
THE UNIVERSITY OF CHICAGO

EVSTORE: SCALING EMBEDDING TABLES FOR DEEP RECOMMENDATION SYSTEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

DANIAR H. KURNIAWAN

CHICAGO, ILLINOIS

OCTOBER 2022

TABLE OF CONTENTS

LIST OF FIGURES . iii

LIST OF TABLES . iv

ABSTRACT . v

1 THESIS STATEMENT . 1

2 INTRODUCTION . 2

3 BACKGROUND . 4

3.1 Deep Recommendation Systems . 4

3.2 Existing Caching Policies . 7

4 EVSTORE DESIGN . 9

4.1 EVCache . 10

4.2 EVMix: Mixed-Precision Caching . 11

5 EVCACHE (L1) . 13

5.1 The Importance of Perfect Hits . 13

5.2 Replacement Policy Extension . 14

5.3 EVCache Variants . 17

6 EVMIX (L1 + L2) . 23

6.1 Advantages of Mixed Precisions . 23

6.2 Multi-Tier, Mixed-Precision Design . 23

6.3 Bit Coding Optimization . 24

7 PREMILIMINARY EVALUATION . 26

7.1 Experimental Environment and Setup . 26

7.2 EVCache Evaluation . 28

7.3 EVMix Evaluation . 31

8 OTHER PROJECTS . 32

9 RESEARCH PLAN . 34

10 SUMMARY . 35

REFERENCES . 36

ii

LIST OF FIGURES

3.1 DRS and EV Tables (Figure 3.1). To make DNNs less complex, sparse data is

converted to embedding vectors via EV tables. 4

3.2 EV table structure and lookup. An example of EV tables A–Z in a DRS. A lookup

involves finding a key in each of the 26 tables. 5

4.1 EVSTORE design overview. EVSTORE is composed of EVCache (L1), an EV ta-

ble caching layer with various cache replacement options (section 4.1+chapter 5);

L2, a second caching layer that stores lower precision embedding such as in fp8

(section 4.2+chapter 6). The lookup(A1,B4,C6,..,Z9) will lead to B4 hit in L1, C6

hit in L2, and A1 + Z9 misses will incur disk access to the backend storage. 9

5.1 Individual vs. perfect hit rates (section 5.1). Existing algorithms exhibit high in-

dividual hit rates (solid bars) but relatively low perfect hit rates (striped bars) across

various cache sizes (horizontal axis). 14

7.1 Exp. #1: Perfect hit rates across caching algorithms. EVCache algorithms (EV-

CAR, EV-ARC, EV-LFU) have the highest perfect hit rate. 28

7.2 Exp. #1: Individual and perfect hit rates across algorithms. EV-LFU increases

perfect hits by sacrificing on individual hits. 28

7.3 Exp. #2: Perfect hit rates across various cache sizes. Our EV-LFU has the highest

perfect hit rate compared to other representative algorithms across various sizes. . . . 29

7.4 Exp. #3: Perfect hit rates on different number of EV tables. EV-LFU shows

steeper benefit as the number of EV tables grows (e.g., 5 to 26). 30

7.5 Exp. #4: Perfect hit rates across various datasets. EV-LFU has the best perfect hit

rate across all datasets. 30

7.6 Exp. #5: Trade-off between latency and accuracy. Reducing the precision from 32

to 4 bits decreases the accuracy only slightly while greatly improving the latency. . . . 31

iii

LIST OF TABLES

9.1 Research Planning. The table reflects the planning for improving EVSTORE and

also finishing FlashNet project. All the deadlines presented in the last column are

approximations. 34

iv

ABSTRACT

Recommendation systems are used prominently across modern online services to help people make

decisions. The impact of recommendation systems on user engagement is tremendous. Modern

Deep Recommendation Systems (DRS), such as Facebook’s post recommendation systems, often

contain hundreds or thousands of categorical features (e.g., users, posts, or pages), each of which

can contain millions or even tens of billions of possible categories. To make the complexity of

the deep neural network (DNN) tractable, sparse categorical data is usually converted to (“dense”)

vectors of numbers before being fed to the model. The most popular conversion is via embedding

vector tables, or “EV tables” for short. Unfortunately, the state-of-the-art DRSs are simply not

equipped to handle the exponential growth of EV table sizes. Open-source DRSs platforms like

Facebook’s DLRM and Google’s DCN, for example, store the full EV tables in DRAM and lack

support for responding to lookups from backend storage when memory is exhausted.

Accordingly, we propose EVSTORE: a novel EV table caching layer in DRS inference pipelines

that exploits available DRAM and the structure of EV lookups to optimize end-to-end DRS infer-

ence latency. In this project, we propose to (1). design an embedding-aware caching algorithm

that better exploits the regularity of the DRS inference workload, (2). evaluate the new caching

algorithms against state-of-the-art policies, (3). study the effectiveness of our algorithm in various

production traces, (4). built a caching layer (EVCache) to evaluate our new caching algorithm

within the real DRS pipeline, (5). develop a mixed-precision (EVMix) caching method to increase

hit rate in trade off a minor accuracy loss.

v

CHAPTER 1

THESIS STATEMENT

Modern recommendation systems, primarily driven by deep-learning models, depend on fast model

inferences to be useful. To tackle the sparsity in the input space, particularly for categorical vari-

ables, such inferences are made by storing increasingly large embedding vector (EV) tables in

memory. A core challenge is that the inference operation has an all-or-nothing property: each in-

ference requires multiple EV table lookups, but if any memory access is slow, the whole inference

request is slow. We propose EVSTORE, a novel EV table caching layer in DRS inference pipelines

that exploits available DRAM and the structure of EV lookups to optimize end-to-end DRS infer-

ence latency. EVSTORE’s main contributions lie in EVSTORE’s 2-layer caching design where we

harness an all-or-nothing EV access property and enable mixed-precision caching to increase hit

rates, accelerate inferences, and boost throughput in trade for a minor loss of accuracy.

1

CHAPTER 2

INTRODUCTION

Recommendation systems are used prominently across modern online services to help people make

decisions. They capture user behavior and preferences to display personalized advertisements

[21, 22], rank news [7, 17], and recommend products [48]. The impact of recommendation systems

on user engagement is tremendous. Recent studies show that a significant amount of content—30%

of all traffic on Amazon’s website, 60% of the videos on YouTube, and 75% of the viewed movies

on Netflix came from suggestions made by recommendation algorithms [5, 6, 41, 52].

Deep recommendation systems (DRSs) are widely used to deliver high-quality recommenda-

tions [22, 53], but tackling categorical (“sparse”) input features is their Achilles’ heel. Modern

DRSs, such as Facebook’s post recommendation systems [22], often contain hundreds or thou-

sands of categorical features (e.g., users, posts, or pages), each of which can contain millions or

even tens of billions of possible categories. To make the complexity of the deep neural network

(DNN) tractable, sparse categorical data is usually converted to (“dense”) vectors of numbers be-

fore being fed to the model. The most popular conversion is via embedding vector tables, or “EV

tables” for short.

By reducing the DNN complexity, EV tables sacrifice space for faster computation, and thus

require significant memory. Consequently, the space management of EV tables becomes challeng-

ing: many real-world EV tables contain billions of embedding vectors [23, 48] that require tens

of TBs of memory capacity. Such DRAM-heavy architectures account for significant operational

costs for DRS users measured in millions of dollars—nearly 80% of all AI-related deployment in

Facebook’s data centers in 2020 directly supported DRSs [22]. Moreover, industry’s insatiable ap-

petite for improved recommendation accuracy demands larger EV tables to encode richer semantic

relationships. Thus, the recommendation models are growing rapidly—the sizes are tripling every

two years (1.5× annual growth) [10, 28].

Unfortunately, the state-of-the-art DRSs are simply not equipped to handle the exponential

2

growth of EV table sizes. Open-source DRSs platforms like Facebook’s DLRM [35] and Google’s

DCN [49, 50], for example, store the full EV tables in DRAM and lack support for responding to

lookups from backend storage when memory is exhausted. This brings several downsides. When

the entire memory is mostly occupied by EV tables of a specific DRS model, the server is not

able to run other DRSs concurrently, potentially reducing resource utilization of the server and the

overall throughput of the recommendation service. Furthermore, storing the entire EV tables in

memory is costly as the price of DRAM keeps increasing, especially due to shortages in global

supply [8]. A natural solution to this problem is by moving the large EV tables to the backend

storage (SSDs or HDDs). There are recent publications in this space that focus on optimizing the

backend storage for EV table lookups [20, 47, 51]. While existing storage solutions advance the

state of the art, their adoption is limited due to the need of customized devices (e.g., custom SSDs

or FPGA implementations).

In this paper, we take a different approach: How should we revisit this problem from the

context of the DRS platform itself? Can we add a novel caching layer within the DRS platform

(that works on commodity storage backend)? Can the caching layer be optimized specifically for

EV access patterns? To address these questions, we built EVSTORE: a novel EV table caching

layer in DRS inference pipelines that exploits available DRAM and the structure of EV lookups

to optimize end-to-end DRS inference latency. EVSTORE’s main contributions lie in EVSTORE’s

2-layer “L1” and “L2” caching design (EVCache and EVMix).

3

CHAPTER 3

BACKGROUND

Here we explain the details about embedding table, challenges faced by modern DRS, and the

existing caching policies.

3.1 Deep Recommendation Systems

Sparse Features

User Item

…Loc

0100010111001

……1100101110

Dense Features

EV Table

Lookup 10101000

11011110

00010001

…

Feature

Interaction
DNN

Figure 3.1: DRS and EV Tables (Figure 3.1). To make DNNs less complex, sparse data is

converted to embedding vectors via EV tables.

Consider a system asked to make product recommendations related to the query “food that

kitty likes”. After processing the natural language string with standard NLP methods like

tokenization and stemming [29, 46], the system is provided with a set of sparse (categorical) and

dense (numerical) input features. These features include high-dimensional representations of the

words in the sentence from the NLP engine, as well as supplemental information, such as user

attributes and location (Figure 3.1).

Deep recommendation systems (DRS) are recommendation engines that leverage deep neu-

ral networks (DNNs). Unfortunately, sparse categorical data, in particular those resulting from

processing text data, are a poor match for the DNNs due to the unwieldy space and time complex-

ity they impose during training. Instead, input data is usually condensed before being consumed

by the DNNs—sparse text data, for instance, undergoes word embedding into lower-dimensional

vector space.

4

lookup(A1,B4,C6,..Z9)

Key

EV Table A

‘cat’

‘dog’

‘kitty’

A1

A3

A1000.. …

Values (Vector)

0.6 -0.1 0.3

0.4 0.3 -0.8

Table B

Table Z

A2 0.7 -0.1 0.3

Figure 3.2: EV table structure and lookup. An example of EV tables A–Z in a DRS. A lookup

involves finding a key in each of the 26 tables.

Embedding vectors (EV) are the most popular method for densifying sparse input features for

the DRS, effectively translating sparse categorical data into dense vectors of numbers [11]. Inter-

nally, the translation is done by means of an EV table in memory that simply returns the appropriate

vector value, say (0.7,−0.1,0.3), corresponding to a given key, say ’kitty’, as illustrated in Fig-

ure 3.2. By reducing the dimensionality of the data, EV tables also reveal hidden relationships

between inputs. For example, note that “kitty” and “cat” are practically synonyms in EV table

A in Figure 3.2 because of the proximity of the corresponding embedding vectors. The DNN it-

self need not recognize the synonymy of “kitty” and “cat”: since similar words cluster together

in the embedding space, the queries “food that kitty likes” and “food that cat likes”

will produce comparable results.

EV tables are crucial components of a DRS, so let us consider their structure and anatomy in

more detail. Internally, each row in an EV table consists of a “key” index and a number of columns

of floating point values representing the embedding vector corresponding to the key. Under NLP

word embedding, for instance, the key may be a dictionary word like “cat”. The key could also

represent a more complex category, such as the hash of a compound string. The embedding vector

columns are the values for latent features or dimensions. Each cell is typically a 32-bit floating

point number (fp32). The cells are initialized as random values and gradually updated via back-

ward propagation during training towards higher fidelity embedding vectors. The number of latent

features is a design decision: more dimensions increase the lookup precision at the expense of

larger tables.

5

A DRS lookup is the top-level inference query. Because each EV table represents the con-

version for a single type of categorical feature, such as word-embedding within an NLP model,

a single inference may involve dozens of different EV tables, each with potentially millions of

rows [32, 34, 55]. In Figure 3.2, for example, 26 different EV tables must be consulted for a single

inference. We denote DRS lookups by:

lookup(A1,B4,C6,..,Z9),

where the number in the subscript represents a key in the table. For instance, B4 refers to key

number 4 in Table B.

EV tables are large and growing. Today’s recommendation models have enormous feature

sets to capture complex user behavior and preferences [16, 17, 22, 54, 56, 57]. Each categorical

feature could assume 107–1010 different possible values [23, 38, 53], implying that billions of

embedding vectors are needed in practice to represent every unique feature. A billion embedding

vectors (rows) with 400 dimensions (columns) [32, 34, 55] of fp32 type (cell size) would easily oc-

cupy 1.5 TB of memory. Furthermore, industry’s insatiable appetite for improved recommendation

accuracy demands more rows, extra columns, and larger vectors (cells) to encode richer semantic

relationships. Thus, the models are growing rapidly—the sizes are tripling every two years (1.5×

annual growth), following Moore’s Law [10, 28], while the underlying DRAM-hungry DRS im-

plementations already weigh heavily in company budgets [22].

DRS pipelines are up against a scaling wall. Crucially, all trends point to the continued

burgeoning of DRS system sizes. Recent projections predict that EV table sizes will imminently

be dozens of TB for some companies [10], flirting with the limits of even the greatest memory

capacity cloud instances available1. To continue scaling DRS, a different approach is required.

1. At the time of writing, high-memory instances top out at 24 TiB (AWS), and 12TiB (Azure/Google Cloud).

6

3.2 Existing Caching Policies

These are the state-of-the-art caching algorithm that have been developed in the recent years:

CLOCK / Second Chance Replacement: CLOCK (known as Second Chance replacement

policy) is a classical policy dating back to 1968 that was proposed as a low-complexity approxi-

mation to LRU. An LRU needs to move the accessed item to the most recently used position on

every cache hit, at which point, to ensure consistency and correctness, it serializes cache hits be-

hind a single global lock. CLOCK eliminates this lock contention, and, hence, can support high

concurrency and high throughput environments. Unfortunately, CLOCK is still plagued by disad-

vantages of LRU such as disregard for ”frequency”, susceptibility to scans, and low performance.

Adaptive Replacement Cache (ARC): ARC [23] is an adaptive caching algorithm that is

designed to recognize both recency and frequency of access. ARC divides the cache into two LRU

lists, T1 and T2. T1 holds items accessed once while T2 keeps items accessed more than once

since admission. Since ARC uses an LRU list for T2, it is unable to capture the full frequency

distribution of the workload and perform well for LFU-friendly workloads. For a scan workload,

new items go through T1 protecting frequent items previously inserted into T2.

Clock with adaptive replacement (CAR): CAR is a cache replacement algorithm, which

combines Adaptive Replacement Cache (ARC) and CLOCK, and it has performance comparable

to ARC, and substantially outperforms both LRU and CLOCK. The algorithm CAR is self-tuning

and requires no user-specified magic parameters.

Low Interference Recency Set (LIRS): LIRS [13] is a state-of-the-art caching algorithm

based on reuse distance. LIRS handles scan workloads well by routing one-time accesses via

its short filtering list Q. However, LIRS’s ability to adapt is compromised because of its use of

a fixed-length Q. In particular, if reuse distances exceed the 1% length, LIRS is unable to recog-

nize reuse quickly enough for items with low overall reuse. And, similar to ARC, LIRS does not

have access to the full frequency distribution of accessed items which limits its effectiveness for

LFU-friendly workloads.

7

Dynamic LIRS (DLIRS): DLIRS [20] is a recently proposed caching policy that incorporates

adaptation in LIRS. DLIRS dynamically adjusts the cache partitions assigned to high and low

reuse-distance items. Although this strategy achieves performance comparable to ARC for some

cache size configurations with LRU-friendly workloads while maintaining LIRS’s behavior for

scans, we found its performance inconsistent across the workloads we tested against. Finally, it

inherits the LFU-unfriendliness of LIRS.

Learning Cache Replacement (LeCaR): LeCaR [34] is a machine learning-based caching al-

gorithm that uses reinforcement learning and regret minimization to control its dynamic use of two

cache replacement policies, LRU and LFU. LeCaR was shown to outperform ARC for small cache

sizes for real-world workloads [34]. However, LeCaR has drawbacks relating to adaptiveness,

overhead, and churnfriendliness. In Section 3, we discuss these limitations further.

CACHEUS: CACHEUS uses online reinforcement learning with regret minimization to build

a caching algorithm that attempts to optimize for dynamically manifesting workload primitive

types. Since CACHEUS’ design draws heavily from LeCaR, we review it briefly first, conduct an

investigative study of LeCaR, and finally discuss the CACHEUS algorithm.

8

CHAPTER 4

EVSTORE DESIGN

We present EVSTORE, a rethinking of DRS pipelines to accommodate large EV tables. With

EVSTORE, EV tables are no longer required to completely fit in memory, allowing operators

to grow their DRSs or improve inference throughput by packing multiple DRS pipelines among

machines without running into rigid memory size constraints of individual machines. To the best

of our knowledge, EVSTORE is the first system that adds powerful caching capabilities within a

real-world DRS pipeline, including various implementation-level optimizations. There are two key

components to the EVSTORE design, depicted in Figure 4.1:

lookup(A1,B4,C6,..Z9)

Key

EVCache

B4

A7

Values

fp32 vector

Ta���
A

…

Table
Z

…

L1
Key

..

C6

Values

fp8 vector

…

…A1

L2
EVMix

Backend

Storage or

Figure 4.1: EVSTORE design overview. EVSTORE is composed of EVCache (L1), an EV

table caching layer with various cache replacement options (section 4.1+chapter 5); L2, a second

caching layer that stores lower precision embedding such as in fp8 (section 4.2+chapter 6). The

lookup(A1,B4,C6,..,Z9) will lead to B4 hit in L1, C6 hit in L2, and A1 + Z9 misses will incur disk

access to the backend storage.

(L1) EVCache: We built a caching layer (EVCache) where EV tables are stored as key-values

in the DRS memory and backend storage. We harness an all-or-nothing EV access property: an

inference will query a set of keys to all of the EV tables, hence a cache miss on just one of the keys

will make the entire inference slow. State-of-the-art cache replacement algorithms do not fit this

lookup pattern. Hence, we introduce the concept of groupability and extend existing algorithms

with “group scores” to rank keys that are likely accessed together and retain them in the cache, in

9

turn increases the chances of getting a “perfect-hit” where all of them simultaneously can be found

in memory.

(L2) EVMix: To accommodate diverse latency and accuracy tradeoffs, we delegate some space

from the L1 into an “L2” segment that stores lower precision (16, 8, or 4 bits instead of 32-bit

floating point) embedding values. For instance, whereas the first layer stores 32-bit floating point

values (fp32), the second layer can store lower precisions (e.g., in 16, 8, or 4 bits). We call this

combination of L1 and L2 as EVMix, a mixed-precision caching. This brings several advantages:

allowing more key-value pairs to be cached, increasing hit rates, accelerating inferences, and

boosting throughput in trade for a minor loss of accuracy.

4.1 EVCache

By adding a caching layer for EV lookups to the DRS pipeline, the cache replacement policy

begins to dominate the performance of the lookup workload. Cache replacement algorithms

have primarily been designed for items with independent request patterns (such as key-value

stores), or where accesses concern ranges of consecutive memory (such as virtual memory and

storage systems). Unlike traditional caches, however, DRS lookups exhibit the aforementioned

“all-or-nothing” property when accessing cached EV tables. That is, for every inference re-

quest, the key-value lookup must be done across all constituent EV tables at the same time, e.g.

lookup(A1,B4,C6,..,Z9)—a cache miss for just one of the keys (e.g., A1) will make the entire in-

ference slow. This uncompromising attribute stems from the neural network (NN) architecture: the

output value from each EV table is a portion of the input vector into the neural network, without

which the NN yields ill-defined results.

We evaluated both popular and state-of-the-art caching algorithms (LRU, LFU, ARC, CAR,

Cacheus, ClockPro [12, 31, 33, 39]) against DRS workloads with the all-or-nothing property and

found their performance to leave an opportunity for improvement (section 5.1). We noticed that

existing cache algorithms could be infused with a novel notion of “groupability”. That is, EV-

10

friendly algorithms ought to consider the fact that keys are accessed as a group in EV lookups. In a

departure from ordinary caching systems, the input into our EVCache layer involves multiple keys

at once as a group, rather than just a single key. With grouped keys, the objective of our caching

system is then to maximize the chance of getting a “perfect hit” where all of the keys are found in

the cache (section 5.2). We then also speak of perfect hit rate instead of just hit rate for single key

lookups.

To demonstrate the flexibility of the groupability notion, we extended three popular algorithms

(LFU, CAR, and ARC) into EV-LFU, EV-CAR, and EV-ARC, respectively (section 5.3). These

three EVCache variants have different implementations and characteristics that offer adaptability

and choices in handling a variety of DRS workloads. For example, EV-CAR and EV-ARC both

adapt well to EV-based and classical individual lookups in that it bolsters perfect hit rates with-

out sacrificing the individual hit rates, whereas EV-LFU is highly optimized for DRS workloads

at the expense of lower individual hit rates. Maximizing the perfect hit rate poses an interest-

ing algorithmic question: what simple online heuristics can factor in groupability without undue

computational overhead? We detail our approach in Section 5.2.

4.2 EVMix: Mixed-Precision Caching

Another family of approaches for increasing cache performance, besides improving the replace-

ment policy, is to conduct domain-specific packing, either through lossless or lossy compression

of values [9, 24, 43]. To balance EVSTORE’s all-important latency goal with recommendation

accuracy, we delegate some space from the L1 into an “L2” segment that stores lower precision

embedding values. We call this combination of L1 and L2 as EVMix, a mixed-precision caching.

Moreover, the two cache tiers will have different sizes and data precision but run the same cache

replacement policy. Recalling that EV are stored as 32-bit floating point values (fp32), there is

an opportunity to lower the resolution of the floating point value to 4, 8, or 16 bits—allowing the

cache to keep more values in memory in exchange for a minor reduction in accuracy. For instance,

11

whereas the first layer (L1) stores 32-bit floating point values (fp32), the second layer (L2) can

store lower precisions (e.g., in 16, 8, or 4 bits). Users can adjust the resolution and size to balance

the desired accuracy and performance. EVMix uses fast coding optimizations that harness the

specifics of embedding vector management, detailed in Section 6.

12

CHAPTER 5

EVCACHE (L1)

We next evaluate the performance of various caching algorithms on EV lookup workloads (section 5.1),

detail how we apply our groupability principle to help bolster perfect hit rates (section 5.2), and

demonstrate how the principle may be adopted across various caching policies (section 5.3).

5.1 The Importance of Perfect Hits

The caching literature is replete with algorithms, from the basic policies (such as LRU, CLOCK,

and LFU [18, 31, 36, 44]) to the more dynamic/adaptive variants (such as LIRS [26], CAR [12],

ARC [33], ClockLIRS [26], and ClockPro [27]), and finally the machine-learning based ones

(such as Cacheus [39] and LeCAR [45]). To understand how they relate to our problem domain,

we evaluate the performance of these algorithms on EV lookup workloads. Recall that to serve a

single inference request with N sparse features, the DRS must convert those sparse features to N

dense features by doing EV lookups to N different EV tables. Any cache miss on one of the EV

tables requires access to the backend storage (e.g., SSD and HDD) which generally is orders of

magnitude slower than memory access, thus slowing down the entire inference.

To quantify caching performance, we use two metrics. First, the individual hit rate, the typical

metric used when evaluating caching algorithms, concerns the ratio of key-value lookups that are

found in memory, regardless of how many embedding tables are used in a single inference. Next,

the perfect hit rate is the ratio of how often all N keys (from a single inference request) are found

in the memory, a scenario where no data needs to be fetched from the disk before running pass

forward phase in DRS pipeline.

Figure 5.1 shows the results when we have N = 26 using the Criteo dataset [4] (details in

the evaluation section). Here we only show 5 algorithms for readability. For the individual hit

rate (solid bars), as expected, the algorithms can reach 60–90% hit rate (vertical axis) when the

13

0.5 1 5 10 20
0

20

40

60

80

100

H
it-

ra
te

 (
%

)

% of data in memory

LRU LFU ARC Cacheus ClockPro

Solid bars = Individual-hit Striped bars = Perfect-hit

Figure 5.1: Individual vs. perfect hit rates (section 5.1). Existing algorithms exhibit high

individual hit rates (solid bars) but relatively low perfect hit rates (striped bars) across various

cache sizes (horizontal axis).

cache size is 0.5–20% of the size of all the tables (horizontal axis). However, the perfect hit rate

is significantly lower, ranging only from 1% to 50% (the striped bars), mainly because existing

algorithms do not take into account the group-based access pattern.

5.2 Replacement Policy Extension

While traditional cache lookups rely on one key per lookup, EVCache operates on multiple keys

for every single inference (we call them “grouped keys”). Fortunately, in a DRS the cardinality

of the group is fixed (e.g., 26 keys whose values will be supplied to a constant number of features

in the neural network model). EVCache introduces the concept of “groupability” into embedding

cache management by adding a scoring metric groupScore for every key in the cache. Keys with

high scores will remain in the cache while those with lower scores will likely be evicted. Therefore,

we need a caching algorithm that prioritizes embeddings with high group scores over the ones with

low group scores, hence increasing the perfect hit. Below we describe how EVCache works from

the perspectives of four fundamental caching operations: cache lookup, state update, insertion, and

eviction.

Cache lookup: An inference will trigger a grouped-keys lookup, e.g. lookup(A1,B4,..,Z9).

EVCache will calculate the total cache hits among the 26 individual key lookups. Let’s suppose,

14

20 out of the 26 are cache hits. EVCache will memorize the 20 as the group score and utilize it in

the next caching operations.

Cache state update: For every key with a cache hit, e.g. B4, its value stored in the cache will

be read and prepared to be supplied to the neural network. Next, EVCache updates the B4’s group

score in the cache with the max of the current and the new score, further detail on the “max-based”

group scoring is covered at the end of this section. For example, if key B4 is a hit and its current

group score is 15, then EVCache will update B4’s score to 20 (the memorized score).

Cache insertion: For every key with a cache miss, EVCache looks up the value from the

backend storage and inserts the key-value to the cache with a score value of 20 (the memorized

score). If the cache is full, EVCache needs to evict some key-values from the cache, even if

they have higher scores than the scores of the to-be-inserted keys. The reason is that decades of

caching studies show recency (introduced by the newly inserted keys) is an important component

of caching[18, 26, 27, 36].

Cache eviction: The key-values in the cache are sorted based on the group scores. EVCache

by default evicts keys with the lowest group scores. Note that within one group score, there could

be any arbitrary number of keys. Since eviction will happen frequently, we must use the appropriate

data structure to avoid any bottleneck and minimize the overhead. Thus, we pick an unordered set

data structure to store those keys efficiently. Specifically, there is one unordered set per group

score. This data structure gives minimum overhead during eviction because it has an O(1) worst-

case runtime.

Summary: We keep our “max-based” group scoring method relatively simple for two reasons:

it is computationally cheap while giving the best perfect-hit rate improvement compared to other

scoring methods we tried, including average, sum, median, static, and dynamic-based ones. Score

calculation based on average, sum, and median will not only increase the metadata size but also the

computational cost. We also tried an incremental update with a static increase of x (e.g., x = 1) but

struggled to define an optimal value of x in a dynamic workload. Furthermore, since every newly

15

inserted key has the same value of x, highly groupable keys may readily be evicted soon after they

are inserted. Defining a dynamic value of x likely requires a more complex implementation—some

of the approaches we tried decreased the perfect hit rate by 50% despite being 30× slower.

Overall, our groupability concept targets the relationships between cached embedding data

that were requested at the same time. Harnessing relationships between items have been exten-

sively explored in the cache literature, ranging from long-standing observations about the rela-

tive recency of requested data [15, 18], tenuring highly-frequent items [31], exploiting other data

attributes [13, 14, 15], and even learning request histories through non-linear machine-learning

approaches [42]. To the best of our knowledge, the systems literature has not before considered

caches where requests arrive together as a set of items. Under such a model, the relationship

between items in the same set adds a dimension to the analysis that transcends the traditional dy-

namical notions of frequency and recency that abound in the cache literature. Our intuition is to

strongly inform cache eviction by providing fate sharing of friends through a scoring function–

to have items that are accessed together reinforce, or abate, the scores of one another. The next

section shows how we integrated the scoring extension into popular cache replacement policies.

EVCache Pseudocode

Global variable:

struct EVData = an embedding vector data struct

List<EVData> ArrCachedEV = Array to cache EVData.

EVData[] funcRequest(List<string> keys[]):

EVData[] arrEVData = []

int aggHit = funcGetAggHit(keys[])

/** Update data in the ArrCachedEV **/

for each k in keys:

if (k in ArrCachedEV):

/** A HIT **/

/** Update position of the key in the ArrCachedEV **/

currEVData = funcUpdate(k, aggHit)

else:

/** A MISS **/

currEVData = funcFetchData(k)

funcInsert(currEVData, aggHit)

endif

16

/** Insert a new page to arrEVData **/

arrEVData.append(currEVData)

endfor

return arrEVData

int funcGetAggHit(List<string> keys[]):

int aggHit = 0

for each k in keys:

if (k in ArrCachedEV):

aggHit ++

endif

endfor

return aggHit

void funcUpdate(String key, int aggHit):

/** Use aggHit to update position of the data. The higher the aggHit, the more

secure the position. We will use funcGetEVData() to get the EV-data based on the

given key. **/

return EVData

void funcInsert(EVData newEVData, int aggHit):

if (ArrCachedEV is full):

funcEvict()

endif

/** Insert the newEVData to ArrCachedEV. Use the aggHit to position the data. The

higher the aggHit, the more secure the position. **/

void funcEvict():

/** Evict the Least Groupable data at ArrCachedEV **/

EVData funcGetEVData(List ArrCachedEV, string key,

int _aggHit):

/** Find the requested embedding data at ArrCachedEV[] based on the given key. If

the _aggHit > data’s aggHit, we will replace it with the _aggHit. **/

return EVData

EVData funcFetchData(string key):

/** Get the embedding data from secondary storage based on the given key **/

return EVData

5.3 EVCache Variants

To show generality, we implemented our extension to three popular (base) algorithms: LFU [31],

CAR [12], and ARC [33]. Our three EVCache variants (EV-LFU, EV-CAR, and EV-ARC) have

different implementations and characteristics. The main differentiator is how the base algorithms

17

could accommodate group scores into their data positioning mechanism which also influences their

eviction policy.

1. EV-LFU: We replace the default frequency counter in LFU [31] with a group score. In

other words, upon a miss, EV-LFU will evict the cached item with the lowest group score. If there

are multiple candidates, EV-LFU evicts the least recently inserted item. EV-LFU’s group score

has a maximum value (e.g., 26 in our main benchmark). When most of the cached items have

the maximum score, recently cached keys with lower group scores start to face higher eviction

pressure. To avoid class imbalance, EV-LFU implements a flushing mechanism with a tunable

knob. Specifically, if the number of maxScoreKey (key with maximum group score) is higher than

the “maxScoreKeyCapacity” (e.g., 20%), EV-LFU will reduce the population of the maxScoreKey

by X% (where X can be adjusted dynamically).

Furthermore, both LFU and EV-LFU are categorized as stack algorithms which makes them

free of Belady anomaly. Specifically, in a stack algorithm, the items evicted by a larger cache will

be a subset of those evicted by a smaller cache if both were to see the same request sequence—a

property known as cache inclusion—independently of those cache sizes. Conveniently, the hit rate

of stack algorithms increases monotonically with cache size [40], which provides a further degree

of robustness to EV-LFU in practical settings.

EV-LFU Algorithm

Global variable:

struct EVData {string key, float[] value, int aggHit } = mbedding vector struct.

int cacheSize = capacity of the cache.

int maxAggHit = The upper limit of aggHit value.

List<EVData> ArrCachedEV = Array to cache EVData.

int nPerfectPage = The number of perfectPages.

float flushingRate = The ratio of perfectPage to delete during the flushing.

float perfectPageCapacity = The threshold to initiate the flushing phase.

Initialization:

flushingRate = 0.1

perfectPageCapacity = 0.9

EVData funcUpdate(string key, int aggHit):

EVData currEVData = funcGetEVData(key)

18

if (currEVData.aggHit < aggHit) then

currEVData = funcSetAggHit(currEVData, aggHit)

endif

return currEVData

void funcInsert(EVData newEVData, int aggHit):

if (nPerfectPage >= perfectPageCapacity * cacheSize):

funcFlushPerfectPages()

else if (ArrCachedEV is full):

funcEvict()

endif

newEVData = funcSetAggHit(newEVData, aggHit)

ArrCachedEV.insert(newEVData)

void funcFlushPerfectPages():

for(int i = 0; i < flushingRate * nPerfectPage; i++):

/** Evict the least recent perfectPage.**/

endfor

nPerfectPage -= flushingRate * nPerfectPage

EVData funcSetAggHit(EVData currEVData, int aggHit):

if (aggHit == maxAggHit):

nPerfectPage ++

endif

currEVData.aggHit = aggHit

return currEVData

void funcEvict():

/** Evict the least recently used data at ArrCachedEV, similar to LFU’s method **/

2. EV-ARC: ARC [33] is an adaptive algorithm designed to recognize access recency and

frequency by dividing the cache into two lists: R-list (recency based) and F-list (frequency

based). R-list holds items accessed once while F-list keeps items accessed more than once

since admission. To dynamically adjust the size of the probationary segment (R-list) and the

protected segment (F-list), ARC uses information about recently evicted cache items (stored as

R-ghost and F-ghost lists). For EV-ARC, we add group score as a metadata to every cached item.

We then modify the F-list to use EV-LFU’s counting, eviction policy, and flushing mechanisms.

The difference is that cached items flushed from the F-list will be transferred to the tail of the

R-list. The ghost caches size will be adjusted so that the number of the cached pages in R-list

and R-ghost is equal to the number of the cached page in the F-list and F-ghost.

19

EV-ARC Algorithm

Global variable:

struct EVData { string key, float[] value, int aggHit} = Embedding vector struct.

int cacheSize = capacity of the cache.

int maxAggHit = The upper limit of aggHit value.

List<EVData> listRecentEV = recency List

List<EVData> listFrequentEV = frequency List

int nPerfectPage = The number of perfectPages.

float flushingRate = The ratio of perfectPage to delete during the flushing.

float perfectPageCapacity = The threshold to initiate the flushing phase.

Initialization:

flushingRate = 0.1

perfectPageCapacity = 0.95

EVData funcUpdate(string key, int aggHit):

/** Check whether the "key" exists at the recency or frequency list. **/

if (listRecentEV.contains(key)):

return funcGetEVData(listRecentEV, key, aggHit)

else if (listFrequentEV.contains(key)):

return funcGetEVData(listFrequentEV, key, aggHit)

else:

/** This is a MISS, must insert a new page. **/

return funcInsert(key, aggHit)

endif

void funcInsert(EVData newEVData, int aggHit):

if (nPerfectPage at frequencyList >=

perfectPageCapacity * cacheSize):

funcFlushPerfectPages()

/** This function will insert the "newEVData" and its aggHit to the recency/

frequency list based on various conditions (such as recencyTarget value). However,

we didn’t change any of those behaviors. Also, the minimum frequency counter might

be updated, similar to the EV-LFU case. **/

return newEVData

void funcFlushPerfectPages():

for(int i = 0; i < flushingRate * nPerfectPage; i++):

/** Evict the least recent perfectPage.**/

endfor

nPerfectPage -= flushingRate * nPerfectPage

void funcEvict():

/** Depends on the recencyTarget, the eviction could happen at listRecentEV or

listFrequentEV. To evict the data at listRecentEV, it will remove the least

recently used data. If the eviction is performed at listFrequentEV, it will find

the group of data that has smallest "counter" and evict the least recently used

within that group. **/

3. EV-CAR: CAR [12] is an algorithm that combines ARC and the popular CLOCK second-

20

chance algorithm. For EV-CAR, we modify the reference bit, R variable, so that it will store the

group score instead of just storing 0 or 1. During the eviction phase, the CLOCK hand will only

evict the cached item that has R = 0, otherwise it will be challenged by the incoming key. If the

incoming key’s group score is larger than the current item (pointed by the CLOCK hand), EV-

CAR will not evict that item, but give a second chance to the current item by setting its R to 0.

EV-CAR also modify the CLOCK mechanism by introducing a “progressive decrement” method

which allows the R value to be decreased regardless of the group score of that item. This method

guarantees the CLOCK hand to find an item to evict within a single rotation (O(n) complexity

where n is the number of items in the cache). In a cache hit, EV-CAR applies max-based scoring

(section 5.2) which replaces the current group score if the new score is bigger.

EV-CAR Algorithm

Global variable:

int recencyTarget = the maximum page that should be stored at clockRecentEV.

int decPartitionSize = cacheSize/maxAggHit; which is the number of pages need to

be checked before increasing the decrementRate.

struct EVData {
string key, float[] value, boolean referenced, int aggHit

} = The struct of embedding vector.

CLOCK<EVData> clockRecentEV = recency CLOCK

CLOCK<EVData> clockFrequentEV = frequency CLOCK

EVData funcUpdate(string key, int aggHit):

/** Check whether the "key" exists at the recency or frequency clock. **/

if (clockRecentEV.contains(key)):

return funcGetEVData(clockRecentEV, key, aggHit)

else if (clockFrequentEV.contains(key)):

return funcGetEVData(clockFrequentEV, key, aggHit)

else:

/** This is a MISS, must insert a new page **/

return funcInsert(key, aggHit)

endif

EVData funcInsert(string key, int aggHit):

EVData newEVData = funcFetchData(key)

if (cache is full):

funcReplace(aggHit)

endif

/** This function will insert the "newEVData" to the recency clock data structure

and might adjust the recencyTarget (which will define the size of recency and

frequency clock) based on various conditions. However, we didn’t change any of

21

those behaviors. The noteworthy difference is that EV-LFU adds aggHit value to

the page’s metadata when inserting a new page to the cache. **/

return newEVData

void funcReplace(int aggHit)

/** This is the Eviction phase where the clock "hand" is trying to find the

least-groupable page to evict. **/

int counter = 0;

int decrementRate = 1;

while (true):

if (clockRecentEV.size > recencyTarget):

/** Get the data pointed by the "hand" **/

EVData data = clockFrequentEV.getFirstData()

/** If data.referenced bit is 1, the data will be moved to clockFrequentEV.

Otherwise, it will be removed from the clockRecentEV and then break the

loop. This is the same as the original mechanism at CAR policy **/

else:

/** Get the data pointed by the "hand" **/

EVData data = clockFrequentEV.getFirstData()

if (data.referenced):

if (data.aggHit <= aggHit):

data.reference = false

else if (data.aggHit-decrementRate <= 0):

/** Progressive Decrement Phase **/

data.aggHit -= decrementRate;

counter++;

if (counter >= decPartitionSize):

decrementRate++;

counter = 0;

endif

/** advance the hand to the next page **/

endif

else:

funcEvict(clockFrequentEV);

break;

endif

endif

endwhile

void funcEvict(CLOCK<EVData> clockData):

/** Evict the data pointed by "hand" at clockData. **/

EVData funcGetEVData(CLOCK<EVData> clockData, string key,

int aggHit):

EVData currEVData = clockEV.get(key)

if (currEVData.aggHit < aggHit):

currEVData.aggHit = aggHit

endif

return currEVData

22

CHAPTER 6

EVMIX (L1 + L2)

To make our caching layer more versatile in addressing various latency and accuracy tradeoffs,

we introduce EVMix, a multi-tier mixed-precision EV caching. We first describe the advantages

(section 6.1), the design (section 6.2), and finally, the bit coding optimizations (section 6.3).

6.1 Advantages of Mixed Precisions

An embedding vector is stored as floating point values. In most systems such as DLRM [35] and

DCN [49], the default precision is fp32 (32 bits). However, EVMix caching layer can store those

values in a lower precision format such as in 16, 8, or even 4 bits depending on the target accuracy.

EVMix can bring several advantages. (a) Faster inference latency. By accessing smaller bit

representations, we can improve the average EV lookup latency by 15%, which is significant be-

cause EV lookup can cover 40% of the end-to-end inference latency. (b) More cached items and

higher cache hits. With lower precisions, we can cache more embeddings (e.g., 8x more cached

items when the 32 bit EV is converted to 4 bit), and by implication, the cache hits will be higher,

which in turn increases the throughput of the caching layer. (c) Configurability via multiple layers.

With multi-tier caching, one can adjust the size and the precision of the first level cache and the

second level cache based on the latency-accuracy tradeoffs to make caching more versatile. (more

in the evaluation section).

6.2 Multi-Tier, Mixed-Precision Design

As shown earlier in Figure 4.1, EVMix is the combination of L1 and L2 which collectively forms

a mixed-precision caching. Each tier runs the same cache replacement policy. L1 stores high or

medium precision data (e.g., 32 or 16 bit) and L2 stores lower precision data relative to L1’s. (e.g.,

23

4 bit). Users can adjust the precision of L1 and L2 and their sizes based on the performance-

accuracy tradeoffs. The size proportion of L1/L2 is fully adjustable. If L1 and L2 have the same

memory size, the L2 can carry at least 2× more items (due to the lower precision storage). Upon

a cache miss on L1, we try to get a lower-precision data from L2. If we also get a miss in L2, we

will fetch the raw data from the backend storage and put their representations to either L1 or L2

based on the group score. To minimize the accuracy loss while using EVMix, the popular items

are stored in L1 while the less popular ones are packed in L2. The L1/L2 placement algorithm also

ensures that the items are not redundantly stored.

Furthermore, to maximize performance, we implement EVMix in C++ which utilizes multi-

threading capabilities to parallelize any atomic operations in both layers. To simplify the logic and

to reduce the context switching, we design the thread organization in such a way that the task for

L2’s threads is triggered and managed by L1’s thread. In addition, we only implement event-driven

paradigm on specific tasks that require heavy I/O and computation such as reading from files and

binary decoding operations. Finally, we utilize a confined memory sharing to capture the results

from all threads concurrently with minimum blocking.

6.3 Bit Coding Optimization

As part of the process above, EVMix stores the embedding data in an encoded format (4, 8, 16,

or 32 bit) and continuously decodes the cached data on every cache hit. The decoded data will be

fed to the neural network model in the subsequent phase of the DRS pipeline. Thus, the decoding

process must be optimized, especially for the 16, 8, and 4 bit format since there is no default

(standardized) floating-point binary format for them.

As EVSTORE is built specifically for embedding vector data management, we exploit that

embedding vector values range only from -1 to 1 rather than an arbitrary range of values. The

typical value distribution is a Gaussian bell-shaped curve where the occurrence/frequency is most

highly concentrated near 0. Therefore, we optimize the use of every single bit to better represent

24

this “dense region”. We design the coding procedure for simplicity to ensure that decoding remains

computationally cheap and does not become a bottleneck.

The scheme works as follows. (a) 16 bit: We store the value as an unsigned short. The mapping

is straightforward, the smallest-positive EV value will be mapped to 0, while the biggest-positive

EV value to 65534. We utilize the last digit as our sign bit to cheaply differentiate the positive and

negative embedding. If the last digit is odd, then the value will be negative, and vice versa. The

decoding phase will convert each value into a corresponding floating-point value proportionally.

(b) 8 bit: Here, we can only store values ranging from 0 to 255. Similar to the 16 bit, we map the

embedding value linearly. The -1 is mapped to 0; the +1 is mapped to 254; and, everything that falls

in between will be mapped proportionally (e.g., 0.23 is mapped to 156). As a result, we use 255

values out of 256 which consists of 127 values covering the negative EV, another 127 covering the

positive EV, and 1 value that is mapped into 0. (c) 4 bit: We use 15 values (7 positives, 7 negatives,

and a zero mapped value) to cover the EV range. Most of the value mappings are focused near 0.

Specifically, we pick -0.0625 to 0.0625 as the dense region range in a manner similar to Posit’s

[37] 4-bit mapping. Overall, our encoding mechanism only uses static dictionary mapping and

basic operators (XOR and mod) which result in a negligible (<1%) CPU overhead.

We further explored Posits library (C++) which is specifically designed to encode embed-

ding values and quantize machine learning weights for lower precision. Despite having a well-

researched encoding design that better preserves near-zero values, the library induces costly over-

head due to its custom binary operations—compared to our encoding design, the Posit library is

3× slower. Given that the decoding operation will be done on every single value retrieval, we

decided to use our simple encoding design as described above.

25

CHAPTER 7

PREMILIMINARY EVALUATION

EVSTORE is a practical system. For our evaluation, we subjected it to numerous experiments to

determine the end-to-end performance while conducting microbenchmarks over multiple dimen-

sions, such as varying the cache algorithms, cache sizes, number of EV tables, workloads, and

cache layer placement policies. We structure our evaluation as a sequence of experimental ques-

tions.

7.1 Experimental Environment and Setup

The DRS inference pipeline: (1) A user visits a webpage that has an advertisement managed by

Criteo. (2) When the user interacts with the ads, it will trigger a request sent to the Criteo’s server

that contains all info about the user, the ads, and the webpage that is currently visited. (3) Once the

inference request arrives, the server will take the sparse features, look up the EV tables, convert

them to dense features and feed them to the DNN model. (4) By default, each lookup is for 26 keys

to 26 tables. (5) With EVSTORE, if a key-value is not in the cache, the DRS pipeline will fetch the

data from the raw files in the backend storage. (6) Finally, the inference result will influence the

personalized advertisement of the user when they open another webpage managed by Criteo.

Implementation: EVSTORE is built within the popular Facebook PyTorch-based DLRM

framework [35] that supports both recommendation model training and inference. We believe

EVSTORE is the first system to support substantial caching capabilities for the EV Table lookups

in this DRS framework. The data are stored as a stream of binary values which consists of floating

point arrays. To read a specific EV value from a file, we compute the offset of the data using its

key, then use seek() to directly jump to the beginning of the bytestream. Next, the data can be

fetched from the file using either a memory map (mmap) or direct IO. Furthermore, we send the

data to PyTorch as bytestream without any serialization overhead. We added a module in PyTorch

26

to convert the bytestream into a Tensor format. In Facebook DLRM, before the pass forward phase

in the inference pipeline, by default the sparse-to-dense feature transformation reads embedding

data via the tensor library. Thus, we implement L1’s data structure (set and hashmap) to replace

the default tensor lookup.

Datasets/workloads: We primarily use the Criteo CTR (Click-Through Rate) datasets, the

largest open-sourced CTR dataset (up to 1 TiB in size) that could simulate EV lookups at scale.

There are two CTR datasets released by Criteo, the 1TB data (Criteo-Terabyte) [2] and the Kaggle

version (Criteo-Kaggle) [4]. It contains feature values and clicks feedback for millions of display

ads. There are 13 dense integer features and 26 sparse categorical features (hence 26 EV tables).

All EV tables have the same embedding dimensions of 36. There are a total of 156 billion to-

tal (dense) feature values and over 800 million unique attribute values. In addition, we also use

Avazu’s CTR dataset [3].

Default values: We omit redundant lines and numbers on some of the graphs for improved

readability. Here are our default values, unless otherwise noted. Cache size: 5% of the total work-

ing set (the total size of all tables); Dataset/workload: Criteo-Kaggle [4]; Embedding precision:

fp32; Latency measurement: average latency in ms.

Machine specification: We use Chameleon cloud’s gpu rtx6000 and gpu v100 nodes [1,

30] which have Intel Xeon Gold CPU @2.60 GHz and 240 GiB Samsung SSD SM863a Series.

We limit the DRAM using Linux cgroup tools to be small enough such that the DRS essential

functions could run, but not big enough to store all the EV tables. When evaluating cache size

smaller than the available DRAM, we flush the Operating System (OS) page cache every 0.25 ms

to avoid any EV tables being cached by the OS. The method has been thoroughly tested to ensure

there is no OS cache leak.

27

7.2 EVCache Evaluation

0

10

20

30

L
R

U

C
lo

c
k

L
e

C
a
r

D
L

IR
S

L
IR

S

A
R

C

L
F

U

C
A

R

C
lo

c
k
L

IR
S

C
a

c
h

e
u

s

C
lo

c
k
P

ro

E
V

-C
A

R

E
V

-A
R

C

E
V

-L
F

U

P
e

rf
e

c
t-

h
it
 r

a
te

 (
%

)

Figure 7.1: Exp. #1: Perfect hit rates across caching algorithms. EVCache algorithms

(EV-CAR, EV-ARC, EV-LFU) have the highest perfect hit rate.

LRU

Clock

LeCar

DLIRS
LIRS
ARC

LFU
CAR

ClockLIRS
CacheusClockPro

EV-CAR

EV-ARC

EV-LFU

80

81

82

83

84

85

86

10 15 20 25 30 35

I�
�
i�
i�

u
a
l-

h
it

ra
te

 (
%

)

Perfect-hit rate (%)

Figure 7.2: Exp. #1: Individual and perfect hit rates across algorithms. EV-LFU increases

perfect hits by sacrificing on individual hits.

We begin with experiments on the first layer of the cache.

Experiment #1: How much does the EVCache algorithm affect perfect hit rates? Figure 7.1

shows that EVCache (EV-∗) algorithm extensions improve upon state-of-the-art algorithms such

as LRU [18], CLOCK [36], LeCar [45], LIRS [26], ARC [33], LFU [31], CAR [12], ClockLIRS

[26], Cacheus [39], and ClockPro [27]. The perfect hit rates are increased by up to 18%, lending

28

0

20

40

60

80

100

.05 .1 .5 1 5 10 20 30 40 �0 �0 70 �0 90

P
e
rf

e
c
t-

h
it
 r

a
te

 (
%

)

% of 	ata
 �e�or�

EV-LFU

ClockPro

Cacheus

LRU

Figure 7.3: Exp. #2: Perfect hit rates across various cache sizes. Our EV-LFU has the highest

perfect hit rate compared to other representative algorithms across various sizes.

support to the need for groupability for EV-based caches. Figure 7.2 breaks the result down further

to compare the perfect and individual hit rates (as defined in Section 5.1). Here, EV-CAR and EV-

ARC both improve the perfect hit rates without compromising on individual hit rates, suggesting

that they can be used as a general caching algorithm too. In contrast, EV-LFU increases the perfect

hit rate while sacrificing the individual hit rate for each of the tables (which is acceptable since the

perfect hit rate is more crucial for DRS’ embedding lookup workloads).

Experiment #2: How does EVCache perform across various cache sizes? In Figure 7.3, we

vary the cache size from 0.05% to 90% of the total working set (horizontal axis). To reduce clutter,

we show four representative algorithms (LRU as a basic algorithm, ClockPro as an adaptive one,

Cacheus as an ML-based algorithm, and EV-LFU as EV-Cache variant). Here, we see EVCache

(specifically EV-LFU) outperforming others across differing cache sizes. Compared to LRU, EV-

LFU significantly increases the perfect hit rate by up to 35% while surpassing both Cacheus and

ClockPro by up to 10%.

Experiment #3: How does the number of EV tables affect performance? Figure 7.4 shows

that the perfect hit rate improves with more EV tables (horizontal axis) when using EV-LFU. As

expected, traditional algorithms, being agnostic to relationships between EV tables, struggle to

achieve a high perfect hit rate when the number of EV tables grows.

29

0

10

20

30

40

0

 10 1
 20 26

P
e
rf

e
c
t-

h
it
 r

a
te

 (
%

)

Number of EV Tables

LRU Cacheus

Figure 7.4: Exp. #3: Perfect hit rates on different

number of EV tables. EV-LFU shows steeper bene-

fit as the number of EV tables grows (e.g., 5 to 26).

0

10

20

30

40

AV CK CT

Workload Name

Cloc��ro EV-LFU

Figure 7.5: Exp. #4: Perfect

hit rates across various datasets.

EV-LFU has the best perfect hit

rate across all datasets.

Experiment #4: How does EVCache perform across various datasets? Figure 7.5 again com-

pares the four representative algorithms across three different datasets. We find that our algorithm

extensions improve upon other algorithms across all the datasets: Avazu (AV) [3], Criteo-Kaggle

(CK) [4], and Criteo-Terabyte (CT) [2].

30

7.3 EVMix Evaluation

0

0.�

1

1.�

2

0 0.2 0.4 0.6
L
a

t e

n

c

y

 (
m

s
)

PR�AUC

32 b��

16 b��

� b��

4 b��

Figure 7.6: Exp. #5: Trade-off between latency and accuracy. Reducing the precision from

32 to 4 bits decreases the accuracy only slightly while greatly improving the latency.

Experiment #5: What are the latency-accuracy tradeoffs in floating point resolution (32 to 4

bits)? Figure 7.6 shows that reducing the precision from 32 bit to 4 bit speeds up the end-to-end

latency (vertical axis) by 15% and only decreases the “PR-AUC” (horizontal axis) only by 2%.

We use “PR-AUC” (Area Under the Precision-Recall Curve) to evaluate the performance of our

classifier to counteract label imbalance such as in our Criteo dataset, as is standard practice [19, 25].

Intuitively, PR-AUC measures the extent to which a classifier correctly identifies all positive labels

without mistaking too many others as positive.

Future Evaluations:

Now that we know the potential of having EVMix, we will integrate L1 and L2 implementation

into the DRS platform and evaluate the end-to-end inference latency. We will also test various

optimization that we can apply to EVMix, such as porting the implementation to C/C++ and ex-

perimenting with different transport layer (Socket, Ctypes, or Cython).

31

CHAPTER 8

OTHER PROJECTS

Besides the EVStore project, here is the list of other projects that I work on.

Past Projects

1. PBSE: A Robust Path-Based Speculative Execution for Degraded-Network Tail Tolerance in

Data-Parallel (published at SOCC’17)

We are improving the speculative execution mechanism in various distributed storage sys-

tems. My contribution is integrating the novel speculative policy in Apache Spark.

2. FlyMC: Highly Scalable Testing of Complex Interleavings in Distributed Systems (published

at EUROSYS’19)

This project introduces a novel technique to minimize space-explosion problems when run-

ning model checking at scale. I was working on finding the concurrency bugs in Cassandra

and testing the model-checker on the real Cassandra deployment.

3. E2E: Embracing User Heterogeneity to Improve Quality of Experience on the Web (pub-

lished at SIGCOMM’19)

We introduce a novel request scheduling technique for cloud-scale web services in order to

improve users’ quality of experience. I am contributing to analyzing 1TB of Microsoft’s

cloud traces to evaluate the E2E claims against the production traces.

4. Let’s Cut the Tail Together with LIBROS: Library, Runtime and OS Supports for Multi-

Resource Storage (published at CLOUD’22)

We propose a software architecture to better cut the tail in multi-resource storage. My work

is focusing on implementing the request-rejection mechanism at Java Virtual Machine.

32

Current Projects

1. FlashNet

We are designing and developing an open ML training ground for IO latency prediction. This

work aims to improve systems performance predictability. The ML model can be integrated

to OS or any storage systems for better request scheduling.

2. MLforStorage

We study how to improve the internal decision-making inside storage systems with the help

of the ML method. One of the directions is to reduce the Erasure coding metadata by using

a Lightweight ML model.

33

CHAPTER 9

RESEARCH PLAN

Task Description Planning

EVStore Improvement

T1 Find another caching optimization method To be completed by December 2022.

T2 Integrate new method with the L1 and L2 layers To be completed by February 2023.

T3 Analyze and evaluate the end-to-end system To be completed by April 2023.

FlashNet: ML for Storage

T4 Implement ML to improve IO latency prediction To be completed by January 2023.

T5 Implement ML for erasure coding and request

scheduling

To be completed by March 2023.

T6 Perform end-to-end system evaluation To be completed by May 2023.

T7 Write FlashNet paper and submit to conference To be completed by July 2023.

Dissertation Writing

T8 Write the dissertation document. To be completed by August 2023.

T9 Defense. To be completed by September 2023.

Table 9.1: Research Planning. The table reflects the planning for improving EVSTORE and also

finishing FlashNet project. All the deadlines presented in the last column are approximations.

34

CHAPTER 10

SUMMARY

We have introduced EVSTORE: a novel 3-tier EV caching layer to address the continuous growth

of EV tables in deep recommendation systems. EVSTORE is a practical system that brings several

advantages. DRS designers no longer need to worry about the memory size limitation of their EV

tables since users with low-memory servers can still run DRSs with large EV tables. Recommen-

dation services can also run concurrent DRSs to increase throughput and thus potentially bolster

revenue. By dislodging the monolithic DRAM-hungry DRS architectures of today with a scalable

systems-oriented approach, carrying relatively modest downsides, EVSTORE has the potential to

curb the enormous and ballooning operational costs and expensive resources needed to run a com-

petitive DRS across the industry. In the shorter term, we will continue to explore several methods

to improve EVSTORE, such as applying data compression and data approximation to reduce the

embedding table size. Scientifically, we believe EVSTORE opens several doors for future work,

including in the realm of EV caching (are there better policies?) and cache management (what is

the best L1-L2 size arrangement?). It also spurs questions around the role of emerging memory

technologies and GPU-accelerated caching on future recommendation systems.

35

REFERENCES

[1] Chameleon. https://www.chameleoncloud.org.

[2] Download Terabyte Click Logs. https://labs.criteo.com/2013/12/download-

terabyte-click-logs/, 2013.

[3] Click-Through Rate Prediction: Predict whether a mobile ad will be clicked. https://www.

kaggle.com/c/avazu-ctr-prediction, 2014.

[4] Display Advertising Challenge. https://www.kaggle.com/c/criteo-display-ad-

challenge, 2014.

[5] Notes from the ai frontier insights from hundreds of use cases. https://www.mckinsey.

com/featured-insights/artificial-intelligence/, 2018.

[6] Use cases of recommendation systems in business current applications and meth-

ods. https://emerj.com/ai-sector-overviews/use-cases-recommendation-

systems/, 2019.

[7] How machine learning powers Facebook’s News Feed ranking algorithm. https://

engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/, 2021.

[8] Server Memory Prices: Server RAM Module Price List & Trends. https://memory.net/

memory-prices/, 2022.

[9] Alaa R Alameldeen and David A Wood. Adaptive cache compression for high-performance

processors. In Proceedings of the 31st Annual International Symposium on Computer Archi-

tecture (ISCA), 2004.

[10] Ehsan K. Ardestani, Changkyu Kim, Seung Jae Lee, Luoshang Pan, Valmiki Rampersad,

Jens Axboe, Banit Agrawal, Fuxun Yu, Ansha Yu, Trung Le, Hector Yuen, Shishir Juluri,

Akshat Nanda, Manoj Wodekar, Dheevatsa Mudigere, Krishnakumar Nair, Maxim Naumov,

Chris Peterson, Mikhail Smelyanskiy, and Vijay Rao. Supporting Massive DLRM Inference

Through Software Defined Memory. https://arxiv.org/abs/2110.11489, 2021.

[11] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by

Jointly Learning to Align and Translate. In Proceedings of The 3rd International Conference

on Learning Representations (ICLR), 2015.

[12] Sorav Bansal and Dharmendra S. Modha. CAR: Clock with Adaptive Replacement. In

Proceedings of The FAST ’04 Conference on File and Storage Technologies, 2004.

[13] Nathan Beckmann, Haoxian Chen, and Asaf Cidon. LHD: Improving cache hit rate by max-

imizing hit density. In 15th USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 18), 2018.

36

https://www.chameleoncloud.org
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://labs.criteo.com/2013/12/download-terabyte-click-logs/
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/avazu-ctr-prediction
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.mckinsey.com/featured-insights/artificial-intelligence/
https://www.mckinsey.com/featured-insights/artificial-intelligence/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://emerj.com/ai-sector-overviews/use-cases-recommendation-systems/
https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/
https://engineering.fb.com/2021/01/26/ml-applications/news-feed-ranking/
https://memory.net/memory-prices/
https://memory.net/memory-prices/

[14] Nathan Beckmann and Daniel Sanchez. Modeling cache performance beyond LRU. In 2016

IEEE International Symposium on High Performance Computer Architecture (HPCA), 2016.

[15] Nathan Beckmann and Daniel Sanchez. Maximizing Cache Performance Under Uncertainty.

In Proceedings of the 23rd international symposium on High Performance Computer Archi-

tecture (HPCA-23), February 2017.

[16] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Arad-

hye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque,

Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & Deep Learning for Recom-

mender Systems. In Proceedings of The 1st Workshop on Deep Learning for Recommender

Systems (DLRS@RecSys), 2016.

[17] Paul Covington, Jay Adams, and Emre Sargin. Deep Neural Networks for YouTube Recom-

mendations. In Proceedings of The 10th ACM Conference on Recommender Systems (Rec-

Sys), 2016.

[18] Asit Dan and Don Towsley. An approximate analysis of the lru and fifo buffer replacement

schemes. In Proceedings of the 1990 ACM SIGMETRICS conference on Measurement and

modeling of computer systems, 1990.

[19] Jesse Davis and Mark H. Goadrich. The relationship between Precision-Recall and ROC

curves. In Proceedings of the 23rd international conference on Machine learning, 2006.

[20] Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy, Sergey Pupyrev,

Kim M. Hazelwood, Asaf Cidon, and Sachin Katti. Bandana: Using Non-Volatile Mem-

ory for Storing Deep Learning Models. In Proceedings of The 2nd Conference on Machine

Learning and Systems (MLSys), 2019.

[21] Pankaj Gupta, Ashish Goel, Jimmy Lin, Aneesh Sharma, Dong Wang, and Reza Zadeh. Wtf:

the who to follow service at twitter. In Proceedings of the 22nd international conference on

World Wide Web (WWW), 2013.

[22] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon Reagen, David

Brooks, Bradford Cottel, Kim M. Hazelwood, Mark Hempstead, Bill Jia, Hsien-Hsin S.

Lee, Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and Xuan

Zhang. The architectural implications of facebook’s dnn-based personalized recommenda-

tion. In Proceedings of The 26th IEEE International Symposium on High-Performance Com-

puter Architecture (HPCA), 2020.

[23] Kim M. Hazelwood, Sarah Bird, David M. Brooks, Soumith Chintala, Utku Diril, Dmytro

Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, James Law, Kevin Lee,

Jason Lu, Pieter Noordhuis, Misha Smelyanskiy, Liang Xiong, and Xiaodong Wang. Applied

Machine Learning at Facebook: A Datacenter Infrastructure Perspective. In Proceedings of

The 24th IEEE International Symposium on High-Performance Computer Architecture, 2018.

37

[24] Seokin Hong, Bulent Abali, Alper Buyuktosunoglu, Michael B Healy, and Prashant J Nair.

Touché: Towards ideal and efficient cache compression by mitigating tag area overheads. In

Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture,

2019.

[25] László Jeni, Jeffrey Cohn, and Fernando De la Torre. Facing imbalanced data - recommen-

dations for the use of performance metrics. 2013.

[26] S. Jiang and X. Zhang. LIRS: An efficient low inter reference recency set replacement policy

to improve buffer cache performance. In Proceedings of The International Conference on

Measurements and Modeling of Computer Systems (SIGMETRICS), 2002.

[27] Song Jiang, Feng Chen, and Xiaodong Zhang. CLOCK-Pro: An Effective Improvement of

the CLOCK Replacement. In Proceedings of The 2005 USENIX Annual Technical Confer-

ence, 2005.

[28] Norman P Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B Jablin,

George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, et al. Ten lessons from three

generations shaped google’s tpuv4i: Industrial product. In 2021 ACM/IEEE 48th Annual

International Symposium on Computer Architecture, 2021.

[29] Anne Kao and Steve R. Poteet. Natural language processing and text mining. 2007.

[30] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan Stanzione, Mert Ce-

vik, Jacob Colleran, Haryadi S. Gunawi, Cody Hammock, Joe Mambretti, Alexander Barnes,

François Halbach, Alex Rocha, and Joe Stubbs. Lessons learned from the chameleon testbed.

In Proceedings of the 2020 USENIX Annual Technical Conference (ATC), July 2020.

[31] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min, Yookun Cho,

and Chong-Sang Kim. On the existence of a spectrum of policies that subsumes the least

recently used (lru) and least frequently used (lfu) policies. In Proceedings of the 1999 ACM

SIGMETRICS international conference on Measurement and modeling of computer systems,

1999.

[32] Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit Bose, and

Alex Peysakhovich. Pytorch-BigGraph: A Large Scale Graph Embedding System. In Pro-

ceedings of The 2nd Conference on Machine Learning and Systems (MLSys), 2019.

[33] N. Megiddo and D. S. Modha. ARC: A self-tuning, low overhead replacement cache. In

Proceedings of The FAST ’03 Conference on File and Storage Technologies, 2003.

[34] Jason Mohoney, Roger Waleffe, Henry Xu, Theodoros Rekatsinas, and Shivaram Venkatara-

man. Marius: Learning Massive Graph Embeddings on a Single Machine. In Proceedings

of The 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2021.

38

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sun-

daraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini,

Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krish-

namoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin

Chen, Vijay Rao, Bill Jia, Liang Xiong, and Misha Smelyanskiy. Deep learning recommen-

dation model for personalization and recommendation systems. arXiv:1906.00091, 2019.

[36] Victor F Nicola, Asit Dan, and Daniel M Dias. Analysis of the generalized clock buffer

replacement scheme for database transaction processing. In Proceedings of the 1992 ACM

SIGMETRICS joint international conference on Measurement and modeling of computer sys-

tems, 1992.

[37] E. Theodore L. Omtzigt, Peter Gottschling, Mark Seligman, and William Zorn. Universal

Numbers Library: design and implementation of a high-performance reproducible number

systems library. arXiv:2012.11011, 2020.

[38] Jongsoo Park, Maxim Naumov, Protonu Basu, Summer Deng, Aravind Kalaiah,

Daya Shanker Khudia, James Law, Parth Malani, Andrey Malevich, Nadathur Satish,

Juan Miguel Pino, Martin Schatz, Alexander Sidorov, Viswanath Sivakumar, Andrew Tul-

loch, Xiaodong Wang, Yiming Wu, Hector Yuen, Utku Diril, Dmytro Dzhulgakov, Kim M.

Hazelwood, Bill Jia, Yangqing Jia, Lin Qiao, Vijay Rao, Nadav Rotem, Sungjoo Yoo, and

Mikhail Smelyanskiy. Deep Learning Inference in Facebook Data Centers: Characterization,

Performance Optimizations and Hardware Implications. https://arxiv.org/abs/1811.09886,

2018.

[39] Liana V. Rodriguez, Farzana Beente Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami,

Jason Liu, Ming Zhao, and Giri Narasimhan. Learning Cache Replacement with CACHEUS.

In Proceedings of The 19th USENIX Conference on File and Storage Technologies (FAST),

2021.

[40] Trausti Saemundsson, Hjortur Bjornsson, Gregory Chockler, and Ymir Vigfusson. Dynamic

performance profiling of cloud caches. In Proceedings of the ACM Symposium on Cloud

Computing, 2014.

[41] Amit Sharma, Jake M Hofman, and Duncan J Watts. Estimating the causal impact of recom-

mendation systems from observational data. In Proceedings of the Sixteenth ACM Conference

on Economics and Computation, 2015.

[42] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh Ghorbani,

Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett Witchel, et al. Learning

relaxed belady for content distribution network caching. In 17th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 20), 2020.

[43] Dimitra Tsigkari and Thrasyvoulos Spyropoulos. An approximation algorithm for joint

caching and recommendations in cache networks. IEEE Transactions on Network and Service

Management, 2022.

39

[44] Uresh Vahalia. Unix internals: The new frontiers, 1996.

[45] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Rangaswami, M. Zhao, and

G. Narasimhan. Driving Cache Replacement with ML-based LeCaR. In Proceedings of The

10th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage), 2018.

[46] S Vijayarani and R Janani. Text mining: open source tokenization tools-an analysis. Ad-

vanced Computational Intelligence: An International Journal (ACII), 2016.

[47] Hu Wan, Xuan Sun, Yufei Cui, Chia-Lin Yang, Tei-Wei Kuo, and Chun Jason Xue. FlashEm-

bedding: storing embedding tables in SSD for large-scale recommender systems. In Proceed-

ings of The 12th ACM SIGOPS Asia-Pacific Workshop on Systems (APSys), 2021.

[48] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun Lee.

Billion-scale commodity embedding for e-commerce recommendation in alibaba. In Pro-

ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (KDD), 2018.

[49] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. Deep & cross network for ad click

predictions. In Proceedings of ADKDD, 2017.

[50] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong, and

Ed Chi. Dcn v2: Improved deep & cross network and practical lessons for web-scale learning

to rank systems. In Proceedings of the Web Conference 2021, 2021.

[51] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu, David Brooks,

and Gu-Yeon Wei. RecSSD: near data processing for solid state drive based recommenda-

tion inference. In Proceedings of The 26th ACM International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS), 2021.

[52] Xing Xie, Jianxun Lian, Zheng Liu, Xiting Wang, Fangzhao Wu, Hongwei Wang, and

Zhongxia Chen. Personalized recommendation systems: Five hot research topics you must

know. Microsoft Research Lab-Asia, 2018.

[53] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun, and Ping

Li. Distributed Hierarchical GPU Parameter Server for Massive Scale Deep Learning Ads

Systems. In Proceedings of The 3rd Conference on Machine Learning and Systems (MLSys),

2020.

[54] Zhe Zhao, Lichan Hong, Li Wei, Jilin Chen, Aniruddh Nath, Shawn Andrews, Aditee

Kumthekar, Maheswaran Sathiamoorthy, Xinyang Yi, and Ed H. Chi. Recommending what

video to watch next: a multitask ranking system. In Proceedings of the 13th ACM Conference

on Recommender Systems (RecSys), 2019.

[55] Da Zheng, Xiang Song, Chao Ma, Zeyuan Tan, Zihao Ye, Jin Dong, Hao Xiong, Zheng

Zhang, and George Karypis. DGL-KE: Training Knowledge Graph Embeddings at Scale. In

Proceedings of The 43rd International ACM SIGIR conference on research and development

in Information Retrieval (SIGIR), 2020.

40

[56] Guorui Zhou, Na Mou, Ying Fan, Qi Pi, Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun

Gai. Deep Interest Evolution Network for Click-Through Rate Prediction. In Proceedings of

The 31st Innovative Applications of Artificial Intelligence Conference, 2019.

[57] Guorui Zhou, Xiaoqiang Zhu, Chengru Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan,

Junqi Jin, Han Li, and Kun Gai. Deep Interest Network for Click-Through Rate Prediction.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining (KDD), 2018.

41

	List of Figures
	List of Tables
	Abstract
	1 Thesis Statement
	2 Introduction
	3 Background
	3.1 Deep Recommendation Systems
	3.2 Existing Caching Policies

	4 EVStore Design
	4.1 EVCache
	4.2 EVMix: Mixed-Precision Caching

	5 EVCache (L1)
	5.1 The Importance of Perfect Hits
	5.2 Replacement Policy Extension
	5.3 EVCache Variants

	6 EVMix (L1 + L2)
	6.1 Advantages of Mixed Precisions
	6.2 Multi-Tier, Mixed-Precision Design
	6.3 Bit Coding Optimization

	7 Premiliminary Evaluation
	7.1 Experimental Environment and Setup
	7.2 EVCache Evaluation
	7.3 EVMix Evaluation

	8 Other Projects
	9 Research Plan
	10 Summary
	References

