Net are trained for classification using all available features. We do not notice

a significant difference in performance of logistic regression on the validation if the inputs to

the logistic regression are ensemble members only or ensemble members with side info. So,

we use logistic regression on ensemble members only. The model stacking is applied to the

logistic regression, U-Net and random forest outputs.

Table 7.3 summarizes results for NCEP-CFSv2 dataset on the test data. For this task, the

learning-based methods achieve the best performance in terms of accuracy. In particular,

U-Net achieves the highest accuracy score, and the performance of the stacked model is

comparable with it. In general, random forest and U-Net also significantly outperform the

ensemble average.

Model
Mean

accuracy (↑)
Median

accuracy (↑) SE

Ens avg 38.00 37.61 0.16
Logistic Regr 41.22 40.17 0.14

U-Net 43.88 42.74 0.12
RF 42.38 41.88 0.13

Stacked 43.81 42.74 0.13

Table 7.3: Test results for tercile classification of precipitation using NCEP-CFSv2
data. Accuracy in % is reported. Note that for this task, our models are trained for
classification directly while baselines perform regression and threshold for predicted values
is applied. For stacking, logistic regression, U-Net and RF outputs are used.

The accuracy heatmaps over U. S. land are presented in the Figure 7.3 for NCEP-CFSv2

dataset. The plots corresponding to the learning-based methods show the best results,

especially at the West Coast, Colorado and North America.
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Figure 7.3: Test accuracy heatmaps of baselines and learning-based methods for
tercile classification of precipitation using NCEP-CFSv2 dataset. The accuracy
color bar is centered at 1

3 , what corresponds to a random guess score. Blue pixels indicate
better performance, while red pixels correspond to performance that is worse than a random
guess. U-Net achieves the highest accuracy score, the performance of the stacked model is
lower, but the difference with U-Net is not statistically significant.

7.2.2 Tercile classification of temperature

The next task is tercile classification of 2-meter temperature. In this case, the thresholds

of 33rd and 66th percentile values are applied to the regression predictions of all meth-

ods, meaning there is no direct training for a classification. Table 7.4 summarizes results

for NCEP-CFSv2 data on the test. For this task, all learning-based models significantly

outperform the ensemble average. The stacked model achieves the highest accuracy score.

Figure 7.4 shows accuracy heatmaps over the U.S. for different methods using NCEP-

CFSv2 data. The stacked model shows the best performance across spatial locations. For

example, ensemble average do not show great performance at South East and Middle Atlantic
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Model
Mean

accuracy (↑)
Median

accuracy (↑) SE

Ens avg 44.84 42.74 0.36
Linear Regr 57.10 54.69 0.25

LR 57.34 54.71 0.25
U-Net 53.80 50.43 0.28
RF 58.07 54.70 0.27

Stacked 58.12 54.71 0.20

Table 7.4: Test results for tercile classification of temperature on NCEP-CFSV2
dataset. Accuracy in % is reported. Note that for this task, our models are trained for
regression and the threshold for predicted values is applied.

regions, while learning based methods demonstrate much stronger predictive skill in these

areas. However, there are still some areas, such as Texas or South West region, with red

pixels for all methods.
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Figure 7.4: Test accuracy heatmaps of baselines and learning-based methods for
tercile classification of temperature using NCEP-CFSv2 dataset. The accuracy
color bar is centered at 1

3 , what corresponds to a random guess score. Blue pixels indicate
better performance, while red pixels correspond to performance that is worse than a random
guess. The stacked model achieves the highest accuracy score.
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CHAPTER 8

DISCUSSION

8.1 The efficacy of machine learning for SSF

While climate simulations and ensemble forecasts are designed to provide useful predictions

of temperature and precipitation based on carefully-developed physical models, we see that

machine learning applied to those ensembles can yield significantly higher predictive skill

for a range of SSF tasks. Figure 8.1 illustrates key differences between different predictive

models for predicting precipitation 14 days in advance. Figure 8.1(g) shows the forecast

associated with a single member of the NCEP-CFSv2 ensemble. Figure 8.1(e) illustrates

the prediction of the ensemble average, and its MSE is lower compared to the individual

ensemble member’s error. These baselines can all be compared with the true precipitation

in Figure 8.1(a). In contrast, Figure 8.1(b, d, f, h, i) show the predictions of different ML

models that use all ensemble members as well as observational data: linear regression on

ensemble members only (b), linear regression on ensemble members and additional features

(d), a convolutional neural network (f), a random forest (h) and a stacked model (i) that

gives a learned combination of the predictions of (d), (f), and (h). The learned models

exhibit higher spatial frequencies and more accurately predict localized regions of high and

low precipitation compared to the ensemble average. There are several hypotheses that

might explain why ML is an effective approach here, and we probe those hypotheses in this

section. There are several hypotheses that might explain why ML is an effective approach

here, and we probe those hypotheses in this section.

8.1.1 Using full ensemble vs. ensemble average

Past works use ensemble average as an input feature to machine learning methods in addition

to the climate variables [Hwang et al., 2018, He et al., 2021]. Ensembles provide valuable
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information not only about expected climate behavior, but also variance or uncertainty in

multiple dimensions; methods that rely solely on ensemble average lack information about

this variance. The dynamical models that underpin each ensemble member may have sys-

tematic errors, either in the mean, the variability, or conditioned upon certain elements of

the initial conditions, that are not readily apparent to the forecaster. While taking the av-

erage of these ensemble members may net out the deficiencies of each individual member, it

is also possible that the systematic errors of each may be directly discovered and corrected

by a machine learning model independently. Therefore, using a single ensemble statistic,

such as the ensemble mean, as a feature may not fully capitalize on the information pro-

vided by using all the ensemble forecasts as features. In our experiments, we find that using

all available ensemble members enhances the prediction quality of our approaches. As an

illustration, we show results of the random forest model trained on all ensemble members

and the random forest trained on the ensemble average. In addition to the full ensemble or

the ensemble mean, we use other available features (as in our previous regression results).

Table 8.1 demonstrates the results: using all ensemble members is crucial indeed. RF’s

performance on the full ensemble (and other features) is significantly better compared to

RF’s performance on the ensemble mean (and other features) both in terms of MSE and

R2 value. We conclude that the full ensemble contains important information for SSF aside

from ensemble mean, and our models are able to capitalize on this information.

8.1.2 Learning when to trust each ensemble member

We consider the hypothesis that there is a set of k ensemble members that are always best.

To test this hypothesis, we use a training period to identify which k members perform

best for each location, and then during the test period, compute the average of only these k

ensemble members. The performance of this approach depends on k, the number of ensemble

members we allow to be designated “good”, but the performance for any k never exhibited
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Target Features
Mean
R2 (↑)

Mean
Sq Err (↓) SE

Full ensemble + all features -0.10 2.17 0.04
Precip

Ensemble avg + all features -0.16 2.36 0.04
Sorted ensemble + all features -0.17 2.30 0.04

Full ensemble + all features wo SSTs 0.16 3.17 0.02
Tmp

Ensemble avg + all features wo SSTs 0.10 3.57 0.02
Sorted ensemble + all features wo SSTs 0.10 3.44 0.02

Table 8.1: Performance comparison of random forest trained using the full en-
semble; using the ensemble average or using the sorted ensemble members, in
addition to other features. Scores on the test data are reported and NCEP-CFSv2 data
is used.

a statistically significant improvement over the ensemble average.

If the ensemble members have different levels of accuracy over various seasons, locations,

and conditions, then a machine learning model may be learning when to “trust” each member.

We conduct an experiment designed to test whether it is important to keep track of which

ensemble member made each prediction, or whether it is the distribution of predictions that

is important. The modeling approach for the former would be to feed in ensemble member

1’s forecast as the first feature, ensemble member 2’s forecast as the second feature, etc. The

modeling approach under the distributional hypothesis is to make the smallest prediction

be the first feature, the second-smallest prediction be the second feature, and so on – i.e.,

we sort the ensemble forecasts for each location separately. Note that this entails treating

the ensemble members symmetrically: the model would give the same prediction if ensemble

member 1 predicted a and ensemble member 2 predicted b or if ensemble member 1 predicted

b and ensemble member 2 predicted a. In statistical parlance, this is passing in the order

statistics of the forecasts as the features, rather than their original ordering. (Note that for

NCEP-CFSv2, ensemble forecasts are originally ordered according to the time at which their

initial conditions are set [Saha et al., 2014].) We train and evaluate the random forest model

with the sorted forecasts as the features and compare to our earlier results, which used the

original ordering of the ensemble members. Table 8.1 illustrates results on test part. In
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case of precipitation, the MSE of the sorted approach is 2.30, which is worse than the 2.17

MSE for using the original ordering. In the case of temperature forecasting, the MSE of

the sorted approach is 3.44, which is much worse than the 3.17 MSE for using the original

ordering. The mean R2 of sorted approach is also lower compared to the original ordering.

In both cases, the performance is better when we feed in the features in such a way that

the machine learning model has an opportunity to learn aspects of each ensemble member,

not merely their order statistics. Therefore, imposing a symmetric treatment of ensemble

members degrades performance.

8.2 Variable importance

One aspect of the efficacy of ML for SSF is that ML models can incorporate side information

(such as spatial information, lagged temperature and precipitation values, and climate vari-

ables). We explore the importance of different components of side information in this section.

We see that including the observational climate variables improved the performance for both

the random forest and the U-Net in case of precipitation regression task. Furthermore, in-

cluding positional encodings of the locations improved the performance of the U-Net, while

the principle components of the sea surface temperature didn’t make much difference in case

of temperature prediction. This is expected since the sea surface temperature is empirically

a good predictor for precipitation at southwest but not the whole U.S.

More specifically, Table 8.2 summarizes grouped feature importance of precipitation re-

gression using the NCEP-CFSv2 ensemble. We observe that models, in particular random

forest and U-Net, trained on all available data achieve the best performance. In case of linear

regression, the SSTs feature is not so helpful, but the difference is not significant. Therefore,

in order to be consistent, we decide to use predictions of these models trained on all features

as an input to the stacking model.

Table 8.2 summarizes grouped feature importance of temperature regression using the
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Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

LR Ens members -0.13 -0.08 2.11 0.03 1.53 4.63
–"– & PE & lags -0.11 -0.07 2.10 0.03 1.50 4.59

–"– & land -0.09 -0.06 2.06 0.03 1.47 4.52
–"– & SSTs -0.10 -0.07 2.08 0.03 1.47 4.61

U-Net Ens members with PE -0.13 -0.05 2.01 0.03 1.50 4.31
–"– & lags -0.08 -0.02 1.92 0.03 1.42 4.17
–"– & land -0.02 0.05 1.86 0.03 1.37 4.02
–"– & SSTs 0.00 0.05 1.83 0.03 1.34 3.94

RF Ens members with PE -0.15 -0.04 2.02 0.03 1.49 4.34
–"– & lags -0.10 0.00 1.96 0.03 1.44 4.21
–"– & land -0.08 0.02 1.93 0.03 1.39 4.16
–"– & SSTs -0.06 0.04 1.89 0.03 1.36 4.08

Table 8.2: Grouped feature importance results on validation for precipitation
regression task using NCEP-CFSv2 ensemble members. The results suggest that
using additional observational information helps to improve performance of learning-based
models for this task. –"– means a repetition of features that are used above. For example,
in the U-Net part of the table, “–"– & PE & lags” means that ensemble members, PE, and
lags are used as features and “–"– & SST” means ensemble members, PE and lags, land
features and SSTs are used as features.

NCEP-CFSv2 ensemble. In this case, adding some types of side information may yield only

very small improvements to predictive skill, and in some cases the additional information

may decrease predictive skill. This may be a sign of overfitting. We also note that SSTs

provide only marginal (if any) improvement in predictive skill, in part because Pacific SSTs

are less helpful predictors away from the western U.S. It could also be that information from

the SSTs is already being well-captured by the output from the dynamical models and thus

including observed SSTs is not providing much in the way of additional information. Similar

to the precipitation case, in order to be consistent, we decide to use predictions of these

models trained on all features except SSTs as an input to the stacking model. Due to this

observation, we use models trained on all side information except SSTs for evaluation on the

test in case of temperature regression task.
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Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

LR Ens members 0.35 0.40 2.19 0.02 2.00 3.47
–"– & PE & lags 0.37 0.40 2.12 0.02 1.94 3.30

–"– & land 0.36 0.39 2.14 0.04 1.94 3.40
–"– & SSTs 0.34 0.38 2.23 0.02 1.99 3.73

U-Net Ens members with PE 0.33 0.41 2.22 0.04 2.02 3.47
–"– & lags 0.32 0.40 2.24 0.02 2.02 3.49
–"– & land 0.31 0.41 2.26 0.02 2.08 3.48
–"– & SSTs 0.28 0.38 2.47 0.02 2.20 3.95

RF Ens members with PE 0.11 0.37 2.85 0.04 2.28 4.87
–"– & lags 0.30 0.36 2.35 0.02 2.12 3.70
–"– & land 0.30 0.36 2.33 0.02 2.10 3.65
–"– & SSTs 0.28 0.34 2.42 0.02 2.17 3.83

Table 8.3: Grouped feature importance results on validation for temperature re-
gression task using NCEP-CFSv2 ensemble members. The results demonstrate that
using some additional information may yield only very small improvements in predictive
skill, and in some cases the side information may decrease predictive skill. –"– means a
repetition of features that are used above. For example, for U-Net part of the table, –"– &
PE & lags means that ensemble members, PE, and lags are used as features and –"– & SSTs
means ensemble members, PE and lags, land features and SSTs are used as features.

8.3 Temperature forecasting analysis

Figure 7.2 shows regions in Texas and Florida where the ensemble average and linear re-

gression performance is poor, while a random forest achieves far superior performance. We

conduct an analysis of forecasts of the ensemble average, linear regression, and random

forests in these regions together with a region in Wisconsin where all methods show good

performance. Figure 8.2 indicates these regions and Table 8.4 summarizes performance of

different methods in these regions: the ensemble average prediction quality dramatically

drops between the validation and test periods in Texas and Florida, which is not the case

for the random forest.

Why does RF perform so much better than simpler methods in some regions? One

possibility is that the RF is a nonlinear model capable of more complex predictions. However,

if that were the only cause of the discrepancy in performance, then we would expect that the
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Region
location

Model
Train

mean R2 (↑)
Validation
mean R2 (↑)

Test
mean R2 (↑)

Ens avg 0.19 0.36 -1.55
Texas

LR 0.53 0.49 -1.29
RF 0.97 0.32 -0.33

Ens avg 0.11 0.34 -0.87
Florida

LR 0.47 0.58 -0.56
RF 0.97 0.36 0.11

Ens avg 0.30 0.36 0.39
Wisconsin

LR 0.53 0.57 0.51
RF 1.00 0.47 0.47

Table 8.4: Train, validation, and test performance of different methods in Texas,
Florida, and Wisconsin regions. The task is temperature regression; NCEP-CFSv2
dataset is used. The performance of the ensemble average and linear regression in the
test period significantly decreases in Texas and Florida, while the random forest is able to
demonstrate reasonable results. All methods perform well in Wisconsin.

RF would be better not only on the test period, but on the validation period as well. Table 8.4

does not support this argument; it shows that the ensemble average and linear regression have

comparable if not superior performance to the random forest during the validation period.

A second hypothesis is that the distribution of the data is different during the test period

during the training and validation periods. This hypothesis is plausible for two reasons: (1)

climate change, and (2) the training and validation data use hindcast ensembles while the test

data uses forecast ensembles. To investigate this hypothesis, in Figure 8.3 we plot the true

temperature and ensemble average in the training, validation, and test periods for the three

geographic regions. The discrepancy between the true temperatures and ensemble averages

in the test period is generally greater than during the training and validation periods in Texas

and Florida (though not in Wisconsin, a region in which validation and test performance

are comparable for all methods). This lends support to the hypothesis that hindcast and

forecast ensembles exhibit distribution drift, and the superior performance of the RF during

the test period may be due to a greater robustness to that distribution drift.

The hindcast and forecast ensembles may have different predictive accuracies because the

hindcast ensembles have been debiased to fit past climate data – a procedure not possible
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for forecast data. Is the lack of debiasing of forecast data the main driver of distribution

drift? To explore this, Figure 8.3 also shows the ”oracle debiased ensemble average” which

is computed by using the test data to estimate the forecast ensemble bias and subtracting it

from the ensemble average. This procedure, which would not be possible in practice and is

used only to probe distribution drift and ensemble bias, yields smaller discrepancies between

the true data and the (oracle debiased) ensemble average during the test period. Specifically,

the oracle ensemble member achieves -0.20 mean R2 score (TX) and -0.28 mean R2 score (FL)

vs. -1.55 R2 (TX) and -0.87 R2 (FL) of the original forecast ensemble average. Nevertheless,

even the oracle debiased ensemble average shows signs of distribution drift. Furthermore,

Figure 8.3 suggests that the true distribution of temperature may be changing over time;

e.g., in Texas, the true temperatures have more extreme values during the test period.
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Figure 8.1: An illustration of precipitation predictions (on the detrended scale) of
different methods for February 2016 (in test period). Individual ensemble members
produce predictions with high levels of spatial smoothness, and predict extreme values in
more regions. Linear regression, the random forest, the U-Net, and the stacked model
all produce higher spatial frequencies. The linear regression result, which uses a different
model trained for each spatial location separately, has the least spatial smoothness of all
predictors; this is especially visible in the southeast and potentially does not reflect realistic
spatial structure.
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Figure 8.2: Regions where temperature forecast is analyzed. In Texas and Florida,
the ensemble average performance drastically underperforms in the test set compared to both
training and validation. In Wisconsin, all methods show good performance. See Table 8.4.
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Figure 8.3: Temperature predictions of different methods at Texas, Florida, and
Wisconsin regions. Black lines correspond to train/val and val/test splits; train and
validation correspond to the hindcast regime of the ensemble, while test corresponds to the
forecast regime. Figure (a) and (b) shows that the ensemble forecast is a much poorer fit
to the real data than the hindcast, and there is no sign of such behavior in Figure (c).
The oracle debiased ensemble average means ensemble predictions being detrended using a
climatology estimated from its test predictions; and this oracle debiased ensemble average
fits true response much better at Texas and Florida. It might be a sign of both distribution
shift in the responses (the test period ”truth” has more extreme values than in the train and
validation periods) as well as a shift in the distribution of Y |X (in the test period, the blue
lines are a worse fit to the green lines, possibly due to the shift from hindcast to forecast
ensembles).
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CHAPTER 9

CONCLUSIONS AND FUTURE DIRECTIONS

This paper systematically explores the use of machine learning methods for subseasonal

climate forecasting, highlighting several important factors: (1) the importance of using full

ensembles of physics-based climate forecasts (as opposed to only using the mean, as in

common practice); (2) the efficacy of different mechanisms, such as positional encoding and

convolutional neural networks, for modeling spatial dependencies; (3) the importance of

various features, such as sea surface temperature and lagged temperature and precipitation

values, for predictive accuracy. Together, these results provide new insights into using ML

for subseasonal climate forecasting in terms of the selection of features, models, and methods.

Our results also suggest several important directions of future research. In terms of

features, there are many climate forecasting ensembles computed by organizations such

as the NOAA and ECMWF. This paper focuses on ensembles in which ensemble members

have a distinct ordering (in terms of lagged initial conditions used to generate them), but

other ensembles correspond to initial conditions or parameters drawn independently from

some distribution. Leveraging such ensemble forecasts, and potentially jointly leveraging

ensemble members from multiple distinct ensembles, may further improve the predictive

accuracy of our methods.

In terms of models, new neural architecture models such as transformers have shown re-

markable performance on a number of image analysis tasks [Dosovitskiy et al., 2020, Carion

et al., 2020, Chen et al., 2021, Khan et al., 2022] and have potential in the context of fore-

casting climate temperature and precipitation maps. Careful study is needed, as past image

analysis work using transformers generally uses large quantities of training data, exceeding

what is available in SSF contexts.

In terms of methods, two outstanding challenges are particularly salient to the SSF

community. The first is uncertainty quantification; that is, we wish not only to forecast
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temperature or precipitation, but also to predict the likelihood of certain extreme events.

Second, we see in Fig. 8.3 that, at least in some geographic regions, the distribution of

ensemble hindcast and forecast data may be quite different. Employing methods that are

more robust to distribution drift [Wiles et al., 2021, Subbaswamy et al., 2021, Zhu et al.,

2021] is particularly important not only to handling forecast and hindcast data, but also for

accurate SSF in a changing climate.
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APPENDIX A

RESULTS FOR NASA-GMAO DATASET

A.1 Regression

A.1.1 Precipitation regression

Precipitation regression results on test are presented in Table A.1. The stacked model

performance is the best in terms of MSE, however, the difference is not statistically significant

compared to the baselines such as ensemble average or historical average. Model stacking is

performed on top of models that are trained on all features. Other machine learning models

such as RF or U-Net are not able to show the outstanding performance in terms of R2 score

too. The historical average shows the best score in terms of R2 score, and even the ensemble

average is not able to outperform it.

Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

Historical avg -0.07 -0.02 2.14 0.04 1.51 4.40
Ens avg -0.11 -0.06 2.13 0.04 1.52 4.31Baseline

Linear Regr -0.18 -0.14 2.25 0.04 1.62 4.68

LR All features -0.40 -0.29 2.62 0.05 1.93 5.42
U-Net All features -0.19 -0.09 2.11 0.03 1.56 4.25
RF All features -0.18 -0.11 2.17 0.04 1.55 4.44

Stacked U-Net, RF, LR outputs -0.08 -0.06 2.09 0.04 1.52 4.27

Table A.1: Test results for precipitation regression using NASA-GMAO dataset.
LR refers to linear regression on all features such as mean ensemble members, lagged data,
land variables and SST. The performance of ensemble average is evaluated with a model
climatology ŝ removed.

Figure A.1 illustrates test performance of key methods on NCEP-CFSv2 data with R2

heatmaps over the U.S. Despite the stacked model does not show the best performance in

terms of mean R2 score, its heatmap has less dark red regions, and there are areas of land

where its predictive skill exceeds that of all other methods.

45



120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(a) Historical average

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(b) Linear regression on all features

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(c) Ensemble average

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(d) U-Net

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(e) Linear regression on ensemble members

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(f) Random forest

120 110 100 90 80 70
longitude

30

35

40

45

la
tit

ud
e

(g) Stacked model

1

0

1

R
2

1

0

1

R
2

1

0

1

R
2

1

0

1

R
2

1

0

1

R
2

1

0

1

R
2

1

0

1

R
2

Figure A.1: Test R2 score heatmaps of baselines and learning-based methods for
precipitation regression using NASA-GMAO dataset. Positive values (blue) indicate
better performance. The historical average achieves the best average R2 score, however,
other models have more regions with positive R2 score.

A.1.2 Regression of temperature

Temperature regression results using NASA-GMAO ensemble members are presented in

Table A.2. Random forest and U-Net outperform all baselines in terms of both R2 score

and MSE. The model stacking approach, as expected, demonstrates the best predictive skill.

Note that the model stacking approach is applied to the models that are trained on all

available features except SSTs (similar to NCEP-CFSv2 data).

Figure A.2 illustrates test performance of key methods on NASA-GMAO data with R2

heatmaps over the U.S. As expected, the stacked model shows the best performance across
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Model Features
Mean
R2 (↑)

Median
R2 (↑)

Mean
Sq Err (↓) SE

Median
MSE (↓)

90th prctl
MSE (↓)

Historical avg -0.7 -0.2 6.49 0.11 5.06 9.72
Ens avg -0.28 0.12 4.82 0.10 3.43 7.82Baseline

Linear Regr 0.12 0.14 3.32 0.02 3.11 4.70

LR All features wo SSTs 0.17 0.17 3.10 0.02 3.05 4.26
U-Net All features wo SSTs 0.06 0.12 3.40 0.02 3.27 4.52
RF All features wo SSTs 0.20 0.22 3.03 0.02 2.94 4.25

Stacked U-Net, RF, LR outputs 0.21 0.22 2.94 0.02 2.89 3.97

Table A.2: Test results for temperature regression using NASA-GMAO dataset.
LR refers to linear regression on all features including ensemble members, lagged data, land
variables and SST. Model stacking is performed on models that are learned on all features
except SST. The performance of ensemble average is evaluated with a model climatology ŝ.

spatial locations. Similar to the NCEP-CFSv2 dataset, we notice that there are still regions

where all models tend to achieve negative R2 score.

A.2 Tercile classification

A.2.1 Tercile classification of precipitation

In this case, the proposed learning-based methods are trained on the classification task

directly. Predictions of baselines, such as an ensemble average or a historical average, are

split to three classes according to the 33rd and 66th percentile values. Note that random

forest and U-Net are trained for classification using all available features. We do not notice

a significant difference in performance of logistic regression on the validation if the inputs to

the logistic regression are ensemble members only or ensemble members with side info. So,

we use logistic regression on the ensemble members only. The model stacking is applied to

the logistic regression, U-Net and random forest outputs.

Table A.3 summarizes results for NASA-GMAO dataset on the test data. For this task,

the stacking models achieve the best performance in terms of accuracy. The random forest,

the U-Net model and logistic regression outperform the ensemble average.

The accuracy heatmaps over U. S. land are presented in the Figure A.3 for NASA-GMAO
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Figure A.2: Test R2 score heatmaps of baselines and learning-based methods for
temperature regression using NASA-GMAO dataset. Positive values (blue) indicate
better performance. The stacked model’s heatmap has many fewer dark red pixels than the
models being stacked.

Model
Mean

accuracy (↑)
Median

accuracy (↑) SE

Ens avg 38.64 37.65 0.14
Logistic regr 41.51 40.00 0.16

U-Net 40.53 40.00 0.11
RF 40.79 40.00 0.14

Stacked 42.08 41.18 0.14

Table A.3: Test results for tercile classification of precipitation on NASA-GMAO
data. Accuracy in % is reported. Note that for this task, our models are trained for
classification directly while baselines perform regression and threshold for predicted values
is applied. For stacking, logistic regression, U-Net and RF outputs are used.
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dataset. The plots corresponding to the learning-based methods show the best results, the

ensemble average’s figure has the most of dark regions.
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Figure A.3: Test accuracy heatmaps of baselines and learning-based methods for
tercile classification of precipitation using NASA-GMAO dataset. BThe accuracy
color bar is centered at 1

3 , what corresponds to a random guess score. Blue pixels indicate
better performance, while red pixels correspond to performance that is worse than a random
guess. The stacked model achieves the best accuracy score.

A.2.2 Tercile classification of temperature

The next task is tercile classification of 2-meter temperature. In this case, the threshold is

applied to the regression predictions of all methods, meaning there is no direct training for a

classification. Table A.4 summarizes results for NASA-GMAO dataset on the test data. For

this task, the learning-based methods achieve the best performance in terms of accuracy, es-

pecially linear regression using NASA-GMAO ensemble members and all additional features

(except SSTs). In general, all learning-based models significantly outperform the ensemble
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average.

Model
Mean

accuracy (↑)
Median

accuracy (↑) SE

Ens avg 52.23 49.41 0.25
Linear Regr 57.75 54.11 0.25

LR 58.97 55.29 0.25
U-Net 55.64 51.76 0.27
RF 58.78 55.29 0.26

Stacked 58.72 54.12 0.25

Table A.4: Test results for tercile classification of temperature on NASA-GMAO
data. Accuracy in % is reported. Note that for this task, our models are trained for
regression and the threshold for predicted values is applied.

Figure A.4 shows accuracy heatmaps over the U.S. for different methods using NASA-

GMAO data. In this case, linear regression achieves the best scores. Other learning-based

methods outperform the ensemble average too, especially at the West.
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Figure A.4: Test accuracy heatmaps of baselines and learning-based methods for
tercile classification of temperature using NASA-GMAO dataset. The accuracy
color bar is centered at 1

3 , what corresponds to a random guess score. Blue pixels indicate
better performance, while red pixels correspond to performance that is worse than a random
guess. LR shows the best accuracy, and other learning-based models demonstrate comparable
performance.
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APPENDIX B

ARCHITECTURE DETAILS

B.1 U-Net details

The U-Net has residual connections from layers in the encoder part to the decoder part in

a paired way so that it forms a U-shape. Figure B.1 shows the architecture of the U-Net.

The U-Net is a powerful deep convolutional network that is widely used in image processing

tasks such as image segmentation and image classification.

Figure B.1: U-Net architecture with input channels = C. C is the number of input channels,
which in our case equals the number of ensemble members plus all climate data.

Our U-Net differs from the original U-Net by modifying the first 2D convolutional layer

after input. Since our input channels can be different when we choose different subset of

features or different ensemble (NCEP-CFSv2 or NASA-GMAO), this 2D convolutional layer

is used to transform our input with C channels into a latent representation with 64 chan-

nels. The number of channels C depends on which ensemble we are using, and what task we

are performing. For example, for precipitation tasks using the NCEP-CFSv2 ensemble, the
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input channels include 24 ensemble members, 5 lagged observations, 4 other observational

variables, 8 principal components of SST, and 24 positional encoding, resulting in 65 chan-

nels in total. For temperature tasks using the NASA-GMAO ensemble, there are only 11

ensemble members, and we don’t include SSTs information, hence there’s only 44 channels

in total. The other following layers are using the same configurations with the standard

U-Net Ronneberger et al. [2015].

We also perform careful hyperparameter tuning for the U-NET. In particular, we run 10-

fold cross validation on our training set, and use grid search for tuning learning rate, batch

size, number of epochs, and weight decay. Since we use different loss functions for different

forecast tasks and different number of input channels for NCEP-CFSv2 and GMAO-GMAO

ensemble, we run hyperparameter tuning with the same cross validation scheme separately

for these tasks. For example, for precipitation regression, we choose from 100, 120, 150, 170,

200, 250 epochs; batch size may be equal to 8, 16, 32; learning rate values are chosen from

0.0001, 0.001, 0.01; weight decay can be 0, 1e-3, 1e-4. For instance, in case of NCEP-CFSv2

precipitation regression, the optimal parameters are 170 epochs, batch size 16, learning rate

0.0001, and weight decay 1e-4. For temperature regression using the same data, we use the

following parameters: 100 epochs, batch size 16, learning rate 0.001, and weight decay 1e-3.

For tercile classification of precipitation, the best parameters are 80 epochs (we chose from

60, 70, 80, 90, 100 epochs during classification), batch size 8, learning rate 0.001, and no

weight decay.

B.2 Stacking model details

The stacking model is a simple one layer neural network with 100 hidden neurons and sigmoid

activation function for regression and softmax for classification. We use an implementation

from Scikit-learn library [Pedregosa et al., 2011]. We choose 100 neurons based on the stack-

ing model performance on the validation data (we also tried 50, 75, 100 and 120 neurons).
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The stacking model demonstrates stable performance in general, but for 100 neurons it usu-

ally achieves the best results. We use ”lbfgs” optimizer from quasi-Newton methods for the

regression tasks, and SGD optimizer for classification tasks.
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APPENDIX C

ADDITIONAL PREPROCESSING DETAILS

Random forest and U-Net require different input formats. For U-Net, all input variables

have natural image representation except SSTs and information about location. For example,

ensemble predictions can be represented as a tensor of shape (K,W,H), where K corresponds

to the number of ensemble members (or number of channels of an image), W and H are

width and height of the corresponding image. In our case, W = 64 and H = 128.

Sea surface temperatures There are more than 100 000 SSTs location available. We

extract the top eight principal components. Principal component analysis fits on train part

and then is applied for the rest of the data. In case of U-Net, we deal with PCs of SSTs by

adding additional input channels that are constant across space, each channel corresponds

to one of PCs. Random forest can use PCs from SSTs directly with no special preprocessing.

Normalization We apply channel-wise min-max normalization to the input features at

each location based on training part of the dataset in case of U-Net. As for normalization

of the true values, min-max normalization is applied for precipitation and standardization

is applied for temperature. This choice affects the final layer of U-Net model too: for the

precipitation regression task, the sigmoid activation is used, and no activation function is

applied for temperature regression. For the staking model, we apply min-max normalization

to both input and target values.
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