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“We cannot understand without wanting to understand, that is, without wanting to let

something be said...Understanding does not occur when we try to intercept what someone

wants to say to us by claiming we already know it.”
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7.1 Scaffold as classes over drug-like chemical space. Every molecule (repre-
sented by dots or depiction inside circles) is inside a single scaffold class. Scaffold
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or Amoxicillin’s class, while Pipracil is a direct successor of the Penicillin-g class.
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ABSTRACT

Traditional techniques for discovering novel drugs are too slow for 21st challenges, from

precision oncology to emerging global pandemics. The COVID-19 Pandemic demonstrated

the unequivocal need for rapidly deployable drug discovery capabilities as a matter of na-

tional biopreparedness and biosecurity. The challenge is, though, that drug discovery is an

immense and complex interdisciplinary field drawing from cheminformatics, bioinformatics,

biophysics, machine learning, and high-performance computing among others. To accelerate

the screening process of new molecules, researchers are applying developments from artificial

intelligence (AI) to the problem; however, the direct application of traditional AI methods

overlooks the essential complexities of drug discovery, ranging from protein-conformation

flexibility to unique statistical properties of virtual ligand screening. This dissertation

presents a unique approach to AI for drug discovery based on tightly integrating insights

from biochemistry and biophysics, driving a more accurate and more interpretable drug

discovery system, all while leveraging the same accelerating advances from AI. These cross-

cutting contributions from AI and HPC workflows illustrate orders of magnitude speedup

for computational virtual drug screening, novel workflow designs for high-fidelity screening

pipelines which are more accurate than traditional docking, new sampling strategies for ex-

ploring novel chemotypes, and complementary workflow analysis techniques which directly

links actionable and interpretable goals (such as the design of drugs) with quantitative cost

functions. These methodological developments are realized in a case study discovering and

validating a novel SARS-CoV-2 3CL-Main Protease inhibitor with a Ki of 2.9 µM (95% CI

2.2, 4.0).
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CHAPTER 1

INTRODUCTION

As of August 2022, the COVID-19 pandemic—caused by the SARS-CoV-2 virus—has killed

over 6.4 million people worldwide and infected over 8% of the global population Organization

[19]. Within just a few months during the spring and summer of 2022, Monkey Pox—a disease

caused by the monkeypox virus from the same genus as variola virus, Orthopoxvirus—has

already spread globally with over 30,000 cases identified. Even moving beyond the landscape

of salient global pandemics, in 2019, it is estimated that between 4 and 6 million people

died from disease caused by antimicrobial resistant (AMR) bacteria ([Murray et al., 2022]).

Beyond pathogens, cancer is a leading killer with over 10 million deaths global. All of these

diseases can be solved through small-molecule therapies, in theory.

Drug discovery is a huge business—and its only getting bigger with artificial intelligence

and machine learning (AI/ML) (fig. 1.1). AI and drug discovery is expected to be a 12 billion

dollar industry in 2026 [Factors, 2021]. AI in drug discovery is tackling drug design, drug

development, predictive analytic, research risk assessment, and clinical tracking [Smalley,

2017]. Growth in ML research combined with a boom in high performance computing (HPC)

has lead to new computing paradigms such as the utilization of graphics processing units

(GPU) across research domains. As more nonstandard computing devices, architectures, and

learning algorithms intersect drug discovery [Chen et al., 2020], it seems ripe to ask where

is computational drug discovery heading?1

Yet, the scientific community has only explored a tiny fraction of small molecules. The

enumeration and exploration chemicals is no new question: in 1875, Caley published a short

note on his enumeration of alkanes utilizing a tree structure [Cayley, 1875]. Though Caley’s

1. As a preliminary note, our aim is to develop a computational theory of the various computational
practices employed in drug discovery. This text has its telescope pointed at a discipline outside of computer
science. As with any understanding via a telescope from our land to a distant one, the understanding of
medicinal chemistry developed here is best seen as anthropology. There is an inside story of medicinal
chemistry—one which we claim to disclose—but we rather only can disclose via our telescope.
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Figure 1.1: Paper production and drug discovery. (left axis) Drug discovery yearly
paper production compared to (right axis) paper production in computer science and biology
and FDA drug approvals. Drug discovery is rapidly growing at pace with computer science,
rather than biology. Data was compiled using Microsoft academic graph and FDA data
[Sinha et al., 2015, Kass-Hout et al., 2016].

enumeration ended up having a few errors, it is a very early account of treating chemical

space as a structured mathematical object [Rains and Sloane, 1999]. The design space of

small molecule—chemical space—is vast and estimated to consist of about 1060 molecules

[Bohacek et al., 1996b]. Recent research has highlighted that moving beyond the standard

chemotypes found in chemsimistry and biology textbooks and lab stocks is extremely fruitful

for finding highly potent and selective inhibitors [Jia et al., 2019, Lyu et al., 2022, 2019].

This motivates an immediate need for efficient and automated exploration for synthesis and

assay development for various applications, including drug discovery and materials design.

Computational enumeration of chemical space is a long-studied problem since the early ages

of computing [Cernak, 2018]. The current state of the art projects have enumerated around 2

billion drug-like compounds, and GDB has around 166 billion compounds of up to 17 atoms

of C, N, O, S, and halogens [Patel et al., 2020, Ruddigkeit et al., 2012].

Given this unimaginably dense design space, the question is how to identify drugs which
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can, with the help of other medical countermeasures and social controls, prevent disease,

be personalised to reduce side-effects and increase efficacy, and be readily available cheaply,

in real-time, and globally distributed? No pharmaceutical company may share all of these

goals, but there are academic endeavours which have shown promise both in the scientific

and social axis of this vision. During the COVID-19 pandemic, two academic group have

identified small-molecular inhibitors such as the National Virtual Biotechnology Laboratory

and the COVID Moonshot Project [Clyde et al., 2021d, Achdout et al., 2020c]. Both groups

were able to identify lead compounds within 9 months of the beginning of the pandemic.

Although the transition from drug lead to downstream toxicity, animal model, and human

studies is a challenging and more difficult road (a open area for improvement—no doubt),

this feat should invite further perspective and analysis on how this was possible?

These two groups, of which I was entrenched in both, pursued approaches to drug dis-

covery unlike those found in tightly sealed corporate research and development offices. They

focused on leveraging a large and interdisciplinary community of scientists from private,

public, and academic laboratories [Clyde, 2022a]. They pursued computational techniques

capable of leveraging the United States Department of Energy supercomputing infrastruc-

ture [Buchanan and Streiffer, 2020, Bhati et al., 2021] and, globally, the extra cycles of

personal computers forming an decentralized “exascale” supercomputer [Zimmerman et al.,

2021]. Lastly, they were both founded on the ideal of fully open and global science. Com-

putational drug discovery has great potential for democratizing an industry facing many

societal pressures.

1.1 Pharmaceutical pipeline

The drug development process is vast and spans disciplines. It spans initial pharmaceutical

campaigns, testing, clinical trials, to FDA approval, and generally refered to as the the

pharmaceutical pipeline or funnel. The first stage of the pharmaceutical pipeline is known

3



Figure 1.2: The pharmaceutical pipeline. Drug discovery is represented as funnel, start-
ing with known compounds and filtering down through various stages. Numbers of products
in each pipeline stage are from 2017 [Long, 2017].

as lead generation, lead discovery, or simply drug discovery. The goal of drug discovery is

what it seems: to find promising compounds to solve a particular medicinal problem. At

the end of the discovery stage of the pipeline, compounds are called leads. After the drug

discovery process, sets of leads move to the next stage of preclinical testing. We will study

in depth what it means for a drug to be considered a lead—for now we characterize such a

moment as a compound being promising.

Preclinical testing involves in-vivo and in-vitro testing. For example, in cancer drug

development, compounds in the drug discovery phase can be sent to laboratories for in-vitro

cell line inhibition testing [Holbeck et al., 2017]. Drugs which showed promising inhibition in-

vitro in cell line studies will be moved to preclinical toxicology studies and further inhibition

studies. These may involve more complex in-vivo experiments such as organoid models,

animal testing, and patient derived xenograft models (PDX) [Caldwell et al., 2001]. The

final stages include clinical trials and FDA approval which is outside our scope; however, it

is important to understand these stages are the bottleneck (both the slowest stages with the
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fewest amount of compounds in the pipeline).

Figure 1.3: Early drug discovery broken down into components. The first step of
the pharmaceutical pipeline, drug discovery, expanded into four specific filters outlining the
initial steps to generate leads for preclinical or in-vitro testing.

1.2 Outline

In this dissertation, I will focus on the technical developments to accelerate and expand

these drug discovery programs, particularly in AI and high-performance computing (HPC).

I focus on drug discovery proper—the first stages of drug discovery–discovery and interest

(fig. 1.3). While preclincal testing and later stages are essential, it is outside of my scope. In

the following chapters, I will outline new approaches to scaling and applying these methods

as part of a broader goal. I envision these systems as part of a basic biosecurity surveillance

program capable of monitoring the environment, identifying threats, and queuing wet-lab

automated testing so that when epidemiology officials declare a disease spreading uncontrol-

lable, a treatment already is known and ready.

Artificial intelligence (AI) is a form of computational problem solving that a aims to

(1) mimic some human notion of intelligence (whether it be the ability to naturally use

language or identify objects in the world) and (2) scale these capabilities to process vast

data outside the window reasonable by a single person. Recently, advances in deep learning
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have revitalized AI’s research program through breakthroughs in natural language processing

[Brown et al., 2020], game-playing [Silver et al., 2016], protein-folding [Cramer, 2021], code-

generation [Chen et al., 2021], and image-classification [He et al., 2016, Chai et al., 2021].

Although none of these models represent paradigmatic solutions to the problem2, these

models are, at a minimum, surprisingly adept and capable at convincing one that they

are nearing solutions. In particular engineering domains, scientific modeling is increasingly

merging with the technical and structural ideas presented in AI papers broadly encapsulating

the idea of “AI for science” [Stevens et al., 2020]. If modeling offers little scientific insight

from a theoretical perspective, what then can we make of AI for science (AI4S)?

One can raise the question that the science in the ideas percolating around AI4S might be

a different kind of science. This dissertation is by no means an attempt to characterize the

present status of computational scientific research nor fortune-tell its future; however, it is

certainly a case study in AI4S. I will offer at moments a perspective on the broader ambition

on how one can connect semantic meaning such as that sought in traditional science with

the often overly-used quip that deep learning is a black box.3 There are theoretical and

practical assumptions carried with computational tools, and, similarly, the computational

frame—a kind of bias required to force a scientific problem through the structure of a AI

problem—does impact, affect, and alter the science [Anderson, 2008]. This co-production of

the sciences and its theory alongside AI4S, its algorithmic assumptions, and the tools will

be directly discussed at various moments (in particular in Chapter 9) [Jasanoff, 2004].

Given the interdisciplinary required for approaching computational drug discovery, the

first two chapters of this dissertation outline background information for computer science

2. A paradigmatic solution would most likely come with some theory fitting the present ideas around
what it means to solve a scientific challenge. None of these models present any theoretical breakthroughs
within the terms of the problems they attempt to solve. Furthermore, many of these models require great
set up, specification, and are limited in scope within those problem areas.

3. See forthcoming article “The Black Box Civic Epistemology: AI Senselessness and Democratic Partic-
ipation.”
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minded researchers to understand the intricacies for drug discovery. Chapter 2 provides

an interdisciplinary overview of the biology and biophysical background for drug discovery.

While the chapter mainly aimed to review concepts such as different models of induced-fit

protein-ligand binding and free-energy perturbation methods, it aims to concisely connect

a computationally-minded reader into the various theoretical levers biophysics and biology

have to offer.

Chapter 3 presents an overview of virtual ligand screening (VLS) as a computational

challenge. Recent advances in computational screening techniques are outlined, including

an overview of the different paradigms of drug discovery such as ligand and structure based

drug discovery. Chapter 3 presents a contribution to ligand based drug design for precision

oncology while the rest of this dissertation is devoted to structure-based drug design.

Chapter 4 outlines the different workflow designs for AI in HPC drug discovery work-

flows with a focus applying AI to structure based drug design. It begins with the simple

idea of using surrogate models to replace slow and less-accurate code from traditional VLS

workflows. This small building block is connected with different design ideas ranging from

generative modeling to database searches.

Chapter 5 demonstrates precisely how chemical structures are can be used in deep neural

network (DNN) based surrogate models. The challenge for training surrogate models is

that the standard statistical assumptions stable neural network training relies on are not

applicable for the highly-skewed distributions in drug discovery. This chapter showcases

different techniques that can be applied to neural network training for improving the accuracy

of speed up and illustrates various trade-offs of different chemical featurization techniques.

Chapter 6 showcases how increasingly accurate and more costly computational simula-

tion techniques can be combined with surrogate models to achieve more accurate screening

workflows without increasing the overall computational cost.

Chapter 7 removes the assumption that virtual screening problems maintain no structure
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over the screening space by arguing that chemical space can be thought of as a multi-

hypergraph partitioned by basic theoretical tools from cheminformatics such as Bemis-

Murcko scaffold decomposition and electrostatics.

Chapter 8 presents new workflow evaluation metrics which couple business decisions

such as spending for purchasing compounds directly with model performance and high-

performance computing measures. Together, this presents a complete model of exactly how

a model’s performance is coupled to throughput and hit-identification as well as how com-

putational characteristics of an HPC platform will scale those metrics.

Finally, chapter 9 summarizes various opportunities for future work such as utilizing

advances in large-language models for improving the transferability of disparate data sets,

improving the calibration and uncertain quantification, connecting active learning and au-

tomatic laboratories with drug discovery workflows, and finally generative drug design tech-

niques.
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CHAPTER 2

INTRODUCTION TO THE BIOPHYSICS AND

BIOCHEMSITRY OF DRUG DISCOVERY

This chapter outlines drug discovery with a focus on the biological components. The first

section will address the basics of cheminformatics and medicianl chemistry, including the

mathematical set up. The second second outlines the role of proteins in disease. The third

section explores the thermodyanmics of protein-ligand binding. The final section outlines the

basics of molecular dynamics simulations and binding free energy estimation.

2.1 Medicinal and Bio- Chemistry

Small molecules act on proteins in cells. Through the introduction of a small molecule into

a cell, the behavior of proteins can be modulated. In this way, biological response (BR)

can be considered a function of chemical structure (C), BR = f(C) [Hansch, 1976]. The

magnitude and specificity of this action are determined by attributes of the compound such

as its shape and flexibility, polarity, and physical properties (such as solubility) [Reymond

and Awale, 2012]. Shape and flexibility refer to the range of 3D conformations that a

compound can take on, where flexibility refers to the likelihood of multiple stable states

or an overall instability. Polarity refers to the distribution of charges of chemical groups

composing of a small molecule, leading to a molecule have an electric dipole moment—an

uneven distribution of charges. The idea of quantitative structure activity relationship is to

characterize how changes in these parameters lead to changes in biological response. For

example, given two compounds C1 and C2, we might decompose the change activity around

these attributes of the structure,

∆BR = f(C2)− f(C1) ≈ f(∆(sterics) + ∆(polarity) + ∆(hydrophoic) + C1) (2.1)
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This is a core idea of medicinal chemistry, that small changes in chemical structure should

produce discernible and small changes in response. A driving hypothesis of medicinal chem-

istry is that a specific small molecule ligand can be found for any binding sites [Schuffenhauer

et al., 2006]. While other tools and disciplines have unique ways of ascertaining properties of

compounds that may elicit a biological response, such as X-ray crystallography, experimental

data from a series of perturbed compounds is an important paradigm we will consider in the

design of computational drug discovery systems, specifically in chapters 7 and 8.

Colloquially in drug discovery, when we refer to small molecules we are referring to small

organic compounds with qualitative drug-likeness properties1. The most commonly used

rule is Lipinski’s Rule of Five (not five rules, but all numbers are a multiple of five) [Lipinski

et al., 1997]:

• No more than 5 hydrogen bond donors (total number of N-H and O-H bonds)

• No more than 10 hydrogen bond acceptors (N or O counts)

• A molecular mass less than 500 daltons

• An octanol-water partition-coefficient (logP) less than or equal to 5. LogP measures

the relationship between lipophilicity and hydrophilicity and can be experimentally

determined by mixing a compound in a a system consisting of water and octanol and

calculating the ratio of the concentration of the compound in the two partitions of the

mixture.

Although drug-likeness can be codified into filters, recent advances in large-scale chemical

space exploration have demonstrated that it may be advantageous to loosen restrictions to

prevent particular biases in our knowledge of chemistry drive our exploration of spaces [Jia

et al., 2019, Lyu et al., 2019, Kaplan et al., 2022].

1. It should be noted drug-likeness is a somewhat contested term which can represent various different
filters [Walters, 2012]. In general, the concept of drug-likeness is meant to exclude compounds which are
merely too large to ever be permeable to cells, not soluble, or clearly toxic.
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2.1.1 Cheminformatics and graph theory

In computer science, a graph G is a collection of objects or nodes V and the relationship

between those objects, edges, E ¦ V × V . Two nodes v1, v2 ∈ V (G) are connected if

and only if (v1, v2) ∈ E(G). Two graphs are said to be isomorphic if they are structurally

identical. Graphs are used across chemical informatics from database matching to hashing.

A molecular structure can be represented by identifying nodes of a graph with the atoms

of the molecule and the edges with the bonds. Molecular graphs are therefore said to be

colored and weighted since nodes have elemental types and charges and edges are associated

with their bond type and aromaticity. Aromatic bonds occur in flat, cyclic, and conjugated

rings systems that obey Huckel’s rule, a delocalized conjugated Ã-system, most commonly

an arrangement of alternating single and double bonds. Molecular graphs typically do not

include hydrogens unless explicitly stated.

Molecules can be represented with a wide variety of identifiers ranging from generic

names to International Union of Pure and Applied Chemistry (IUPAC) nomenclature to

registry systems which assign formal names to compounds such as CAS Registry Number

[Hall and Kier, 2001, Wigh et al., 2022]. Computationally, molecules can be represented by

graphs, adjacency matrices (connectivity tables), or Simplified Molecular-Input Line-Entry

Specification (SMILES), among others.

SMILES is arguably the most widely used computational representation in virtual screen-

ing, and has increased in usage with AI due to its similarity to sentences [Wigh et al., 2022].

Atoms in a SMILES string are represented by chemical symbols, where hydrogens are typ-

ically implicit. Water can be represented as just O. Bonds are represented with a “-” for a

single bond, “=” for a double bond, “#” for a triple bond, “$” for a quadruple bond, and

“:” for a aromatic bond. Single bonds are usually implicit. Branching can be indicated with

parentheses, so for example isopropyl alcohol is written CC(C)O. The first two carbons are

bonded, and the second carbon to the third, but the parenthesis indicates that the oxygen
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is bond bonded to the third carbon but to the second. Ring systems are identified with

numeral tags so CCCC is a chain of carbons but C1CCCC1 is a six member ring. A second ring

would increase the count.

Alternatives to SMILES strings have been proposed such as SELFIES [Krenn et al.,

2019] since SMILES generally can be permuted. There canonicalization methods which can

generally standardize a SMILES string into a common ordering [Jochum and Gasteiger,

1977]. SELFIES, for example, uses a formal grammar to derive words which represent

semantically valid graphs. A challenge with other methods which introduce unique words

is that the vocabulary of tokens becomes non-standard as it requires knowing in advance

the set of compounds to be represented to build the vocabulary whiles SMILES has a fixed

vocabulary from the elements and conjugations.

2.1.2 Descriptors and similarity

Computationally, chemical similarity can be computed using traditional graph similarity

metrics. In generally, similarity in terms of chemistry is defined in terms of properties or

descriptors. Molecular similarity or 2D similarity is defined in terms of graph similarity

metrics. 3D similarity refers to particular 3D distance measures between graphs with the

additional property that nodes have 3D coordinates.

Before deep learning, computational inference problems relied on classical machine learn-

ing models based on tabular, vectorized data. Molecular descriptors were created to vectorize

molecules into a numerical and thereby commutable representation [Pastor et al., 2000, Yap,

2011, Todeschini and Consonni, 2008]. Various software packages exist open-source with var-

ious degrees of customizability. MOrdred offers a simple Python interface [Moriwaki et al.,

2018]. Molecular descriptors can be used readily with nearly any machine learning technique

or deep learning models.

Most descriptor packages consist of hundreds of routines for computing various molecular
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features, such as molecular weight, number of acid or base groups, or charge. Each of

these smaller computations is bundled together in a large vector. Thus, applied over a

large molecular library, a familiar table emerges. Each row is representative of a sample, a

molecule, and each column is a particular and explainable feature. This method is preferred

for use with classical machine learning techniques as vector 1D features are often required

for random forests or linear models.

It should be noted that molecular descriptors are distinct from of molecular fingerprints.

Molecular fingerprints, another alternative for featurization, are bit vectors based on hashing

different molecular neighborhoods together. Molecular fingerprints originated for use in

databases as a surrogate for molecular similarity. Unlike fingerprints, molecular descriptors

are explainable, where fingerprints individual bits are relatively opaque.

The most commonly used 2D similarity measure is fingerprint similarity. A fingerprint is

a bit vector derived from a molecular graph. Two bit vectors can be compared with metrics

such as tanimoto similarity (also known as the Jaccard index). Given two bit vectors X and

Y , the tanimoto similarity is

Ts(X, Y ) =
Σi(Xi ' Yi)

Σi(Xi ( Yi)
. (2.2)

In order to derive vectors from graphs, we will introduce the idea of message-passing on

graphs. This presentation of message-passing for fingerprints is non-typical. It is based on

a formulation common in graph neural networks, although the framework is general enough

for arbitrary non-neural network functions.

To begin, we must expand our conception of elements ofM beyond colored and weighted

non-directed graphs to be an object which consists of this graph along with metadata for

each edge and node. Consider a graph with possible node and edge data as G = (V,E,A,B).

Here each graph consists of a set of nodes that have an element and charge type, V , a set

of bonds which have a weight, E, a set of features for each node A, and a set of features for

each node B. We think of A and B as functions from V → R
m (so given a node, A returns
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a vector of data). The data can be anything from additional details of atom type such as

molecular weight to more complex details such as bond angles.

The problem can framed as we want to use some arbitrary function f : A → R
n and the

structure of the graph G to reduce the graph down to a single vector. Given this framework,

we will explore message passing as a technique to propagate information along graph edges

(see [Zhou et al., 2018] for an overview of neural networks utilizing graphs as input). We

consider a generalization here for homogeneous graphs. Heterogeneous graphs can be used

to indicate different types of edges, that have different types of features (for double or single

bonds, for example). That is, there is only one type of edge for propagating node features.

There are three operators in this framework. The idea is that for each each node, it sends

its neighbors a message with the MESSAGE(·) function, which a vector of nodes features to

another vector (possibly of a different size), say R
n → R

m. Each node then has a mailbox of

messages. For each node, it applies a reduction (or aggregation function) to all messages in

its mailbox, REDUCE(·). Examples of a reduce function might be a summation, product, or

other more complex function which can take a variable number of vectors and reduce them

to a single vector. Finally, there is an update step which replaces the state of data for each

node A with a new state, UPDATE(·). If we use Nj to be the set of neighbors for node j,

h
(0)
i ∈ R

n to be the state of A(i) for node i at time step 0, and h(1)i ∈ R
m for the state after

one step of message passing, we write:

h
(1)
i = UPDATE(h

(0)
i ,REDUCE({MESSAGE(h

(0)
j ) | j ∈ Nj})). (2.3)

The last step after as many desired stages of message passing is completed is to reduce

globally so that the graph is compressed into a vector. This is typically done with summation

or averaging, written as h(l+1) with no subscript

h(l+1) = AGGvi∈V h
(l)
i ∈ R

m (2.4)
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where m is the length of the vector after all the various message passing routines were run.

This generalizes to graph neural networks which we will briefly outline. The simplest

setting is a graph convolutional layer (GCN) [Kipf and Welling, 2016]. For this layer, we

set the message function to the identity function, the reduction function equal to summa-

tion, and the update function to a linear or dense neural network layer, which is to say

UPDATE(hi, �hj) := Ã(W �hj) where W is a weight or parameter matrix adjusted during the

training process with dimension m by m, b ∈ R
m is a bias term, Ã is an activation function,

and �hj ∈ R
m is the reduction of messages received by node i. We can write this as

h
(l+1)
i = Ã(W (l)[

�

vj∈N (vi)

h
(l)
j ]) (2.5)

meaning a graph convolution layer adds all the node feature vectors from neighbors and

applies a weight matrix. Notice in this model formulation, as written, unless self edges are

explicit in the model (i.e., (u, u) ∈ E), it is possible the current features of node u are not

used to update the features at the next layer l+1. This behavior is dependent on the software

package being utilized and may or may not be desired. In this setting, though, we can only

ever get node-specific features, not global (i.e., we can only ever develop per atom features

as h is sub-scripted with nodes via i). Thus, just as in 2-dimensional convolution networks,

a global pooling operation is required such as sum or average. Via global node pooling,

we can create a feature vector or intermediate representation of the entire graph, rather

than just a set of node-specific vectors through message passing alone. This is analogous to

combining the bit vectors from the circular or Morgan fingerprints [Duvenaud et al., 2015].

These intermediate graph representations, or fingerprints, can then be used as features in any

dense neural network to predict the scores. In the case of topological fingerprints, different

kernels or functions are used during messaging process, or messaging may be modified to

collect nodes with a particular graph distance (number of edges between), but the general
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procedure is the same.

2.1.3 Chemical space

Since the early ages of artificial intelligence and computing, dating back to 1960s, chemists

have imagined that computers would be able to make great progress on the basis of medicinal

chemistry’s hypothesis [Lederberg et al., 1969]. Given the scientific paradigm of small-

molecule modulation of cellular activity and the belief that there exists a small molecule

which can be selective to every target, drug discovery is well posed as a computational

screening problem (discussed in the following chapter in detail). The basis of screening

problem requires a well-defined design space. For us, this space is called chemical space—

the space or set of all molecules.

Even with the restrictions of a molecular weight less than 500, no more than four rings,

no more than 30 atoms, and only using hydrogen, carbon, oxygen, and sulfur, there are over

1063 compounds [Reymond, 2015]. This number is a vast underestimate of a reasonable

design space in organic chemistry at large [Kirkpatrick and Ellis, 2004]. With the immense

and innumerable number of possible chemicals, computational chemists refers to the density

and vastness of chemical space. By referring to the range of potential chemicals as a space,

we invoke the mathematical concept of a set with some added structure. We will discuss this

added structure in chapter 7. For now, we denote chemical space as a mere set of graphs

where the elements are all possible chemicals

M = {G = (V,E,A,B) s.t. G is a valid chemical structure} (2.6)

Given the immense size of this space, it is effectively impossible to enumerate and store

such a list. In theory the set is computable and enumerable since there exists a finite-time

algorithm which can determine if a graph G is a possible small-molecule or not; however, the
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lifespan of a human and limit on physical memory means that it is practically not possible to

enumerate. This does not mean efforts have been made to enumerate large chemical libraries

computationally. For example, the GDB-17 enumerates 166 billion possible compounds using

C, N, O, S, up to 17 atoms. Pfizer has enumerated over 10 trillion compounds [Hu et al.,

2011].

One further limitation of theoretical enumeration of compounds as graphs in M is that

not all compounds have known pathways for synthesis. This limitation has been a major

critique of the field of generative drug design—using AI models to generate novel possible

compounds since they are in some sense “useless” if there is no method to create it [Farrant,

2020, Walters and Barzilay, 2021]. Chemical synthesis is the complex physical process of

using reagents and reactants to take chemical building blocks to a desired compound. This is

a complex and detailed process which can introduce impurities into mixtures and even create

hazards for chemists. Furthermore, even if a chemical is synthesizable, the process may not

be amenable to large-scale batch chemistry which is necessary for ultimate commercialization

and wide scale availability of compounds. Advances from artificial intelligence in this area

have made progress on retro-synthesis—finding a possible pathway for synthesis given a

particular end target compound [Segler et al., 2018, Struble et al., 2020].

Enumerated libraries of compounds which have known building blocks and reaction path-

ways do exist and are commonly used. One library, called the Synthetically Accessible Virtual

Inventory (SAVI), has over 1.75 billion compounds enumerated with the reaction steps and

required building blocks [Patel et al., 2020]. Chemical vendors such as Mcule or Enamine

offer libraries with over 31 billion possible compounds, where they promise a 70% material-

ization of compounds in the library [Shivanyuk et al., 2007]. There is great benefit to working

off of libraries that are synthesizable as any hits identified can immediately be purchased for

experimental evaluation. We will hastily denote the setMS ¦M as

MS = {G ∈M s.t. G has a known synthesis pathway}. (2.7)
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In theory MS may actually not be computable in the computability theoretic sense

since there may exist non-finite synthesis pathways. Thus, given a compound it may be

indeterminable if it is in MS in finite time. Regardless, in practice, given finite number of

reaction types and finite steps, the set is enumerable [Patel et al., 2020].

2.2 Proteins and Disease

Proteins are polymers of amino acids, and they perform a variety of functions within cells.

Proteins differ primarily through different sequences of amino acids. Proteins are amino

acid polymers with a somewhat-fixed vocabulary of around 20 amino acids [Buonfiglio et al.,

2015]. Proteins range in size, but an average range is around 200 amino acids. Proteins

serve as channels to transport material between cells, as signals to communicate within and

between cells, and provide structure to cells, among many other functions. Proteins are

created through the process of transcription and translation. Transcription is the copying

of a segment of DNA into RNA and then into mRNA. Translation is the process involving

ribosomes which translate the mRNA into sequence of amino acids.

Protein structure is related to protein function [Orengo et al., 1999]. Protein’s primary

structure is considered the 2D sequence of amino acids. Secondary structure is the initial

folding of segments of the sequence into common motifs, such as ³-helices or ´-sheets. Protein

ternary structure is the stabilization of the overall structure through side-chain interactions

of amino acids. Proteins can also form complexes with each other, of the same or different

protein, sometimes called a quaternary structure. For example, type II deoxyribonuclease

forms a dimer–joining up with a second copy of itself. Proteins can also have intrinsically

disordered regions which form no know stable structure [Oldfield and Dunker, 2014]. Even

the most inherently structured proteins though still exhibit flexibiltiy, and often flexibiltiy

is related to function—such as the opening and closing a channel.

Proteins can cause disease through many different mechanisms. For example, some pro-
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teins can misfold causing a cascade of misfolding among other proteins, such as with sickle

cell disease [Valastyan and Lindquist, 2014]. Cancer medications typically target kinases

and inhibit their activity, leading to the death of tumors [Zhang et al., 2009]. Proteins of

bacteria may be targeted with antibiotics. Non-human proteins may also be targeted in

human treatments of viral diseases, such as with Emtricitabine/tenofovir which inhibit the

action of viral reverse transcriptases—proteins which integrate viral RNA into human DNA.

A great challenge in drug discovery target identification—finding a protein which, if

drugged, eliminates the disease. There are many aspects of target selection beyond merely

locating disease causing proteins such as selectivity of a protein, other functions a protein

may have outside of disease, and the ability for virus, bacteria, or cancer to mutate maintaing

the protein function but evading the small molecule therapy. The region of a protein which

performs its main function is called the active site. Regions of a protein that may fit a small

molecule for binding is called a binding site or binding pocket. Sometimes binding for a drug

may not occur in the active site, but rather in a different binding site. The action of the drug

occurs through inducing a structural change in the protein which eliminates the active site’s

action. While target identification is an immense challenge, it not studied deeply in this

dissertation. Instead, we will be addressing situations where a protein of interest is settled,

a 3D structure is known, and a binding site or active site of interest is identified.

2.3 Protein-Ligand Binding

Before we dive into the computational frameworks, it is important to have a working theory

for what it means for a drug to have activity and characterize what observable there are

to measure this activity. This section covers the basics of biochemistry and cell biology to

understand the rest of this text.
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Lock and Key Theory of Drug Activity

Drugs work through their mechanism of action (MOA). The MOA for a drug is sometimes

unknown, for instance lithium, Li+, is a common treatment for psychological disorders. It is

speculated that lithium up-regulates serotonin in healthy individuals, but the mechanisms

still remains unknown [Massot et al., 1999]. The most common MOA for drugs in inhibition

of a protein or enzyme with a known pathway or function. Aspirin is one of the only

non-steroidal anti-inflammatory drug (NSAID) which has a known MOA. Aspirin binds

irreversibly to COX-1 and changes the enzymatic activity of COX-2 [Warner and Mitchell,

2002].

The basic accepted theory for drug activity is attributed to Emil Fischer in 1894. Emil

Fischer explained the specific action of an enzyme (protein) on a substrate (drug) through

analogy to a lock (enzyme) and a key (drug). Essentially, the analogy poses proteins as

containing special locks, and drugs are keys. If you obtain the correct key for a certain lock,

the drug will bind to the protein.2 Once a drug binds or interacts with a protein, if the

activity decreases then the drug is referred to as antagonist. Conversely, if activity increases

then the drug is an agonist.

The lock and key model is rather simplistic, and has seen as many changes over time—

just as traditional keys themselves have. Variations of the lock and key model include the

induced fit model which supposes some changes in the active site occur in the presence of

a compound [Jorgensen, 1991]. A common example is D3-dopamine receptor (fig. 2.1, a

G coupled protein receptor (GPCR), which has a druggable binding site which is cryptic

[Ferruz et al., 2018]. In analogy, a cryptic binding site (or pocket) is a lock which is hidden

until a key approaches and then appears. Familiar to computer scientists, one can cast the

2. To avoid confusion, binding can be covalent (reversible or irreversible) or non-covalent. In this text,
we deal only with non-covalent drugs—but one should be aware it is possible for drugs to bind covalent to
proteins and this may affect calculations if one is unaware of the possibility. See [Kalgutkar and Dalvie,
2012] for more information on covalent drug binding and covalent drug discovery.
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Figure 2.1: Dopamine D3 receptor in complex with an antagonist drug situated
in a cryptic pocket (structure from Ferruz et al. [2018], PDB ID 3PBL). (A) Surface view
of structure colored by electrostatics. Inside the pocket, far in, the ligand is situated. (B)
A cartoon view of the protein oriented to illustrate this GPCR protein is a trans-membrane
protein. [Ferruz et al., 2018]. (C) Structural interactions between the protein and ligand are
illustrated by PLIP [Salentin et al., 2015]. The curly members are ´-sheets which intersect
the membrane, the orange structure is a ligand, and the blue residues sticking off the ´-sheets
are the functional components of the amino acids which exhibit interactions with the ligand
(determined computationally by PLIP).

induced fit lock and key model into a Markov state model, where there are certain states and

requirements to move between them. For example, in the case of Dopamine D3-receptor,

[Ferruz et al., 2018] found five global states, with transitions from state 1 to state 2, a clique

between states 2, 3 and 4, and transitions from state 4 (which is the bound ligand state) to

state five (off-pathway).

2.3.1 Models of Binding

We assume that binding is non-covalent in this dissertation. This means that we assume

no ligand is forming a bond to the protein, which is used in certain drug therapies such

as Bruton’s tyrosine kinase inhibitor ibrutinib [Weichert and Gmeiner, 2015, Boike et al.,

2022]. Here we present a basic overview of theoretical concepts for protein-ligand binding

theromodyamics and kinetics before discussing the computational aspects.

21



Consider a ligand L and a protein L in free (unbound) form. We consider the equilibrium

between these two:

L+ P á¾ LP and Kb =
[LP ]

[L][P ]
=

1

Kd
(2.8)

whereKb is known as the binding constant or binding affinity in M-1, square brackets indicate

concentrations in molarity, and Kd is the dissociation constant. This is a thermodynamic

system as there is solute, solvent, and ions that exchange heat and interact. This is written as

a equilibrium equation since ligands may bind and unbind constantly—hence, we investigate

what is the stable equilibrium of the concentration of bound and unbound complexes. This

can be quantified as Gibbs free energy (G), a thermodynamic potential [Ravindra and Winter,

2003], which relates to the equilibrium constants through the absolute protein-ligand binding

free energy,

∆G0 = µLP − µL − µP = −kbT ln(C0Kb), (2.9)

where µLP , µL, and µP are the chemical potentials between the complex, ligand, and protein

respectively, kb is the Boltzmann constant, T is temperature, and C0 is the concentration of

reactants.

2.4 Computational Modeling of Protein-Ligand Binding

Computationally, the question is how to represent a whole system of biological macro-

molecules such as a protein with a small molecule ligand with a large number of water

molecules and ions (fig. 2.1C).

2.4.1 Biophysical modeling with molecular dynamics

During the course of molecular dynamics (MD) simulations, we sample the state of a system

as time progresses. The basic intuition stems from Newtown’s equation F = ma, where we
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can write for each atom

mi
∂2ri
∂t2

= fi fi = −
∂U(ri)

∂ri
(2.10)

where ri is the position of atom, mi is the mass, fi is the force, and U is the potential

energy. Next, to develop the simple algorithm called the Verlet Algorithm [Grubmüller et al.,

1991], we introduce that particles also have atomic momenta pi in terms of kinetic energy

K(pi) =
� |pi|

2

2 mi. Therefore the overall energy for the system is E =
�

i(K(pi) + U(ri)).

The Verlet algorithm may be written as

pi(t+
1

2
¶t) = pi(t) +

1

2
¶tfit(t) (2.11)

ri(t+ ¶t) = ri(t) + ¶tpi(t+
1

2
¶t)m−1i (2.12)

pi(t+ ¶t) = pi(t+
1

2
¶t) +

1

2
¶tfi(t+ ¶t). (2.13)

How are forces computed? Consider the Born-Oppenheimer (BO) approximation to the

energy potential EBO [Ponder and Case, 2003]. For now we will leave this as a black box,

since we use force-fields in molecular dynamics simulations. Force-fields are approximates to

the quantum mechanical BO potential. Given bond length between two particles b and the

energy minimum beq,

EBO(b) = Eb +
1

2
K(bond)(b− beq)

2 (2.14)

where K(bond) is the harmonic force and Eb is the offset. Using these approximations, we
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can represent the potential energy with a force field as

U(r1, . . . , rn) =
�

bonds

1

2
K

(bond)
i (bi − beq,i)

2 (2.15)

+
�

angles

1

2
K

(angle)
i (¹i − ¹eq,i)

2 (2.16)

+
�

dihedrals

�

i

K
(dihedral)
i cos(miϕi) (2.17)

�

non-bonded pairsi,j

(
qiqj
ϵrij

+ 4ϵij [(
Ãij
rij

)12 − (
Ãij
rij

)6]). (2.18)

This is the fundamental aspect of obtaining force-field parameters for molecular dynamics

simulations. For more information on molecular dynamics simulations and the derivation of

the energy functions see Allen et al. [2004].

2.4.2 Free energy of binding estimation

There are two primary methods for binding free estimation that will be used in later chap-

ters: Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) and Molecular and

Mechanics generalized Born Surface Area (MM-GBSA) as well as free energy perturbations

(FEP). The most basic approximation method is the linear response approximation (LRA).

Broadly these are all methods of end-state methods. MM-PGBSA and MM-GBSA com-

pute absolute binding free energy, that is they return a values for ∆G. FEP is a relative

free energy of binding which provides an estimate of the difference between two difference

ligands.

The simplest form of computing absolute ∆G is linear interaction energy model (LIE)

[Åqvist et al., 1994]. LRA is estimated from the following approximation

∆G = ³[ïEL−S
ele ðPL − ïE

L−S
ele ðL] + ´[ïEL−S

vdw ðPL − ïE
L−S
vdw ðPL] (2.19)
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where EL−S
vdw is the van der Waals interactions between the ligand and solution and ³ and

´ are parameters. The brackets indicate an average over the simulation time. The way in

which this average is computed from snapshots of a MD simulation can be a simple geometric

average or include advanced sampling techniques such as the Multistate Bennett Acceptance

Ratio (MBAR) methods [Shirts and Chodera, 2008].

MM-GBSA and MM-PBSA are extremely similar methods [Kollman et al., 2000]. The

only difference between the two is the use of a particular solvation energy term based on

Poisson-Boltzman or Born Surface Area. I will outline the procedure for MM-GBSA and the

same procedure applies for MM-PBSA. In practice, three short simulations are carried out

in solvent (water and ions) of the unbound protein, unbound ligand, and the complex. The

binding free energy is estimated

∆Gbind = ïGPLð − ïGP ð − ïGLð (2.20)

where

G = Ebond + Eelec + Evdw +Gpol +Gnp − TS (2.21)

with Gpol and Gnp are the polar and non-polar contribution, calculated from the Poisson-

Boltzman equation or Born model. Sometimes only one simulation is used where the appro-

priate energies are obtained by removing atoms from the other components,

∆Gbind = ïGPL −GP −GLðPL. (2.22)

Finally, there are alchemical relative free energy techniques such as FEP [Zwanzig, 1954].

These methods compute a relative free binding energy estimate ∆∆G, based on analysis

of simulation trajectories of a thermodynamic path from two states (fig. 2.2). The name

alchemical comes from the fact that during the transition between these states, non-standard

chemistries may be used. These approaches use a transition coupling parameter ¼ that moves
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complex with ligand 2

complex with ligand 1

ligand A

ligand B

Path 1 ∆G
(A→B)
1 Path 2 ∆G

(A→B)
2

∆GA
bind

∆GB
bind

Figure 2.2: Thermodynamic cycle for FEP. The cycle is used to compute relative free
energy between the binding of ligand A versus the binding of ligand B. Path 1 focuses on
the transformation of the complex from ligand 1 to ligand 2, and path 2 focuses on the
transformation of ligand 1 to ligand 2 in solution.

from the initial state, 0, to 1. The relative free energy is computed by

∆∆G = ∆G
(A→B)
2 −∆G

(A→B)
1 = ∆GB

bind −∆GA
bind (2.23)

These methods are considerered to be more accurate than MM-GBSA or MM-PGBSA meth-

ods.

While the details of these methods are not essential for understanding the rest of this

work, they do appear in great detail in chapter 6 and chapter 9.

2.5 Conclusion

The main theoretical contribution of medicinal chemistry to this work is the idea that small

molecules are a design space which can be studied under perturbation. In some ways,

the relativity smoothness of binding free energy with respect to small perturbations of a

drug is a deep insight that will be explored later. We presented the notion of chemical

space through the lens of graph theory, which lead to a unique presentation of tradditional
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cheminformatics concepts. Finally, molecular dynamics simulations offer insight into the

binding thermodyanmics of proteins and ligands in complex, offering a unqiue tool modulate

the functions of proteins—at the root of many diseases.

27



CHAPTER 3

INTRODUCTION TO COMPUTATIONAL DRUG DISCOVERY

This chapter will focus directly on the topic of the remaining dissertation: virtual screen-

ing. The first section will cover some basics of computational screening broadly (not just

for drugs). The second section will cover the history of virtual drug screening and the pre-

dominant ideologies (structure-based drug design and ligand-based drug design). This section

will also feature some of my work in ligand-based drug design in particular for personal-

ized cancer therapy. This will only be a minor example as this dissertation is focused on

structure based drug design. The third section will focus on protein-ligand docking and the

computational details of it (such as binding site identification, conformer generation, scoring

function, available tools, and their computational performance characteristics).

3.1 Computational Screening

Computational screening problems include a wide variety of problems outside of drug discov-

ery and is a general naive approach to inverse-design problems. The general idea of inverse

design problems is that there exists some domain of physical objects (such as materials,

small-molecules, manufacturing processes, computer architectures, etc.) that exhibit some

set of properties (elasticity, solubility, efficiency, layout, etc.). The forward problem is con-

sidered property prediction, that is, using a computational model to ascertain quantitative

properties from a computational representation of the physical object. We will discuss the

forward problem of property prediction with molecules later in this chapter with techniques

such as computational docking, which serve to approximate the property of binding free

energy between a protein and small-molecule. The inverse problem asks given particular

properties such a high likelihood of binding, what should the molecule be? The most basic

set-up involves some function F which takes a object from the design space p and predicts
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some observable property dobs

dobs = F (p). (3.1)

Thus given some design goal such as maximization of a property, the inverse problem is

p∗ = argmaxF (p). (3.2)

In this problem set up, it is clear that computational screening is the naive approach since

computational screening performs a forward inference of properties over a large enumerated

subset of the design space. Given then this list of property predictions over the space,

the inverse problem is solved by merely selecting from this list the objects which satisfy the

design goals. Furthermore, such an approach is naive as it does not consider any relationship

between objects in the design space—an assumption which is most often not true. Objects in

a design space are typically deeply related and these can be examined by looking at ∂F
∂p

, but

of course often times it is not obvious how to differentiate a function with respect to physical

objects. The computational limitations of screening this way relate to the size of the design

space, n, and the efficiency of the approximation of F . Because we cannot directly control

the size of the design space (at least until some more algebraic properties of the design

space are articulated in chapter 7), we will focus in the next few chapters on accelerating

the function approximation of F with machine learning and AI techniques. There are non-

naive approaches to inverse design such as direct generation of the object using generative

computational techniques. These will be outlined in chapters 7 and 9. For now, we consider

computational screening.

3.2 Computational Drug Discovery

Drug discovery, as the first step of the process, is our focus (fig. 1.3). We start with simple

compound discovery—in order to “discover” compounds, one must have a listing of some
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compounds.1 As with any in-the-world field of study, there are various theories of common

practices situated with their own workflows, assumptions, and best practices. The main

division in drug design is ligand based drug design versus structure based drug design. Ligand

based drug design focuses on finding molecular motifs to design better drugs, while structure

based drug design focuses on utilizing the drug target and 3D structure to guide the ligand

design. The three common practices in drug discovery which utilize both design idealogies

are fragment based drug discovery (FBDB), high throughput virtual screening (HTVS), and

scaffold based drug discovery. In practice, these methods intersect in various ways, and often

times other techniques all together are used such as natural product or patent and literature

searching [Bleicher et al., 2003].

Fragment based drug discovery generates hits by identifying small chemical fragments

that show activity.2 Active fragments are identified by high throughput screening techniques

such as solution NMR, computational modeling, or literature searches [Erlanson et al., 2016,

Davies and Tickle, 2011]. New screening methods are being developed such as high through-

put X-ray crystallography [Douangamath et al., 2020]. Fragment libraries are commonly

available by chemical vendors and serve as the starting point.3 Once identified, these active

fragments are then combined together or grown into a full compound where activity is in-

creased or refined through iterative design. The result is an active lead generated from an

iterative design process based on a active fragment identified through some sort of compu-

tational or experimental search.

Structure based drug design focuses on utilizing structural data throughout the process

1. A listing is importantly completely enumerated. The most common example one encounters is a dataset
(i.e. CSV file with SMILES strings or chemical formulas). A listing is not a function which could enumerate
compounds if called (generator), or a combinatorial rule yet to be expanded. We will touch later on discovery
in section 3 and means for chemical space.

2. A rule of 3 can be used to determine is a compound is a fragment : a molecular weight < 300, ClogpP
< 3, and less than 3 hydrogen acceptors, donors, and rotatable bonds [Congreve et al., 2003].

3. One such fragment library for fragment screening is offered by chemical vendor Enamine, Ltd.: https:
//enamine.net/compound-libraries/fragment-libraries
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[Anderson, 2003]. The essential structural data is the protein target. We deal only with

protein drug targets. Protein structural information is determined experimentally, or can

be estimated computationally using homology or even AI methods [Hillisch et al., 2004,

Service, 2020]. Once the protein structure is obtained, the binding site can be analyzed to

identify similar targets. If similar targets have known inhibitors, those inhibitors may serve

as a starting point. When a protein structure is available, computational techniques such as

protein-ligand docking can be utilized to score compounds based on their structural fit. Once

some compounds are assessed, they can be tested in-vitro through biological assays [Vogel,

2002]. If the assays indicate binding, then crystallography can be used to determine the

structure of the hit in complex with the protein. Based on the resulting complex structure,

another iterative design loop can occur to increase the strength of the binding or alter the

biochemical interactions observed.

Ultimately, most hit generation techniques in drug discovery contain at least one screen-

ing stage. Within the big design practices, searching is the common bottleneck. Screens,

scientific searches, are a fundamental experimental design [Wass, 2010]; however, its pop-

ularity ought not justify its use. In chapter 3, we will develop a different perspective of

computational drug discovery which moves away from screening as the main computational

tool.

High throughput screening has a simple formal set up. LetM be chemical space. For now,

an element in M is interpreted as a 2-dimensional structural representation. Let X ¦ M

be a subset of molecules, the screening library, and let f : X → R be our screening function

where f(m) for m ∈ X returns a real-valued score. The general goal of the computational

leaning drug hunter can be expressed simply,

m∗ = argmin
m∈X

f(m). (3.3)

The goal is to determine the best (or best set) of hits or produce a ranking over X. In

31



practice, the difficulty is in picking the correct scoring regime f , and ensuring the library

size, |X|, is tractable. Currently, the only known solution to this optimization problem is

pure dicrete search. Naively, the computational runtime of equation 3.3 is the product of

library size and the runtime of f . If the ranking we compute ends up being equivalent to

the ground truth ranking, then we have a solution to finding drugs—so long as it appears in

the library X. HTVS can be done directly on a set of compounds [Lyu et al., 2019], or can

be done on fragments for a fragment screen [Kawatkar et al., 2009].

As result, two main arguments appear regarding research directions for improving our

ability to discover drugs. We need more accurate virtual screening methods (i.e. new ways of

trying to accurately compute a ranking or scoring function f), and new ways of expanding the

size of the screening library X (either through speeding-up the function f or discovering new

sets of compounds). It should be noted generating large subsets ofM is not trivial and is an

active area of research [Ruddigkeit et al., 2012]. M, restricted to just “drug-like” molecules,

is conservatively estimated to contain 1033 distinct compounds [Polishchuk et al., 2013]. This

number is theoretical. In reality, chemical databases have enumerated much smaller portions

ofM. PubChem has enumerated approximately 100 million distinct chemical structures [Kim

et al., 2019a], Enamine Real Database contains over 2 billion enumerated compounds 4, SAVI

contains over 15 billion enumerated compounds [Patel et al., 2020], and GDB-17 contains

166 billion compounds [Ruddigkeit et al., 2012].5

Besides determining whether or not a drug might be active, there are two other criteria

hits must pass in order to continue as a lead for experimental characterization: safety and

synthesis. Drugs are designed for human use ultimately—and so designing safe and non-

toxic drugs is essential. Rather than waiting until preclinical testing to determine exact

4. https://enamine.net/compound-collections/real-compounds/real-database

5. Enamine and SAVI contain compounds with estimated synthesis pathways. Enamine Real Library has
an 80% synthesis success rate. GDB-17 contains no synthesis guarantees or estimates and is an exhaustive
combinatorial search over structures with very specific constraints (such as leq 17 atoms).
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safety parameters of a compound, there are early stage computational techniques to estimate

the safety of a compound. One such technique studies the so-called ADME properties:

absorption, distribution, metabolism and elimination [Kassel, 2004]. Synthesis is another

important and necessary topic. If any compounds in the library do not have a defined

synthesis pathway, one must be found in order to continue testing the drug. Both of these

topics are outside the scope of our study, and we bundle into “downstream” tasks for a hit

once it is found.

3.3 Virtual Drug Screening

In this section, we cover studies in virtual screening for ligand based drug design and fragment

based drug design. We outline an example of utilizing cancer-genomic data and experimental

assays in cell-lines to identify drugs that likely inhibit tumor growth. This is ligand based

drug design since no structural information is used, no protein targets are identified. Rather,

we work directly on the idea that the screening problem is designed as dobs = F (t, d) where

F is the observed response of cell t with the application of drug d. Then, in the following

subsection I outline an example of fragment based drug design based on work with the

the COVID Moonshot is a non-profit, open-science consortium of scientists [Achdout et al.,

2020a].

3.3.1 Ligand-based drug design

While the main focus of this work is in SBDD, we will briefly outline an application of LBDD

utilizing deep learning techniques. The crux of precision oncology and virtual drug screen-

ing lies in the relationship between molecular structure and cancer genetics. Untangling

this relationship has historically consisted of various genome wide association studies and

quantitative structure-activity models. While both have provided the field an in depth view

of cancer and the agents that cure the issue for many, the protocols lacked the throughput
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to study the association between the compound and specific cancer cell line [Csermely et al.,

2013]. It is well studied that cancer genetics may play a role in drug efficacy even across

similar cancer types [Candelaria et al., 2005]. In order to understand this relationship, drug

screening assays such as the NCI-60 Human Tumor Cell Line Screen were created to drive

the precision oncology search for the link [Grever et al., 1992]. Recently, deep learning has

been applied to the problem as a means of modeling the interaction between cell genetics

and drug properties [Manica et al., 2019, Cortés-Ciriano and Bender, 2019, Xia et al., 2018,

Chang et al., 2018].

Classical machine learning models such as random forest have been used in typing cancer

genetics and even in single agent drug response models [Menden et al., 2013a]; however, few

have shown success across a wide range of cancer cell lines and diverse set of drugs. Deep

learning provides a more natural interface as higher dimensional datasets can be applied and

reduced to a lower dimensional representation, where the choice of representation of the data

is still important [Coates et al., 2011].

Before deep learning became tractable both computationally and on the combined datasets,

Jang et. al systematically analyzed CCL drug sensitivity modeling as a classical machine

learning task, by exploring the multitude of feature modalities, algorithms, prediction targets

and more [Jang et al., 2014]. Given that they had a small set of drugs available between

the studies (138 compound), the models Jang et. al studied did not featurize the drugs in a

continuous embedding; rather they were one hot encoded whether present or not. Overall,

in explaining the predictive variance between the over 110,000 models tested, they ranked

the factors for variance among models, finding genetic features and the particular compound

being predicted to be very explanatory, while the algorithm being considerably less impor-

tant. Their results were further in line with other work on more general learning problems

involving genetic features [Shi et al., 2010].

While many drug feature representations such as SMILES based encoders [Manica et al.,
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2019] or pharmacophore models [Skalic et al., 2019] are commonly used in deep learning mod-

els, we chose to only compare two variants of molecular descriptors: Mordred and Dragon7,

which are some of the more common classical feature representations [Moriwaki et al., 2018,

Mauri et al., 2006]. Deep learning models may be moving towards more natural representa-

tions like graphical representations; however, even the integrated data set does not offer the

sort of drug diversity seen in the papers effectively using these newer representations [Dutil

et al., 2018].

Across the recent works, the decision to use RNA-seq in conjunction with images, smiles,

or fingerprints was a choice dictated by the desired model architecture, explainability of

the model, or resources available; however, these choices do not span the entire space of

representations available for cells nor drugs. Cortés-Ciriano and Bender found introducing

convolutional neural networks (CNNs) for the drug image alongside Morgan fingerprints

improved performance of cell line sensitivity predictions with a small effect size [Cortés-

Ciriano and Bender, 2019]. Manica et al. compared fingerprints to the use of SMILES strings,

showing an RMSE improvement from 0.122±0.010 their deep baseline to 0.104±0.005 in IC50

predictions with the benefit of an explainability mechanism for improved mechanism of action

(MOA) and perturbation study [Manica et al., 2019]. Xia et al. found the use of proteome,

expression, and molecular fingerprints to perform the best when studying combinations of

drug pairs; however, proteome data is not available at scale of this study [Xia et al., 2018].

Chang et al. utilized a virtual docking technique in conjunction with CNNs to achieve

r2 > 0.84 on 244 drugs from GDSC [Chang et al., 2018]. The goal of these models is to

provide insight into which drugs and cells should be tested in downstream drug development

analysis with, for example, PDX models or organoids. While some evidence exists cell

line analysis does not correlate with response in tissue, scoping the target correctly allows

interpretation and use outside a pure precision medicine approach [Johnson et al., 2001].

In this work, we curated a collection of cancer cell line screens from four different data
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sources. We use the Genomics of Drug Sensitivity (GDSC) [Yang et al., 2013], NCI-60 Human

Tumor Cell Lines Screen (NCI-60) [Grever et al., 1992], the Cancer Cell Line Encyclopedia

(CCLE) [Barretina et al., 2012], Cancer Therapeutics Response Portal (CTRP) [Klijn et al.,

2014], and the Genentech Cell Line Screening Initiative (gSCI) [Rees et al., 2015]. Each

dataset consists of a panel of cancer cell lines tested of drugs. The datasets span size and

specificity, as the NCI-60 contains the widest set of drugs, and the smallest set of cells. The

datasets individually overlap both on some cells and drugs.

Cancer types across the datasets were not reported uniformly and contained some missing

data. Using an auto-encoder on RNA-seq data from the Genomic Data Commons [Grossman

et al., 2016], we were able to generate type-like labels for all RNA-seq data in our uniform

dataset. Due to the imbalanced representation of various cancer types, the data was limited

the 21 most prevalent cancer types represented in the combined data frames. We applied a

standard cancer type clustering technique to determine this source similarity metric (figure

3.1).

Figure 3.1: Counts of cells based on type from each dataset used in the training
data. Each data source contains other types not included, but we limit ourselves to the
top 21 and top 6 cancer types. The types were determined based on clustering of RNA-seq.
While the method is not the same as a somatic tissue type or diagnosis, the type provides
an indication of the diversity between data sources when attempting to balance data across
classes.
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Data Preprocessing

RNA-seq profiles are not provided in standard format by CTRP, gSCI, and GDSC; however,

there is a mapping from cells in CCLE and NCI-60 to obtain RNA-seq profiles. After

mapping and aligning to the set of drugs from each data frame, the cell response metric was

standardized. The NCI-60 reports a dose-response metric based on cell growth after drug

application.

The gene expression datasets for cancer cell lines, generated using RNA-seq and mutation

data, were collected from the following sources: NCI-60, CCLE, and GDSC. The CTRP and

gCSI drug response datasets were generated using the cell lines from CCLE dataset. Hence,

for those, we used the gene expression and mutation data from the matching cell lines in

the CCLE dataset. We refer to two featurization for cells, the RNA-seq for the expression

data and single nucleotide polymorphisms (SNPs) for the mutation data. The SNP data was

prepared as counts rather than binary indictor of presence or absence.

The gene expression values were represented as fragments per kilobase of transcript per

million (FPKM) values. To create varying gene lists, three datasets were created. The

original contains a standard set of genes by an inner join of all the data sets (19,000 features),

onco-gene set, and a LINCS1000 set. The LINCS1000 set was derived from the gene in The

Library of Integrated Network-Based Cellular Signatures (LINCS) 1000 gene set [Koleti et al.,

2017]. The onco-gene set was created from a list of 2054 genes derived from the following

three sources: i) 976 “landmark” human genes from high-throughput gene expression assay

used in The Library of Integrated Network-Based Cellular Signatures (LINCS) 1000 study,

ii) 470 high-confidence cancer genes identified in GDSC1000 study [Iorio et al., 2016], and

iii) 1020 genes considered to be cancer genes by OncoKB [Wong et al., 2013].

The genes were filtered based on the genes int he respective dataset list and the FPKM
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values were transformed into log TPM values by

log (FPKM · 106/Sum of all FPKM values),

and batch effect procresssed according to a few different methods.

When batch effects are in the data frame, the biological signal is not as strong as the effect

coming from the various batches (figure 3.2. This effects the downstream analysis such as

differential expression and predictive modeling resulting in bias and unpredictable behavior.

In order to manage batch effects between the different RNA-seq profiling, we tested three

approaches: whole frame scaling, source scaling, and combat scores. Whole frame scaling, or

applying no batch effect handling method, merges the combined RNA-seq expression values

and scaling each feature to unit norm. Source scaling scales each feature to unit norm by the

source rather than the combined data frame. Combat scaling come from combat algorithm

from Johnson et al. [2007].

Figure 3.2: First two components from PCA on CCLE, GDC, and NCI-60 cell
lines from our combined data frame. Without standardization, some batch effects are
clear between NCI-60 and CCLE cell lines. The two methods tested seem to eliminate an
obvious skew towards various batches.
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Target Processing

Ideally, the target metric chosen correlates to growth inhibition used in the NCI-60 dataset

for drug response measure given the NCI-60 is the largest data source used. The growth

response data for NCI-60 cell lines is prepared by applying the compound at five different

dosages to the tumor [Boyd and Paull, 1995]. By staining the cancer cells and measuring

the absorbency with automated plate reader, they obtained the absorbency at time-zero, Tz,

the control absorbency, C, and the absorbency after the application of the drug, Ti. Growth

response used in the datasets is computed as Percentage Growth Inhibition (PGI) by

PGI =





100Ti−TzC−Tz
Ti g Tz

100Ti−TzTz
Ti < Tz

. (3.4)

The PGI value is the target prediction value of most learning problems related to the NCI-60

dataset.

From the PGI values across the different dosages, three values are computed related to

the compound and cell. First, Growth inhibition of 50% (GI50) is calculated from setting

the PGI to 50% and solving for Ti in Equation 3.4. The Total Growth Inhibition (TGI)

is calculated by finding the concentration of the drug where Ti = Tz. Lastly the 50%

lethal concentration (LC50) is the concentration of drug resulting in a 50% reduction in the

measured protein at the end of the drug treatment as compared to that at the beginning,

which is the Ti dosage so (T i− Tz)/Tz = −0.5.

However, this metric requires each sample is associated with a cell, drug, and a dosage.

In order to remove the dependency on dosage as the interest in cell lines is skewed towards

drug screening and further downstream precision medicine where dosage is not a preliminary

question, we formulate a dose-independent drug response metric for the datasets provided

by some data sources such as CCLE.
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Source r2 fit E∞ HS

CCLE 0.71± 1.35 0.31± 0.35 1.93± 1.50
CTRP 0.70± 0.36 0.33± 0.38 2.01± 1.53
GDSC 0.63± 0.40 0.40± 0.39 1.88± 1.53
NCI-60 0.80± 43.16 0.36± 0.36 1.93± 1.47
gCSI 0.82± 0.31 0.34± 0.33 1.90± 1.28

Table 3.1: Dose independent fitting results. E∞ and HS are parameters from the fit,
and r2 is from the result of the hill curve fit on a per-drug , per-cell basis. The NCI-60’s
large standard deviation comes from a few extreme outliers that were removed.

For each dataset, we fit the dose dependent response to a hill curve with E∞, EC50, and

hill sloop binding cooperatively (HS) (table 3.1). From the fit curve, we computed AUC -

area under growth curve for a fixed dose range between 4 and 10 −log10(M), IC50 - drug

dose to have 50% growth, EC50se - standard error of the estimated EC50, R2fit - R2 score

between the unclipped, real growths and fitted growth values, AUC1 - area under growth

curve for the measured dose range in a study, AAC1 - area above growth curve for the

measured dose range in a study, and DDS1 - drug sensitivity score [Yadav et al., 2015].

While all the metrics are highly correlated, in this paper we study AUC for a fixed dose

range across all studies from 4 to 10 − log10(M). A value of 1 for AUC indicates a cell does

not respond at dosages while a value of 0 indicates a cell responds completely at all dosages.

Given most cell lines do not respond to a particular drug, the predictive target AUC is highly

skewed (Figure 3.3).

Molecular Representations

The representation of molecules plays a crucial role in response prediction for it directly

indicates what kind and how much information will given into the deep learning models

during training and inference.

We can divide the representations into engineered (knowledge-based) or non-engineered

ones based on whether the featurization process involves the domain knowledge on molecular
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chemistry; alternatively, from the learning and data presentation point of view, the molecular

representations can be either euclidean (vectors, tensors, voxels, etc.)or geometric (meshes,

graphs, point clouds, etc.) ones.

The most basic but yet still effective representation of molecules is SMILES string. In-

troduced in Anderson et al. [1987] in the late 1980s, SMILES (simplified molecular-input

line-entry system) converts molecules into unique and human-understandable ASCII strings

based on a given set of rules, which can be then processed with the methods and models

in natural language processing. In our experiment, we used the canonical SMILES string,

encoded them based on characters, then fed the vectors into deep learning models. Success-

ful results has been demonstrated [Goh et al., 2017, Kwon and Yoon, 2017, Hirohara et al.,

2018] with this approach despite the fact that this vector representation requires minimal

domain knowledge.

Molecular fingerprint is a widely used method of encoding molecules based on the pres-

ence or absence of particular substructures. There are different ways to implement such

substructure encoding, some of them are non-exhaustive like MACCS, which only has 166

structural key, while the others are exhaustive but differs in searching patterns (circular-,

path-, or tree-based searching) and substructure specifications (like the number of atoms in

substructure). In our experiment, we used ECFP[Rogers and Hahn, 2010a], one of the most

commonly used fingerprint, with different substructure size and vector dimensions to search

for the most effective ECFP features for drug response.

Molecular descriptor is a more broad definition, which usually requires more domain

knowledge and feature-engineering to generate. Generally speaking, any numeric represen-

tation that can "describe" the molecules in a certain way, is a descriptor. For the sake of

better performance, a good set of descriptors often covers a wide range of molecular proper-

ties, some of which are rather complex and demands understanding of chemistry at a very

deep level to design. In our experiment, we have tried Mordred [Moriwaki et al., 2018] and
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Dragon descriptors, both of which are highly popular and widely used in other works. In

this work, we limit the exploration to molecular descriptors from MOrdered and Dragon7

code bases.

DNN Models

Unlike classical algorithms studied in previous sweeps over this problem, deep neural net-

works are highly parameterized over architecture and training strategy [Zou et al., 2018]. A

study of greater scale could be done just exploring the question of architecture and training

strategy for a single set of features and data. Arbitrarily, we selected three model architec-

tures based on experience from training models on the data, with the hope the three models

are different enough to capture any interesting variance between them.

We present three model architectures, a deep model, a model with a differential dropout

scheme (inspired by the observations from [Zheng et al., 2014]), and a model with a sigmoid

channel gated attention mechanism. The standard deep model is a simple ReLU based

multi-layer perceptron (MLP). The differential dropout model is the same model except the

dropout rates decrease to zero towards the output layer. The multiplicative channel gating

is a two tower MLP, one for the genetic features of the cell and one for the drug features.

The towers are combined using a multiplicative channel gate.

Multiplicative Channel Gating

Attention mechanisms are used successfully in natural language processing (NLP) applica-

tions. Attention layers in NLP take as input a set of keys, values, and queries and attend to

certain parts of the sequence to highlight important parts of the prediction [Vaswani et al.,

2017a]. Image attention expands the use case to images. Image attention has been used for

image captioning where the model “attends” to a region in the image to predict word used

to caption that part of the image [Xu et al., 2015]. We consider a self-attention mechanism
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between linear layers of a network, where an activation function (sigmoid, tanh, softmax,

etc.) is applied to one channel and multiplied onto another, effectively attending to certain

values of the activation. We employ a variety of generic activation functions such as sigmoid,

tanh, or softmax. Unlike a standard self-attention implementation such as the one used in

Monica et. al [Manica et al., 2019], we do not enforce the use of softmax which can dimension

the value of the gradients for non-sequence data. By using a sigmoid or tanh function, each

channel is gated with the possibility of decreasing the value, though there is no restriction

on how much information passes through the layer, unlike a softmax function.

Model Training

Three training methods were used across all models. Training was performed using Pytorch

[Paszke et al., 2017]. All models were trained on Summit, where each model used a single

NVIDIA Volta V100. The models were dispatched for training and scoring using the Cancer

Distributed Learning Environment (CANDLE) Supervisor [Wozniak et al., 2018a]. Two

optimizers, stochastic gradient descent (SGD) and Adam optimizer were tested with the

learning rate initially set to 8e-4 for both[Kingma and Ba, 2014]. The learning rate was

reduced by a quarter when the validation loss did not decrease for over 20 epochs. The

batch size was not varied and set to 512. Each model was set to train for 400 epochs, and

stop early if validation loss stopped decreasing after 10 epochs. We trained using Huber loss

(Smooth L1 loss) with ¶ = 1 [Huber, 1964].

Besides the standard vanilla training procedure, two other training variations were used.

Due to the high imbalance of positive leads (AUC f 0.5), an imbalanced data sampling

strategy was used for each batch or a weighted loss function [Byrd and Lipton, 2018, Lauron

and Pabico, 2016]. Imbalanced data sampling fills each batch with a balanced number

of responders and non-responders. The drawback of this method is the model sees some

data more than others which may lead to over-fitting on the smaller class. Loss weighting
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is generally used for classification where different weights are applied to different target

predictions. As the models in this study are trained for a regression task, loss weighting

for this context involves multiplying the loss of each batch by 1 − y, the target, in order

to produce stronger gradients for non-responders and weaker gradients for responders—the

idea coming from the the responders, having few examples, not being able to influence the

gradient enough to push the model towards learning the smaller class. Neither strategy was

tested in conjunction with the other.

Model Evaluation

Prior works have utilized strict and non-strict partitioning for both cell lines and drugs in

the training and testing set. Manica et al. marks the distinction between a strict and lenient

split by cell and drug identity in the training set [Manica et al., 2019]. Chang et al. used

a leniant split for the validation data [Chang et al., 2018]. Given our dose-independent

prediction target, a specific cell and specific drug constitutes a single training example only

in terms of model training and testing.

Outside of pure model performance testing, there are two use cases we targeted: drug

screening and precision medicine screening. For drug screening, panels are often performed

against the set collection of cell lines to determine if a drug should move on to PDX models

for further testing. In this case, we partition the training and test set by unique molecules,

and use a 3-fold cross validation where each fold consist of entirely different molecules. For

precision medicine, there is a list of approved drugs or known agents and the medical question

is regarding which treatment to offer to a cell. In this case, the 3-fold cross validation is done

over the unique cell lines, where each fold consists of unique cells not in any other fold. For

the sake of testing more models and feature combinations, we did not perform a completely

strict model evaluation of unseen drugs and cells as the use case is outside the scope of this

research.
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While this problem is posed as a regression problem as the AUC values are continuous

on 0 < AUC f 1, viewing the problem as classification links it directly to application of

the model. Due to the extreme skew of the training/testing distributions, r2 and root mean

squared error (RMSE) may not represent whether or not the model performs well in the

region of interest (the model may minimize residuals over a large mass of the data, ignoring

the residuals separating interesting response from no response). By artificially selecting a

cutoff, 0.5, we can determine for the case of drug screening or precision medicine whether

or not the model is learning to distinguish a responder cell/drug or a non-responder. The

balance between type I and type II error is a calculation that is use-case specific and the

selection of the feature set and model from our sweep will require consideration of this trade-

off. We further justify this unusual approach to classification by the result from Jang et.

al indicating discretized target variables created less performant models from [Jang et al.,

2014]

Analysis of Results

In order to test thoroughly the various proposed feature and training combinations, we tested

the full combination space. Given 198 feature sets entailing various scaling, cell profile types,

and drug representations, we ran each feature set on each model, with three different training

strategies, top 6 and top 21 datasets, and three cross validation folds. In total, we ran

35,320 models on Summit. We gathered the results, and concatenates the predictions on

each training fold from the model to estimate average statistics for the model.

At this scale of models, some models (15%) did not converge or provide reasonable

results. Incorporating those failures into the overall performance of a model would not en-

capsulate the possible performance given hyper-parameter tuning and detailed work with

a given configuration. We present models ranked by balanced accuracy and MCC to illus-

trate classification performance with post-processing binning and r2 scores to illustrate the
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predictive power of the regression view of the problem.

After gathering data, we removed models we believed to have not converged or over fit

based on having one of the following criteria: TPR or FPR of 1.0, negative or zero r2 score,

or a loss outside the 85th quantile. This removed 2045 models from the data for analysis.

In the following sections we highlight comparisons between the drug validation models

and the cell validation models. The drug validations did not perform nearly as well as the

cell validation models. We believe drug validation is a harder test on the model as the test

is based on drug discovery rather than preclinical screening for a fixed set of drugs. For

metrics like Mathew correlation coefficient (MCC) and r2 score we report 99th percentile,

and for root mean squared error we report (0.01) percentile. We report multiple metrics as

different purposes may arise for these models. We chose to report at 99th percentile versus

best models found, as it is unclear with limited resources a researcher could reproduce the

best model, and we aim to discuss approaches to the problem that can be taken out of the

box and be performant.

Results

We report on the results of models based on predictions on their assigned validation set

and metrics. In terms of understanding the parameter space, we ran a series of classical

machine learning predictors trained on the hyperparameter configuration to predict our four

key metrics: RMSE, r2, balanced accuracy, and MCC (Figure 3.3). The results indicate

standard deep learning hyperparameters to play the most important role in variance, rather

than specific feature information, as optimizer, model architecture, training strategy, and

dropout all are more predictive using SNPs or the featurization of drugs or cells.

The inclusion of SNPs improves performance on cell validation split models in RMSE, r2,

MCC, and balanced accuracy (Table 3.2). There was no calculated metric in our test suite

which reported a worse score when SNPs were included (at 100% and 99% percentiles). For
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Figure 3.3: Distributions of labels and feature importance.(Left) The AUC distri-
bution of pan-cancer data frame. With this scheme, the training distribution has 3.86%
responders. While our cutoff of 0.5 is arbitrary, learning to distinguish this slice along with
a regression-based training strategy will prevent standard regression metrics from appearing
much better than they are on the skewed portion of the dataset. (Right)Relative feature
importance for hyperparameters used in model training for predicting validation metric us-
ing decision trees. The r2 for those models were > 0.9 on cell validation metrics, and > 0.6
for drug validation metrics. Optimizer, model type, and dropout were among the top three
features, though the training strategy very important when predicting balanced accuracy.

the on cell validation method, the independent t-test shows significant improvement RMSE

and r2 scores with the inclusion of SNP features (p < 10−5), and less significant improvement

for balanced accuracy and MCC (p < 0.17 and p < 0.02 respectively). For drug validation

models, the RMSE and r2 are again significantly different with the inclusion of SNP features

(p < 0.003 and p < 0.0005) and not as significant for balanced accuracy and MCC (p < 0.01

and p < 0.3).

Scaling methods did not seem to have a large effect on the variance between models

besides source scaling seemed to improve measures slightly (Table 3.3. According to an

ANOVA the null hypothesis of similarity among scaling methods is not rejected for either

validation method (p < 0.14). Cell frame splits did not have any noticeable differences

amongst them). According to an ANOVA test for fit, there is no significant difference

among cell validation methods (p < 0.31) and the drug validation method shows a possible
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difference but nothing significant (p < 0.06).

Chemical informatics package used to features the molecules did not have a significant

effect on the validation scores (Table 3.5). For on cell validation models, no reported metric

rejects the hypothesis that all featurization are the same for p < 0.09; however, for on drug

validation RMSE and r2 scores are effected by featurization to an extent (p < 0.0001). We

applied post hoc analysis to these two metrics using John Turkey’s HSD analysis which

shows Dragon7 and MOrdred slightly different on r2 and RMSE (p < 0.05). The use of both

MOrdred and Dragon7 however is significantly different from just using Dragon7 on both

metrics (p < 0.01).

Validation Method SNPs Included RMSE r2 score Balanced Accuracy MCC

On Cell
False 0.086 0.675 0.889 0.553
True 0.083 0.712 0.896 0.577

On Drug
False 0.108 0.448 0.792 0.460
True 0.107 0.495 0.807 0.487

Table 3.2: Metric comparison at 99-percentile of grouped by the model validation
strategy and the inclusion of SNPs. Rows do not represent a single model with those
three metrics, rather a model exists with one of those metrics. A t-test for difference between
group means shows a significant difference in r2 scores p = 1.9e− 18 and 0.0005 for cell and
drug validation methods respectively.

Validation Method RNA-seq Scaling Method RMSE r2 score Balanced Accuracy MCC

On Cell
Combat 0.084 0.708 0.893 0.568
None 0.084 0.703 0.893 0.565
Source Scaled 0.084 0.710 0.891 0.568

On Drug
Combat 0.107 0.484 0.797 0.478
None 0.110 0.470 0.795 0.474
Source Scaled 0.108 0.494 0.796 0.473

Table 3.3: Metric comparison at 99-percentile of grouped by the model validation
strategy and the scaling method used. Rows do not represent a single model with those
three metrics, rather a model exists with one of those metrics.

There was a small detectable difference between the models. The differential dropout
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Validation Method RNA-seq Feature Set RMSE r2 score Balanced Accuracy MCC

On Cell
lincs1000 0.084 0.708 0.895 0.567
oncogenes 0.084 0.706 0.891 0.574
oncogenes & lincs1000 0.085 0.708 0.894 0.568

On Drug
lincs1000 0.108 0.478 0.796 0.482
oncogenes 0.107 0.478 0.788 0.463
oncogenes & lincs1000 0.108 0.487 0.810 0.478

Table 3.4: Metric comparison at 99-percentile of grouped by the model validation
strategy and the RNA-seq feature set used. Rows do not represent a single model
with those three metrics, rather a model exists with one of those metrics.

Validation Method Drug Featurization RMSE r2 score Balanced Accuracy MCC

On Cell
Dragon7 Descriptors 0.084 0.706 0.894 0.570
Mordred Descriptors 0.084 0.708 0.889 0.568
Mordred and Dragon7 Descriptors 0.084 0.709 0.896 0.567

On Drug
Dragon7 Descriptors 0.108 0.478 0.793 0.466
Mordred Descriptors 0.107 0.473 0.811 0.481
Mordred and Dragon7 Descriptors 0.107 0.491 0.793 0.471

Table 3.5: Metric comparison at 99-percentile of grouped by the model validation
strategy and the drug featurization method used. Rows do not represent a single
model with those three metrics, rather a model exists with one of those metrics.

strategy seemed to improve model performance though between the two tested dropout

rates the RMSE 1-percentile were both 0.084 and for drug validation 0.108 and 0.107 (Table

3.6).

Training strategies had a unexpected impact on the data. In the cell validation split

models and the drug validation split models, imbalanced sampling produced the lowest

validation loss scores but also the lowest validation r2 scores

We find the improvement in RMSE and decrease in r2 score to be an interesting result,

and this supports one’s instinct about the data–that it is widely too imbalanced for most

metrics to effectively explain model predictions.
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Validation Method Model RMSE r2 score Balanced Accuracy MCC

On Cell
Differential Dropout 0.083 0.712 0.884 0.573
Sigmoid Channel Gating 0.084 0.708 0.887 0.561
Standard Deep Model 0.085 0.702 0.897 0.568

On Drug
Differential Dropout 0.106 0.488 0.792 0.488
Sigmoid Channel Gating 0.108 0.480 0.796 0.470
Standard Deep Model 0.108 0.484 0.801 0.474

Table 3.6: Metric comparison at 99-percentile, grouped by model used for training.

Validation Method Training Strategy RMSE r2 score Balanced Accuracy MCC

On Cell
Class Balanced Sampling 0.089 0.685 0.899 0.585
Loss Weighting 0.084 0.710 0.780 0.550
Vanilla Training 0.084 0.710 0.781 0.548

On Drug
Class Balanced Sampling 0.112 0.466 0.825 0.499
Loss Weighting 0.107 0.484 0.689 0.450
Vanilla Training 0.107 0.485 0.693 0.453

Table 3.7: Metric comparison at 99 percentile for training strategy.

Discussion

We first comment on the overall model performance of a few models created in this study.

Second, we evaluate prior claims that feature representation should matter as the primary

explanation of variance between models. We finally evaluate the three significant findings to

consider in future research when building DNN models on CCL sensitivity predictions such

as the drug featurization, training strategies, and the inclusion of SNPs.

In general, we found the best models to perform quite well on the validation data in both

regression and classification contexts. There are models with validation scores on unseen

cells of r2 > 0.7 and balanced accuracy > 90%, and there are models with validation on

unseen drugs with r2 > 0.55 and balanced accuracy > 84%. The cross study performance of

the two best cell validation models (Table 3.9) are on par with several other studies, though

not obviously more predictive on a single drug basis. These model is also top ranked if

a simple average is taken across the cross study measures as well. Models validated with
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unseen cells outperform models trained with unseen drugs in, however the performance varies

across the studies where (Figure 3.5). Given classical ML methods were generally capable

of single drug predictions, we expected the cell validation performance to be better than

the drug validation. Drug validation is a harder problem given the diversity of chemical

space—a model that is largely successful on th drug validation problem can be used as a

virtual screening tool for compounds. While it may appear the CCLE samples performed

better with drug validation, this is an anomaly given at most two CCLE drugs appeared in

that validation set.

Considering the case of a classification problem is often more actionable than the regres-

sion case for drug discovery and virtual screening tasks. The specific task of the model would

be to filter models molecules based on their expected performance on CCLs which can be

done at massive scale and quickly on a GPU, where inference times for these models well

outperform standard virtual docking libraries (approx. 5000 samples per second, less if fea-

turizing molecule on the fly). While other techniques such as virtual docking and simulation

experiments can perform similar tasks by rank-ordering large virtual libraries, we propose

the screening results from these models’ predictions can be another measure designers of

CCL panels and initial drug datasets can employ. The use of these models in the creation

of new CCL panels would hopefully be able to balance the distribution of responders versus

non-responders further. Given the models are regressors, a cutoff can be selected both at

training time for using the balanced data sampling strategy and used afterwards for a sen-

sitivity detection cutoff (we used 0.5, for example). Type I error (false positives) is a more

costly error in the precision medicine task where the assignment of an incorrect drug is a

wasted treatment opportunity, while type II error (false negatives) is costly in the virtual

library screening where missing a potential lead at an early stage is a costly error. Of course,

both errors should be considered for either task, but we aim to highlight the diversity of

models possible just by training a large collection of DNN models. In Figure 3.4 we show
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post-processing cutoff analysis against the errors. By alerting the regression cutoff to 0.3,

one can achieve > 90% balanced accuracy on the validation screening problem. We believe

the cost analysis of virtual screening models is beneficial to researchers, where the choice of

model used in screening should come from the task at hand, not necessarily the best state of

the art performance. Further work can be done to introduce uncertainty quantification into

these models using techniques in [Lakshminarayanan et al., 2017].

Figure 3.4: Error trade-off. type I error (false positive rate) vs type II error (false negative
rate) trade off for cell validated models (left) and drug validated models. Cut-off analysis is
presented (right) for drug validated models, where the boundary of the error trade-off curve
can be shifted with post-processing for even finer control over virtual screening error.

We now move on to discuss the variance of models predictive performance. While the

prior classical assessment viewed the input data as the most significant point of variance,

our results indicate the parameterization of the deep learning problem itself to be the largest

explanation of variance. Based on the results, we see the transition from classical machine

learning to deep learning will require a shift in focus from pure-feature engineering to deep

learning hyperparameter optimization. Although we did not test discordant feature sets

(all genetic features were super sets of each other, and the drug features techniques were

both descriptor and fingerprint methods), one would expect to see a large variance across

them, though the predictive signal seems stable across all input features. This implies better

representations exist for drugs and cells, or perhaps the features we have selected are optimal

and a smaller set can be created.

While the hyperparameter decision tree ranked non-feature related aspects higher than

the cell and drug featurizations, the result from the percentile and ANOVA analysis should
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not be understated, attributing significant to use of SNP data. For instance, the quantile

analysis shows a greater difference in MCC on cell validation for the inclusion of SNPs

than the differences between MCC for the various model architectures; yet, the decision tree

feature importance for the cell validation ranks model architecture as a more useful predictor

than the inclusion of SNP frames. We believe this should be read a probability difference,

rather than a discrepancy. The decision tree is attempting to model the entire distribution

of models we trained, so the fact that the optimizer has a big impact is only due to the

fact that SGD is more likely to not converge or converge to the optimum point without

hyperparameter optimization while Adam is likely to converge to the same point. In a sense,

for researchers getting into deep learning, time spent understanding hyperparameters of deep

neural networks has a higher probability of paying off than feature engineering initially. The

quantile analysis, however, does indicate there are pay-offs to exploring feature sets, only if

one is willing to pay the computational cost of hyperparameter sweeps or optimization.

The results from this study indicate the choice of handling batch effect, general architec-

ture, drug descriptors and modalities, and even the genetic features provided do not seem

to impact the performance of the best models. The case of model architecture, dropout,

and optimizers this result is not unexpected, as in general optimizers and dropout strate-

gies should have minimal effect on the overall model capacity. Given the various model

architectures were designed to have similar number of parameters, it seemed they were not

differentiable in the case of general well performance. Batch effect handling, for example,

employs a standard neural network to reduce the batch effect in the case of the combat

scores; though this would be possible to occur within the first few layers of the network. To

check, we present the by study scores of the models in the validation set split by the batch

effect standardization procedure (Table 3.8) which again do not seem to indicate a noticeable

effect. Other aspects such as dropout and optimizer do not have a global effect on models

as we trained many models, however there are smaller effects such as the Adam optimizer
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generally performing better than SGD but this may be due to the lack of global parameter

optimization, adjusting factors such as batch size and learning rate as it is well studied that

SGD requires careful selection of learning schedule [Zeiler, 2012].

As a minor point, the choice of RNAseq genes to use in the model was not an important

consideration for model variance. There is that no superset of LINCS1000 gene set clearly

outperformed any other set. This is, however, by design of the LINCS1000 gene set, as

the selection of genetic features was created to recover most information contained in the

transcriptome [Keenan et al., 2018]. Given the ability of the network to learn at such a

high drop out rate, the learned weights should have optimal sparse networks. Following a

node pruning strategy as a surrogate of feature selection [Jianchang Mao et al., 1994], we

performed magnitude tuning on a single model to validate this hypothesis by pruning the

initial layer of the network to 99.99% while fine tuning the training with SGD optimizer. The

result shows only two of the 127 non-zero weighted features belong to cellular representation

while the remaining are drug representations.

The SNPs improved performance all around, when looking at aggregated test statistics.

The results suggest that SNPs improved regression metric performance as well as classifica-

tion metric performance, regardless of the validation strategy. It is known that NCI-60 cell

line show over 100x mutation signal compared to other cell line panels. In order to examine

if this artifact affected the results, we again break down the performance by cross study. We

see that breakdown by study in the analysis further illustrates complexities around this type

of study. The results in figure 3.6 indicate however the inclusions of SNPs do not increase

the performance across every study when aggregated from validation data. The cross-study

results indicate that the larger mutation profile of the NCI-60 is not skewing the result

indicating SNPs boost model performance on the cell validation split.

Both MOrderd and Dragon7 are fingerprint and descriptor based methods, with a great

overlap between the two in terms of chemiformatics information found. An interesting com-
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ponent is the discrepancy between the cell and drug validation measures. When broken down

by cross study, GDSC predictive performance is hurt severely when validating on drugs, and

general predictions on unseen drugs is less powerful than unseen cells. We believe this is

an indication that the models are not learning a useful representation of drugs, and further

analysis of different drug modalities should be undertaken, such as images and fingerprints

in [Cortés-Ciriano and Bender, 2019].

Balanced Accuracy r2 Score

validation scaling All CCLE GDSC NCI-60 All CCLE GDSC NCI-60

On Cell
Combat 0.893 0.914 0.912 0.902 0.708 0.729 0.619 0.749
None 0.893 0.918 0.906 0.904 0.703 0.73 0.617 0.743
Source Scaled 0.891 0.91 0.904 0.899 0.71 0.727 0.617 0.747

On Drug
Combat 0.797 0.945 0.799 0.854 0.484 0.762 0.378 0.607
None 0.795 0.944 0.794 0.854 0.47 0.761 0.388 0.598
Source Scaled 0.796 0.946 0.808 0.839 0.501 0.748 0.397 0.602

Table 3.8: Breakdown of data standardization techniques across the different stud-
ies in the validation data.

Best Regression Model Best Classification Model

r2 score RMSE Balanced Accuracy MCC r2 score RMSE Balanced Accuracy MCC

All 0.73 0.078 0.69 0.47 0.56 0.104 0.91 0.59
CCLE 0.70 0.086 0.71 0.53 0.68 0.087 0.90 0.69
GDSC 0.57 0.098 0.74 0.53 0.52 0.106 0.87 0.60
NCI60 0.76 0.075 0.68 0.45 0.56 0.103 0.92 0.58

Table 3.9: Individual metrics for cell split validation for two of most useful models.
The regression model is a differential dropout model with an initial dropout rate of 0.45,
trained with the top 21 cancer type samples using loss weighting on the samples. Cells
were featurized with SNPs and RNAseq from the LINCS1000 subset, and chemicals were
featurized by Dragon7 descriptors. The classification model is trained only on the top 6
cancer types and is the standard MLP model with a dropout rate of 0.2. Cells were featurized
with SNPs and RNAseq from the LINCS1000 subset, and chemicals were featurized by
MOrdred descriptors. Both models used the Adam optimizer.
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Figure 3.5: Comparison of the models’ performances between validation methods
over all converged trained models broken down by sample’s originating study.

3.4 Structure-based drug design

There are many different approaches to structure-based drug design, such as expert design.

Experts may use prior knowledge of drugs to design drugs while looking at the particular

pocket of a protein. Advances in virtual reality for example allow scientists to perform

expert-guided design in 3D. Here, we focus on a computational tool, protein-ligand docking,

which is a fast approximation to score the overall viability of drug. There are two main forces

looked at, shape and color. Shape refers to the physical question: does a conformation, or

3D position of the molecule, fit in the pocket of the protein? Color refers to chemical and

biophysical properties such as pharmacaphores or electrostatics which evaluate the stability

or likelihood that a drug would bind.
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Figure 3.6: Cross study analysis of SNPs, 98th percentile and max for each score.

3.4.1 Protein-ligand docking

Classical docking studies involve a compound database to screen, protein annotated with

a binding region, and a scoring function (see figure 3.7 for an overview of docking). Com-

pound databases are readily available in various flavors. Compounds selected for VS library

size should leave some room for optimization, being libraries of lead-like or fragment-like

molecules [Oprea, 2000, Verdonk et al., 2004, Klebe, 2006]. An important but sometimes

overlooked preparation for docking is enumerating 3D conformations of compounds in the

library (B). It should be noted that even in databases that provide 3D conformations, the

sampling density of those poses may not be sufficient for rigid-structure docking (the most

common type). Without the correct ligand conformation enumerated from the database,

the pose may be incorrect, and this is one of the leading causes of error in computational

docking [Warren et al., 2006]. The protein binding region’s preparation and the location is

an important consideration but outside the scope of this paper (see [Le Guilloux et al., 2009]

for a discussion of protein pocket detection). General caveats to docking are not discussed in

detail here (see [Cole et al., 2005] for references); however, scoring is considered the pinnacle
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to the success of uHTVS computational docking for virtual screening while pose prediction

is considered acceptable for most uses [Kitchen et al., 2004].

3.4.2 Scoring Functions

Scoring functions are programs—the scoring function determines which pose is selected from

exhaustive search and how the resulting molecule and pose rank amongst the particular

dataset. While some docking protocols expand the typical exhaustive mapping of a scoring

function over possible positions, the distinction between protocols boils down to the scoring

function [Cross et al., 2009]. The scoring function was initially intended solely to detect

when the ligand was adequately positioned in the pocket (pose prediction) and provide a

general assessment of activity (virtual screening); however, with the rise of virtual screening,

the scoring function was tasked with a third role: rank-ordering compound libraries from

their selected pose binding affinity ranking [Guedes et al., 2018, Clyde et al., 2020c]. Thus,

scoring functions are used to score poses to determine the most likely pose of the molecule,

the magnitude of which is used to provide a sense of active versus inactive ligands, and lastly,

to rank order sets of libraries.

Given the central role of scoring functions, the entire enterprise of molecular docking

pragmatically and theoretically rests on these scoring functions’ speed and accuracy. Some

scoring functions can be slow and particularly well suited for pose prediction, while others

may be fast, and only capable of decoy detection [Ballester and Mitchell, 2010]. The scoring

function itself considers a ligand pose and is typically statically implemented for a receptor

or protein (given it is costly to compute the initial pharmacophores and solvation energies

of the protein [Mcgann et al., 2003b]). Consider function freceptor to be a scoring function

prepared with a particular protein pocket. We associate the score of a compound c ∈M as

S(c) = max
τ∈valid poses

freceptor(Ä) (3.5)
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as a stand-in property to rank the "goodness" of molecules in a database (some authors call

this value the predicted binding affinity [Guedes et al., 2018]).

There are many scoring functions used, such as DOCK, GOLD, FlexX. There is research

into using the combination, or consensus score, as a more reliably and interpretable metric,

such as CScore [Clark et al., 2002, Clyde et al., 2021c]. There is also a flexible based docking

protocol, reducing the need for ensembles against static protein receptors [Meiler and Baker,

2006, Razzaghi-Asl et al., 2015]. A general overview of scoring functions, and outlining

the differences amongst them for sampling speed is available here [Moitessier et al., 2008,

McGaughey et al., 2007].

Given this framework, there are a few options to consider for developing surrogate ML/AI

models. The most straightforward approach would be to model the scoring function freceptor

and create an ML model as the heart of the docking algorithm; in practice, this is a consider-

able challenge primarily due to encoding a 3-D ligand pose inside of a protein pocket, which

would need to be very sensitive to the position (to satisfy the pose prediction requirement of

the scoring function). Of course, there is the option of ignoring the idea of scoring functions

and utilizing an ML/AI model to generate the pose directly without the exhaustive search

framework—such models tend to suffer from (i) their specificity to a particular scoring func-

tion protocol used for the training data 6, (and the imposition of a docking protocol), and (ii)

how docking the objective is nearly cast to mimic the physical processes involved in protein-

ligand binding, which is usually represented as a multi-objective optimization problem. This

dual role of the scoring function imposes on ML/AI model’s an undue expectation—the ex-

pectation to act as a useful surrogate to model to the actual protein-ligand docking process,

and, to find the correct pose immediately (many approaches utilize reinforcement learning/

other techniques to model this). We will discuss in the following the section the different

6. particular scoring function protocol refers to the method for combining the protein pocket information
with the theory to produce freceptor, and is not referring to freceptor in specifics (difference between a Gaussian
versus discrete scoring function, for example)
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workflows that arise.

3.4.3 Active sites

Molecules are keys in our colloquial lock and key model. Fully specifying the key is rather

simple in that sense, as the key is a global entity fully specified by structural formulas for

molecules. But what about the protein? Molecules are physically much smaller than most

proteins found in the human body. In Fig. 2.1 A, is the location of the lock obvious? If

one sees the hidden molecule, maybe-so; but, suppose the molecule was not present in the

structure we obtained. In this case, we need to identify the active site (lock) of the protein

computationally (or experimentally if such resources are available) [English et al., 2001].

Active sites are classified into two categories, binding sites and catalytic sites. We focus

on binding sites. Binding sites are regions of the protein where ligands or other compounds

form a stable interaction with the compound. Non-covalent interactions are classified into

four main forces, electrostatic interactions, Van der Waals force, hydrogen bonding, and

hydrophobic interactions.

Computational techniques for binding site detection. A common tool freely available

for use is FPocket [Le Guilloux et al., 2009]. These tools work via an important concept in

computational drug discovery—simplification to known models. Given the protein structure,

a simple model is created using alpha spheres [Liang et al., 1998]. An alpha sphere is a sphere

which touches four atoms when overlain with a protein structure, and contains no internal

atoms. Pockets or cavities where a molecule may situate around many protein atoms are

thus detected by locating spheres with large enough radii but small enough to be very close

to many atoms of the protein.

Certain classes of proteins have well defined and studied active sites based on the protein’s

main function. Kinase are a large class of proteins which transfer phosphate groups from

phosphate-donating molecules to specific molecules. In order to achieve this function, the
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phosphate-donating molecule (adenosine triphosphate, ATP) must form stable interactions

in an active site.

Conformer Generation

Docking programs treat each conformer of a compound as a rigid body. Hence it is essential

to generate an ensemble of conformers, each of which is put through rigid body optimization.

Generating conformers is typically done prior to docking as this reduces the run time since

it only needs to be done once, and can be used regardless of the protein active site under

exploration. For example, OpenEye uses OMEGA which uses a library of to identify and

enumerate rotatable bonds and flexible rings. These flexible aspects of the ligand are enu-

merated into different structures, and conformers with clashes or high strain and discarded,

while the remaining are clustered are returned. The level of sampling is a hyperparameter,

but typically around 200 conformers for each ligand are generated.

Search

Given a particular conformer and a scoring function, exhaustive search is performed where

the rigid ligand is attempted to be placed in various positions in the active site. A particular

grid spacing is chosen such as 1. The possible rotations and translations for the ligand are

enumerated that fit the bounding box of the active site. This leads to an enumeration of

scoring. The first step leads to the elimination of poses that clash with particular protein

atoms within that box. In particular, this leads to the creation of what is called a negative

image. The negative image of the protein is used to quickly filter which poses are possible on

a shape basis. Internally, when FRED constructs a scoring function, it uses a small library

of compounds with full exhaustive search where this filtering is not used. This leads to then

creating a set of poses that are not possible. Top scoring poses, those which do not clash, are

used to create a density field, which is converted into a Gaussian density distribution. Each
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pose is than scored against this density map, and a cut-off is used to filter. After this initial

negative image filtering, millions of poses or just a few hundred remain. Finally, these poses

are fully enumerated in 3D, and the scoring function is applied. Finally, optimization is used

from the top 100 poses. Essentially, for each remaining pose, the grid spacing is shrunk to

say 0.5. Finally, the best pose is returned.

Gaussian potentials

The most common scoring techniques used in traditional high-throughput docking are based

on Gaussian potentials [Mcgann et al., 2003b]. Given the active site, a precomputed grid

is constructed and then smoothed. All interactions in Chemgauss scoring, for example—

the most common scoring function used in this dissertation as part of OpenEye Scientific’s

FRED docking program—are constructed with step functions. Step functions are used be-

cause intermolecular forces are often computed with distance cut-offs to increase tractability;

however, smoothing via Gaussian potentials allows these step functions to be less sensitive to

small deviations in ligand position. For example, each heavy atom in the protein is assigned

a penalty score and cut-off for forces such as van der Waals.

3.5 Conclusion

Drug design is a vast field with many different approaches. First, we explored a complete

case study of ligand-based drug design for precision oncology, where cell express is encoded

into vectors along side drug encoding and a model is trained on experimental data. Second,

we outline the basics of protein-ligand docking through the lens of computational screening.

Irrespective of ligand or structure based drug design, both paradigms are computational

screening where scores are produced for each object of the design space. In later chapters,

we will address how to then sample from this space to increase the likelihood that score

reflects the true underlying likelihood.
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Figure 3.7: A typical docking overview is broken down into theoretical compo-
nents. (A) Compound libraries are often prepared using 2D identifiers such as SMILES or
Inchi Keys, though they can be found in 3D formats such as SDF or MOL2. (B) Conformer
generation creates an ensemble of low energy 3D conformations sampled from the 2/3D com-
pound in the library. Also, in this step, one can increase the ensemble size by enumerating
stereoisomers if desired. (C) docking : here, poses are optimized within the protein pocket
and the final scores for each conformer in the ensemble. (D and E) the analysis begins by
retrieving the top scoring ensemble conformer (sometimes top n) for downstream analysis. A
typical final step is taking the best scoring pose and score and annotating the original start-
ing structure with that associated score and pose only (not the whole ensemble of scores).
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CHAPTER 4

AI AND VIRTUAL SCREENING HPC WORKFLOWS

This chapter focuses on how AI can be introduced into the basic VLS pipeline introduced in

the previous chapter through the concept of surrogate models. This will include details on

modeling as a data science problem protein-ligand docking, the kinds of workflows that are

possible with this application of AI, and a simple uHTVS workflow case study for SARS-

CoV-2 3CL-Main Protease.

4.1 AI for Virtual Screening

Virtual screening as previously introduced is the process of applying a computational scoring

kernel to a series of objects in a design space. In this section, I illustrate how AI models

can be used to replace mechanistic force-field based scoring functions in order to accelerate

the process. Given recent growth in hardware accelerators and graphics processing units

(GPUs), replacing traditional code with accelerated models applicable to new hardware is a

promising area for speeding up the process of virtual ligand screening [Gupta, 2021].

4.1.1 Model Types and Featurizations

Deep learning applied to classical cheminformatics property predictions is a growing area

of research [Schütt et al., 2018, Bartók et al., 2017]. Besides finding novel data sources for

research in deep learning architectures, high-throughput methods for small molecule prop-

erty predictions have been used across materials engineering, biology, and pharmaceutical

development. This work focuses primarily on small drug-like molecules and the properties

essential for pharmaceutical lead discovery and virtual screening. Models for drug discovery

are targeted for screening large libraries of compounds on hardware accelerators, opening up

the door to typically unscreened regions of chemical space.
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However, molecular data has posed a significant challenge from the deep learning perspec-

tive: how does one featurize a molecule? Molecules have no obvious featurization technique.

A few classes of featurization methods are currently used today: descriptors/fingerprints,

graphs, SMILES, 3D wave fields, and 3D point cloud. Descriptors and fingerprints are

classical in the sense that they create vectors to represent each molecule based on various

chemical informatics properties or shape-kernels. Vectors are typically used to work effort-

lessly with standard machine learning techniques such as linear regressions or random forests.

It was generally believed operating on the graph structure of the molecule itself, with an

architecture similar to convolution neural networks (CNN), would prove to be successful, and

these models have shown impressive results through various complex architecture inventions.

While these methods perform well, the implementations are young and not widely available

for users with native framework implementations or hardware accelerators. In the following

details, we outline the models and corresponding featurization techniques.

Descriptors

Before deep learning, computational inference problems relied on classical machine learn-

ing models based on tabular, vectorized data—a far cry from the nebulous representation

molecules exists. Molecular descriptors were created to vectorize molecules into a numeri-

cal and thereby commutable representation [Pastor et al., 2000, Yap, 2011, Todeschini and

Consonni, 2008]. Various software packages exist open-source with various degrees of cus-

tomizability. MOrdred offers a simple Python interface [Moriwaki et al., 2018]. Molecular

descriptors can be used readily with nearly any machine learning technique or deep learning

models.

Most descriptor packages consist of hundreds of routines for computing various molecular

features, such as molecular weight, number of acid or base groups, or charge. Each of

these smaller computations is bundled together in a large vector. Thus, applied over a
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large molecular library, a familiar table emerges. Each row is representative of a sample, a

molecule, and each column is a particular and explainable feature. This method is preferred

for use with classical machine learning techniques as vector 1D features are often required

for random forests or linear models.

It should be noted that molecular descriptors are distinct from of molecular fingerprints.

Molecular fingerprints, another alternative for featurization, are bit vectors based on hash-

ing different topological neighborhoods of the molecule together. Molecular fingerprints

originated for use in databases as a surrogate for molecular similarity. Unlike fingerprints,

molecular descriptors are explainable, where fingerprints individual bits are relatively opaque.

Graphs

Representing molecules as graphs is a natural concept to most (scientists widely use 2D

depictions of molecules) [Clark et al., 2006, Ebalunode and Zheng, 2009]. Graphs internally

represent molecules in standard cheminformatics packages [Babel, 2010, Landrum et al., 2006,

OEChem, 2012a]. Graphs are at the core of molecular and neural fingerprints, aggregating

hashes from nodes via edges [Duvenaud et al., 2015]. Here we introduce graphs as an added

structure to inference problems with molecules.

Figure 4.1: Aspirin as a graph. Example of molecule Aspirin represented as a graph with
different node 2D positioning for illustration.
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Sequences, images, and new techniques

Descriptors, sequences, voxelizations, and graphs are among the most common mechanisms

for coding drug discovery models [Elton et al., 2019]. While not having appeared in the

literature thus far, images are a novel but intriguing featurization technique for molecular

docking. As discussed, docking is an exercise, at least in part, in understanding shape

complesmentarity (lock-and-key view of protein-ligand inhibition [Tripathi and Bankaitis,

2017]).

A straightforward featurization method has been widely ignored—2D image depictions.

2D depictions of molecules are used widely across most domains working with molecules, from

chemistry textbooks to whiteboards across medicinal chemists’ offices. From the 2D depiction

of a molecule, chemists can generally identify significant properties such as H-acceptors,

ballpark the molecule weight, and even determine if a molecule might bind to a protein.

Unlike graph structure, this featurization method can utilize off the shelf convolutional neural

networks (CNNs), which have historically dominated deep learning research under the wing

of computer vision. In computer vision, CNN research has typically relied on ImageNet, a

vast collection of labeled images [Deng et al., 2009]. While various approaches have used

3D voxelizations of a molecule, these typically require large sets of parameters with small

datasets. Using 2D images, we can initialize our models with pretrained weights that are

typically scale and rotation invariant under image classification. The task itself for transfer

learning with image models seems to be not relevant, as upper layers of models such as

ResNet have been shown to learn a basic understanding of images such as color differences

and lines [He et al., 2016].

In conjugation with attention-based models, images can be utilized for inferring explana-

tions for predictions [Nam et al., 2017]. For example, if the model is trained on predicting the

number of hydrogen acceptors for a given compound from the image, the attention network

should highlight the hydrogen acceptors atoms themselves (see figure 4.2).
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Figure 4.2: Attention-based deep neural network inference over molecular image
depictions. (left) 2D image depiction of ZINC70817879. This 128 by 128 pixel image
is used as the input features for a modified ResNet-101 model. The model is trained to
predict the number of H-Acceptors in a compound. (center) Attention values by pixel from
a single head attention layer used in the model. Values near 1 indicate the model attended
to the region, while closer to 0 indicates the opposite. (right) Integrated gradients feature
attribution where 0 indicates less contribution to prediction and 1 is the most contribution
to the prediction [Sundararajan et al., 2017]. Both the attention and integrated gradient
methods of attribution show the model correctly using H-Acceptors to predict 3 H-acceptors.

4.2 Taxonomy of Workflows

There are a few workflows (fig. 4.3) to consider which integrate AI/ML methods into uHTVS

for protein-ligand docking: surrogate models for scoring, surrogate models for pose predic-

tion, or end-to-end in-depth learning solutions. In this work, we outline the building blocks

for A-C and leave D as an example of a complicated workflow utilizing the pieces from the

models we explore. In chapter 5, the development of surrogate models for protein-ligand

docking is specified in detail. In chapter 6, workflows which use filtering in a hierarchical

method are outlined. In chapter 8, the analysis of filter models is outlined. Workflows D

and C are not studied in detail in this dissertation, and more details can found in references

[Xu et al., 2020, Li et al., 2020].
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Figure 4.3: Common ML/docking virtual screening workflows. We show docking programs
as taking an input of a molecule, with an implicit protein receptor, and outputting a pose,
which then has an associated score. (A) Surrogate ML docking model: a model is trained
to predict the score of the best pose. (B) a trained ML surrogate model is used to filter
the molecular database for which traditional docking is used (surrogate with filtering). (C)
Regular docking is performed to find correct poses, but a machine learning scoring function
is used to re-score the poses, in this case, using experimental data to predict a binding free
energy estimate (BFE). (D) A generative workflow where a generative model produces new
compounds can be used in standard docking or with another surrogate model. Those scores
are then used to try to optimize the model to produce higher scoring compounds.

4.3 Case Study: uHTVS for Discovery of a Novel SARS-CoV-2

3CL-Main Protease

The ongoing novel coronavirus pandemic (COVID-19) has resulted in over 200 million infec-

tions and more than 4 million deaths worldwide1. Although vaccines against the COVID-19

causative agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are

being deployed [Knoll and Wonodi, 2021, Le et al., 2020], the discovery of drugs which can

inhibit various SARS-CoV-2 proteins remains essential for treating patients [Cao, 2020, Wu

et al., 2020]. Leveraging existing coronavirus treatments developed for severe acute respi-

ratory syndrome (SARS) and middle eastern respiratory syndrome (MERS) [Yang et al.,

1. https://covid19.who.int
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2006], as well as broad international collaborations, researchers have quickly determined

structures for over 15 viral proteins, including inhibitor/lead bound structures and fragment-

based screening for several non-structural proteins (NSP) such as the main protease (3C-like

protease/Mpro), adenine diphosphate ribosyl-transferase (ADRP/NSP3), endoribonuclease

(NSP15), and helicase (NSP13) [Lubin et al., 2020], all playing crucial roles in viral replica-

tion. Together, these collaborations have significantly accelerated the design and develop-

ment of antiviral treatments targeting SARS-CoV-2 [Rosas-Lemus et al., 2020, Shyr et al.,

2020].

Of these proteins Mpro is an attractive drug target mainly because it plays a critical

role in viral replication and does not have any closely related homologs within the human

genome [Hegyi and Ziebuhr, 2002, Pillaiyar et al., 2016]. Drug discovery efforts have re-

sulted in discovering/re-purposing small molecules based on their ability to inhibit other

coronavirus Mpro from middle east respiratory syndrome(MERS) and severe acute respira-

tory syndrome(SARS); however, it has been a challenge to identify non-covalent inhibitors

for SARS-CoV-2 Mpro mainly due to the intrinsic flexibility of the primary binding site

[Kneller et al., 2020c].

High throughput virtual screening (HTVS) is a common step of drug-discovery, enabling

rapid, low-cost screening of significantly larger compound libraries than feasible in experi-

mental studies [Zhang et al., 2008]. A number of efforts have focused on creating open HTVS

infrastructure, taking advantage of cloud computing platforms or supercomputing resources

to support large-scale ligand docking across various protein targets [Acharya et al., 2020].

These platforms have leveraged open-source toolkits such as AutoDock/AutoDock-VINA (for

molecular docking) [Trott and Olson, 2010] in conjunction with molecular modeling (MM)

and molecular dynamics (MD) simulation engines to capture ‘modes’ of interaction between

a protein target and specific compounds from compound-libraries (e.g., ZINC [Irwin and

Shoichet, 2005a], MCULE [Kiss et al., 2012]). Of these approaches, the COVID-Moonshot
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project, using crowdsourced design strategies, high-throughput experimental screening, MD

simulations and ML were able to identify both covalent and non-covalent inhibitors against

Mpro which demonstrated viral inhibition in vitro [Achdout et al., 2020a].

We describe our discovery of a non-covalent small molecule inhibitor for Mpro using

our HTVS platform that employs supercomputing resources, ensemble docking strategies,

high-throughput experimental screening, X-ray crystallography, and MD. Complementary

to efforts that scaled crowdsourcing approaches [Achdout et al., 2020b] as well as HTVS

across potentially O(billion) compounds [Acharya et al., 2020, Gorgulla et al., 2021], we

used a library consisting of 6.5 million in-stock compounds from the MCULE library [Kiss

et al., 2012]. Ensemble docking was carried out across available crystal structures for Mpro,

from which O(1,000) top consensus-scoring compounds across two popular docking pro-

grams (Autodock-VINA [Trott and Olson, 2010] and OpenEye FRED [McGann, 2012]) were

experimentally characterized. From these compounds, we discovered one molecule that in-

hibits Mpro with Ki of 2.9 µM and determined its room-temperature X-ray crystallographic

structure to 1.8 Å resolution. Finally, we used µs-timescale atomistic MD simulations to

characterize the binding mechanism to the Mpro active site, while altering the enzyme’s

overall conformational dynamics. Our workflow provides a scalable framework for the rapid

discovery of viable lead molecules against SARS-CoV-2.

4.3.1 Methods

Molecular library generation

We use a set of on demand compounds from Mcule (ORD), which can be freely obtained on

their website [Kiss et al., 2012]. ORD consists of compounds from Mcule listed as available

on their website, Mcule Purchasable (Known Stock Amounts).
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Molecular Docking Protocol with OpenEye Toolkit

The main protease structures screened included the following PDB structures: 7BQY, 6LU7,

6W63, 7C7P, and 7JU7. The receptors for OpenEye Chemgauss4 scoring were prepared using

the known binding region of Mpro with the OpenEye Docking Toolkit[McGann, 2012].

For memory efficiency, conformer generation and tautomerization were performed on-the-

fly. OMEGA [Hawkins et al., 2010] was used, sampling around 300–500 conformations for

each ligand. When ligand-binding information was available in the receptor, HYBRID was

used due to its increased pose prediction accuracy over FRED [McGann, 2012]. HYBRID

and FRED have the same scoring function; however, HYBRID uses a heuristic to reduce

the search space for ligand positioning. The best score from the ensemble of tautomers and

conformers is chosen as the representative “docking score” for the chemical species.

Computational Workflow

OpenEye toolkit’s FRED docking program was deployed on Frontera at TACC. Docking

scores for the Mpro receptor were computed with individual runs per pocket. The docking

protocol as described above requires the following steps for each compound: (1) load receptor

into memory; (2) load compound data stored in MCULE [Kiss et al., 2012] database from

disk; (3) run the specific docking protocol over the receptor/compound pair; and (4) write

the resulting docking score to persistent storage.

High-throughput docking was implemented using RADICAL-Pilot (RP) and RAPTOR [Merzky

et al., 2021]. RP is a pilot-enabled runtime system while RAPTOR is a scalable mas-

ter/worker overlay developed to improve the execution performance of many, short-running

tasks encoded as Python functions. The runs used between 128 and 7000 concurrent nodes.

For each run, we measured throughput (the number of docking calls per hour) and resource

utilization (the fraction of time that acquired nodes were kept busy). Resource utilization

was dependent on the size of the run (number of compounds to dock, number of nodes to
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use), and was typically above 90%.

SARS-CoV-2 Mpro expression and purification

A gene construct encoding Mpro (NSP5) from SARS-CoV-2 was cloned into plasmid pD451-

SR (Atum, Newark, CA), which was developed in [Kneller et al., 2020c], and expressed and

purified consistent with the protocols detailed in [Kneller et al., 2020b]. Protein purification

supplies were purchased from Cytiva (Piscataway, New Jersey, USA). Briefly, authentic N-

terminus is achieved by a NSP4-NSP5 autoprocessing sequence (SAVLQ↓SGFRK where the

arrow indicates the scissile bond) flanked by maltose binding protein and Mpro. Following

Mpro, a sequence encoding the human rhinovirus 3C (HRV-3C) cleavage site (SGVTFQ↓GP)

is followed by a His6-tag. The N-terminal sequence is created by autocleavage during ex-

pression while the C-terminus is generated by HRV-3C treatment following Ni immobilized

metal affinity chromatography.

Primary Mpro inhibition screen

Compounds were purchased from Mcule, Inc. as 10 mM stock solutions in DMSO and

stored at -20 . The assays were performed in 40 µL total volume in black half area 96-

well plates (Greiner PN 675076) at 25 . The assay buffer contained 20 mM Tris-HCl pH

7.3, 100 mM NaCl, 1 mM EDTA, and 2 mM reduced glutathione (6.15 mg added per

10 mL buffer fresh for each experiment) with 5% v/v final DMSO concentration. Mpro

initial rates were measured using a previously established fluorescence resonance energy

transfer (FRET) peptide substrate assay[Kuo et al., 2004]. The FRET substrate DABCYL-

KTSAVLQ↓SGFRKM-E(EDANS) trifluoroacetate salt was purchased from Bachem (PN

4045664), dissolved to 10 mM in DMSO and stored in aliquots at −20 °C. 10 µL enzyme

solution was dispensed into wells (250 nM final concentration), followed by 10 µL inhibitor

solution (20 µM final concentration), centrifuged briefly, and incubated for 30 min. Reactions
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were initiated by adding 20 µL substrate at 40 µM final concentration. Fluorescence was

detected every 24 s by a Biotek Synergy H1 plate reader with an excitation wavelength of

336 nm and an emission wavelength of 490 nm, 6.25 mm read height, low lamp energy, and

3 measurements per data point. After background subtraction of the average of no enzyme

negative controls, product formation was quantified using a 0.05 – 22 µM calibration curve

of the free EDANS acid (Sigma PN A6517). Product concentrations were adjusted for inner

filter absorbance effects with correction factors generated by comparing the fluorescence of 2

µM EDANS in solution with each concentration of substrate used to that with no substrate.

Initial rates were determined for time points in the linear range by linear regression in Excel,

residual activities were determined by normalizing candidate initial rates to the average of

the positive controls, and z-scores were determined by dividing the difference between the

candidate initial rate and average positive control initial rate by the standard deviation of

the positive control initial rates. The Z’ statistic for the plate was calculated using the

published equation.

Peptide synthesis

The unlabelled Mpro substrate peptide AVLQ↓SGFRKK-amide and the isotopically la-

belled substrate and product peptide internal standards (A+7)VLQSGFRKK-amide and

(A+7)VLQ-OH were synthesized by automated peptide synthesis using a Liberty PRIMETM

peptide synthesizer (CEM). Reagents were peptide synthesis or biotechnology grade. Amino

acids were purchased from P3Bio, and Fmoc-[13C3, 15N, D3]-alanine (A+7) was previously

synthesized at Los Alamos National Laboratory following published protocols [Lodwig and

Unkefer, 1996]. Other purchased reagents were dimethylformamide (DMF), pyrrole (pre-

pared as 20% v/v in DMF), and high performance liquid chromatography (HPLC)-grade

acetonitrile (Alfa Aesar), diisopropylcarbodiimide and Oxyma Pure (AKScientific), N,N-

diisopropyl ethyl amine (DIPEA), triisopropyl silane (TIPS), trifluoroacetic acid (TFA),
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thioanisole, Rink amide resin, and octaethylenglycol-dithiol (Sigma Aldrich), dichloromethane

and Optima mass spectrometry grade acetonitrile (Fisher Scientific).

Peptide syntheses were performed at 0.1 mM scale under argon on a Rink amide resin

with 0.1 M DIPEA added to the Oxyma solution to prevent hydrolysis of acid labile side

chain protecting groups, obtaining average yields for double couple cycles of >99%. For

stable isotope labeled peptides only two equivalents of the labeled amino acid were used

and coupling time was extended to 20 min at 90 °C. Peptides were deprotected with the

following mixture: 1.25 mL TIPS, 0.625 mL thioanisole, 1.25 mL octaethyleneglycodithiol,

and after 5 min TFA was added to a total volume of 25 mL. Solutions were filtered and the

filtrate concentrated to 10 mL, followed by precipitation with ice cold ether and collection

by centrifugation.

Peptides were purified to >98% by Waters HPLC workstation (2545 pump with 2998 pho-

todiode array detector) with a Waters BEH 130, 5 µm, 19x150 mm C18 column and a linear

gradient from 98:2 to 50:50 water:acetonitrile with 0.1% TFA at 20 mL/min. Absorbance at

215 nm was monitored and peaks were collected and lyophilized to yield a white fluffy solid.

Peptide purity was analyzed by analytical HPLC and Thermo LTQ mass spectrometry with

electrospray ionization in positive mode with a Waters BEH 130, 5 µm, 4.6x150 mm C18

column and a linear gradient from 96:2 to 60:40 water:acetonitrile with 0.1% TFA at 1.5

mL/min over 12 min.

Quantitative mass spectrometry Mpro inhibition assay

The quantitative mass spectrometry (MS) inhibition assay was performed as described for

the FRET-based primary screen with some modifications. Round-bottom polypropylene

96-well plates (Corning PN 3365) were used with 150 nM final Mpro concentration and the

unlabeled peptide substrate synthesized above. Five min after substrate addition, the assay

was quenched 1:1 v:v with 2% formic acid in water with 2 µM of each internal standard
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peptide from above, centrifuged 10 min at 4 °C, and the supernatant was diluted 1:9 v:v into

1% formic acid. Substrate and product peptides and internal standards were quantified by

high-throughput MS using a Sciex 5500 QTRAP with a custom open port sampling inter-

face (OPSI) [Van Berkel and Kertesz, 2015]. Samples were introduced as 2 µL droplets and

the OPSI-MS analysis was performed using 10:90:0.1 v:v:v water:methanol:formic acid at 80

µL/min. Positive ion mode electrospray ionization parameters were CUR: 25, IS: 5000, TEM:

400, GS1: 90, GS2: 60, EP: 10, and CXP: 10. Optimized multiple reaction monitoring de-

tection parameters were dwell: 50 msec, product DP: 100 and CE: 25, and substrate DP: 150

and CE: 34. The following mass-to-charge transitions were monitored: substrate AVLQS-

GFRKK, 566.9→722.3; (A+7)VLQSGFRKK, 570.4→722.3; product AVLQ, 430.3→260.3,

and (A+7)VLQ, 437.3→260.3. Product formation and remaining substrate were quantified

by dividing the peak area of the transitions by that of the corresponding internal standard

transitions.

IC50 and Ki Value Determination

To determine the concentration at which a compound was able to achieve 50% inhibition

of Mpro activity in vitro (IC50), the FRET and quantitative MS assays described above

were performed at 10 concentrations of inhibitor (0.56-100 µM) in triplicate with 150 nM

enzyme. Initial rates, for FRET, or product formation in 5 min, for MS, were normalized

to no inhibitor control (100% activity) and no enzyme control (0% activity), and nonlinear

regression of the [Inhibitor] vs. normalized response IC50 equation was performed to fit the

data using GraphPad Prism 9.0.0, yielding IC50 and its 95% confidence interval. To confirm

the mechanism of inhibition and determine Ki, the FRET activity assay was performed at

8 concentrations of substrate (20-500 µM) and 4 concentrations of inhibitor (0-25 µM) in

triplicate in two independent experiments. A global nonlinear regression was performed to

fit the competitive inhibition equation to the entire data set using GraphPad Prism 9.0,
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yielding KM , Ki, Vmax, and their associated 95% confidence intervals.

Crystallization

Crystallization reagents were purchased from Hampton Research (Aliso Viejo, California,

USA). Crystallographic tools were purchased from MiTeGen (Ithaca, New York, USA) and

Vitrocom (Mountain Lakes, New Jersey, USA). Mpro was concentrated to ∼5.0 mg/mL in 20

mM Tris pH 8.0, 150 mM NaCl, 1 mM TCEP, for crystallization. The presence of reducing

agent such as TCEP is essential for preventing oxidation of the catalytic cysteine sidechain

[Kneller et al., 2020d]. Conditions for growing crystalline aggregates of ligand-free Mpro

were identified by high-throughput screen at the Hauptman-Woodward Research Institute

[Luft et al., 2003] and reproduced locally using 22% PEG3350, 0.1 M Bis-Tris pH 6.5 in

20µL drops with 1:1 ratio of the protein:well solution using sitting-drop vapor diffusion

with microbridges. Crystal aggregates of ligand-free sample were converted to microseeds

with Hampton Research Seed BeadsTM and used for nucleating Mpro crystals in subsequent

co-crystallization experiments. Lyophilized MCULE-5948770040 for co-crystallization was

dissolved in 100% DMSO as a 50 mM stock stored at -20◦C. MCULE-5948770040 was mixed

with Mpro at 5:1 M ratio and allowed to incubate on ice for a minimum one hour. Crystals

were grown in a 40 µL drop at a 1:1 mixture with 18% PEG3350, 0.1 M Bis-Tris pH 7.0

with 0.2 µL of 1:200 dilution microseeds and incubated at 14◦C. A large crystal measuring

∼ 1× 0.5× 0.3 mm suitable for room-temperature X-ray diffraction grew after 2 weeks.

Room-temperature X-ray data collection and structure refinement

The protein crystal was mounted using a MiTeGen (Ithaca, NY) room-temperature capillary

system. X-rays for crystallography were generated from a Rigaku HighFlux HomeLab em-

ploying a MicroMax-007 HF X-ray generator and Osmic VariMax optics allowing diffraction

images to be collected using an Eiger R 4M hybrid photon counting detector. Diffraction data
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was reduced and scaled using Rigaku CrysAlis Pro software package. Molecular replacement

was performed using the ligand-free room-temperature Mpro structure (PDB code 6WQF)

[Kneller et al., 2020c] using Molrep [Winn et al., 2011]. Structure refinement was performed

with Phenix.refine from Phenix suite [Adams et al., 2010] and COOT [Emsley and Cowtan,

2004] for manual refinement and Molprobity [Chen et al., 2010]. Data collection and refine-

ment statistics are listed in Table S1. The structure and corresponding structure factors

of the room temperature Mpro/MCULE-5948770040 complex have been deposited into the

Protein Data Bank with the PDB accession code 7TLJ.

Molecular dynamics simulations of Mpro complex with MCULE-5948770040

The crystal structure of protein dimer was modeled with the AMBER molecular model-

ing package [Götz et al., 2012] with the amber.ff14sb force field parameters (for the pro-

tein) [Maier et al., 2015a] and with the GAFF parameters (for the ligand) [Wang et al.,

2004a]. In order to better determine the partial charges for the ligand, quantum mechanical

(QM) calculations were performed using NWChem [Valiev et al., 2010] based on the RESP

method at B3LYP/6-31G* level of theory [Kozlowski, 2001], while all bonded parameters

were taken from GAFF force field.

The systems (both the ligand-bound/LB and ligand-free/LF) were solvated using the

TIP3P water model and counter ions were added to neutralize the charge. After equilibrating

the systems using previously published protocols [Ramanathan et al., 2020], we carried out

production runs using the OpenMM [Eastman et al., 2017a] simulation package on Nvidia

V100 GPUs using the Argonne Leadership Computing Facility’s (ALCF) computing clusters.

Each time step was integrated with Langevin integrator at 310 K, 1 ps−1 friction coefficient,

and 2 fs interval with fixed lengths being maintained for atomic bonds involving hydrogen

atoms. System pressure was maintained at 1 atm with the MonteCarloBarostat. Nonbonded

interactions were cut off at 1.0 nm and Particle Mesh Ewald (PME) was implemented for
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long-range interaction. The simulations were run for 1 µs and 50 ps reporting interval (4

replicas).

Quantifying conformational transitions in the ligand-bound and ligand-free

states of MPro with Anharmonic Conformational Analysis driven Autoencoders

(ANCA-AE)

Conformational fluctuations within bio-molecular simulations (and specifically proteins) show

significant higher order moments; these fluctuations may relate to protein function [Ra-

manathan et al., 2020, 2021]. To quantify such anharmonic fluctuations within our simula-

tions, we used fourth-order statistics to describe atomistic fluctuations and to characterize

the internal motions using a small number of anharmonic modes [Parvatikar et al., 2018].

We projected the original data (306 Cα atoms per chain - (x, y, z) coordinates) onto a 40

(or 50) dimensional space, depending on the set of simulations considered. Notably, for the

ligand bound states (in both protomers), 40 dimensions covered about 95% of overall vari-

ance whereas we required 50 dimensions to cover 95% of the variance when we included the

ligand bound states from just one protomer.

Given the significant non-linearity in the atomic fluctuations, we used an autoencoder to

further delineate the intrinsic structure in the low-dimensional anharmonic space. Similar to

approaches that use variational approximations to model molecular kinetics from MD simu-

lations [Mardt et al., 2018], we used an autoencoder architecture consisting of a symmetric

encoder and decoder network. The network is composed of a single dense layer with 32

dimensions, and an 8 dimensional latent space. We trained the network for 50 epochs using

the RMSprop optimizer to minimize the mean-squared error (MSE) reconstruction loss with

a learning rate of 0.001, weight decay of 0.00001, and a batch size of 64. We used ReLU

activation in all places except the final reconstruction layer, where we used Tanh activa-

tion. A mixture of Gaussian (MoG) model was used to cluster the conformations in the low
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dimensional landscape, similar to the approach outlined in [Ramanathan et al., 2011].

4.3.2 Results

HTVS of Mpro with on-demand molecular libraries

A docking screen against the main protease of SARS-CoV2, Mpro, was performed on an

orderable on-demand compound library from Mcule [Kiss et al., 2012]. Given the intrinsic

flexibility of the Mpro’s primary binding pocket consisting of the four conserved binding sites

(S1’, S1, S2 and S4) [Xue et al., 2008, Kneller et al., 2020c], we used five different crystal

structures were used for an ensemble docking approach using PDB identifiers 6LU7[Jin et al.,

2020], 6W63 [Mesecar, 2020], 7BQY [Jin et al., 2020], 7C7P [Qiao et al., 2020], and 7JU7 [Tan

et al.]. In addition to the structural ensemble, we used the docking protocols and scoring

functions from the OpenEye Scientific FRED [McGann, 2012] toolkit. In total, over 63 mil-

lion docking scores were computed over the five structures, two compound libraries, and two

protocols. The overall workflow is summarized in Fig. 4.4a. The workflows were deployed on

HPC resources at the Argonne and Oak Ridge leadership computing facilities (ALCF/OLCF)

using Theta and Summit supercomputers and using the Texas Advanced Computing Center

(TACC; Frontera) and San Diego Supercomputing Center (SDSC; Comet). The resulting

docking libraries (including scripts of preparation and docking) and the docking scores are

available as a downloadable dataset [Clyde et al., 2021e]. The details of the computational

performance and workflow optimization are described in the Supporting Information (SI)

text (sections S1 and S2) and Fig. S1(a)-(c).

The resulting compounds were ranked based on the docking scores in conjunction with

visual inspection and availability at the time, and selected compounds were ordered for

experimental validation studies. Interestingly, docking score distributions across each of the

structures were slightly different (summarized in Fig. 4.4b-c), and we therefore examined

the top 0.1% of the overall distributions. Between receptors’ respective docking, the highest
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correlation coefficient is 0.85 (7BQY and 6LU7) and the lowest was 0.001 (6W63 and 7JU7;

See SI Table S1). In fact, 6W63’s docking result is an outlier with respect to the other four

receptors, with the highest correlation coefficient of only 0.003. Given the variation amongst

docking results between receptors, a consensus score was deemed necessary. A consensus

score was created by taking the minimum over the available series. A minimum was chosen

rather than an average, or other aggregation techniques, due to the nature of our docking

protocol. OpenEye FRED has a wide range of scores, unbounded above or below. A small

steric difference between receptors can cause a wide numerical discrepancy or even lack of

a result. We see in Fig. 4.4(d) a significant difference between the correlation of consensus

scores over using single samples (Table S1).

MCULE-5948770040 is a SARS-CoV-2 Mpro inhibitor

Based on the consensus scoring procedure above, 116 compounds from the Mcule database

were selected for experimental screening using the top 20 from different Mpro crystal struc-

tures. Of these 116 compounds, five were not available for ordering, 15 were excluded due

to pan assay interference compounds (PAINS) violations based on the substructure filters

of Baell and Holloway [Baell and Holloway, 2010], and 72 were ultimately delivered. These

compounds were subjected to a primary SARS-CoV-2 Mpro activity inhibition screen in

which they were pre-incubated with the enzyme and the initial velocities of cleavage of a

fluorescence resonance energy transfer (FRET) peptide were determined [Kuo et al., 2004].

The Z’-factor of the assay was 0.65, and the distribution of z-scores of compounds and pos-

itive (no inhibitor) and negative (no enzyme) controls is shown in Fig. 4.5A. At least 25%

inhibition was observed for seven compounds, with MCULE-5948770040 resulting in the

lowest residual activity at 20 µM (12%).

81



Mechanism of inhibition The concentration-dependence of MCULE-5948770040 in-vitro

Mpro inhibition was measured at 40 µM substrate, giving an IC50 of 4.2 µM [95% confidence

interval 3.8, 4.7] (Fig. 4.5B). An orthogonal quantitative high-throughput mass spectrometry-

based endpoint assay was also performed at 40 µM unlabelled peptide substrate, giving a

similar IC50 of 2.6 µM [95% CI 2.3, 2.9]. Initial rates measured at 20-500 µM substrate and

0-25 µM inhibitor were consistent with a competitive mechanism of inhibition with a Ki of

2.9 µM.

Room-temperature X-ray crystal structure of Mpro in complex with MCULE-

5948770040

To elucidate the molecular basis of Mpro inhibition by the MCULE-5948770040 compound,

a X-ray crystal structure of Mpro in complex with the compound was determined to 1.80

Å at near-physiological (room) temperature. The Mpro/MCULE-5948770040 complex crys-

tallized as the biologically relevant homodimer with the protomers related by a two-fold

crystallographic axis (Fig. 4.6). The tertiary fold is shown in Fig. 4.6. Each protomer

consists of three domains (I-III). The substrate-binding cleft is formed at the interface of

catalytic domains I (residues 8-101) and II (residues 102-184), whereas the ³-helical domain

III (residues 201-303) creates a dimerization interface [Zhang et al., 2020, Jin et al., 2020].

The substrate binding cleft lies on the surface of the enzyme and accommodates amino acid

residues or inhibitor groups at positions P1’-P5 in subsites S1-S5, respectively [Sacco et al.,

2020, Hoffman et al., 2020, Kneller et al., 2020a]. Subsites S1, S2, and S4 have well defined

shapes while S1, S3, and S5 are surface-facing with poorly defined edges [Kneller et al.,

2020e]. The non-canonical catalytic dyad composed of Cys145 and His41 lies deep within

the substrate binding cleft poised for peptide bond cleavage between the C-terminal P1 and

N-terminal P1 positions.

MCULE-5948770040 binds non-covalently to the active site of Mpro, occupying subsites
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S1 and S2. The electron density for the inhibitor is unambiguous (Fig. 4.6a) enabling accurate

determination of the protein-ligand interactions (Fig. 4.6b). The uracil P1 group of the

ligand is situated in the S1 subsite driven by polar contacts. Nϵ2 of the His163 imidazole

side chain makes a close 2.6Å H-bond with the carbonyl at position 4 of the uracil substituent.

Notably, His163 was previously determined to be singly protonated on the N¶1 by neutron

crystallography [Kneller et al., 2020e], suggesting a possible rearrangement of the protonation

state for His163 side chain upon ligand binding. The far end of the S1 subsite is formed such

that the second protomer’s N-terminal protonated amine creates H-bonds with the Glu166

sidechain, Phe140 main chain carbonyl, and a water molecule. The amide NH at position 3

of the ligand’s P1 heterocycle is situated within hydrogen bonding distance with Glu166 and

Phe140 although the geometry is unfavorable. The carbonyl and amide NH at positions 2 and

1 participate in water-mediated H-bonds with Ser1 and Asn142, respectively. Mpro features

an oxyanion hole created by the main chain amide NH groups of Gly143, Ser144, and Cys145

at the S1 subsite base. A carbonyl linking the P1 uracil to the central piperazine linker of

MCULE-5948770040 is positioned on the perimeter of the oxyanion hole forming a direct

2.8Å H-bond with Gly143 and a water-mediated contact with Cys145. Piperazine is located

above the catalytic Cys145 side chain that was determined to be a deprotonated, negatively

charged thiolate in the neutron structure of the ligand-free Mpro. The P2 dichlorobenzene

substituent occupies the largely hydrophobic S2 subsite.

An overlay of the MCULE-5948770040 complex with the ligand-free joint neutron/X-ray

crystal structure of Mpro [Kneller et al., 2020e] shows that the P2-dichlorobenzene group

moves into the hydrophobic S2 pocket altering the position of the Met49 side chain and

pushing out the P2-helix (residues 46-50) by as much as ∼2.6 Å (Fig. 4.6c). The Met49

terminal methyl is shifted ∼5.5 Å away and its C³ atom moves by ∼1.1 Å. Furthermore,

the position of the P2-dichlorobenzene group is stabilized by the ß-ß stacking interactions

with Gln189 and the imidazole side chain of catalytic His41 with the interatomic distances
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of ∼3.8 Å. The Gln189 side chain amide is recruited from 3 Å away from its position in the

ligand-free structure and the C³ atom shifts by almost 1 Å. Thus, the P2-dichlorobenzene

is sandwiched between the side chains of these two residues. Interestingly, the binding of

MCULE-5948770040 to the Mpro active site cleft causes the His41 side chain to flip and a

Ç2 angle rotation to create a favorable geometry for ß-ß stacking with P2-dichlorobenzene in

the complex structure. Such change in the His41 conformation severs a conserved H-bond

between the His41 N¶1 and the conserved catalytic water molecule (H2Ocat) normally seen

in Mpro structures [Vuong et al., 2020, Rathnayake et al., 2020], but replaces it with a direct

H-bond to the main chain carbonyl of His164 and results in recruitment of an additional

water molecule from the bulk solvent to make an H bond with the His imidazole ring.

The computationally predicted binding pose of MCULE-5948770040 to the Mpro active

site is in good agreement with the experimentally determined orientation (Fig. 4.6d). Only

minor discrepancies in the piperazine linker and P2-dichlorobenzyl are present. The ligand’s

uracil group forms the same polar interactions in the docked pose as observed in the crystal

structure. The piperazine linker is best modeled as a chair conformation in the crystal

structure while the docked geometry scored highest with it adopting a twisted boat. P2-

dichlorobenzene fits well into the S2 pocket as observed in the experimental configuration,

despite a 180° rotation of the aromatic ring.

Mprointeracts with MCULE-5948770040 through conformational changes within

the binding site

In order to understand how the molecule interacts with the Mpro binding site, we carried

out µs-timescale atomistic molecular dynamics (MD) simulations (see Methods). For the

ligand-bound (LB) state simulations, we modeled the ligand present in both Mpro protomers.

Within the timescales of our simulations (µs timescales), we observed that the ligand stays

bound to the primary binding site (for both chains A and B in the dimer). The protein also
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does not undergo any large conformational changes (as seen from the root-mean squared

deviations/ RMSD from the starting structure SI Fig. S4-S6).

We used the root mean squared fluctuations (RMSF) from ligand-free (LF) and ligand-

bound (LB) Mpro simulations (Fig. 4.7A) to understand how the ligand impacts the confor-

mational dynamics. For convenience, we considered each protomer individually (although

the simulations were run with the ligand bound to both monomers in the active dimer form)

and observed that several distinct regions across Mpro exhibit altered fluctuations. In all

of our replicas, the RMSF in chain A of the dimer were slightly higher than in chain B.

Distinct regions within Mpro respond to the ligand (rounded rectangles in Fig. 4.7A); these

mostly consist of flexible loops surrounding the immediate vicinity of the binding pocket,

corresponding to the sites (S1 - orange rounded rectangle and S2 - red rounded rectangle).

Other regions surrounding the binding site (S3 – green and S4 – blue rounded rectangles

respectively) also exhibit stabilization upon ligand binding. However, it is notable that not

all regions exhibit stabilization within each protomer (e.g., region S4, the protomer chain

A exhibits similar fluctuations to the ligand-free state). Interestingly, regions farther away

from the binding site, including domain III of each protomer (R5 in Fig.4.7 (purple rounded

rectangle) exhibit lower fluctuations in the LB simulations.

To elucidate the collective motions that are influenced by ligand binding, we used an-

harmonic conformational analysis enabled autoencoder (ANCA-AE; see Methods) to embed

the conformational landscape spanned by the ligand-free and ligand-bound simulations in

a low-dimensional manifold (summarized in Fig. 4.7b). Notably, our simulations can be

embedded within an ten dimensional manifold (Fig. S7) which best explains conformational

fluctuations undergone by the protein. Of these embeddings, the LF and LB simulations oc-

cupied distinct projections, with the LF-simulations sampling diverse conformational states

(as quantified by the RMSD to the LB states). The predominant conformational changes

in the LB simulations were confined to the binding pocket spanning S1-S4 and R5, shown
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in Fig. 4.7c-d in protomer A, while we did not observe significant motions with respect to

protomer B (shown in inset). The fluctuations observed were mostly a consequence of re-

orienting the ligand within protomer A from its primary interaction site (P1,P2) to cover

the complementary binding site of (P2,P4; orange rounded rectangle in Fig. 4.7c, labeled I

→HoloB). Notably the P1-uracil forms new interactions with the S4 region (residues) while

the P2-dichlorobenzene stays bound within the hydrophobic pocket. Although we do not

observe such a ligand placement within the crystal structure, these ligand motions are preva-

lent across multiple replicas of our simulations and can form stable interactions between the

uracil and protein side-chains. Corresponding to these changes, motions in domain III of the

protein (purple cartoon insets in Fig. 4.7 c-d) are also suppressed, showing that this region

may be stabilized upon ligand binding. We also examined the hydrogen bonding patterns

between the ligand and protein from the LB-simulations (SI Fig. S8) and found that the

hydrogen bonds between the ligand and the protein in protomer chain B are more stable

than the hydrogen bonds in chain A.

4.3.3 Discussion

Our study demonstrates a 2.9µM potent Mpro inhibitor discovered through HTVS. After

computationally screening 6 million molecules, we located 100 promising compounds based

on a consensus score across five different Mpro crystal structures. Through X-ray crystallo-

graphic studies, we observed that the compound MCULE-5948770040 forms stable interac-

tions within a hydrophobic pocket (S2) formed by the P2-dichlorobenzene group along with

the P1-uracil group occupying the S1 site. Assay results also indicate that this molecule is

a µM non-covalent inhibitor of this enzyme and can act as a competitive inhibitor. Our µs

timescale simulations indicate fairly stable interactions between the protein and the ligand,

which suggest that several regions of Mpro – both in the vicinity of the binding site and

distal from it – are impacted upon binding. This alters the conformational states accessed
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by the protein as quantified by our ANCA-AE approach.

The combination of experimental validation with computational tools is essential to the

rapid development of an inhibitor for Mpro. Without the ability to quickly obtain a com-

pound and experimentally validate it, computational results alone will not be a solution.

Virtual screens against Mpro have ranged from small libraries of existing approved phar-

maceuticals to natural product libraries and billion-scale combinatorial libraries [Abo-Zeid

et al., 2020, Gorgulla et al., 2021]. Studies such as [Marinho et al., 2020] use drug repur-

posing databases that are smaller (<50k) but have potential for faster lead to drug time. In

this study, we aimed to balance library size and feasibility of validation, hence we opted for

a 6M in-stock chemical library from Mcule. While [Lyu et al., 2019] used a approximately

120 million compound library to obtain hits for D4 dopamine receptor, we were able to use

our approximately 6 million compound library without any advanced filtering post consensus

scoring to locate a µM hit for Mpro.

Although a number of sub-µM and some nanomolar inhibitors are now available [Zhang

et al., 2021b,a, Deshmukh et al., 2021, Morris et al., 2021, Rizzuti et al., 2021], our paper

focused on the discovery of novel molecules from in stock molecules that could potentially

inhibit Mpro activity. Further, several molecules from the COVID-moonshot project [Morris

et al., 2021] also possess similar scaffolds (like the piperazine linker, or uracil) to MCULE-

5948770040, which provides an indirect validation of how these fragments may be important

for discovering additional inhibitors based on this molecule. Finally, we note that we have

not tested this molecule for antiviral activity, which we plan to do as part of future work.

The collective conformational motions elucidated using ANCA-AE suggest an intrinsic

asymmetry in how the ligand interacts with the two protomers. Our simulations point to

a mechanism of complementary interactions and inter-domain motions whereby the ligand

stabilizes the conformations of the loops around the binding site as well as a loop within

domain III that is considerably far away from either binding sites. In order to elucidate if the
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ligand binding affects either protomer separately, we also carried out simulations where the

ligand was bound to only one of the two protomer units. Our analysis (SI text and Fig. S10-

S11) of these simulations further indicate that the fluctuations in domain III of the protein

are only affected from the ligand-bound chain. Taken together, our simulations suggest that

the primary mechanism by which MCULE-5948770040 binds to and interacts with Mpro

is by stabilizing the loops in and around the binding site. The binding of the ligand is

asymmetric in the protomers; while it is stable in one of the protomers, it undergoes a slight

conformational change (albeit stable) within the binding pocket while still maintaining the

strong hydrophobic interactions within P2. Further, our analysis indicates that the hydrogen

bonding patterns are different for the two chains, which also lends support to the idea that

the collective motions as induced by the LB-states may indeed be different.

Computational protocols for HTVS vary widely across existing SARS-CoV-2 Mpro screens,

from accurate but expensive simulations for MMGBSA/PBSA scoring to standard docking.

Gorgulla et al. [Gorgulla et al., 2021] screened Enamine Real, a billion-scale combinatorial

product library, against various SARS-CoV-2 targets using QuickVina W—a slightly less ac-

curate but computationally efficient flavor of AutoDock Vina [Hassan et al., 2017]. Acharya

et al. [Acharya et al., 2020] also screened Enamine Real with Autodock-GPU. In comparison

one of the few other studies which involve assay and crystallographic experimental studies

for Mpro lead generation [Achdout et al., 2020a], our work relies on a single computational

workflow rather than community lead sourcing (where the methods of each contributor are

not restricted). Rather than taking community input for prioritizing experimental leads,

our work features an HTVS protocol based on ensemble docking with consensus scoring.

Using the web portal to access hits from [Achdout et al., 2020a], we compared the difference

between leads from domain experts with the library we used for screening and found that

both groups arrived at structurally similar hits independently, with the same P1-Liner-P2

topology and interaction with Mpro S1 and S2 sites (SI Fig. S12). Between the two groups,
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our best compounds share piperazine and the uracil groups.

The compound MCULE-5948770040 forms stable interactions with both the protomers as

we observed from our X-ray crystallography and MD simulations. Our simulations provide

insights into how the conformational fluctutations of the protein are altered in response to

the ligand binding to the primary site. In fact, we observed that the fluctuations in region

R5, which is over 20 away from the primary binding site in Mpro, are effected by the

ligand binding. Further, the ligand’s interaction with Mpro alters the conformational states

accessed by the enzyme, notably along the substrate binding loops. Compared to other

ligands that have been structurally characterized (as well as the substrate peptide), MCULE-

5948770040 is much smaller and interacts stably with both the S1 and S2 sites within Mpro.

Thus, a design strategy that targets the S1-S2 sites and mimics important features of the

peptide side chains is sufficient for identifying inhibitors of Mpro. We have early indications

that molecules structurally similar to MCULE-5948770040 also demonstrate inhibition, and

efforts are currently underway to identify promising candidates, which we expect to publish

shortly.

4.4 Conclusion

In this chapter, we outline how computational virtual screening problems can be turned into

a deep learning problem. Given this notion of a surrogate model for docking, we provide

a taxonomy of workflows for virtual ligand screening. Finally, we illustrate the power of

throughput docking through a case study discovering and validating a novel SARS-CoV-2

inhibitor.

89



Figure 4.4: (A) Computational workflow used for screening on-demand chemical libraries
against SARS-CoV2 Mpro with computational docking techniques. Four major supercom-
puting centers were utilized, namely Argonne Leadership Computing Facility (ALCF), Texas
Advanced Computing Center (TACC), San Diego Supercomputing Center (SDSC), and Oak
Ridge Leadership Computing Facility (OLCF). (B) The distribution of Chemgauss4 scores,
from docking, from the docking a 6 million in-stock compound library. (C) The consensus
scoring used shifted possible hits (higher Z-score is better) towards better scoring regions
over just a single score from a single structure (7C7P is used for illustration). A lower
consensus score implies a higher likelihood from the docking programs that the candidate
compound will bind to the receptor.
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Figure 4.5: Plate-based Mpro activity inhibition screening and hit confirmation.
(A) Histogram of z-scores of candidate inhibitors, no enzyme negative controls (NC), and
no inhibitor positive controls (PC). (B) Inhibition of Mpro activity in vitro with increasing
concentration of MCULE-5948770040. Initial rates are normalized to no inhibitor control
(100% activity) and no enzyme control (0% activity). Error bars are standard deviation of
two independent experiments, each performed in triplicate. Lines indicate the nonlinear re-
gression of the [Inhibitor] vs. normalized response IC50 equation to the data with GraphPad
Prism. Bracketed values indicate 95% confidence intervals from the regression.
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Figure 4.6: Room-temperature X-ray crystal structure of Mpro in complex with
MCULE-5948770040 and comparison with ligand-free and docked structures.
A) Overall Mpro homodimer in complex with MCULE-5948770040 (Cyan carbon ball and
stick representation). One protomer is shown as a cartoon representation with domains
I, II, and III in pink, purple, and green respectively and orange interdomain loops. The
other protomer is shown as white surface. Insets show MCULE-5948770040 electron density
(2Fo-Fc at 1.2Ã as orange mesh) and 2D chemical diagram. B) Intermolecular interactions
between Mpro (grey cartoon with salmon sticks) and the ligand. H-bonds are shown as
black dashes. Distances in Å. C) Superposition of the Mpro/9MCULE-5948770040 complex
(salmon) with ligand-free X-ray/neutron structure (grey, PDB code 7JUN). Red arrows
indicate conformational shifts from ligand-free structure to complex structure. Blue dots
show Ã − Ã interactions with the P2-dichlorobenzene group. Red dashes represent a lost H-
bond due to catalytic His41’s imidazole side chain flip. D) Comparison of computationally
predicted (yellow carbons) and experimentally determined (cyan carbons) pose of MCULE-
5948770040 bound to Mpro.
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Figure 4.7: Conformational changes upon MCULE-5948770040 binding to Mpro

indicate changes within distinct regions, both close-to and farther-away from the
primary binding site. (a) RMS fluctuations of the LF- and LB-state of Mpro show several
regions with decreased fluctuations that are highlighted within rounded rectangles. Although
several regions within these regions are largely similar, amino-acid residues interacting with
the ligand stabilize the binding site. (b) To further quantify the nature of these fluctuations,
we characterized the collective motions which shows distinct conformational states sampled
by the ligand-free (LF) and ligand-bound (LB) states. The yellow arrows indicate conforma-
tional transitions from the average structure towards the distinct conformational states (I,
LFA, LFB , LBA and LBB). These transitions are mapped in (c) I →LBA and (d) I →LBB .
(We show the I →LFA and I →LFB). In each case, we observed that Mpro chain B of the
dimer was more stable the chain A (insets). Regions highlighted in (a) show the motions
undergone by the different regions of Mpro.
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CHAPTER 5

SURROGATE MODELS FOR ACCELERATED DOCKING

This chapter will focus on my particular modeling efforts in building surrogate models for

docking. This chapter will focus on the performance characteristics of docking with a focus

on the COVID-19 inhibitor discovery [Clyde et al., 2021b, Wu et al., 2021]. We will outline

the datasets required, the models developed, the scale of their deployment, scaling character-

istics, and error characteristics.

As part of our drug discovery campaign for SARS-CoV-2 [Clyde et al., 2021d], we de-

veloped a database of docked protein-ligand across 15 protein targets and 12M compounds

as well as the complexes’ associated scores. The data preparation is outlined in the prior

work. In brief, ligands were prepared using OpenEye Scientific OMEGA toolkit where 300-

900 conformations were sampled for each ligand [OEChem, 2012a]. Receptors were prepared

using the OEDOCK application. If the active site was unknown at the time, FPocket was

used and the three highest scoring binding sites were used as an ensemble [Le Guilloux et al.,

2009].

The database contains two related tasks. The first task is predicting a ligand’s docking

score to a receptor based on 2D structural information from the ligand. The second possible

task is a pan-receptor model that encodes the protein target to use a single model across

different ligands and targets. These tasks are distinct from other drug discovery datasets

as this benchmark is focused directly on surrogate model performance over the baseline

computational drug discovery method of docking. A different approach to applying machine

learning to docking is the use ML models as a scoring function rather than the result of the

optimization of the ligand conformation/position relative to the scoring function [Ragoza

et al., 2017]. Other benchmarks are available to address to the gap between docking, and

experimental binding free energy calculations such as DUD-E [Mysinger et al., 2012a].
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The dataset we are releasing has three modes of representation, sequential, 2D or 3D,

where the 3D data is a ligand conformation in an SDF file. 2D ligand data is available in a

CSV file containing the molecule’s purchasable name, a SMILES string, and its associated

docking score in a particular complex.

The sequential dataframe includes maccs-keyDurant et al. [2002], ecfp2 Rogers and Hahn

[2010b] , ecfp4, ecfp6 fingerprints, and descriptors. The models discussed in the rest of the

main paper pertain to the 2D ligand structures (the associated 3D data is shared with the

community for further developing 3D modeling techniques [Jiménez et al., 2018]).

The ligands available for each dataset are sorted into three categories ORD (orderable

compounds from Mcule [Kiss et al., 2012]), ORZ (orderable compounds from Zinc [Sterling

and Irwin, 2015]), and an aggregate collection which contains all the available compounds

plus others (Drug Bank [Wishart et al., 2018], and Enamine Hit Locator Library [EDB]).

Docking failures were treated as omissions in the data, which may be important consideration

though typically, the number of omissions accounts for 1-2% at most of each sample.

The data is available here, https://doi.org/10.26311/BFKY-EX6P, and more in-

formation regarding persistence and usage is available on the data website [Clyde et al.,

2021a].

5.1 Method

At a high level, surrogate models for protein-ligand docking aim to accelerate virtual ligand

screening campaigns. A surrogate model seeks to replace the CPU-bound docking program

with a trained model. In this case, surrogate models alone are not a viable solution to

protein-ligand docking in general. ML surrogate models are based on gaussian statistics

and generally perform well on predicting the central tendency of data, but not so at picking

out the finer top or bottom 1%. We propose utilizing the ML to filter incoming ligands

utilizing SPFD. Thus, the number of actual docking calculations is minimized compared to
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the typical approach of docking the entire dataset. Due to model accuracy, the number

of missed compounds is minimized as the fine-grained selection of a hit set comes from

traditional docking and the model only needs to select a coarse set of hits rather than a

fine set. In other words, a surrogate model is trained, and a cut-off is specific, say 1%.

The model is run over the proposed library to screen, and the top 1% of ligands are then

docked utilizing the program to have the exact scores and pose information as with typical

docking. In this way, we do not see current surrogate models as a replacement for docking

but rather as a mean of expanding their use over large virtual libraries. This model has

a single hyperparameter, Ã, which determines after running the surrogate model over the

library which percentage of most promising predicted compounds we then dock utilizing

traditional docking techniques.

5.1.1 Docking Pipeline

The training and testing datasets for these experiments were generated using 31 protein

receptors, covering 9 diverse SARS-CoV-2 viral target protein conformations, that tar-

get (1) 3CLPro (main protease, part of the non-structural protein/ NSP-3), (2) papain

like protease (PLPro), (3) SARS macrodomain (also referred to as ADP-ribosyltransferase,

ADRP), (4) helicase (NSP13), (5) NSP15 (endoribonuclease), (6) RNA dependent RNA

polymerase (RDRP, NSP7-8-12 complex), and (7) methyltransferase (NSP10-16 complex).

For each of these protein targets, we identified a diverse set of binding sites along the pro-

tein interfaces using two strategies: for proteins that had already available structures with

bound ligands, we utilized the X-ray crystallographic data to identify where ligand den-

sities are found and defined a pocket bound by a rectangular box surrounding that area;

and for proteins that did not have ligands bound to them, we used the FPocket toolkit

that allowed us to define a variety of potential binding regions (including protein inter-

faces) around which we could define a rectangular box. This process allowed us to expand
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the potential binding sites to include over 90 unique regions for these target proteins. We

use the term target to refer to one binding site. The protocol code can be found here:

https://github.com/2019-ncovgroup/HTDockingDataInstructions.

Two ligand libraries were prepared. The first was the orderable subset of the Zinc15

database (we refer to this as OZD) and the second was the orderable subset of the MCULE

compound database (we refer to this as ORD). The generation of the orderable subsets was

primarily a manual activity that involved finding all compounds that are either in stock or

available to ship in three weeks across a range of suppliers. Consistent SMILE strings and

drug descriptors for the orderable subsets of the Zinc15 and MCULE compound databases

were generated as described by Babuji et al. [2020b]. Drug descriptors for the Zinc15 and

MCULE compound databases can be downloaded from the nCOV Group Data Repository

at https://2019-ncovgroup.github.io.

5.1.2 Data frame construction

We used the protein-ligand docking results between the prepared receptors and compounds

in the OZD library to build machine learning (ML) data-frames for each binding site. The

raw docking scores (the minimum Chemgauss4 score over the ensemble of conformers in

a ligand-receptor docking simulation) were processed [OEChem, 2012a]. Because we were

interested in determining strong binding molecules (low scores), we clipped all positive values

to zero. Then, since we used the ReLu activation function at the output layer of the deep

neural network, we transformed the values to positive by taking the absolute value of the

scores. The processed docking scores for each compound to each binding site then served as

the prediction target. The code for model training can be found here: https://github.c

om/2019-ncovgroup/ML-Code.

The features used to train the models were computed molecular descriptors. The molec-

ular descriptors were computed as described by Babuji et al [2020]. The full set of molec-
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ular features is derived from the 2D ligand structures. The molecular features consist of

2-D and 3-D descriptors where 3D-descriptors are computed from the 2D structure using

high-performance kernels Moriwaki et al. [2018]. The feature set results in a total of 1,826

descriptors. The approximately 6 million docking scores per receptor and 1,826 descriptors

were then joined into a data frame for each receptor.

5.1.3 Learning curves

We performed learning curve analysis with the 3CLPro receptor to determine the training

behavior of the modelPartin et al. [2021]. A subset of 2M samples were obtained from the

full set of 6M samples. The 2M sample dataset was split into train (0.8), validation (0.1),

and test (0.1) sets. We trained the deep neural network on subsets of training samples,

starting from 100K and linearly increasing to 1.6M samples (i.e., 80% of the full 2M set).

Each model was trained from scratch and we used the validation set to trigger early stopping

and the test to calculate measures of generalization performance such as the mean absolute

error of predictions.

5.1.4 Model Details

The model was a fully connected deep neural network with four hidden layers (with neuron

counts [250, 125, 60, 30, 1]), with dropout layers in between. The dropout rate was set to 0.1.

Layer activation was done using the rectified linear unit activation function. The number

of samples per gradient update (batch size) was set to 32. The model was compiled using

mean squared error as the loss function and stochastic gradient descent (SGD) with an initial

learning rate of 0.0001 and momentum set to 0.9 as the optimizer. The implementation was

Python using Keras Chollet et al. [2015].

The model was trained by setting the initial number of epochs to 400. A learning rate

scheduler monitored the validation loss and reduced the learning rate when learning stag-
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nated. The number of epochs with no improvement after which the learning rate was reduced

(patience) was set to 20. The factor by which the learning rate will be reduced was set to

0.75, and the minimum allowable learning rate was set to 10−9. Early stopping was used to

terminate training if after 100 epochs the validation loss did not improve.

Features were standardized by removing the mean and scaling to unit variance before

the onset of training using the entire data frame (before the data frame was split into train

and test partitions). The train and test partitions were based on a random 80:20 split of the

input data frame. Hyperparameter optimization was performed (see section 5.2.7).

Inferencing was performed on Summit. The input was converted to Feather files using the

python package feather, a wrapper around pyarrow.feather (see the Apache Arrow project

at apache.org). Feather formatted files as input in our experience are read faster from disk

than parquet, pickle, and comma-separated value formats.

5.2 Results

5.2.1 Identification of protein targets and binding receptors

A total of thirty one receptors representing 9 SARS-CoV-2 protein conformations were pre-

pared for docking. These are illustrated in Figure 2 and listed in Table 1. The quality of

the receptors reflect what was available at the time the receptor was prepared. For example,

whereas the NSP13 (helicase) structure in Table 1was based on homology modeling, today

there exists x-ray diffraction models.

5.2.2 Generation of training data

The results for the 3CLPro receptor demonstrate a normal distribution (Fig. 5.1). The best

docking scores would be in the range of 12 to 18. The distribution of docking scores for the

3CLPro receptor is illustrative of the distributions for all the other receptors. As shown in
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Figure 5.1: (left) Histogram of protein-ligand docking of transformed docking
scores for 3CL-Mpro. The distribution is from the ORZ dataset based on the trans-
formed 2D scores. (right) Learning curve between dataset size and MAE between
random and flattened datasets.

the figure, there are very few samples with good docking scores relative to the entire set of

samples.

5.2.3 Sampling comparisons

We constructed a set of data frames to investigate the impact of the number of samples,

sampling approach, and the choice of drug descriptors as features. The number of samples

was further investigated using learning curves. Because we are interested in predicting

docking scores in the tail of the distribution where the best docking scores exist, we explored

two sampling approaches. Lastly, we investigated the impact of using the Mordred 3-D

descriptors as features of the compounds.

Dataset Count (samples) Sampling method Distribution (approximate)

100K-random 100,000 Random Normal
100K-flatten 100,000 Flatten Uniform
1M-random 1,000,000 Random Normal
1M-flatten 1,000,000 Flatten Uniform

Table 5.1: The four sampling approaches used to subset the approx. 6M docking scores for
OZD.
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Figure 5.2: Docking score histograms for each of the four sampling a) 100K-random, b)
100K-flatten, c) 1M-random and d) 1M-flatten approaches used to generate a subset by
sampling the full dataset of available scores (approximately six million samples).

We generated a dataset subset by sampling the approximately 6M samples in the OZD

data complete data-frames. We examined four sampling approaches, differing by two param-

eters, as listed in Table 5.1: (1) the total number of samples drawn from the entire dataset

(i.e., the count), and (2) the algorithm used to draw the samples (i.e., the sampling method).

Drawing samples at random preserves the original normal-shaped distribution (thus,

the name Random). Alternatively, for a more balanced dataset, we sample scores with an

alternative algorithm to create a roughly flattened, uniform-like distribution. To include

the highly significant, top score samples, we retain the top ten thousand binding ligands.

Figure 5.2 shows the histograms of the docking scores subset with each of the four sampling

scenarios for 3CL-Mpro. The top ten thousand binding ligands are indicated in red. Note

that the distribution of the full dataset can be roughly modeled as a normal distribution, as
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1613 Features

Model epoch val loss val MAE val r2

V5.1-100K-flatten-2 337 0.80 0.66 0.71
V5.1-100K-random-2 336 0.80 0.66 0.71
V5.1-1M-flatten-2 484 0.60 0.59 0.81
V5.1-1M-random-2 455 0.49 0.52 0.68

1826 Features

Model epoch val loss val MAE val r2

V5.1-100K-flatten-2 313 0.97 0.74 0.85
V5.1-100K-random-2 330 0.81 0.67 0.71
V5.1-1M-flatten-2 462 0.60 0.59 0.81
V5.1-1M-random-2 456 0.52 0.54 0.67

Table 5.2: Impact of including Mordred 3-D descriptors in the training data for the different
sampling strategies.

shown in Figure 5.1.

When examining the impact of including the Mordred 3-D descriptors in the feature

set, we average the validation loss, validation MAE, and validation r2 across the 31 models

as we are interested in the aggregate performance of the models across the 31 receptors.

Our analysis of the inclusion of the Mordred 3D descriptors is presented (Table 5.2). Our

results show no significant advantage to including the 3D descriptors. The results show

small improvements in the validation loss across all training data frames when using only

the 2D descriptors. The results are mixed when considering validation r2, with two smaller

data frames performing slightly better and the two larger data frames performing marginally

worse. While we do not consider the differences in most cases to be significant, we demon-

strate that adding the extra training parameters in the form of 3D descriptors does not

improve the training performance of the model.

When examining the impact of both the training set size (1M or 100K) and sample se-

lection from either a random distribution or flattened distribution, we average the validation
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loss, validation MAE, and validation r2 for each trained receptor model that represents one of

the thirty one different protein pockets. Table 5.2 shows the differences between the means.

A negative value for the validation loss and validation MAE differences would indicate 1M

samples achieved a higher quality model, and a positive value for the validation r2 difference

would indicate 1M samples achieved a higher quality model. The results indicate that 1M

samples from a flattened distribution perform better than 100K samples for all three metrics,

whereas 1M samples from a random distribution achieved better metrics for the validation

loss and MAE. However, the 1M samples from a random distribution had a lower validation

r2.

To better understand the differences between the 1M data sets, the Pearson correlation

coefficient was calculated between predicted and the observed values from the validation set

for each pocket model. In the case of the v5.1-1M samples, the validation set had 200,000

samples. The mean of the PCC across the set of pocket models was calculated for each 1M

data set and the V5.1-1M-random is 0.853 and the V5.1-1M-flatten is 0.914.

5.2.4 Learning curve analysis

To further explore the optimal sample size, we generated learning curves for the 3CLPro

receptor model and assume 3CLPro will be indicative of other receptors. Using the entire

dataset, which contains approximately 6M samples, imposes a significant computational

burden for training a deep neural network model for each receptor and performing HP

tuning. Regardless of the learning algorithm, supervised learning models are expected to

improve generalization performance with increasing high-quality labeled data. However, the

rate of model improvement achieved by adding more samples diminishes at specific sample

sizes. The trajectory of generalization performance as a function training set size can be

estimated using empirical learning curves.

The range at which the learning curve starts to converge indicates the sample size where
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Figure 5.3: (left) Scatter plot illustrating correlation between the predicted scores and
the FRED scores (for 3CL-main protease on a 100,000 random subset of orderable MCule
molecules). (right) Detection of active compounds from NCATS (AC50f 10µM) with SPFD
(predicted with NN) and FRED (docking). SPFD detects all active compounds which FRED
detects for 3CL-main protease and therefore is a faster alternative to regular docking without
loss of active detection. This indicates the differences between the predictions and the actual
FRED scores lean towards detecting actives.

the model begins to exhaust its learning capacity. Figure 5.1 shows the learning curve where

the mean absolute error of predictions is plotted versus the training set size. The curve starts

to converge at approximately 1M samples, implying that increasing sample size beyond this

range is not expected to improve predictions.

5.2.5 Model Accuracy

FRED docking scores correlated (0.825) with the neural network predictions (see fig. 5.3).

Furthermore, the variation between the NN and the actual FRED scores did not worsen

the detection of active molecules. We utilized molecules from a set of 3CL-main protease

screening data from National Center for Advancing Translational Sciences open data portal

Brimacombe et al. [2020]. Molecules from this dataset with an AC50 of 10µM or less were

considered active. Based on a filter cut-off, the NN was able to detect as many active

compounds as FRED would (see fig. 5.3).

The observations of the data frame comparisons (sec. 4.2.3) and learning curves (sec.

4.2.4) show that the 1613 MOrdred 2D descriptors performed better without the inclusion
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Figure 5.4: Comparison of the 31 receptor models with the 2000 best scoring compounds
from ORD and ORZ.

of the 3D based descriptors (in total, 1826 features) in most cases. The 1M data frames

performed better than the 100K data frames in most cases. The mean r2 (0.825) of the

1M-flatten was higher than that of the 1M-random data frame (0.721).

5.2.6 Inference across 3.8 billion compounds

We divided the 4 billion compounds into 4 input data sets to enable better utilization of

resources. ENA, G13, ZIN, OTH. We also constructed a set of compounds from the MCULE

data set that could be easily purchased (organic synthesis already done). The MCULE

subset was named ORD. The inferencing rate was approximately 50,000 samples per second

per GPU, and all 6 GPUs per summit node were used.

We analyzed the results for each receptor by selecting the top 2000 scoring compounds,

and computing mean, standard deviation, maximum, and minimum values. We present two

examples of these results in Figure 5.4. Interestingly, the range represented by the maximum
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Figure 5.5: (left) Effects of sample weighting strategies on the default and opti-
mized model. The docking score bins represent buckets where scores fall into and the
y − axis refers to the mean absolute error (MAE) of a model when using it to predict the
docking scores. The different lines represent different optimization strategies between mod-
els.

and minimum predicted scores for the best 2000 scoring compounds is remarkably different

between these two. In fact, ZIN was representative of the others (G13, ENA, and OTH). One

working hypothesis is that the compounds in ORD are synthesizable, whereas compounds in

the other sets are not necessarily synthesizable as these are virtual combinatorial libraries.

5.2.7 Model Hyperparameter Optimization

The CANDLE framework was subsequently used to tune the deep neural network for future

training and screening activities Wozniak et al. [2018b]. The CANDLE compliant deep neu-

ral network was tuned in two phases. The first involved using two CANDLE hyperparameter

optimization workflows - mrlMBO and GA. Each differs in the underlying ML techniques

used to optimize the hyperparameters. The second phase involved implementing and testing

new sample weighting strategies in an attempt to weight the samples at the good end of

the distribution more heavily during training. Results of the GA and mlrMBO workflows
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produced a model architecture that had a 6.6% decrease in the validation mean absolute

error and a 2.8% increase in the validation R-squared metrics.

Efforts to decrease the error in the good tail of the distribution (where the docking scores

are best) focused on adding sample weights to the model while training. We investigated

linear and quadratic weighting strategies. We applied the weighting strategies to both the

default model as well as the hyperparameter optimized model. The linear strategy weights

the sample proportionally with the docking score, while the quadratic scales with the square

of the docking score. These strategies generic in that they can be applied to basically any

training target value. To analyze the impact of the weighting strategies, we computed the

mean absolute error on bins of predicted scores with a bin interval of one. These results are

presented in Figure 5.5.

5.3 Conclusion

We demonstrate an accelerated protein-ligand docking workflow with surrogate models,

which is at least 10x faster than traditional docking with nearly zero loss of detection power.

We utilize neural network models to learn a surrogate mode to the CPU-bound protein-ligand

docking code. The surrogate model has a throughput over six orders of magnitude faster

than the standard docking protocol. By combining these workflows, utilizing the surrogate

model as a prefilter, we can gain a 10x speedup over traditional docking software without

losing any detection ability (for hits defined as the best scoring 0.1% of a compound library).

We utilize regression enrichment surfaces to perform this analysis in chapter 8 to analyze

this case further. The regression enrichment surface plot is more illustrative than the typical

accuracy metrics reported from deep learning practices. We released over 200 million 3D

pose structures and associated docking scores across the SARS-CoV-2 protemome This 10x

speedup means if a current campaign takes one day to run on library size L, one can screen

ten times as many compounds in the same amount of time without missing leads. Given the
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potential for 100x or even 1000x speedup for docking campaigns, we hope to advance the

ability of surrogate models to filter at finer levels of discrimination accurately.
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CHAPTER 6

TIERED-WORKFLOWS

This chapter will address my work with tiered-workflows—where cheap but inaccurate surro-

gates are used to screen compounds, sending a smaller subset to a more expensive but also

more accurate kernel (such as simulation). The pipeline we discuss is called IMPECCABLE

[Saadi et al., 2021, Bhati et al., 2021, Clyde et al., 2019]. The first section will introduce

the idea, the second section will outline the theoretical considerations (extending the mathe-

matics from [Woo et al., 2021], the third section will outline the results of the pipeline with

some of the COVID-19 molecules, and finally the last section will discuss the performance

characteristics.

6.1 Background

Application of ML approaches to problems in ligand pose and affinity prediction is increas-

ingly common and is included in top ranked entries in competitions such as the D3R and

SAMPL community challenges [Rizzi et al., 2018, Sunseri et al., 2019]. Nonetheless, the per-

formance of even best in class scoring functions remains below that of expensive simulation

based alchemical BFE (see section 2.4) methods [Jimenez et al., 2018]. Ash and Fourches

used MD simulations of 87 inhibitors to the ERK2 kinase to create descriptors which dis-

tinguish bioactive molecules more effectively than available Quantitative Structure–Activity

Relationship (QSAR) models [Ash and Fourches, 2017].

The ABL1 kinase used as the target in our experiments to the fact that previous studies

have used this system to test the ability of alchemical BFE methods to determine the im-

pact of mutations on binding strength for a range of clinically approved drugs [Hauser et al.,

2018]. This study considered 144 protein-ligand combinations and this database has been

used as the basis of comparisons of multiple techniques. Aldeghi and coworkers [Aldeghi
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et al., 2019] compared the performance of simulation based BFE techniques and a range

of knowledge based estimators (including multiple ML models) finding that the two ap-

proaches were complementary and multiple techniques used in a consensus fashion achieved

“remarkable accuracy".

Our work looks to extend the state of the art by incorporating much larger number of sys-

tems in order to refine both the simulation and BFE methodologies and the forcefields which

under pin all biomolecular simulation. One aim of our framework is to enable the evaluation

and enhancement of general small molecule forcefields for small molecule BFEs. Within the

biological simulation community this effort is being led by the Open Force Field Initiative

(openforcefield.org), who recently benchmarked a new forefield, SMIRNOFF99Frosst, using

43 host-guest complexes [Slochower et al., 2019].

In silico drug design presents intellectual challenges and is driven by clear imperatives of

societal good and economic incentives. Recent methodological and infrastructural advances

range from improved docking protocols [Liao et al., 2019, Gentile et al., 2020] to sophisticated

multi-stage pipelines [Gorgulla et al., 2020], and scalable infrastructure [Vermaas et al., 2020]

for drug discovery pipelines.

Walters and Wang [2020] presents new methods and infrastructure focused on virtual

screening. Brute-force traditional docking is unlikely to be fast or sophisticated enough

for in silico drug design. Enhancing the ability of traditional docking protocols to sample

larger chemical space is critical. The recent studies that combine docking with machine

learning methods Liao et al. [2019], Gentile et al. [2020] report up to 6000x increase in

chemical space sampled [Gentile et al., 2020] — without notable loss of favorably docked

entities. To overcome the limitation that single docking protocols are not universally reliable,

Ref. [Gorgulla et al., 2020] introduces VirtualFlow —an open-source platform that supports

several powerful docking programs on scalable infrastructure.

ML is used to improve computer-aided drug discovery. Jones et al. [2021] integrates
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ML with binding free energy calculations. ML is also used to extend quantitative structure-

activity relationships approaches. For example, AMPL [Minnich et al., 2020] provides exten-

sible pipelines that support the building and sharing of ML models, along with automating

model training to improve key pharma-relevant parameters predictions. AMPL highlights

the trend towards sophisticated and open-source software platforms that can be deployed on

diverse suitable scalable infrastructure as per requirements.

While clusters and clouds are pervasive and scalable platforms for pharma industry,

HPC and leadership platforms continue to provide important and powerful platforms [Trager

et al., 2016] for academia and government. Ref. [Smith and Smith, 2020] have recently

developed drug discovery pipelines on supercomputers that integrate multiple molecular

modeling techniques — temperature replica-exchange advanced sampling techniques with

docking protocols. Similarly, Acharya et al. [2020] used ensemble-docking approaches to

overcome limitations for single docking protocols. Vermaas et al. [2020] impressively used all

≈27500 GPUs on the Summit supercomputer for a sustained (average) molecular docking of

≈19000 compounds per second [Glaser et al., 2020] using Autodock-GPU [LeGrand et al.,

2020]. Over one billion compounds were docked [Glaser et al., 2020] to two SARS-CoV-2

protein structures with full optimization of ligand position and 20 poses per docking, each

in under 24 hours.

Spurred by, but not limited to COVID-19, the aforementioned recent publications re-

iterate the importance of both methodological and infrastructural enhancements. Conse-

quently, our infrastructure is significant, as it: (i) provides scalable infrastructure for diverse

workflows that are heterogeneous in distinct ways; (ii) delivers high-performance indepen-

dent of the workflow and heterogeneity types, and similar to the highest values previously

reported [Glaser et al., 2020]; and (iii) is developed using a common set of middleware build-

ing blocks which supports the flexible composition of diverse methods – ensemble docking,

ML surrogates for docking, ML-enhanced advanced sampling and binding free energies of
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differing granularity – into an integrated campaign with high end-to-end throughput.

6.2 Tiered workflows

Our approach relies upon the creation of workflows which combine expensive but accurate

free energy calculations with fast ML models. While ultimately we intend to predict the

affinity of compounds to wide ranges of disease-relevant kinases and clinically identified

kinase mutants, we have initially focused on a subgoal; prioritizing the use of MD simu-

lations to assign binding affinities to small molecule on a large set of small molecule drug

candidates. Given a vast set of candidate drugs, what is the optimal ordering of simulat-

ing candidates to improve overall predictive screening performance using limited computer

resource? Addressing this question is the basis of our prototype workflow (which initially

assesses small molecule binding to a single kinase, ABL1, which is dysregulated in chronic

myelogneous leukemia and has been the most widely studied kinase for the development of

selective inhibitors), described below.

Figure 6.1: Schematic overview of the integrated ML-MD workflow.

Steps 1 & 2 The generation module samples from a known dataset (producing candidates

as SMILES strings), but we will scale this to sampling from a variational autoencoder guided

by a biasing filter. Bias is an optional module which restricts the generation module based

on a particular subspace, dataset, or biochemical feature, allowing explicit filtering using
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functions available in RDKit or OpenEye. 3D compound coordinates are generated from the

SMILES, and docked into the pre-prepared protein conformation. The docking score is the

first (and cheapest) binding strength estimate passed to the ML model.

Step 3 The structure of the protein-ligand complex is prepared for simulation using one

of our chosen BFE protocols, which are executed to provide trajectories and binding free

energy estimates (with associated uncertainties).

Step 4 Model is a deep neural network which predicts the binding free energy of a ligand.

Initially the only input is the featurized SMILES string, though we will extend this to include

topologies and trajectories.

Step 5 The Active Learning module ingests the SMILES, free energy estimate and Model

output and returns information to the generator either in the form of the next sample or a

space to continue sampling.

Execution of a prototype workflow requires the coordination not only of the overall work-

flow but multi-stage pipelines of molecular simulations. To support the scalable, adaptive

and automated calculation of the binding free energies concurrently with ML method on HPC

resources, we are developing workflow automation tools based on the RADICAL-Cybertools

middleware building block approach [Balasubramanian et al., 2019]. This allows us to to

attain both workflow flexibility and performance.

This workflow is executed on Summit (Oak Ridge National Laboratory), currently the

world’s fastest supercomputer. The NVIDIA Volta GPUs employed allow single OpenMM

runs to generate 700+ nanoseconds of trajectory per day. However, the novel architecture

of the system means tools that we have previously relied upon are currently unavailable.

Consequently, our workflow has been adapted to make use of communication with a cluster

running containers for docking and ligand preparation.
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6.2.1 Molecular modelling

The starting point for physically based MD and BFE techniques is an atomistically detailed

structure of the protein-ligand complex. The protein component of the system is typically

based on an experimental crystal structure (although homology models may be used if none

is available). In the experiments we perform here we use a single structure of the ABL1

kinase based on PDB: 4WA9. Compounds, initially represented as a SMILES string (i.e.

in one dimension), are converted into three dimensional spatial coordinates and docked into

the protein structure. For these processes we employ the OpenEye software suite, employing

the hybrid approach for docking (which makes use of both known ligand engagement modes

and physical interactions of the novel ligand with the receptor), in this study. Docking not

only provides the coordinates of the protein-ligand complex but a score which provides a low

cost, but imprecise, measure of binding strength.

The binding free energy of the protein-ligand interaction is approximated with one of two

methods: (1) an energy minimized adjustment of the docked structure or (2) a 5 nanosec-

ond simulation utilizing the molecular mechanics generalized Born surface area (MMGBSA)

method. Subsequent work will integrate progressively more computationally costly binding

free energy methodologies, such as alchemical relative and absolute free energy calculations,

once software architecture support issues are solved, as the modular nature of the RADICAL

EnTK workflows allow these additional models to be easily integrated at a later time.

Energy minimization, performed using the OpenMM package [Eastman et al., 2017a], is

an extremely fast calculation that is likely to improve upon the docking score. MMGBSA

is a slower and more accurate metric. Additionally, the uncertainty associated with the

estimated BFE can be quantified. Previous work has demonstrated that the precision of

MMGBSA-based BFE prediction can be refined to 0.5 kcal/mol [Sadiq et al., 2010].
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6.2.2 Machine Learning

Given the various modes of target values, we use a multitask model with shared initial layer

architecture and three independent loss functions and outputs [Ruder, 2017]. We make use

of three primary target modes (this choice is arbitrary and can be expanded); docking score,

energy minimization score, and MMGBSA BFE (from 5 nanosecond simulations). Samples

are collected from the simulation pipeline continuous and consumed into the batch loader.

Batches are homogeneous in property and trained without preference for one mode over

another.

Two model types are trained in parallel; the first based on the ligand alone, the sec-

ond using information from the protein-ligand complex. The ligand-only model does not

incorporate features from the docked pose or the complex with the protein. Instead it is

based on graph convolution of 2D graphs representing each compounds molecular structure

[Coley et al., 2019]. In the complex based model, the three dimensional bound structure is

transformed into a voxel grid of the ligand without the protein by the method discussed in

[Skalic et al., 2019]. 3D convolution layers are used to produce a latent representation for

use in downstream multitask regressors.

To effectively and efficiently sample the domain, the model’s uncertainty in regions is

quantified. Following Lakshminarayanan’s approach to uncertainty estimation, the model’s

final layer outputs both µ(x⃗) and Ã2(x⃗), and correspondingly altering the loss function to

minimize the negative log-likelihood criterion [Lakshminarayanan et al., 2017]. We further

follow their proposed adversarial training example and ensemble of models method using an

ensemble of models trained in parallel.

6.3 Mathematics of tiered-workflows

In Woo et al. [2021], the mathematical problem of virtual screening with different granulates

workflows is demonstrated. Given a library to screen L, and a series of functions with

115



increasing computational cost and increasing accuracy with respect to a target measure

{fi}1,...,nf , let the initial set of hits be equal to the library, X0 = L. Given a series of cut-off

values {¼i}1,...,nf , we can write each stage of the pipeline as the following

Xi = {x ∈ Xi−1|fi(x) g ¼i}. (6.1)

Given a particular computational constraint, and the cost of screening each sample under

each function ci, we can write the computational cost as

C(¼1, . . . , ¼nf ) =

nf�

i

ci · |Xi|. (6.2)

Finally, we may want to understand the discrepancy between each function. We can

write the bias of each as having some bias bi and some noise Ãi which is drawn from a

normal distribution N (Ãi, bi) such that each sample error x on a particular function fi is

�Ãi ∼ N (Ãi, bi) so the overall discrepancy for a sample x which makes it through the whole

pipeline is �Ãnf ∼ N (Ãnf , bnf ). Finally, for the pipeline setup, we demand that Ãi f Ãi−1

and bi f bi−1. We write the stage that a sample as an indicator function Γ(x, i, ¼1, . . . , ¼nf )

equal to one if x is in Xi but not Xi+1. Thus, the error for each sample can be written

as a function of ¼i given Ã and b are fixed by the functions. Thus, one can think of these

pipelines as an attempt to decrease the discrepancy of each sample while maintaing the

particular computational cost

¼1, . . . , ¼nf = argmin
λ1,...,λnf

�

x∈X0

nf�

i=1

[Γ(x, i, ¼1, . . . , ¼nf )E¶(x)] (6.3)

subject to C(¼1, . . . , ¼nf ) < C (6.4)

where C is the computational budget and ¶(x) is the estimated discrepency for that sample
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and stage.

Currently, there is no well known solution to this setup. In fact, the setup is more com-

plicated because of relationships between samples set up in chapter 7. While this framework

may not immediately present a clear solution, it offers a mental model for thinking through

the idea of staged workflows.

6.4 Integration with HPC

In this section, we outline the performance and usage of this workflow through the use of

RADAICAL-Cybertools.

6.4.1 RADICAL-Cybertools: Middleware Building Blocks

The RADICAL-Cybertools (RCT) software stack is used to support the adaptive, scalable

and concurrent execution of heterogeneous tasks, where a task can vary from a single CPU

or GPU node task, to an arbitrary large MPI task or of unspecified temporal duration. RCT

are middleware building blocks [Turilli et al., 2019a] to develop efficient and effective work-

flow tools, designed to work as stand-alone systems, integrated among themselves or with

third-party systems. RCT consists of three main components: Ensemble Toolkit [Balasub-

ramanian et al., 2016, 2018] provides the ability to create and execute ensemble-based work-

flows/applications with complex coordination and communication but without the need for

explicit resource management. It uses another RCT component—RADICAL-Pilot [Merzky

et al., 2018] which provides resource management and task execution capabilities, which in

turn use RADICAL-SAGA [Merzky et al., 2015] as an interoperable HPC batch-queue access

layer. RCT provide scalable implementations of building blocks in Python and are currently

used to support dozens of scientific applications on high-performance and distributed sys-

tems [Balasubramanian et al., 2019].
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6.4.2 RADICAL-Pilot

Many scientific workloads are comprised of many tasks, where each task is an independent

simulation or data processing analysis. The tasks might be heterogeneous, or the there

might be distinct ensembles of homogeneous tasks. Traditionally, each task is submitted

as an individual job, or MPI capabilities are used to execute multiple tasks as part of a

multi-node single job. The former method suffers from unpredictable queue time for each

job and the limited number of concurrent jobs that can be queued on HPC machines. The

latter method is suitable to execute tasks that are homogeneous and have no dependencies,

and relies on the fault tolerance of MPI. The execution of millions of tasks on heterogeneous

HPC platforms requires scalable dynamic resource management and multi-level scheduling.

The Pilot abstraction [Turilli et al., 2018] solves these issues. This abstraction (i) uses

a placeholder job to acquire resources via the local resource management system (LRMS),

and (ii) decouples the initial resource acquisition from task-to-resource assignment. Once the

pilot is scheduled via the LRMS, it can in turn schedule computational tasks on the available

resources. This functionality allows for all the computational tasks to be executed directly

on the resources, without being individually queued to the LRMS. Thus, this approach

supports the requirements of task-level parallelism and high-throughput as needed by the

science drivers.

RADICAL-Pilot (RP) is an implementation of the pilot abstraction, engineered to sup-

port scalable and efficient launching of heterogeneous tasks across different platforms. RP [Merzky

et al., 2018] is a runtime system designed to decouple resource acquisition from task execu-

tion. As every pilot system, RP acquires resources by submitting a batch job, then bootstraps

dedicated software components on those resources to schedule, place and launch application

tasks, independent from the machine batch system [Turilli et al., 2018].
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6.4.3 Integrated ML and MD Workflows on Summit

RADICAL Ensemble Toolkit (EnTK) is designed to support the concurrent execution of the

RL based integrated and adaptive ML-MD workflow of Figure 6.1 as a set of concurrent

and interacting computational pipelines. Each pipeline is composed of stages and each stage

contains an arbitrary set of tasks. Tasks can execute concurrently while stages can execute

only sequentially. These properties are insured by design, offering what we have called a

Pipeline Stage Task (PST) model for the specification of computational workflows. It is

important to note that ’task’ here are not functions, methods or sub-processes of one of

EnTK components. Task indicates instead a self-contained process (i.e., program) executed

and managed by the operating system of the target resource. Consistently, tasks can be a

single-threaded, multi-threaded or MPI program, and can use CPUs, GPUs or both within

and across the compute nodes of a target machine.

Specified in PST, the workflow of Fig. 6.1 consists of a set of two pipelines: Pipeline 1

executes multiple stages, each with multiple MD simulations; Pipeline 2 executes a single

stage with one or more ML tasks. Pipeline 1 and 2 execute concurrently, sharing their tasks’

input/output files via a shared file-system. Initially, Pipeline 1 executes MD simulations

to train the ML tasks of Pipeline 2. Once trained, Pipeline 2 uses ML to infer the initial

state of the next MD simulations of Pipeline 2. Currently, we have implemented the training

capabilities of the workflow. In a near future, we will develop also the inferring capabilities,

which will then integrate with the RL loop.

6.5 Results

We discuss the many application- and platform-level issues that need to be addressed to ex-

ecute our pipeline at scale. We also quantify performance bottlenecks and their determinant

factors, a necessary indication on how to further improve the pipeline for its deployment in

sustained production. Overall, our performance analysis is an indicator of challenges and
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solution for pipelines that go beyond the specific requirements of our COVID-19 campaign.

6.5.1 WF1: Ensemble Consensus Docking

Compared to physics-based simulation methods, docking is a relatively inexpensive compu-

tational process. To increase the reliability of docking results, we prefer multiple docking

protocols for the same ligand set and protease over individual docking scores. WF1 uses

OpenEye and Autodock-GPU to leverage resource heterogeneity: the former executes on

x86 architectures (e.g., Frontera); the latter on GPUs (e.g., Summit).

For each of the identified protein target1 sites, WF1 iterates through a list of ligands

and computes a docking score for that ligand-protein target pair. The score is written to

disk and is used as filter to identify ligands with favorable docking results (score and pose).

The docking call is executed as a Python function in OpenEye, and as a self-contained task

process in AutoDock-GPU. In both cases, the RAPTOR framework is used for orchestration.

The duration of the docking computation depends on the type of CPU (OpenEye) or

GPU (AutoDock-GPU) used, and the computational requirements of each individual protein

target. We measure the docking time (seconds) and docking rate (docks/hr) of three use

cases: (1) production runs for NVBL-Medical Therapeutics campaigns; and runs for largest

achievable size on (2) Frontera and (3) Summit. Table 6.1 summarizes the parameterization

and results of the experiments we performed for each use case.

WF1 assigns one pilot for each protein target to which a set of ligands will be docked.

Within each pilot, one master task is executed for every ≈100 nodes. Each master iterates

at different offsets through the ligands database, using pre-computed data offsets for faster

access, and generating the docking requests to be distributed to the worker tasks. Each

worker runs on one node, executing docking requests across the CPU cores/GPUs of that

node.

1. We define a protein target as a specific PDB file with a well defined binding site (according to how the
specific molecular docking code requires) against which we dock the small molecule libraries.

120



Use
Platform Application Nodes Pilots

Ligands Utilization Docking Time [sec] Docking Rate [×106/hr]

Case [×106] avg/steady min max mean min max mean

1 Frontera OpenEye 128 31 205 90% / 93% 0.1 3582.6 28.8 0.2 17.4 5.0
2 Frontera OpenEye 7650 1 126 79% / 95% 0.1 14958.8 61.5 20.1 35.8 25.2
3 Summit AutoDock-GPU 1000 1 57 95% / 95% 0.1 263.9 36.2 10.9 11.3 11.1

Table 6.1: WF1 use cases. For each use case, RAPTOR uses one pilot for each protein
target, computing the docking score of a variable number of ligands to that protein target.
OpenEye and AutoDock-GPU implement different docking algorithms and docking scores,
resulting in different docking times and rates. Resource utilization is often impeded by the
long tail docking time distributions which cause an expensive cooldown period. However,
the steady state resource utilization is >=90% for all use cases.

Use Case 1

We assigned each of the 31 targets to a single pilot, i.e., to an independent job submitted

to the HPC machine’s batch-queue. Due to the different batch-queue waiting times, at

most 13 concurrent pilots executed concurrently. With 13-way pilot concurrency, the peak

throughput was ≈ 17.4 × 106 docks/hr. To keep an acceptable load on Frontera’s shared

filesystem, only 34 of the 56 cores available were used.

(a) (b)

Figure 6.2: WF1, Use Case 1: Distribution of docking runtimes with the (a) shortest and
(b) longest average docking time out of the 31 protein targets analyzed. The distributions
of the docking runtimes all 31 protein targets have a long tail.

Figs. 6.2a and 6.2b show the distribution of docking times for protein targets with the

shortest and longest average docking time, using the Orderable-zinc-db-enaHLL ligand

database. All protein targets are characterized by long-tailed docking time distributions.

Across the 31 protein targets, the min/max/mean docking times are 0.1/3582.6/28.8 seconds

(Tab. 6.1), posing a challenge to scalability due to the communication and coordination

overheads. The long tail distributions necessitate load balancing across available workers to

maximize resource utilization and minimize overall execution time.
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We addressed load balancing by: (i) communicating tasks in bulk so as to limit the

communication frequency and therefore overhead; (ii) using multiple master processes to

limit the number of workers served by each master, avoiding bottlenecks; (iii) using multiple

concurrent pilots to partition the docking computations of the set of ligands.

Figs. 6.3a and 6.3b show the docking rates for the pilots depicted in Figs. 6.2a and 6.2b,

respectively. As with dock time distributions, the docking rate behavior is similar across

protein targets. It seems likely that rate fluctuations depend on the interplay of machine

performance, pilot size, and specific properties of the ligands being docked, and the target

protein target. We measure a min/max docking rate of 0.2/17.4×106 docks/hr with a mean

of 5× 106 docks/hr (Tab. 6.1).

(a) (b)

Figure 6.3: WF1, Use Case 1: Docking rates for the protein target with (a) shortest and (b)
longest average docking time.

Use Case 2

Fig. 6.4a shows the distribution of docking times of approximately 126×106 ligands from the

mcule-ultimate- 200204-VJL library to a single protein target using OpenEye on Frontera.

Note that the distribution is highly dependent on the protein target being used: for the

specific protein target used in this run, we measure a min/max of 0.1/14985.8 seconds and

a mean of 61.5 seconds (Tab. 6.1). The set of protein targets available to us varied in mean

docking time from ≈3 to ≈70 seconds.

Fig. 6.4b shows the docking rate for a single pilot with 7650 compute (428,400 cores at 56

cores/node). Compared to Use Case 1, the rate does not fluctuate over time. After peaking

at ≈ 35.8 × 106 docks/hr, the rate stabilizes at ≈ 25 × 106 docks/hr until the end of the
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(a) (b)

Figure 6.4: WF1, Use Case 2: (a) Distribution of docking time and (b) docking rate for
a single protein target and 126 × 106 ligands. Executed with 158 masters, each using ≈50
compute nodes/2800 cores on Frontera.

(a) (b)

Figure 6.5: WF1, Use Case 3: (a) Distribution of docking time and (b) docking rate for a
single protein target and 57× 106 ligands. A pilot is concurrently executed on Summit with
6000 GPUs.

execution (Tab. 6.1). Note that the long tail distribution of runtimes results in a long tail of

docking calls and thus on a long “cooldown” phase. That phase ultimately lowers utilization

from 92.3% in the steady-state (before cooldown starts) to a total average of 79.3%.

As discussed, the docking times depend on the protein targets used, and thus the docking

rate inversely depends on that protein target choice. The range of rates is very wide: for the

protein targets available to us, we observed a mean docking rate between ≈ 14 × 106 and

≈ 300× 106.

Use Case 3

Figure 6.5a shows the distribution of the docking times of ≈ 57 × 106 ligands from the

mcule-ultimate-200- 204-VJL database to a single protein target using AutoDock-GPU

on Summit. The distribution has a min/max/mean of 0.1/263.9/36.2 seconds (Tab. 6.1).

Compared to Use Case 1, Fig. 6.2, max docking time is shorter, but the mean is longer.

Compared to Use Case 2, Fig. 6.4a, both max and mean are shorter. As observed, those

differences are due to specific properties of the docked ligands and the target protein target.

Fig. 6.5b shows the docking rate for a single pilot with 1000 compute nodes, i.e., 6000
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GPUs. Different from Use Case 1 and 2, the rate peaks very rapidly at ≈ 11× 106 docks/hr

and maintains that steady rate until the end of the execution. The cooldown phase is also

very rapid. We do not have enough data to explain the observed sustained dock rate. As with

Use Case 2, we assume an interplay between the scoring function and its implementation in

AutoDock-GPU and specific features of the 57× 106 docked ligands.

Different from OpenEye on Frontera, AutoDock-GPU bundles 16 ligands into one GPU

computation in order to efficiently use the GPU memory, reaching an average docking rate

of 11.1 × 106 docks/hr (Tab. 6.1). Currently, our profiling capabilities allow us to measure

GPU utilization with 5% relative error. Based on our profiling, we utilized between 93 and

98% of the available GPU resources.

6.5.2 WF2: ML-Driven Enhanced Sampling

WF2 is an iterative pipeline composed of 4 stages. After the first iteration of the 4 stages is

completed, if outliers were found, the next iteration starts simulating those outliers; other-

wise, the simulation continues from where it stopped in the previous iteration. The pipeline

stops after a predefined number of iterations.

We measured RCT overhead and resource utilization of WF2 to identify performance

bottlenecks. We define RCT overhead as the time spent not executing at least one task.

For example, the overhead includes the time spent bootstrapping environments before tasks

execution, communicating between EnTK and RabbitMQ (RMQ), or between EnTK and

RP while workloads wait to execute. Resource utilization is the percentage of time when

resources (CPUs and GPUs) are busy running tasks.

The blue bars in Fig. 6.6 show RCT overheads for the first version of WF2 and how RCT

overheads grew with iterations. WF2 may require a variable number of iterations. Thus,

our goal was to reduce RCT overhead, and importantly, make it invariant of the number of

iterations.
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Initial analysis suggested multiple optimizations of WF2: some of these involved improv-

ing the deep learning model, the outlier detection, and RCT. For the latter, we improved

the communication protocol between EnTK and RMQ, and we reduced the communica-

tion latency between EnTK and RMQ. We avoided sharing connections to RMQ among

EnTK threads, reducing multiple concurrent connections, and reused communication chan-

nels whenever possible.

Fig. 6.6 (orange) shows the combined effects of improving DeepDriveMD and EnTK

communication protocol which reduced the overheads by 57% compared to Fig. 6.6 (blue).

However, they were still growing with the number of iterations. We moved our RMQ server to

Slate, a container orchestration service offered by OLCF, which reduced the communication

latency between EnTK and RMQ, as shown in Fig. 6.6 (green). The optimization allowed

RCT overheads to be invariant up to 8 WF2 iterations.
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Figure 6.6: RCT overhead reduction with improved WF2, EnTK and RabbitMQ.

Fig. 6.7 depicts resource utilization for different (internal) RCT states as a time series.

The region with “yellow, light blue, or green” colors represents unused resources; “dark”

represents resource usage. Fig. 6.7 shows resource utilization of WF2, when executing four

pipeline iterations on Summit with 20, 40, and 80 compute nodes. Note that most of the

unused resources are CPU cores that are not needed by WF2. Overall, we measured 91%,
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91%, 89% GPU utilization respectively. Across scales, Fig. 6.7 shows differences in the

execution time of some of the pipeline stages but no relevant increase of the time spent

without executing at least one task.
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Figure 6.7: Timeline of RCT resource usage for WF2 when investigating weak scaling prop-
erties (from 20 to 80 nodes).

6.5.3 Hybrid WF3 & 4 Workflow

WF3 and WF4 are computationally intensive methods that cost several orders of magnitude

more node-hours per ligand than WF1 [Saadi et al., 2021]. WF3 and WF4 both compute

binding free energies but have workloads comprised of distinct tasks: GPU-based OpenMM

and CPU-based NAMD tasks, respectively. Merging WF3 and WF4 into a single hybrid

workflow allowed us to improve resource utilization by employing RP’s unique capability to

execute distinct tasks concurrently on CPU cores and GPUs. We evaluated that capability

by measuring: (i) RCT overhead (as defined previously) as a function of scale; (ii) scalability

as a function of problem and resource size; and (iii) resource utilization.
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Fig. 6.8 compares RCT overhead to workflow time to completion (TTX) on 32 nodes

for different task counts, representing different production workflow configurations. TTX in

Fig. 6.8(c) illustrates concurrent execution of GPU and CPU tasks. The modest increase

in TTX compared to Fig. 6.8(b) is likely due to interference from sharing resources across

tasks, and some scheduler inefficiency. A careful evaluation and optimization will form the

basis of further investigation. Fig. 6.8(d) plots the TTX for the Hybrid-LB scenario when

the number of WF3 and WF4 tasks are selected to ensure optimal resource utilization. The

number of WF3 tasks completed in Fig. 6.8(d) is twice the number of WF3 tasks completed

in Fig. 6.8(c), with no discernible increase in TTX.
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Figure 6.8: RCT Overhead in Hybrid Workflows.

Fig. 6.9 depicts RCT resource utilization for the configurations of Fig. 6.8(c) and Fig. 6.8(d).

As with Fig. 6.7, “green space” represents unused resources; “dark space” represents resource

usage. WF3 and WF4 have 4 and 3 stages, respectively, which can be discerned from black

bars. Fig. 6.9(b) shows greater dark space and thus resource utilization than Fig. 6.9(a),

representing the greater overlap of tasks on GPUs and CPUs due to workload sizing. Both

have higher resource utilization than configurations in Fig. 6.8(a) and (b) due to concurrent

CPU and GPU usage.

Fig. 6.10 shows the scalability of hybrid workflows with load balance enabled and up to

22640 tasks on 128 compute nodes on Summit. The left two panels show the comparison

between 5660 GPU tasks and 5660 heterogeneous tasks (5400 GPU tasks + 260 CPU tasks).

Note that RCT overhead is invariant between homogeneous and heterogeneous task place-

ments and with proportionately increasing workloads and node counts (i.e., weak scaling).

In Figs. 6.8 and 6.10, RCT overhead varies from 3.8% to 11.5% of TTX but it should
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Figure 6.9: Timeline of RCT resource usage for Hybrid Workflows.
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Figure 6.10: RCT Overhead in Hybrid Workflows at Scale.

be noted that task runtimes for these experiments are significantly shorter than those of

production runs. RCT overhead arises from state transitions and data movements and is

essentially invariant of task runtimes, which are reproduced with fidelity in our experiments.

Thus, in production runs, RCT overhead is a significantly less proportion of TTX.

6.5.4 WF3–4: Enhancing Scale and Reliability

Driven by science results, and that WF3 & 4 are the “slowest” per ligand [Saadi et al., 2021],

we need to increase the number of nodes and improve reliability across multiple platforms.

We preview results for WF3; experience with WF4 and hybrid WF3–4 execution will be

reported subsequently.

We run WF3 on 1000 compute nodes (+1 node for RCT), executing 6000 1-GPU tasks on

32 concurrent DVMs. Each DVM spawned≈32 nodes and executed up to 192 tasks. Fig. 6.11

shows the utilization of the available resources across different stages of the execution. The

pilot startup time (blue) is longer than when using a single DVM [Turilli et al., 2019b],

mainly due to the 336 seconds spent on launching DVMs which, currently, is a sequential
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process. Each task requires time to prepare the execution (purple), which mainly includes

scheduling the task on a DVM, constructing the execution command, and process placement

and launching by the DVM. The scheduling process takes longer than with a single DVM

as it requires determining which DVM should be used. Further, constructing the execution

command includes a 0.1s delay to let DVM finalize the previous task launching. As each

operation is done sequentially per RP executor component, the 0.1s delay accounts for 600s

alone.
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Figure 6.11: Timeline of RCT resource usage for WF3 using multi-DVM.

As with the other WF3–4 experiments, we reduced task runtimes to limit resource uti-

lization while faithfully reproducing RCT overhead. In Fig. 6.11, Exec Cmd (task runtime)

would be ten times longer for a production run. Thus, the overheads introduced by using

multiple DVMs would have a lesser impact on the overall resource utilization.

We also run WF3 on 2000 compute nodes (+1 node for RCT), doubling the task and

DVM number compared to the run with 1000 nodes. At that scale, we observed three

main issues: (i) DVM startup failure; (ii) an internal failure of PRRTE; and (iii) lost DVM

connectivity. The majority of tasks were successfully completed (11802 out of 12000), but
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Table 6.2: WF3 use case. Test runs with RP/Flux integration

Use Case Platform # Nodes # Tasks # Failed Tasks Flux Resource Utilization Task Scheduling Rate Execution Time

WF3 Lassen 128 512 0 88% 14.21 t/s 6m

those issues prevented RCT from handling their termination gracefully.

Table 6.3: HPC platforms used for the computational campaign. To manage the complexity
arising from heterogeneity within and across platforms, requires middleware abstractions
and design.

HPC Platform Facility Batch Node Architecture Workflows Max # nodes
System CPU GPU utilized

Summit OLCF LSF 2 × POWER9 (22 cores) 6 × Tesla V100 WF1-4 2000
Lassen LLNL LSF 2 × POWER9 (22 cores) 4 × Tesla V100 WF2,3 128
Frontera TACC Slurm 2 × x86_64 (28 cores) — WF1 7650
Theta ALCF Cobalt 1 × x86_64 (64 cores) — WF1 256
SuperMUC-NG LRZ Slurm 2 × x86_64 (24 cores) — WF3-4 6000 (with failures)

6.6 Conclusion

In this chapter we demonstrate the scalability of heterogeneous workflows using stages of

increasing computational cost and increasing accuracy with respect to binding free energy.
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CHAPTER 7

SAMPLING STRATEGIES FOR CHEMICAL SPACE

This chapter will address the bootstrapping and sampling problem: how do you select what

subset of molecules to get an initial dataset for modeling building on? Even if you have a

model built, how do you sample chemical space given you cannot access the whole thing?

This chapter will present the idea of using a hypergraph along different chemical-theoretic

axes such as scaffolds and pharmacophores. This chapter will comment on the use of LLMs

for storing this graph and accessing it on the fly.

7.1 Sampling Chemical Space

Molecules have seemed like a natural fit to deep learning’s tendency to handle a complex

structure through representation learning, given enough data. However, this often contin-

uous representation is not natural for understanding chemical space as a domain and is

particular to samples and their differences. First, we will explore current applications of off-

the-shelf deep learning techniques for sampling a model trained on chemical representations

to generate novel structures.

7.1.1 Generative drug design

Deep learning (DL) offers a new set of tools and algorithms for generating novel molecular

pieces. With the introduction of generative models which can be sampled, such as variational

autoencoders [Kingma et al., 2014], or generative adversarial networks [Goodfellow et al.,

2014], de-novo molecular generation took hold as a practice in drug discovery [Olivecrona

et al., 2017]. Molecules were embedded into a continuous representation and then given

a decoder, sampled from continuous space—allowing property optimization and molecular

generation based on some distance metric in the latent representation. These approaches
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have had much success. We extend on this work by focusing on computational organization

and enumeration specifically—seeking more structure than N (X,Σ) or R
n.

7.1.2 Challenges

Given the significance and applications of molecular design, several approaches have explored

how to organize the chemical design space, including the use of strings (e.g., SMILES),

molecular/chemical descriptor data (e.g., Modred features), and molecular graphs for both

representing and generating new molecular designs. Each representation presents some op-

portunities and challenges in capturing the complexity of the chemical landscape and has

successfully designed new molecules for drug targets and new catalysts, and other materials.

However, no single representation can sufficiently capture the diversity (in chemical species)

and the statistical diversity in their representations. For e.g., while SMILES strings provide

a convenient means to encode chemical information, two nearly identical molecules can have

significantly different SMILES representations, presenting unique challenges when embed-

ding them into a latent manifold. Similar observations can be made for other molecular

representations.

Consider the set of drug-like molecules M. M is not directly computable as it is a

concept class for molecules. For computation, molecules require a computable representation,

and this is the start of the difficulty. Representations are models of molecules which can

be identified with a molecule. Graphs are a natural model of molecules, where nodes are

atoms and edges are vertices Kearnes et al. [2016]. SMILES are another representation of

molecules, which are a breadth-first search over the graph in a particular syntax. SMILES,

unlike graphs, are not injective over molecules (if two SMILES strings are not equal, it does

not imply the underlying molecules are not equivalent) O’Boyle [2012]. There are other

representations which are less common such as point clouds, junction trees, or voxelization

Elton et al. [2019]. We define RX to be a general representation mapping from molecules to
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some set X fromM.

Embeddings are distinct from representations. Embeddings are functions which take

a representation X to embedding space Y . For instance, molecular fingerprints are an

algorithm which takes graphs of molecules to R
n by utilizing a hashing function around the

nodes or regions of a graph Stepišnik et al. [2021]. Node2vec models take graphs to R
n. A

simple variational autoencoder’s encoder can take SMILES to a Gaussian unit ball N (X,Σ).

The junction tree variational autoencoder takes a junction tree to a latent unit ball. In the

later two examples, the idea of sampling from a normal unit ball is essential for maintaining

the density of the sampling space—an important aspect of creating a generative model (see SI

section 2 on sampling). Given a decoder, these embedding spaces can be sampled to produce

potentially new molecules or molecules through a constrained optimization problem. The

two embedding spaces so far have convenient distance metrics, denoted ¶Y .

While the generation methods in the previous subsection are very successful at certain

property predictions and general optimization, they do not solve the enumerability problem.

Both R
n and N (X,Σ) are continuous and not countable. In particular, every molecule

has an open ball around it in embedding space of equivalent points which is a problem

for enumerating discrete sets of molecules. In other words, if φ−1 is a decoder from an

embedding R
n → X, and ≡ is an equivalence relation on the representation X, there exists

y1, y2 ∈ R
n and ϵ > 0 such that 0 < ¶Rn(y1, y2) < ϵ so

φ−1(y1) ̸≡ φ−1(y2).

In order to structure the embedding space to be conducive for enumeration, we must find

an embedding space that is countable and discrete, just as Caley sought out by means of a

tree.
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7.2 An Algebra for Chemical Space

We focus on exploring a natural structure for representing chemical space as a structured

domain: embedding drug-like chemical space into an enumerable hypergraph based on scaf-

fold/fragment classes linked through an inclusion operator.

7.2.1 Motivation

Given the vastness of drug-like chemical space, how can we computationally explore it? In

1875, Caley published a short note on his enumeration of alkanes utilizing a tree struc-

ture Cayley [1875]. Though Caley’s enumeration ended up having a few errors, it is a

very early account of treating chemical space as a structured mathematical object Rains and

Sloane [1999]. Over 100 years later, the ideas of enumerating structurally similar compounds

and comparing their activity became known as quantitative structure relationship studies

(QSAR/SAR). QSAR/SAR is the standard method in medicinal chemistry for taking an

interesting chemical compound to an optimized and potent drug lead. In 1984, Klopman

developed Computer-Automated Structure Evaluation (CASE), which "perform[s] automat-

ically all operations related to the structure-activity analysis" Klopman [1984]. A success in

its own right, CASE utilized the graph topology of molecules to generate QSAR studies or

predict activity based on fragments. This graph structure naturally leads to studying sub-

graphs and their relations, such as decomposing the graph into a class of similar molecules

sharing a framework (scaffold), linkers connecting rings, and sidechains Bemis and Murcko

[1996]. Utilizing these ideas, various tool-kits and genetic algorithms have been designed to

combine or grow molecular fragments into optimized drugs Lameijer et al. [2005], Cernak

et al. [2016]. While these ideas in organization lay the framework for certain practices of

medicinal chemistry, the methods do not address the problem of enumerating compounds in

an organized way to find diverse chemical scaffolds.

A reemerging principle in small molecule-based property prediction models is the similar
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property principle Johnson and Maggiora [1990]. Recall from chapter 2 this is a fundamental

principle in medicinal chemistry. This principle has been widely applied in the context of de-

termining quantitative structure-activity relationships (QSAR) in medicinal chemistry: how

compounds and their activities (against a drug target) can potentially improve (or degrade)

based on modifying certain chemical scaffolds (or addition/deletion of R-groups) Maggiora

and Shanmugasundaram [2011], Guha [2011].

Molecular scaffolds are well defined through algorithms, decompose well into networks,

and offer a general description of global properties (such as orientation in a protein binding

region) Bemis and Murcko [1996], Scott and Chan [2020a]. Molecular scaffolds represent the

core of a molecule, typically defined around the number of rings in the structure. Non-ring

structures in molecules include linkers and sidechains which get collapsed in this represen-

tation to a single scaffold representative. In figure 7.1, we show a molecular scaffold decom-

posing into smaller scaffolds. In this way, we can take a graph or SMILES representation of

a molecule and map it to this discrete embedding structure. The mapping into the scaffold

structure is unique. As other authors rely on decoders to decode the embedding space, we

will rely on decoders to sample the scaffold for the variety of molecules a part of it.

7.2.2 Orders

In this note, we explore a strange structure developed from a formal theory of molecules. The

general setting is a well defined structure over sets of a domain, a well defined lift operator,

but no downward operator besides statistical sampling in sets.

Consider a collection of sets, P = {Pi}, from a universe X.

Definition 7.2.1 (Partial ordering). A partial ordering ¯ is a relation over a set, X, with

the following properties:

1. (Reflexive) x f X, ∀(x ∈ X).
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2. (Antisymmetric) If x ¯ y and y ¯ x then x = y, ∀(x ∈ X, y ∈ X).

3. (Transitive) If x ¯ y and y ¯ z then x ¯ z, ∀(x ∈ X, y ∈ X, z ∈ X).

A partially ordered set (poset) is a set X with a partial ordering. We say two elements,

say x and y, are not comparable if neither x ¯ y or y ¯ x. If ¯ extends over the whole set

such that there are no non-comparable elements then ¯ is a total or linear order. When ¯

is total, X is a totally ordered set also called a chain. An element a is said to by b is a ¯ b,

a ̸= b, and there does not exist a distinct c such that a ¯ c ¯ b.

The most common example is the standard relation f on the natural numbers (which is

of course a total ordering). The following illustrates ordering sets of sets.

Example 7.2.2. Let X = {a, b, c}. Then P(X) is a partially ordered by inclusion. {a, b} ¦

{a, b, c} but {a} is not comparable to {b}.

Definition 7.2.3 (Upper bound). Let Y ¦ X. An upper bound of Y is an element x ∈ X

such that for all y ∈ Y , y ¯ x. An upper bound s of the set Y is an least upper bound, join,

or supremum if for all upper bounds u of S, s ¯ u.

The dual definition is stated for clarity, but should be clear by switching orderings in the

previous definition.

Definition 7.2.4 (Lower bound). Let Z ¦ X. A lower bound of Z is an element x ∈ X

such that for all z ∈ Z, x ¯ z. An upper bound s of the set Z is a greatest lower bound,

meet, or infimum if for all lower bounds u of S, u ¯ s.

Armed with the basics of ordering, we can start to inspect some ordered structures.

Definition 7.2.5 (Semilattice). A partially ordered set (X,¯) is a upper semilattice if every

two-element subset has a join, or least upper bound. (X,¯) is a lower semilattice if every

two-element subset has a meet or greatest lower bound.
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Definition 7.2.6 (Lattice). A partially ordered set (X,¯) is a lattice if it is both an up-

per and lower semilattice. A bounded lattice has a greatest element and a least element,

sometimes represented by 1 and 0 respectively such that 0 ¯ x ¯ 1 for all x ∈ X.

Definition 7.2.7 (Atomic). Let L be a lattice with bottom element 0. An element x ∈ L is

an atom if 0 z x and there exists no element y ∈ L such that 0 z y z x. L is atomic if for

every nonzero element x ∈ L, there exists an atom a of L such that a ¯ x. L is atomistic if

every element of L is a supremum of atoms.

Definition 7.2.8 (Graded lattice). A lattice (L,¯) is called graded if there exists a function

r : L→ N such that

1. r is compatible with the ordering such that r(x) ¯ r(y) whenever x ¯ y

2. r respects covers, which is to say if y covers x then r(y) = r(x) + 1. The value of the

rank function for an element is called its rank.

7.2.3 Scaffold math

The conceptual machinery for treating chemical space as a hypergraph structured through

scaffolds is developed. There is an elegant statement of the principle of fragment-based drug

design through the operations among scaffolds. Further, the framework developed provides

intuitive concepts for understanding the diversity and size of chemical space explored or

discussed by a model or computational research program. As a computational learning

problem, we use transformer as seq2seq models to implement large graph navigation in

practice.

7.2.4 Scaffold Embeddings

Utilizing the concept of scaffolds developed in section 2, we assume the operation Scaffold

as a given oracle such that Scaffold is injective and defined for every molecule. We define
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Figure 7.1: Scaffold as classes over drug-like chemical space. Every molecule (rep-
resented by dots or depiction inside circles) is inside a single scaffold class. Scaffold classes
are related through common substructures, forming a hierarchy of classes. Penimocycline,
for example, belongs to a scaffolding class from far Penicillin-g’s or Amoxicillin’s class, while
Pipracil is a direct successor of the Penicillin-g class. The Predecessor function is defined
via an algorithm, and the SuccessorΦ function requires a generative model when working
without data (i.e., given a single scaffold you cannot compute its successor unless you un-
derstand chemistry, thus have parameters Φ, but you can compute all of it is predecessors
recursively without knowing how to generate new compounds).

S as the set of all scaffolds.

A hypergraph is a generalized graph where edges group more than two vertices. A hyper-

graph is n-regular when every vertex is contained in exactly n edges. Scaffolds as hypergraph

edges over molecules form a 1-regular graph, as every molecule belongs to exactly one scaf-

fold class, thus every vertex has degree 1 in the hypergraph. We denote the hypergraph as

H = (M,S).

Operations on scaffolds. We denote computational operations in Monospace font, and

add a subscript Φ to represent parameters which may be required for the operations (i.e.

ExpandΦ).

1. ExpandΦ and Scaffold: Molecules and scaffolds represent two distinct types which

can be converted back and forth (figure 7.2). Scaffold classes can be expanded, where
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Figure 7.2: Scaffold and molecule relation. Scaffolds are the core or framework of
a molecule, and they represent a class of molecules. Scaffolds, or scaffold classes as we
often refer, group molecules together. A class can be extended by adding decorations to the
scaffold, such as linkers and sidechains. Through the scaffold function, we obtain the scaffold
of a molecule.

we envision zooming in, via the ExpandΦ model (i.e. ExpandΦ: S → M). Similarly,

molecules can be taken to their scaffold via the program Scaffold (Scaffold:M→

S). We utilize RDKit to compute Scaffold via the MurckoScaffold module Landrum

et al. [2016]. We note a model can be trained for this task; however, given the efficiency

of the algorithm it did not seem fruitful at this time.

2. SuccessorΦ and Predecessor: the successors of a scaffold S1 are the set of all scaffolds

S which contains S1 as a substructure (figure 7.1). The predecessors of a scaffold S1

are all scaffolds S which S1 is a superstructure. In general, there is no algorithm

for successor given only a scaffold, as it requires sampling chemical space. However,

predecessor has an efficient algorithm with a structure that can always be fragmented

into smaller scaffolds without sampling other data. These operations are the atomic

building blocks of navigating between scaffold classes (and induces a strict partial

ordering (S, z)). These operations are from S to S. We also consider the standard

graph structure induced by the relation SuccessorΦ and Predecessor, and denote it

SG = (S,SuccessorΦ) where SuccessorΦ can be used to determine the edge relation.
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This graph can be directed or undirected, but for our case we consider the undirected

graph mostly.

3. UnionΦ and Intersection: two scaffolds S1 and S2 can be combined to form a union.

More formally, the union of S1 and S2 is the set of scaffolds that contain S where S

has S1, and S2 has immediate predecessors. Similarly, the intersection of S1 and S2 is

simply the maximum common substructure (MCS) of S1 and S2, for which an efficient

algorithm exists for small drug-like molecules. Cao et al. [2008], Cone et al. [1977].

In general, MCS is NP-complete, but there are heuristics for drug-like molecules that

provide a rather efficient algorithm Garey and Johnson [1979]. These operations are

from S to S.

These basic operations can be combined into more complex operations such as

UpperConeΦ(S) = {A : S z A} (7.1)

or LowerCone(S) = {B : B z S} (7.2)

Upper cones of scaffold classes are actually a common object of interest for drug discovery.

For instance, Penimocycline is in the upper cone of Penicillin-g’s scaffold class (see figure

7.1). Successful exploration of upper cones is the theoretical cornerstone of fragment based

drug design Schiebel et al. [2016], Murray and Blundell [2010]. Recently, fragment X-ray

crystalgraphic screens have been performed on important drug targets such as SARS-CoV-2

proteases in search of an inhibitor Douangamath et al. [2020]. Given a set of fragment hits

for a protein target in a binding region,{mi}i∈H , take the scaffold classes of those hit,

{Shi }i∈H . The principle of fragment based drug design can be expressed as there exists some

index set I∗ such that I∗ ¦ H and

Ĥ =
�

i∈I∗
UpperConeΦ(S

h
i ) (7.3)
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where Ĥ is a set of scaffold classes, Ĥ is not empty, and some molecule in a scaffold in

Ĥ is a likely candidate. In other words, a set of fragments can be grown to sets of larger

drug-like molecules, and some intersection of those possible larger molecules will be a hit

that is likely a drug lead for this protein target. In an embedding space such as Rn, the same

principal does not apply, and is dependent on the embedding context (for instance, based on

a particular property Iovanac and Savoie [2019]). Furthermore, there no guarantees about

molecules in an interval between two molecules, whereas the intersection of upper cones, for

example, does have such guarantees (if it is not empty).

Given there is no algorithm for producing successor scaffolds without relying on sampling

chemical space, we treat the problem as a learning problem. We note that we cannot rely on

fragments as a vocabulary given this construction as other methods have (for instance, Jin

et al. [2018b] utilized a finite vocabulary containing one member rings, linkers, and sidechains

from the dataset). When using such a vocabulary, there are chains of scaffolds that cannot

be represented as the SuccessorΦ function can only sample scaffold classes S for which

every one ring member in the LowerCone(S) is in the finite vocabulary.

7.3 Modeling Chemical Space with Transformers

While the method outlined has no constraints on compounds’ synthetic accessibility, it is a

necessary and essential aspect of chemical space exploration for drug discovery. To focus on

synthetic accessibility while paying attention to maximizing library size, we utilize a dataset

from Synthetically Accessible Virtual Inventory (SAVI) Patel et al. [2020]. SAVI contains

over 1.7 billion reaction products (along with rich reaction and metadata). We utilize only

the SMILES of the products.

We build two datasets from SAVI. The first utilizes RDKit to determine the scaffold

for each of the compounds listed Landrum et al. [2016]. We utilized a 200M sample from

the entire dataset and extended the data by a factor of 5 by randomizing the SMILES
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both for the target (scaffold) and source (molecule) Arús-Pous et al. [2019]. A set of 20M

molecules with a unique scaffold class are held out as validation data. A second dataset is

created by taking a subsample of the prior dataset, 20M, and utilizing the ScaffoldGraph

package to decompose each scaffold into a network of scaffolds Scott and Chan [2020a].

We sample edges (representing the successor of two scaffold nodes), resulting in a dataset

of five million successor pairs. This dataset is extended to 50M utilizing random smiles

sampling. Predecessor data is flipping the columns (sources become targets, and targets

become sources) for the successor datasets.

On the one hand, SuccessorΦ and ExpandΦ are generative models—given a scaffold,

those operators are required to sample the space of successor scaffolds or molecules that have

that scaffold. On the other hand, they are seq2seq task, taking one sequence to a different

sequence. This combination of wanting a dense sampling strategy combined with seq2seq

modeling differs from applications we have found in the literature. Common approaches to

generative models have been utilizing VAEs or GANs to train some encoder-decoder model on

sample reconstruction error with some regularization Elton et al. [2019], Gupta et al. [2018],

Grisoni et al. [2020]. Seq2seq approaches in this space have focused on solving problems

with a relatively small optimal solution set such as reaction modeling Schwaller et al. [2019].

With the recent success of transformer models performing well on large datasets and seq2seq

problems, we decided to follow the modeling as a seq2seq problem as Schwaller et al. have.

We utilize a transformer seq2seq model from the ONMT project Klein et al. [2017]. Other

works have utilized RNNs, but we utilize a transformer for both the encoder and decoder

of the model Vaswani et al. [2017b]. Given the goal of not simple generation but rather

generalizing a very large hypergraph for which a pure algorithmic solution is intractable,

transformer models are a good fit compared to simpler RNN models. Code is compiled into

a GitHub repository with scripts for data gathering, data preparation, model training, and

sampling. The interface is geared towards developing front-end functions for quick medicinal
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chemistry questions regarding sampling molecular space.

7.4 Experiments

7.4.1 Computability of Scaffold Classes

We assess the structure of scaffolding chemical space, focusing on understanding the size of

scaffold classes, how many scaffold groups there are in drug-like chemical space, and how

they connect.

We impose a structure on M by creating scaffold classes S = {S}i∈Is such that every

molecule m belongs to one and only one scaffold class, and all classes in {S}i∈Is are disjoint.

We also assign a hierarchy to scaffolds based on the number of rings. Hn is the set of all

scaffold classes with ring size n.

H0 is the smallest hierarchy, which consists of only one scaffold class S0, the set of all

molecules with no rings (ring-less fragments, linkers, and side-chains). H1 is the set of all

scaffold classes with one ring. The order of H2 is proportion to |H1| choose 2 plus the

combination of linkages and sidechain modifications from H0. We see growth similar to the

partition function in theory. However, in practice, the distribution of molecules in real-world

datasets typically follows a normal distribution with the mean around three rings (see figure

7.3).

Given this added structure of scaffolds, do scaffolds reduce the search space over molecules

by many magnitude orders? If this is the case, we can search through a computable number of

scaffolds, and once a few interesting classes are found, we can enumerate the molecules in that

set. This strategy does not face the curse of 1068 drug-like molecules the current unstructured

domain M faces. Given a 200M sample from SAVI, we found only 11.4M (5.7%) scaffold

classes were needed to cover the entire dataset, and, in practice, there exists a large subset

of molecules (165M) with only 685,000 (0.41%) scaffold classes. This reduction via scaffolds
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Model SMILES Validity Type Accuracy Correctness Accuracy

SuccessorΦ 98.9% 98.9% 97.9%
Predecessor 99.8% 99.8% 94.0%
ExpandΦ 98.6% - 96.9%

Table 7.1: Performance metrics from graph navigation models. Evaluations were performed
with a holdout set from SAVI dataset. SMILES validity is the percent of samples that
pass an RDKit parser. Type accuracy determines how many samples have the correct type
(Successor, Predecessor, and Union models output type scaffold. In contrast, Expansion
model outputs molecules (which can include a scaffold representative, and this metric is left
out and computed as a part of correctness). Correctness accuracy is the percent of samples
which are valid, typed correctly, and are equivalent to the algorithmic solution.

implies for a large subset of molecules, there is a reasonable 5 order of magnitude gain in

search over scaffolds than pure molecules (from a database or chemical library perspective).

7.4.2 Hyerpgraph Navigation

We train three operations (ExpandΦ, SuccessorΦ, Predecessor) utilizing three separate

models. While there is an algorithm for Predecessor, we can compare it directly to the

algorithm performance. Each model was trained for approximately two days on eight GPUs

(NVIDIA Tesla V100). Each model was trained for 500,000 steps with a batch size of 8192.

Further details of the training procedure can be found in (SI) and on GitHub.

To sample ExpandΦ and SuccessorΦ we utilize beam search with a temperature of 1.5,

beam size of 5, and randomizing the SMILES input. Samples are then validated utilizing

RDKit. In table 7.1, we outline each model’s accuracy. A uniform sample of scaffolds from

the validation data was taken (n = 1000), and 100 samples were drawn for each scaffold

class (figure 7.4).

Given the density of some scaffold classes in the data compared to others (figure 7.3),

more advanced sampling methods required for ExpandΦ on these classes. For scaffold classes

with over 106 members in the data (mostly 1-ring and 2-ring common scaffolds), resampling
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Scaffold Class Size (Data) Unique Sampled Overlap (Recall)

c1ccc(COc2ccccc2)cc1 373,939 168,261 4,146 (1.1%)
O=S(=O)(c1ccccc1)N1CCCCCC1 88,608 145,904 20,097 (22.7%)
O=S(=O)(NCCc1ccccc1)c1ccccc1 911,360 176,539 23,715 (2.6%)
c1ccncc1 818,230 183,838 23,999 (3.0%)
O=S(=O)(NS(=O)(=O)c1cccnc1)c1ccccc1 203,891 173,599 20,331 (10.0%)

Table 7.2: Sampling dense classes with ExpandΦ. Five dense scaffold classes were taken
from the validation data and sampled. We sampled 100,000 times for each scaffold, utilizing
a temperature of 1.5 and a beam search of length five and capturing the top two best beams
from the search. While we do not capture a large set of the data, we believe these classes’
sheer size presents a combinatorics problem. The unique samples are all correct and valid.

validation data from the model is difficult (table 7.2). Given the uniqueness of sampling

based on a category like scaffolds, rather than pure sampling points in a distribution or Rn,

comparisons to generative models’ reconstruction accuracy are not reasonable.

Figure 7.5 is an example of a series of compounds which belong to a single scaffold class,

but are sampled with different sidechains. The variety of sidechains while maintaining the

single scaffold core is the basis of a QSAR series.

7.5 Sampling with a graph

7.5.1 Fast Docking with Random Walks

In order to sample from this graph to actively decide which molecules should be docked next,

we need to carefully define how docking results will be applied to the sampling weights. There

are various strategies for sampling nodes from a graph. The simplest strategy is random node

sampling; however, this sampling strategy would not take advantage of our graph structure

and would simply be the same as naive random screening molecules from a database. A

more complicated strategy which incorporates the graph structure is random walks.

Random walks are a stochastic process which defines a technique for taking a series of

steps over a set. For example, a random walk over a graph (with nodes and edges) implies
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picking a starting node and randomly stepping in sequence from the starting node to one of

its neighbors, then to one of the new node’s neighbors, and so on and so forth. Random walks

can be used as a sampling technique on graphs, where the samples are drawn by picking the

nodes for which a random walker “walks” on.

The two essential pieces of information to define a random walk strategy is a starting

node and a selection strategy to go from the current node to the next node. Given a graph

G = (V,E), where every v ∈ V is a scaffold or molecule, we define a random walking strategy

by setting the starting node to a random molecule and setting the walking strategy to be

random half of the time and to select the neighbor with the best docking score the other

half of time. In other words, half of the time the next molecule chosen will be a random

neighbor of the current node, and the other times it will be a better scoring molecule. The

use of both random walks and a particular objective function, in this case optimizing the

docking score, is known as mixing. By utilizing mixing with the known docking scores we

not only incorporate the graph structure we impose into the sample strategy, but we also

incorporate structural information about the ligand into the search strategy. The goal is to

avoid regions of chemical space which certainly would not contain hits (i.e. scaffolds which

are merely the wrong shape for a particular binding pocket).

Let Φθ :M→ R be a function mapping molecules to docking scores. Let GS = (V,E)

be a molecular scaffold graph and let H : V →M< be a set function to produce the set of

molecules that correspond to the scaffold from the data. The lower cone of a scaffold s ∈ V

is a set Ls ¢M< and defined as

Ls = {m : t is a successor of s and m ∈ H(t)}. (7.4)

Where a successor to a scaffold s is defined as a scaffold in a higher hierarchy level (where

higher levels contain more rings) with molecules that contain the structure of scaffold s.

Informally, a lower cone is the set of successor classes from any given scaffold. Shown in
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Fig. 7.6 is a visualization of how we conceptualize these cones in the chemical space of scaffold

classes. The lower cone Ls is a set essentially containing all molecules which share a common

scaffold fragment, s. For each scaffold landed on during the random walk, we can sample

either the molecules which strictly decorate that scaffold or we can consider all molecules

which contain that scaffold (i.e. including larger scaffolds as well). In the result section, we

show data utilizing the latter cone based conception given often times in drug discovery one

fixes a particular scaffold component (such as an RNA-analog for proteases) and wants to

find molecules which contain such structure.

Learning on Hypergraphs

Given a graph G = (V,E) let FV be node features so V and FV have same length, which

means each row of FV corresponds to a feature vector. Let L ¦ V be the subset of labeled

nodes and FV L be the corresponding feature matrix. Let U ¦ V be the subset of unlabeled

nodes and FV U be the corresponding feature matrix. We focus on regression tasks, where

our goal is to make real-valued predictions of a given property for the unlabeled nodes

U . Our algorithm first makes a baseline prediction with a neural network – this step does

not make any use of the graph G. Then we correct these predictions by propagating the

residuals over the structure of G. In this step we assume graph smoothness and positive

correlation of residuals along edges of the graph. This assumption of smoothness is by no

means a guarantee for properties such as docking score over the structure of a scaffold graph.

Instead, we hypothesize that the correctness of our final predictions for the nodes in U using

this method can confirm the validity of the assumption for a given property. The algorithm

is outlined in Alg. 1: (i) Train a simple multi-layer perceptron (MLP) neural network M on

the subset L, using feature matrix FV L and labels yL. Make predictions on the whole graph

ŷ = M(FV ). (ii) Estimate the residuals for the unlabeled data rLPU using label propagation

with the labeled residuals rL = yL − ŷL. Correct the predictions for the unlabeled nodes.
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This algorithm is taken from Jia and Benson [2020], which demonstrates the effectiveness of

label propagation with residuals on several regression tasks.
Algorithm 1: Label Propagation with Residuals
input : Subset L of labeled nodes, ŷ predictions from model trained on L

output: ŷLPU , smoothed predictions from LP on residuals

rL ← yL − ŷL;

r̂0U ← 0 ; // set initial guess for unlabeled residual’s

L ← I −D−
1

2AD−
1

2 ; // A and D are the adj. and deg. matrices

r̂LPU ← ConjugateGradient (LUU , LULrL, r̂0U );

ŷLPU ← ŷU + r̂LPU

By decoupling feature-based learning and graph learning, we avoid the computational cost

of training neural networks on large graphs while still benefiting from the inherent graph

structure in our datasets using fast learning methods like label propagation. Our method

for learning combines work from Huang et. al Huang et al. [2020], which uses a multi-step

“correct and smooth" after a base prediction from an MLP on classification tasks; and from

Jia et. alJia and Benson [2020], which corrects using residuals on predictions from a graph

neural network. Both show that using an initial base prediction with a model, and then

post-processing using label propagation on the graph can boost performance and decrease

training time.

Results

7.5.2 Scaffold-space Partitions Virtual Screening Hits

We generate a scaffold network for Mcule’s in-stock compound library utilizing the Scaffold-

Graph package Kiss et al. [2012], Scott and Chan [2020b]. The Mcule library consists of a

diverse set of purchasable compounds within known stock amounts. Overall, the network

has 6,369,219 nodes and 8,808,841 edges. The graph networks induced by the standard, drug
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screening libraries look as expected–high connectivity nodes include small one or two ring

scaffolds with various pharmacophores, while terminal nodes are complex concatenations of

the various predecessor graph nodes (Fig. 7.7 left hand panel).

Visualizing a large network with over 6 million nodes can be challenging – hence, we

chose a small subset of molecules for analysis (Fig. 7.7 right hand panel). It is interesting

to note that while many of the upper-level nodes in the graph (typically small functional

groups such as benzene rings) have lower docking scores, successive transformations of these

nodes towards the leaf edges have higher docking scores (favorable interactions). This means

that traversing the graph from one radial end to the other can result in compounds that

successively improve their overall ability to interact with the protein. Molecule nodes are

only connected to their respective scaffold nodes, and scaffold nodes are connected based on

substructure (i.e. scaffold node A is connected to scaffold node B if A is a substructure of

B, and molecule node C is connected to node B if the scaffold of molecule node C is B). In

a sense, this is simply a projection of a hypergraph to a regular graph. We assign molecule

nodes a docking score based on a docking data set for SARS-CoV-2 main protease (Mpro)

Clyde et al. [2021c].

Utilizing the notion of cones derived in the method section, Fig. 7.8A highlights the fact

that molecules in the same cone are likely to have docking scores relatively close to each other.

For the unstructured dataset, the mean docking score is 8.50 ± 1.05. The standard deviation

of these cones is a proxy for the smoothness of the graph with respect to their docking scores.

This is a good measure as it implies given another molecule with the same scaffold in that

class, it is more likely that the molecule falls within the mean of the cone. The standard

deviation of the cones is relatively small compared to the standard deviation of the overall

data, and this difference is significant. This indicates that local scaffold neighborhoods are

relatively uniform in their overall docking scores. We see that using scaffolds as a way of

embedding molecules is natural and matches the intuition.
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We explore scaffold-space’s relation with docking scores. Using a simple random walk

which we outlined in the methods section, we show the strategy is more efficient in finding

high scoring hits than random sampling. In Fig.7.8C, the colored lines correspond to the

best score seen so far by a random walker. The lowest gray line, for example, shows that

after selecting 1000 nodes based on the random walk strategy, the lowest score found is -13.5.

Conversely for the random strategy, the histogram in black in the zoomed-in pane shows that

the lowest score found randomly was greater than -12.5. Therefore, random walking with

mixing in docking scores is more efficient at sampling high scoring compounds in a small

docking screen. We show that based on more activated scaffolds improves detection of the

best docking scaffold classes over just randomly docking.

Scaffold-space is locally homogeneous with respect to experimental assay data. We il-

lustrate JAK2 kinase data for approximately 3,000 compounds from Laufkötter et al. [2020]

in Fig. 7.8B and D. The overall dataset reports p-values (higher indicates more likely in-

hibition) with a mean of 7.746 ± 1.03. We see that communities are much smoother than

the entire dataset, with an average standard deviation half of the dataset as whole. In the

chart of Fig. 7.8B, we see some high scoring communities (high p-values) have rather small

standard deviations—this is illustrated in the graph depicted, where red and large nodes

have larger p-values than blue and small nodes. We zoom in on a particular set of four

communities in Fig. 7.8D, two of which are highly active based on the data and one which

is not. We observe that (2), (3), and (5) are scaffolds, where less active molecule (1) has

(2) as its scaffold, (3) is a super-scaffold of scaffold (5), and active molecule (4) has (5) as

a scaffold. We observe that all molecules in the study which contain substructure (5) are

active, while all molecules which have (2) has a scaffold are less active.
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Table 7.3: 5-fold cross validation performance of the two step algorithm on test sets of labeled
Mcule nodes and docking scores for 3CLPro

Algorithm step r2 MAE
MLP Model 0.58 0.55
Label propaga-
tion

0.57 0.58

Experimental setup and label propagation to scaffold nodes

We trained a DeepChem Ramsundar et al. [2019] Multitask Regressor network, a feed-

forward multi-layer perceptron (MLP), with a 1,000 node hidden layer and ReLU activation

function. Our feature matrix FV consists of 2,048 bit vector circular fingerprints for each

molecule in Mcule (FV L) and each scaffold in the generated scaffold graph (FV U ). Docking

scores for each molecule in Mcule are generated using OpenEye FRED docking tool. The

model is trained on the labeled Mcule nodes and is run in inference mode for the unlabeled

scaffold nodes. We performed 5-fold cross validation using 80% of the Mcule set as the

training set for the MLP model and as the labeled nodes for label propagation using the

conjugate gradient method. Results are shown in Table 7.3. We see that in this context label

propagation of the residuals does not improve upon initial model performance. There may be

several reasons for this, including the fact that our labeled dataset consists of only the outer

“ring" of nodes in the scaffold graph (Fig. 7.7) and therefore is not uniformly sampled from

the graph. Instead, we note that results in the previous section provide empirical evidence

of the smoothness of docking score over communities of scaffolds. Further, we have shown

that docking based on active cones can provide the enrichment needed to more effectively

sample from databases.

7.5.3 Application to JAK2 Kinase Inhibitor Discovery

This conceptualization of the chemical space for drug discovery has many applications for

drug design. Fig. 7.9 illustrates hits utility as a sampling method. For each descendent and
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common scaffold, interactions with the protein remain relatively stable. On the contrary,

if descending down a certain path in the graph does not have the desired interactions, it

is unlikely continuing down the path will yield higher activity. We are currently working

on quantifying this graph smoothness property of chemical space in terms of commute and

hit times Chennubhotla and Bahar [2007]. This will provide bounds on how well the graph

sampling notion outlined in this paper will accelerate giga-docking studies. Separately, by

connecting chemical space topologically by scaffold, we are able to perform design as implied

by network of residue contacts of docked scaffolds in Fig. 7.9.

7.5.4 Discussion

We outline first the need for a new computational paradigm for cheminformatics workflows.

We show how the introduced network based on scaffolds solves the enumeration problem

cheminformatics faces. Lastly, we outline the future direction of utilizing scaffolds and

networks in drug design.

Computational Structures for Cheminformatics

Current computational approaches to virtual drug screening and design are generally un-

structured Ruiz-Torres et al. [2017]. Computational scientists treat molecular space as a

database listing. As a result of this simple but useful treatment of chemical space, interac-

tion between the AI/ML community and medicinal chemists has taken off Elton et al. [2019].

This has been helped as well by the AI community’s focus on keeping deep learning methods

as hands off as possible Zhang et al. [2018a]. But treating chemical space as tabular listings of

structures will ultimately fail. The sheer size of chemical spaces makes listing it intractable,

let alone performing any type of inference no matter how simple. The database approach to

computing on chemicals will not last long without radical changes in computing architectures

(inference over 1068 is completely intractable). To solve this fundamental problem with the
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current methodical theory, the community needs to move towards conceiving computational

structures for chemical space which do not require listing and assume relationships between

molecules.

Treating chemical space as a network solves the enumeration problem. By connecting

molecule space and assuming some properties will be locally specific, nearly all molecules

are only 10 hops away from each other. This paper proposes the start of this navigation

paradigm, and there is certainly room to improve as we include the other aspects of a

molecules’ design as stated in Bemis and Murcko [1996] (such as sidechains/electrostatics).

Furthermore, the network allows chemical space to be conceived as an inductive database

Meo [2005]. An inductive network for chemical space would not require defining the graph

at one time in memory, rather it would start from a particular set of molecules, and then

utilize operations to grow and shrink the molecule space Clyde et al. [2021f], Li et al. [2019b],

Lim et al. [2020]. Furthermore, the global graph representation of chemical space is unique

to other sampling methods and molecular generation methods as SIMG focuses on utiliz-

ing known compound scaffolds and designs, rather than completely novel chemotypes, and

connecting those designs to the data through a graph of molecules. Molecular generation

methods generate molecular designs often with novel or synthetically unfeasible chemotypes

and scaffolds structures Gao and Coley [2020]. Molecular generation techniques can be

connected to the SIMG approach, by placing those novel compounds into a well ordered

structured global graph. The SIMG technique does not preclude the use of novel structures,

it provides a more ordered approach to integrating those chemical structures into the graph

representation of chemical space.
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Scaffold-space is smooth with respect to docking and protein-ligand experimen-

tal assays

We found docking scores to be locally smooth around scaffolds. Docking scoring functions

include shape complementary as a large component of the score. Given that the scaffold

of a molecule mostly defines the shape, it makes sense docking scores vary smoothly with

respect to scaffolds. In Fig. 7.8D, we see three scaffolds (2), (3), and (4). The coloring

is p-values from a binding assay with JAK2. All three scaffolds share a common pyrimi-

dine ring. Scaffold (2) has a 3-pyrimidin-2-ylimidazo[4,5-c]pyridine three ring system, which

is different than the three ring system of (4) and (3). Further, we observe this difference

alongside different local assay results. Molecules which have scaffolds (3) and (4) are active,

while molecules which contain scaffold (2), such as molecule (1), are more likely inactive

or less potent. This matches another study which focused on molecular generation con-

straining the scaffold class Li et al. [2019b]. They find “the predicted activity against DRD2

for generated samples is significantly higher compared to random sampled molecules from

ChEMBL, showing the model is good at utilizing privileged structures to generate bioactive

molecules." This corroborates our Mpro docking results, which show that sampling the best

seen, or “privileged," scaffolds generates samples with higher activity as judged by docking

score. As an observation, we also see that JAK2 kinase assay data forms local communities

around scaffolds that are locally smooth. Other work has shown for yet another class of

compounds that “the binding mode of the pyrazole carboxylic ester scaffold [to phosphodi-

esterase] does not change when substituents are added" Jhoti and Leach [2007], Card et al.

[2005]. This scaffold-local behavior is well studied, and is the essence of scaffold based drug

discovery (SBDD) or scaffold hopping Rabal et al. [2015], Dimova et al. [2017], Lai et al.

[2020].

While scaffold hopping alone has been successful, very interesting work has been done

with altering the core of a molecule directly to hop from low to high activity regions. One
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such paper Gjorgjieva et al. [2016] switches the central core only of two molecular series,

maintaining the electrostatics from sidechains, to obtain nM DNA gyrase B inhibitors. Ide-

ally, our notion of chemical space would also include a specification for electrostatics to fully

specify a molecule, rather than scaffolds alone. We believe this would more richly specify

docking scores as it would account for variance seen by molecules with varying sidechains in

the same scaffold class with different docking scores.

Scaffold graphs can have immediate impact on how medicinal chemists utilize computing

systems for their work. The presentation of scaffold-space matches current practices in

medicinal chemistry for molecular series design Lai et al. [2020]. Future work will aim to

extend this concept to complete system for SBDD. For example, users will be able to provide

molecular data, and ask for automatic generation of molecular series for experiments based

on sampling likely scaffolds. Scaffold constrained generation is not novel, and has been

successful in various campaigns such as scaffold based generative models Li et al. [2019b],

Arús-Pous et al. [2020].

7.5.5 Conclusions

Our results suggest that a graph-based representation of chemical space libraries offers an

automated and tractable approach to scaffold-based drug discovery. Our current results were

illustrated on docking data for SARS-CoV main protease, and assay data for JAK2 kinase.

For Mpro, we used docking data available to us through large-scale VS approaches to organize

the chemical space and identify regions of the chemical space that may potentially lead to

new molecules that can inhibit this protein. These approaches suggest the complementary

role that graph-based approaches combined with knowledge about targets can be used as

a means to capture complex biological (protein-target specific) information and ultimately

define methods to model protein-ligand design.

From a computational perspective, we present a technique which solves the enumeration
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problem of chemical space. Utilizing a network as an inductive dataset allows exploration

of all of chemical space, and only a local neighborhood needs to be stored and queried at a

given moment of the design process. We believe this is a step forward towards automated

drug design which is integrated with medicinal chemists’ workflows and knowledge. We aim

to continue pursuing a knowledge based discovery system for scaffold based drug design.
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Figure 7.3: Structure of scaffold classes We constructed the scaffold classes (4M) for a
random sample from SAVI (20M) molecules for (a)-(d). (a) We consider a random sample of
20M molecules from SAVI, and construct the scaffold classes and graph associated with the
classes. Out degree indicates just Successor relations. (b) We show the distribution of the
cardinality of (a)’s scaffold classes, which follows a power law for part of the distribution, and
a uniform distribution for the other. (c) Scaffold classes are ordered into a hierarchy based
on the number of rings its framework has. (d) The left column shows the scaffolds with the
largest out degrees for hierarchies 1 to 3, and the right column shows random scaffolds of
the least degree.
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Figure 7.4: ExpandΦ model reconstruction and sampling depth. 1000 samples scaffold
classes are drawn from the validation data, and ExpandΦ is sampled 100 times. Samples
that are not valid smiles or passed verification are removed. (left) Samples for each scaffold
are intersected with the known molecules in that scaffold class from the validation data, and
the fraction found is plotted. Smaller scaffolds are often recovered while larger ones are not.
(right) Even though the ExpandΦ model captures most of the dataset for smaller scaffolds,
the model generates more valid molecules based on the natural distribution of the scaffold
class sizes in the data.
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Figure 7.5: Expansion of a scaffold. The expansion of a scaffold class, highlighted in red,
is expanded by sampling ExpandΦ. Various side chains are added, but no sample is outside
of the class.
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Figure 7.6: Scaffolds as classes of chemical compounds in the chemical space.
Every chemical compound belongs to a single scaffold class. Scaffold classes are connected
by common substructure thus forming a hierarchy. Upper and Lower are operations to
traverse the scaffold classes at different levels of hierarchy.
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Figure 7.7: (left) Radial graph layout of the Mcule molecular database. Pulling from these
compound libraries typically results in a large connected component with a tree-like structure
(right) Subset of molecules structured in a tree graph used in COVID docking study Babuji
et al. [2020b]. The enumerated compounds from libraries typically appeared as terminal
nodes (in purple shades), while the other nodes (scaffolds) connect those molecules together
and provide a further in-depth view of the chemical space (yellow).
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Figure 7.8: (A) Utilizing the scaffold graph based on the SARS-CoV-2 main protease (Mpro)
dataset, communities contain all molecules which share a common substructure scaffolds.
(left) this showcases the set of all communities based on three ring scaffolds, (right) the set
of all communities based on four ring scaffolds. (B) The scaffold graph for JAK-2 kinase
assay data from Laufkötter et al. [2020] (color bar in D). Red shaded nodes are near the top
inhibitors in the data sample, and blue shaded nodes are near the bottom in the data sample.
The grey shaded nodes are scaffold nodes which are not included in the data, but are used
to organize the chemical space. (C) Highlights a docking simulation to show sampling based
on the graph communities yields better performance than random sampling for capturing
high performing compound classes with minimal docking (n=5000, 0.1% of total data). (D)
Zoomed in pane of B, showing similar compounds sharing a few common ring structures,
but diverge in terms of assay performance (1 is p = 6.44, 4 is p = 10.76.).
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Figure 7.9: Baricitinib,a JAK2 inhibitor, (left) is decomposed by scaffolds into a graph (nodes
being the molecules, edges showing how each decomposes to rudimentary single ring build-
ing blocks) McInnes et al. [2019]. Each scaffold was docked as an independent molecule to
JAK2 kinase (3KRR) using the FRED pipeline from OpenEye Baffert et al. [2010], OEChem
[2012a]. The residue fingerprints along with poses were also included. One can see how the
scaffold based approach, on a microscopic level, shows promise as a meaningful concep-
tualization of chemical space—the merging of scaffolds with known properties leads to a
compound with similar residue contacts.
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CHAPTER 8

ANALYSIS OF VIRTUAL SCREENING MODELS

This chapter will overview how to analyze virtual screening models. The first section will

be historical regarding the different sets of metrics used in the virtual screening community

and their incongruence with those used in the deep learning community. The second section

will introduce the idea of regression enrichment surfaces ([Clyde et al., 2020b]). The third

section will relate to this computational scaling ([Lee et al., 2021, Ma et al., 2018]).

8.1 The problem of measures of central tendency

Ultimately, this computational effort requires selecting tiny sets of compounds from billion-

scale compound libraries (akin to a needle in a haystack Raghuraman et al. [2006]). The

top n selected compounds from a library discovered by virtual screening are referred to as

hits, where n is often a mere 10 to 100. Unlike experimental high throughput screening in

the lab, hits from uHTVS are not confirmed in-vivo and have no clear indication of "active"

versus non-active Da et al. [2015], Cheong et al. [2009]. uHTVS protocols provide a score,

and a distribution of them, along with some biological significance through the poses with

associated protein binding regions. The hit selection process requires careful attention.

uHTVS distributions are highly skewed and vary heavily among targets and VS cam-

paigns. uHTVS from docking are unlike normal distributions. In particular, one is interested

in high scores rather than the mean or central tendency of data. Second, most compounds

are not active against targets, and docking score distributions reflect this. If the goal is to

locate 100 top scoring hits from a molecular database with one billion molecules, the model

needs a predictive accuracy around 0.00001% (which should go without reference, is unheard

of in machine learning literature). While various testing and model evaluation techniques

have been established, few seem relevant to uHTVS, given that the entire distribution’s
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predictive success is not the overarching goal. In the literature, one often encounters pre-

dictive models being evaluated based on their mean absolute error (MAE), mean squared

error (MSE), or correlation coefficients (such as r2 or Pearson). In this section, we will argue

these measures are uninformative at best and most often misleading and propose adopting

a pragmatic model evaluation scheme based on the specifics of uHTVS.

A central tenant to training models, whether pursuing the re-scoring models or the dock-

ing surrogate models discussed earlier, is data splitting. Most are familiar with the typical

train test split distinction (taking x% of the data for training and evaluating the model

performance based on the (1 − x)% remaining). Given the complexity and fine-tuning re-

quired with these models, authors have moved towards a train-test-eval partitioning system,

utilizing only the train and testing data for model development. The evaluation or some-

times called holdout partition is not utilized until the end of the paper production process.

Specifically, in molecular property prediction models, a close field of uHTVS, authors have

been using more complex data splitting procedures. For example, scaffold splitting involves

splitting molecular data into clusters based on their scaffold and holding out specific scaffolds

from the training data to evaluate distribution model performance. In a similar light, time

dimension splitting involves hiding compounds that were recently discovered pharmaceuti-

cals to see if the model could have discovered them without seeing that class of molecular

before [Feinberg et al., 2018].

While these are the currently accepted practices, we question if this is the correct ap-

proach for uHTVS. Most of these setups involve a dataset D sampled from a population

distribution P , DP̃ . The goal is when approached with a new sample, with possible shift or

other sampling errors, D′P̃ , how well can this model predict some outcome? For uHTVS,

the problem should be stated differently. Given the population distribution of molecules P ,

we can only sample some known enumerated set, M . M consists of all known molecular

species, even the finitely many ones we can list with a computer. M is the only set we
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have. There is no notion of another sample different than M . Then, the goal of uHTVS

is to score all molecules correctly in M and locate the best and most likely potential drug

candidates. The difference between these two scenarios is that the domain for uHTVS is

wholly known, computable, and finite. The domain for typical problems involves sampling

from a population distribution. Here, given we know the finite larger domain exactly, we

do not need to consider out of sample possibilities, and the implications of this ought to be

further explored.

Given an increased historical attention towards experimental high-throughout screening,

the developed metrics focused on the notion of active versus inactive (for VS, we have a

continuous regression setting). For approaches to metrics in a uHTVS classification setting,

see decoy detection ratio from a feasibility study [Irwin et al., 2009] or [Malo et al., 2006].

With the recent surge in deep learning research, metrics for model success have remained

relatively stagnant. Data, models, and application domains seem endless, but the methods

used to gauge success in the transfer of the model from research space to tools in real-world

applications have rested on intrinsic value in mean squared error, classification accuracy, or

assumption-based metrics such as r2 score. In the classification side of the field, such as a

subset of computer vision tasks, the metrics seem to represent the problem at hand truly.

The accuracy of an image labeling system is representative of the real-world application,

in classifying images for web searches or automatic keyword generation [Krizhevsky et al.,

2012, Deng et al., 2009]. Domains such as natural language processing (NLP) have recognized

this problem as they often employ specialty metrics such as the BLEU score [Papineni et al.,

2002, Chen and Kuhn, 2011, Post, 2018]. In the new space of applying deep learning for drug

discovery and virtual screening, the metrics used to score models have not moved towards

the necessary specialization for exhibiting confidence and understanding their performance

for the use in real lead discovery pipelines [Unterthiner et al., 2014, Zhang et al., 2017b,

Pereira et al., 2016, Schneider, 2010].
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A common problem in the drug discovery process is finding the few active drugs in the

trove of the imaginable drug-like compounds, estimated to be around 1063 [Bohacek et al.,

1996b, Fink et al., 2005]. Recent literature from medicinal chemistry has shown lingering

inductive biases even in vast vendor libraries, indicating the idea of sub-sampling a library for

testing as an ineffective means of screening, providing an impetus towards screening hundreds

of millions to billions of diverse compounds rather than small curated libraries [Jia et al.,

2019, Cleves and Jain, 2008]. Virtual screening is a computational technique for identifying

possible subsets of hits suitable for downstream analysis with more expensive computational

or lab experiments. Virtual screening is typically applied a costly or time-consuming process

to select a subset of objects to either run those costly experiments on or pursue downstream

work on. Virtual screens are applied to the biological sciences for drug screening, though

recently there have been cross-over from material designs as both fields pursue machine

learning screening workflows [Halls et al., 2013]. For example, virtual structural docking is a

technique used to score compounds to understand how well, and if, a compound docks to a

particular ligand [Lyne, 2002]. Producing an experimental value requires a time consuming

experimental process, and is not possible at the scales of compounds that are screened

virtually [Lyu et al., 2019]. With current high throughput laboratory and computational

techniques, these sets can be large, even in the hundreds of millions in the case of Lyu et al.

In many ways, virtual screening is a ranking problem [Kontoyianni et al., 2005, Wilton

et al., 2003, Kellenberger et al., 2008, Hawkins et al., 2007]. Given a set of drugs from a

vendor library, researchers want an ordering of which compounds are likely to work where

downstream experimentation or computation can begin. While classification metrics are

used in the literature as a surrogate for the what researchers are interested in question, it is

not uncommon in the lead discovery process to not know a priori what the cutoff or size of

a desired hit set is—that is likely to be a function of budget, lab constraints, etc. By casting

the problem in terms of rank ordering, it separates the development of the model and the
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function of the model into research and development workflows. We want to use a model to

rank the compounds in our domain, and we would like that ranking to align well with the

actual rankings if finding those rankings were tractable. The field of information retrieval has

created a variety of metrics based on document interest retrieval such as expected reciprocal

rank (ERR) and discounted cumulative gain (DCG) [Chapelle et al., 2009]

ERR =
n�

i=1

1

r
P (User is satisfied with r) DCG =

k�
i=1

2gi − 1

log(i+ 1)
(8.1)

where È(r) is the utility of a given rank (so È(1) = 1 and È(x)→ 0 as x→∞. In reality, the

distributions encountered in this area are highly skewed, with a vast majority of compounds

failing to work or being interesting in any sense to the experimentalist. As the rankings fail

from the top two or three, the interest in their relative accuracy diminishes rapidly. Some

progress has been made in ranking metrics though they generally fail to capture the heavy tail

focus this problem exhibits and are ineffective in data with high regions of error propagating

from experimental or random processes [Wang et al., 2014, Zou et al., 2016, Balakrishnan

and Chopra, 2012, Cossock and Zhang, 2006]. The application of ranking measures to deep

learning models is still in its infancy, leading to a disappearance of ranking from very recent

literature with deep learning screening models.

Tradditional VLS metrics

Before moving on to discuss the difficulties associated with evaluating ML models in a virtual

screening context, we outline a history of virtual screening metrics. In these settings, the

targets were typically experimentally derived hits or known leads. In this setting, rankings

or scores were typically not computed on the targets themselves, only on the predicted or

computed values. New measures were created, such as the Boltzmann-Enhanced Discrimi-

nation of ROC (BEDROC) scores [Truchon and Bayly, 2007], enrichment factors, and ROC
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Enrichment (ROCE) [Nicholls, 2008], robust initial enrichment (RIE) [Sheridan et al., 2008],

and sum of the log of ranks test (SLR) [Zhao et al., 2009]. Borrowing notation from Trun-

chon, let N be the study size and n be the number of active compounds. We will assume

that there is some cutoff ¶ so that true hits are labeled as either a hit or not in the case that

the true values are provided as real values. Let the cumlative density function Fa(x) be the

probability that an active compound is found prior to rank x, so if there are 1000 compounds

in a screen, Fa(10) is the probability that the top ten molecules from the screen provide a

single hit. The probability density function is defined as fa(x) which is the probability the

relative rank x is a hit. Using this CDF function, the area under the accumulation curve

(AUAC) is simply equal to [Kairys et al., 2006, Truchon and Bayly, 2007]

AUAC =

� 1

0
Fa(x) dx = 1− ïxð (8.2)

where ïxð is the average rank of a hit. ROC can be formulated form AUAC as [Truchon and

Bayly, 2007]

ROC =
AUAC
Ri

−
Ra

2Ri
where Ra =

n

N
,Ri = 1−Ra (8.3)

As you can see in these formulations, the metrics cannot be tuned for early versus late

recognition (see figure ??). The insight came as data sizes grew and docking programs were

screening larger than before libraries, where late recognition became costly. Eventually,

moving the study towards early versus later recognition of hits, weighting schemes were

created w(x) such as e−αx

wRIE =

� 1
0 fa(x)w(x) dx� 1

0 w(x) dx
wAUAC =

� 1
0 Fa(x)w(x) dx� 1

0 w(x) dx
(8.4)

Notice in these formulations all measures are dependent on N, n and ³ such that [Truchon
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and Bayly, 2007]

RIEmax =
1− eαRa

Ra(1− eα)
RIEmin =

1− e−αRa

Ra(1− e−α)
. (8.5)

Relating these formulations by scaling and weighting

BEDROC =
RIE − RIEmin

RIEmax − RIEmin
=

wAUAC − wAUACmin

wAUACmax − wAUACmin
. (8.6)

The most recent development for analysis is SLR [Zhao et al., 2009]

SLR =
n�

i=1

log(ri) where −

n�
i=1

log(
ri
N
) ∼ Gamma(n, 1). (8.7)

The metric and its interpretation is dependent on n and N as well as the distribution of the

ranking in the data.

All of these measures require at least one parameter setting a cutoff for marking a result

a hit or not. AUROC represents the probability of active compounds ranking earlier than

decoy or inert compounds. The BEDROC is related to robust initial enhancement (RIE) and

both of them represent tuning the AUROC focus from late recognition to early recognition

[Zhao et al., 2009]. In the framework from [Nicholls, 2008], these measures are satisfactory

as they require parameter choices and change based on the data. Given the importance of

cost structure analysis moving forward with deep leaning models in real world applications,

we would argue they are also not interpretable in the desired sense.

Enrichment factor (EF) is most commonly used and is similar to a basic notion of hit rate

(HR) [Krüger and Evers, 2010, Bender and Glen, 2005, Stahl, 2000, Shoichet, 2004, Pereira

et al., 2016, Ericksen et al., 2017, Ain et al., 2015] where Ç is used to represent a hit typically

in terms of percentages so Ç = 0.25 means everything in the top 25% of the distribution is
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labeled a hit

EF =
Hitssampled/Nsampled

Hitssampled/Ntotal
=

� χ
0 fa(x) dx

Ç
, (8.8)

and gained popularity in the literature for comparing various docking methods. In this

method, multiple cutoffs are used to translate docking scores, a continuous measure, to a

hit classification. Yield hit rate (YHR) is another commonly seen metric which is effectively

the same as EF in the literature [Harper et al., 2001, Ghosh et al., 2006]

Towards Deep Learning Surrogate Screening

In the relatively new area of virtual screening with statistical and machine learning (ML)

techniques, machine learning models are used to replace docking programs or introduce early

funnel stage lead discovery techniques [Chen et al., 2018]. Metrics for ML models are typically

the only measures technicians have for answering questions regarding model convergence,

parameter tuning, and learning success. In a sense, a metric for communicating the ML

model utility must both satisfy the requirements for virtual screening as well as requirements

for success in the ML community. While the analysis for most virtual screening metrics rely

on a predetermined notion of hit, the sheer size and new domains ML models are creating has

lead to a fuzzier notion of hit, where both the values being predicting on and the predictions

themselves are continuous representations of a property (such as cell growth, docking scores,

binding affinity ¶G values, etc.).

In the literature, most authors still report r2 scores or area under the receiver operating

characteristic curve (AUROC) with a cutoff [Feinberg et al., 2018, Unterthiner et al., 2014,

Korotcov et al., 2017, Hamanaka et al., 2017, Wallach et al., 2015, Gonczarek et al., 2016,

Menden et al., 2013b]. These metrics are standard to present in the ML community as a

means of indicating a model matches a notion of being trained. Prior to the introduction of

ML, metrics in the field were often used to compare docking methods, not to both evaluate

the training a model as well as the usefulness of a model—two distinct notions, as structural
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docking did not have a notion of model training or accuracy in the same way ML models

do. At first, the choice of presenting AUROC for deep learning model performance was a

sensible choice as virtual screening with structural docking has a large history of AUROC

as a means of comparing scoring functions, programs, and efficacy [Triballeau et al., 2005,

Nicholls, 2008]. ROC curves for virtual screening were preferred as they allowed for regression

or uncertainty in a classification sense, though the targets or known hits had to be binned.

The ROC curve plots sensitivity and specificity representing various cutoffs for marking a

screened value a hit or not. Overtime, the curves would be omitted and represented solely

by the AUROC, where the single value provides little information regarding early or late

recognition problem and represents a balanced accuracy measure than the early ranking

problem truly desired.

Of course, reporting these scores provides useful information regarding a general overview

of the model performance (i.e. whether the model converged, is over-fitting, working in a

usual sense); yet, r2 or MSE does not provide actionable insight into how well this model

will screen new compounds or treatments. If a drug company wanted to understand the

cost-benefit analysis for lead development, a r2 score does not provide insight into that

computation. The choice of cutoff is also highly dependent on the downstream task, thus

radically changing the actual scoring and recognition qualities of a model. Budget choices

or downstream experiments are typically made by new progress in models and technology,

but the current scoring techniques used for these models requires parameters based on the

circular requirements.

There has been progress on converting these methods for regression models using some

normality assumptions such as regression enrichment surface (REF) [Feinberg et al., 2018]

EF(R)
χ =

1

Ç ·N

χ·N�
i

yi − y

Ã(y)
(8.9)
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where the experimental values yi are ranked according to the model ŷi. This method is based

on the distribution of the underlying data as it is normalized by Ã(y). This method should

be preferred in regression settings; however the value itself is still dependent on some Ç%

cutoff decreasing the interpretability across settings.

8.2 Regression enrichment surfaces

8.2.1 Instrumenting Virtual Screens

A metric for a VS model ought to guide decisions on whether or not to use the model in the

first place. This means we must focus on the use case of the model in order to evaluate it.

Luckily, for uHTVS surrogate models this is simple task: how often can we correctly identify

the top n compounds?

A first attempt may look like an accuracy computation. We take the set of compounds,

mark the underlying top ten as true and everything else false, and predict which ones are in

the top ten. This simplicity, however, ignores a few rather essential insights. First, belonging

in the set of the top ten is not the only data we have. We have a sense of magnitude on

how far into the top ten it should go (for example, is 11th versus 10th place very different

or somewhat similar?). Second, this accuracy computation, or enrichment factor, is not

variable. When selecting the top n, it may be the case that the downstream task is rather

complicated and n must be relatively small; however, what if a simulation task is introduced

and one wants to understand how increasing n would change expected hit rates?

The solution we present, regression enrichment surfaces (RES), involves a continuous

approach given the regression setting as well as a visual representation that escapes the

single metric logic of model evaluation (see figure 8.2) [Clyde et al., 2020e]. To formalize

the situation, we have y docking scores as output from the docking program, ŷ docking

scores as inferred by the model. Let us suppose the library size is L, and we want the top
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Figure 8.1: The RES plotted for validation data set of 50,000 molecules based on AmpC
Beta-Lactamase docking scores. The model is a message-passing network. The model trained
on 500K docking samples from data published by [Lyu et al., 2019]. Points indicate examples
of plot interpretation. (A) shows that the predicted top 500 contain only about 10-20% of
the true top 100 compounds, and just above that point, we see the predicted top 500 contain
only 30% of the true top 500. (B) The predicted top 1% contains 50% of the true top
500, true top 0.1%. (C) The predicted top 10% capture all of the true top 1% (and further),
thus this model at least allows one order of magnitude screen up where we capture most
of the interesting true top distribution. (D) Points above the diagonal identify line are not
insightful for this use case, however, (D) implies that the predicted top 500 contain 500
points which appear in the true top 8%.

³ percentage of hits. Suppose we look at the top ³ predictions from ŷ, and we can ask

the question, how many of the top ³ from y appear in ŷ? This produces the enrichment

RES(y, ŷ, ³, ³). Now we may want to impose a stricter notion of capturing really the very

top, and consider RES(y, ŷ, ³, ³/10). This is the flexibility of the questions we can ask under

the RES paradigm.

We formalize this RES notion by considering the rankings induced by the true values, R,

and the rankings induced by model inferences, R̂. We call ³ the top percentile desired from
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the true predictions, and ³̂ the percentile that one will use from the inferences,

RES(R, R̂, ³, ³̂) =
|Rα ∩ R̂α̂|

|R|min(³, ³̂)
. (8.10)

From earlier, we considered the budget, or computational time required, T , with the library

Figure 8.2: Regression enrichment surface (RES) plots for the associated model and predic-
tions. The RES score noted in the title is an approximation of the integral where the bounds
are alerted to be 0-1 for both x and y axis such that the best performance is 1 and the worsts
performance is 0. It should be noted that the original bounds should be communicated so
that the score can correctly be reported and reproduced.

size L = |R|, and ³ is the percentile of compounds one can dock. The relation with RES is
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practical. Suppose one has a computational budget of T , which is fixed, and a specific library

they want to deal with, fixing the size of L as well. Solving for ³ in T = L(ϕ + ³È), let

us call that solution ³̂ produces the top percentile of compounds one can solve the docking

structure for. Now, within RES, one can check given the top ³̂ of model inferences, how

much of the original true top distribution would be correctly computed?

Once the hits are determined, uHTVS has completed a pass. Those hits can then be

used for experimental screening, further simulation, or other property workflows. This funnel

based strategy is quite common in drug discovery [Kitchen et al., 2004, Lee et al., 2020]

8.3 Accuracy and Scaling

Utilizing SPFD we report a 10x speedup to traditional docking with little to no loss of

accuracy or methodical changes needed besides just utilizing ML-models as a prefilter. Our

model detects 99.9% of the high scoring FRED compounds when filtering the dataset at

10%. We show that for a set of active 3CL-main protease compounds that SPFD would not

miss any actives that the alternative FRED docking would identify. We see these results as

conceptually tying together the model application (hit threshold and adversity to detection

loss, choice of Ã) with more traditional analysis such as performance characteristics and

model performance evaluation. Furthermore, our data release consists of a square matrix

of training data for further study on surrogate regressor models for accelerating docking

studies..

To summarize the finding from the various comparisons in the results, we recommend

utilizing an initial sample size of 100k as there was no observed accuracy increase using 1M

initial samples. Using smaller initial sizes, if possible, decreases the overall training time

and required molecular docking runs which increases the overall efficiency of the systems.

Smaller initial sample sizes were not tested but will be in future studies. We further recom-

mend uniform sampling the initial data to balance the respective docking scores to the best
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Figure 8.3: (left) Regression enrichment surface (n = 200, 000) based on the surrogate model
for 7BQY [Clyde et al., 2020b]. The x-axis represents Ã which determines the level of fil-
tering the model is used for (i.e., after predicting over the whole library, what percentage of
compounds then used in the next stage docking). The y-axis is the threshold for determining
if a compound is a hit or not. The point (10−1, 10−3) is shaded with 100% detection. This
implies the model over a test set can filter out 90% of compounds without ever missing a
compound with a score in the 10−3 percentile. In concrete numbers, we can screen 200,000
compounds with the model, take the top 20,000 based on those inference scores, and dock
them. The result is running only 20,000 docking calculations, but those would contain near
100% of the top 200 compounds (as if one docked the entire dataset). (right) Based on
equation (1) we compute the relative speedup using surrogate models over traditional work-

flows with fixed parameters library size (1 billion compounds) and TD = 1.37
samples

seconds node.
The horizontal line indicates where current GPU, surrogate model, throughput is, TSPF, and
the vertical lines correspond to the RES plot values for hit threshold equal to 10−3. The
right-most vertical line implies a VLS campaign with surrogate models where the surrogate
GPU-based model can with accuracy > 99% detect the top 10% from the bottom 90% im-
plying a 10x speedup over traditional methods. By adding surrogate models as a pre-filter
to docking, scientists can dock 10x more in the same amount of time with little detectable
loss.

ability (see Fig. 3). This increased the r2 score by nearly 15% in comparison to randomly

sampling the initial training set (from 0.7 to 0.8). We observed significant improvement in

the regression correlation (0.71 to 0.85) utilizing the larger feature set of molecular descrip-

tors (1826 compared to 1613). The larger feature set includes 213 extra descriptors which

pertain to 3D kernels (though they do not utilize any 3D structure). We recommend utilizing

a quadratic weighting scheme as it decreased MAE the most towards the best docking scores,

and shows insigificant difference on the least well scoring side of scores (which is less likely
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to be an error as a bad docking score plus or minus a few points is still bad) (sec. 5.7).

This paper asks how can standard docking protocols be accelerated for large billion scale

screening? Our timing analysis implies that to achieve a speedup beyond a single order

computation does not need to be faster. Rather, the limiting factor to accelerating the

workflow is a need for more accurate regressor models. Our analysis, outlined in Figure 8.3,

highlights the choice of prefilter threshold as the limiting factor for seeing orders of magnitude

speedup. In particular, focusing on speedups which show no loss of detection, model accuracy

must be pressed forward as there is no path to accelerating traditional docking workflows

without more accurate surrogate models. Given out of box modeling technique can speed up

virtual screening 10x with no loss of detection power for a reasonable hit labeling strategy

(top 0.1%), we believe the community is not far from 100x or even 1000x. The way to get

there is to boost our model accuracies or develop techniques to recover hits in lossy SPFD

regimes (such as not improving model performance but decreasing Ã to 10−2 and applying

another technique to recover the 30% loss of detection power). This benchmark is important,

as successful early drug discovery efforts are essential to rapidly finding drugs to emerging

novel targets. Improvements in this benchmark will lead to orders of magnitude improvement

in drug discovery throughput.

We discuss the relative speedup of utilizing a pre-filter surrogate model for docking cam-

paigns against a traditional docking campaign. We define two workflows for performing

protein-ligand docking over a library of compounds: D (traditional docking, no surrogate-

prefilter) and SPFD (surrogate-prefilter then dock). We construct timing models of both of

these workflows to understand the relationship between computational accuracy, computa-

tional performance (time and throughput), and pre-filter hyperparameter (Ã). We distinguish

between the surrogate model’s accuracy, which pertains to how well the surrogate model fits

the data, and workflow accuracy, which pertains to how well the results of the whole SPFD

workflow compares to the results of just traditional docking workflow.
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As discussed in Section 5.1, the choice of pre-filter hyperparameter is a decision about

workflow accuracy for detecting top leads. Model accuracy influences the workflow accuracy,

but the workflow accuracy can be adjusted with respect to a fixed model accuracy (see

figure 8.3 where the vertical lines each correspond to the same underlying model with fixed

accuracy but differentiate the overall workflow accuracy with respect to traditional docking).

Therefore we can interpret Ã as a trade-off between the workflow throughput and workflow

accuracy. For example, Ã = 1 is always 100% workflow accurate since traditional docking

is run on the whole library when Ã = 1, but Ã = 1 is even slower than traditional docking

as it implies docking the whole library as well as utilizing the surrogate model. We can

determine the overall workflow accuracy with the model by looking at the RES plot, which

is of course has as a factor the performance characteristics of the surrogate model. Given a

particular model’s accuracy versus performance characteristics, different levels of pre-filtering

(Ã), correlate to different tolerances to detecting top-scoring compounds.

For the following analysis, we fix node types for simplicity. Let L be the number of

compounds in a virtual library to screen. Assume the traditional protein-ligand docking

software has a throughput TD in units samples
(seconds)(node), and the surrogate models have a

throughput TSPF. Let tD and tSPFD be the wall-clock time of the two workflows. The time

of the traditional workflow, tD, and the time of the surrogate prefilter then dock workflow,

tSPFD, are

tD =
L

TD
and tSPFD =

ÃL

TD
+

L

TSPF
. (8.11)

Notice, that tSPFD is simply the sum of the time of running the surrogate model over the

library, L/TSPF, and the time of traditional docking the highest scoring ÃL compounds.

The time to train the deep learning model is excluded as it is constant time (assuming

100k docking scores are used to bootstrap the model). Furthermore, the training time of

our proposed neural network is roughly two to three hours on a single NVIDIA A100 GPU

which is rather small compared to the run-time on hundreds of supercomputer nodes for
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large-scale docking studies.

Speedup =
TSPF

TD + ÃTSPF
(8.12)

This implies that the ideal speedup of our workflow is directly dependent on the through-

put of both the docking calculation, surrogate model, and the parameter Ã. Ã is indirectly

dependent on the model accuracy. If the surrogate model was completely inaccurate, even

though Ã = 10−3 implies a 1000x speed up, no hits would be detected. If one wants to

maximize workflow accuracy, that is not miss any high scoring compounds compared to tra-

ditional docking, then they must supply a threshold for hits (corresponding to the y-axis

of RES). Suppose this threshold is ythres = 10−3. If they wanted to maximize not missing

any compounds, they should set Ã to 10−1 based on this model’s RES plot since that is the

smallest value of Ã such that the detection accuracy of the surrogate model is near 100%.

But, it is not always the case downstream tasks require 100% detection—hence Ã is a true

hyperparameter.

We infer TSPF on a Summit (Oak Ridge Leadership Computing Facility) and on an A100

ThetaGPU node (Argonne Leader Computing Facility). Both tests were using 64 nodes, 6

GPUs per node, but the throughput was computed per GPU. We found the V100 summit

node was capable of 258.0K samples
(s)(node) while the A100 nodes were 713.4K samples

(s)(node). We

infer TD as 1.37 samples
(s)(node) based on a CPU docking run over 4,000 summit nodes with 90%

CPU utilization from [Clyde et al., 2021d]. Thus, we can compute the speedup based on a

Summit node head-to-head comparing setting TSPF to 258.0K and TD to 1.37 in Equation

1, resulting in a speedup of 10X for Ã = 0.1. Based on the RES analysis in Figure 8.3, Ã

of 0.1 corresponds to a model accuracy of near 100% for filtering high scoring leads (> 1%

of library). If one is willing to trade-off some loss of detection, say 70% detection of high

scoring leads, then the speedup is 100X. The extreme case, a choice of Ã = 10−3, implies a

speedup 1000X but means only roughly 20% of the top scoring leads may appear at the end.
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Therefore, our analysis of SPFD implies that speedups are essentially determined by Ã

while TSPF does not have as large of an effect (this is based on how fast ML inference currently

is). As a hyperparameter, Ã is dependent on the workflow’s context and, in particular, what

the researchers are after for that SBVS campaign. We can say, though, at least informally,

model accuracy and Ã are highly related. The more accurate the models are, the better the

RES plot gets as one is willing to trust the ML model for filtering the best compounds from

the rest. In figure 8.3, the x-axis of both plots are similar. The accuracy of a particular Ã is

found by setting one’s level of desired detection, the y-axis of the RES plot, and then checking

the (Ã, y) point to see how accurate the model is there. The choice of Ã is subjective based

on how accurate one needs the model for their y-axis threshold for hits. We focus mainly on

the case of no loss of detection, which means Ã = 0.1 for our particular trained models. In

order to focus on the theoretical model of relating computational accuracy, confidence (again,

in a colloquial sense), and computational performance, we simplify over a richer model of

performance analysis assuming uniformity of task timing and perfect scaling. Furthermore,

we chose a head-to-head comparison of a particular node type’s CPU performance to GPU

performance. At the same time, we could have compared the best non-surrogate model

workflow times to the best surrogate model workflow times.

8.4 Conclusion

In this chapter we outline the challenge with standard metrics in virtual ligand screening

since ligand screening is detecting only a small fraction of hits under noisy conditions. We

introduce the concept of regression enrichment surfaces as a model comparison tool. We

then demonstrate that this can be related to computational efficiency of a workflow in order

to characterize that future advances in virtual ligand screening must come from improved

statistical models with decreased error rather than computing speedup.
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CHAPTER 9

CONCLUSION AND OPPORTUNITIES

In this chapter we conclude with summarizing the developments in the previous chapters. I

comment more broadly on different strategies that one can use beyond the HPC/AI work-

flows outlined in this chapter such as generative modeling and coupling it with simulations

(RLMM). The third section will offer some forward looking ideas about how the next order

of magnitude speeds up can be sought. The final section will conclude with ideas around

automated discovery and autonomous laboratories.

In this dissertation, we have presented a particular model of computational drug discovery

based on the idea of virtual screening chemical space M. Chapters 4 through 6 demonstrate

that naive screening is an extremely fruitful process capable of generating drug candidates

[Clyde et al., 2021d]. In chapter 6, we introduce the complication that instead of there

being a single scoring function f , that we can have scoring functions that have increased

computational complexity which we stage molecules through depending on their overall

score. In chapter 7, we introduced that each molecule may in fact not be independent—

the score of one compound can inform calculations about scores of another compound. This

insight can also be connected with a new database conception of using LLMs for queries.

Finally, in chapter 8, we discuss the role of analysis. We argue that without breakthroughs

in the calibration of models and the ability to measure extremes of a distribution with

surrogate models that merely increasing computational speed will not scale drug discovery

much further than the work we demonstrated here. Given this, in the follow three sections I

outline three projects which we think can go beyond the model of drug discovery presented

so far in this dissertation.
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9.1 Reinforcement Learning for Molecular Modeling

Introduction

We present an end-to-end lead optimization system for discovery based on an AI-gym en-

vironment called “Reinforcement Learning for Molecular Modeling" (RLMM). RLMM au-

tomates running fully customizable molecular dynamic simulations inside of an agent-based

molecular design protocol. RLMM is fully autonomous—from a single starting ligand, pro-

tein structure, and configuration file, RLMM cycles through designs for lead optimization

informed by physics-based simulations. RLMM’s design is flexible for integration with fu-

ture autonomous laboratory protocols, with an aim of driving hypothesis generation. The

flexibility of RLMM is driven by a graph-based representation of chemical space which is

made tractable by a generative transformer model.

The multi-step process of drug discovery is incredibly resource intensive. The time it

takes to go from initial compound search to a clinically tested, effective product can range

between 10 to 15 years, and can cost over 1 billion dollars [Hughes et al., 2011]. Consider-

ing the universe of about 1060 possible compounds to traverse for effective drugs, we seek

more efficient, higher throughput, and more meaningful frameworks for compound analysis

[Bohacek et al., 1996a].

Computational and medicinal chemists have noted the small compound libraries used

for HTS are biased towards certain properties and chemotypes [Jia et al., 2019]. One group

found novel and unexpected nanomolar inhibitor for beta-lactamase by increasing the library

size 100 million, going beyond the standard chemotypes in an ultra-large library screen

[Lyu et al., 2019]. Accessing these large-scale libraries is an exciting area with unbounded

potential for new pharmaceuticals and therapies. Machine learning for small molecule design

is used as a lead discovery tool to filter a large dataset or to generate new leads based on

experimental or computational data; however, physics based modeling is often required to
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pursue downstream steps in lead development. Typically, leads from ML techniques are

docked to the protein target with exhaustive rigid docking programs such as AutoDockVina

or FRED—a highly noised indicator of possible activity with the target protein. Advanced

physics based techniques are often used ranging from simple binding free energy estimation

to highly accurate alchemical/relative free energy calculations.

In the pursuit of exploring the novel chemotypes in these libraries, the standard compu-

tational practice will not be sustainable beyond the current sizes of data available. With

the current approach, every compound is typically run through inference property models

followed by docking/physics modeling . While GPU computing has made ML inference very

fast, it still would not be able to screen anywhere near the imaginable small molecule space.

In the short term, high throughput docking/property prediction will be a useful technique

for identifying active compounds in current libraries. Looking forward, a successful approach

has to rethink the exhaustive search bottlenecking drug discovery.

In addition to novel high throughput screening methods, a growing body of work to

improve lead generation and optimization with machine learning (ML) models and artifi-

cial intelligence (AI) frameworks has emerged Since Nichols et. al’s concept of integrated

MD "snapshots" was published in 2011. This includes a diverse array of applications, using

recurrent, convolutional, and graph neural networks for various aspects of small molecule

design [Elton et al., 2019]. Much of this work uses ML/AI as tools in lead discovery, filtering

large datasets or generating new leads based on experimental or computational data. Simi-

lar to high throughput docking techniques, these models are used in a sequenced compound

discovery process. ML inferences are often made, then validated with physics based models

to screen and refine the molecules predicted, where they are then passed to other down-

stream steps in lead development. For example, many ML-based approaches will infer leads

which are then screened with exhaustive rigid docking programs such as AutoDockVina or

FRED [Gentile et al., 2020]. Advanced physics based techniques ranging from simple bind-
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ing free energy estimations to highly accurate alchemical/relative free energy calculations are

also sometimes leveraged to more rigorously explore the compounds coming out of ML/AI

frameworks.

Reinforcement learning has grew in interest and been successful in molecular design

projects [Zhou et al., 2019]. Reinforcement learning recasts many problems as a control

problem, a Markov decision process. The hallmark of a Markov decision process is the

framing of a action space, an agent who takes actions, and a world of states which actions

move between. For drug discovery, this often means framing chemical space as the world,

particular ligands as states, and an agent choosing between ligands. To the best of the

authors knowledge, no work has yet to frame particular protein-ligand complexes as states

to move between. Of course, molecular dynamics simulations can be thought of as having

states (which are snapshots) and dynamics moves between the states. The difficulty of

reinforcement learning has been the connecting all the pieces together. One popular solution

has been the Gym environment [Brockman et al., 2016]. The Gym framework aims to

abstract the various components of a Markov decision process to codeable modules.

The integration of MD simulations with screening has been suggested and sparsely im-

plemented for VS methods. There is most notably a handful of work which addresses protein

flexibility in docking through MD simulation. Recalling the “relaxed complex" scheme devel-

oped in the early 2000’s[Lin et al., 2002], protein flexibility is one of the nuances that affects

the true affinity of a molecule. The target protein itself is not a static object with a fixed

binding site [Lin et al., 2003]. Instead, there are forces acting on the protein from the ligand,

as well as other molecules and solvents in the environment, that determine whether the con-

formation of a molecule is more or less likely at discrete time-steps [Baron and McCammon,

2008]. All the atoms in this environment can be modeled by an equation and parameters,

representing a force field [E Nichols et al., 2012].

Thus, the target’s state is a factor influencing the ligand’s ability to bind [Amaro et al.,
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Figure 9.1: RLMM workflow. RLMM is an AI-driven lead optimization engine. There are
four components of RLMM combined into an end-to-end loop. RLMM begins with a starting
protein structure and docked (or bound) ligand.

2008]. MD simulations can model these state-changes of the target, and the interacting

forces between the ligand and the target, as well as other forces present in the environment.

This allows us to sample different states of the target’s flexible binding sites, and identify

ligands most likely to conform based on the forces present in the simulation [Nichols et al.,

2011]. When a ligand binds, both it’s shape and the shape of the target are altered, and

the entropy and enthalpy involved in this reaction influence the binding free energy, as

well as other components in the overall force field [Baron and McCammon, 2008]. While

docking methods have incorporated the idea of the flexible ligand to some extent, their

approximations of steric complimentarities to score different orientations of the ligand give

far less insight into the question of affinity than the calculation of changes in binding free

energy [Nichols et al., 2011].

We have developed a computational platform merging early stage drug discovery with

late stage physics based molecular dynamics simulations. Reinforcement Learning Molecular

Modeling (RLMM) is a platform for connecting state of the art neural networks to advanced
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and trusted physics-based molecular dynamics software. Our approach combines concepts of

high-throughput in silico computer-aided drug discovery methods with Molecular Dynamics

(MD) simulations. MD simulations create high-accuracy representations of how compounds

may react with a target in a rich, detailed environment. However, due to their computation-

ally intensive nature, they have not been widely used in the high-throughput problem-space.

The common approach is to combine them in a stepped sequence; identify leads through

in silico methods, then preform the time-intensive simulations on the highest scoring com-

pounds. Much of the literature follows this approach [Mirza et al., 2016, Okimoto et al.,

2009, Sivanesan et al., 2005, Shukla et al., 2018, Brameld et al., 2008]. In this paper we aim

to present RLMM as a novel workflow and approach to the lead discovery and optimization

process.

9.1.1 Methods

RLMM connects various state-of-the-art molecular dynamics simulations with a agent-based

policy environment. We outline the basis of the molecular dynamics simulations utilized in

RLMM and describe the methods for navigating chemical space in an agent-based model.

Molecular Dynamics Simulations

Computational tools for assessing the binding affinity for a ligand generally rely on molecular

dynamics simulations. Given the aim to connect machine learning with physics-based mod-

eling, we focus on employing physics based simulations of protein-ligand complexes. Various

software packages exist with an API for creating, running, and analysing molecular dynamics

simulations Standard molecular dynamics models [Eastman et al., 2017b, ?]. Molecular dy-

namics simulations are widely used to estimate the binding affinity of a proten-ligand complex

compuationally [Verkhivker et al., 2001, Comitani and Gervasio, 2018, Mattedi et al., 2019,

Woods et al., 2006, Rick, 2006]. Advanced sampling techniques are also used in molecular dy-
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namics simulations such Markov Chain Monte Carlo (MCMC) or replica exchange [Chodera

and Shirts, 2011, Wang et al., 2013]. Molecular mechanics generalized borne surface area

(MMGBSA) is a technique for estimating the binding affinity of a protein-ligand complex.

MMGBSA methods are less computationally expensive than free energy estimations. Free

energy estimation software packages utilize more complicated achemical techniques [Rizzi

et al.]. We utilize the MMGBSA.py script from Amber20 to estimate the MMGBSA scores

for a series of molecular dynamics snapshots [Case et al., 2021b].

Drug Optimization as a Markov Decision Process

In terms of a Markov decision process, this module aims to define the space of available

actions, As, possible dependent on the current state. In this formulation, the definition of

state depends on the application of the RLMM workflow. For lead optimization, the state

will contain the state of the simulation module as well as the ligand information. Available

actions may depend on the current ligand. RLMM modifies the ligand at progressive steps

in the modeling process. RLMM first generates a set of candidate "actions," or chemical

modifications to the ligand, using one of two example action spaces.

9.1.2 Results

First, we discuss the result of training a transformer model to navigate the scaffold-based

molecular space graph designed in section 7.2. Then we demonstrate the RLMM system

as an end-to-end piece of software (figure 9.1). We perform two lead optimization tasks.

The first task shows the detection and alterations of a known JAK2 Kinase decoy towards

an analog of a known active inhibitor. We showcase the utility of RLMM for optimizing a

known lead for the 3CL-main protease of the SARS-CoV-2 virus. We highlight the ability of

RLMM to highlight potential novel chemotypes similar to known potent series against the

main protease.
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Reinforcement Learning for Molecular Modeling System

We demonstrate an end-to-end modular system for molecular optimization. RLMM code is

available online at github.com/aclyde/RLMM.

Modules

The RLMM package is comprised of five general components that make up the backbone of

the platform: system building, simulation setup, action space, observation space, and policy.

Each of the five components consists of sub-modules with unique properties and behaviors.

The connection between modules is provided by RLMM.

RLMM was designed with the intentions of being extremely modular and flexible in

accommodating the build of a wide-breadth of configuration possibilities. The package is

run by reading in a YAML configuration file, such that the lead optimization is fully ini-

tialized and optimized by parameters provided by the configuration file. Sub-modules are

instantiated and parameters are parsed from the configuration file, which are passed through

lead-optimization deployments via a configuration object containing all of the parameters

detailed in the input configuration file.

With this configuration-based design, a user providing a valid configuration file is able

to fully run RLMM with zero-to-minimal Python or coding experience, thus making RLMM

relatively accessible within the likeness of other molecular dynamics programs. Additionally,

most sub-modules contain default settings. Code-experienced users are afforded the ability

to create and deploy their own policies within RLMM. User-defined policies and actions will

unlock the great potential of RLMM’s lead-optimization, accelerating research by allowing

users the opportunity to exclusively focus on lead-optimization theory while leaving it to

RLMM to automatically handle the environment and observations.
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A B

Figure 9.2: An example of automatic system building. RLMM automatically builds
and places ligands in an aligned position as it replaces the ligand from (A) to (B) automati-
cally. This allows near continuous molecular dynamics runs as the agent modifies the ligand.
By maintaining a close position and automatically building the system, the stability of the
simulated system is maintained.

Automatic system preparation and building

RLMM implements a system builder module designed with lead optimization in mind. The

system building module abstracts the workflow required to take a protein structure and

ligand (possibly already in complex or not) all the way to simulation ready (force field

parameters, solvation, and built MD-ready system with forces specified). The steps can be

broken down into two distinct steps, structure cleaning and parameterization, and OpenMM

system building.

Several packages are built into RLMM to prepare an initial protein or complex structure

for simulation. Initial structures can be provided in a PDB file containing a complex, sep-

arate protein/ligand structures, or just the protein with a proposed 2D molecule structure

(in SMILES). User-provided protein structures are then prepared or "fixed" for simulation.

Often, crystal structures pulled directly from the RCSB Protein Data Bank contain miss-

ing atoms/residues, clashes, and other artifacts that impact downstream preparation such
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as parameterization with a force field [Suruzhon et al., 2020]. RLMM utilizes OpenMM’s

Modeller and pdbfixer, and Open Eye Scientific’s SPRUCE toolkit to fix the initial structure

[Eastman et al., 2017b, OEChem, 2012b, Eastman, 2013].

There are two parameterization protocols built into RLMM using Amber/tleap workflow

or Open Force Field project’s SystemBuilder [Chodera et al., 2021]. Both protocols per-

form similar operations, parameterizing the protein, ligand, and the complex to input into

OpenMM. The AMBER-based protocol uses GAFF force fields for ligand parameterization

and tleap for solvation with TIP3 [Case et al., 2021a, Maier et al., 2015b, Wang et al., 2004b].

The Open Force Field Initiative (OFFP) protocol utilizes Open Force Field Initiative’s small

molecule force field for ligand parameterization, and the Modeller package from OpenMM

for solvation with TIP3 [Eastman et al., 2017b, Jorgensen et al., 1983].

If the initial ligand is not provided, or the proposed system only provides the ligand

structure (via SMILES for example), proteinization and conformer generation is performed

using Omega—tautomers and enantiomers are enumerated prior to conformer generation

[OEChem, 2012b]. Ligand conformations are selected based on the structure building criteria.

The criteria for both the selection of ligand conformation as well as the placement of the

ligand in the protein is user selected. Currently three complex building methods are utilized

and implemented: (1) the conformer which optimizes shape or pharamacmpore overlay with

the previous ligand is selected, and the ligand is placed in that optimized overlay pose

on the protein assuming no clashes. If the ligand clashes with the protein, this method

attempts the next best overlaid conformation. (2) the conformer is selected which has the

highest Chemgauss4 pose score from exhaustive rigid docking utilizing FRED [Mcgann et al.,

2003a]. The ligand conformation is then placed in that docked position or ROCS can be

utilized to place the successful conformation as closely as possible to the prior ligand position

(figure 9.2). Beyond these techniques, users can extend the system building module to

perform the placement and ligand preparation as their workflow requires.
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Typically for lead optimization tasks, tautomers and enantiomers are enumerated for the

incoming proposed analog or perturbation to the previous ligand. Conformer generation

is performed on the ensemble of structures, generating 200-800 3D conformers for every

enantiomer and reasonable tautomer generated. The conformer and placement of the ligand

is selected based on the best shape overlay to the previous ligand. We utilize this system

preparation method for lead optimization to mimic and interrupted simulation, where the

start of the new simulation matches the end of the previous simulation as closely as possible.

Observations

Observation spaces in RLMM convert the state of the molecular dynamics simulations into

a representation for downstream tasks. For example, the simplest observation space passes

a PDB file with the coordinates and topology of molecular dynamics simulation. For dif-

ferent tasks utilizing deep neural networks, a voxelization module is available. Voxelization

takes the unit cell and converts it into discrete 3D voxels. These voxels are contain feature

information such as number of particles in the voxel, their type, and charge.

Observation spaces can also compute the reward or “goodness" of the current state.

Currently, MMGBSA.py is utilized to return the MMGBSA score of the previous simulation

[Miller III et al., 2012, Roe and Cheatham III, 2013]. More complex reward spaces are

available such as utilizing an equilibration sampling method [Chodera, 2016].

Action Spaces

The action space abstraction in RLMM defines the space, or domain, of available actions

available to the policy module. These actions define the transition from state to state

in RLMM. To illustrate the strengths of this abstraction, we provide three implemented

action spaces, with more robust formulations for synthetic chemistry restrictions coming. In

principle, the action space formulation will allow for a robotic laboratory based action space,
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calculating possible reactions given a set of known reactions and in-stock reagents [Lindsey,

1992]. During lead optimization, the goal is to modify a ligand to something similar with

more desirable properties such as stronger binding or other properties. In order to transition

the ligand, we implemented a similarity search, where the action space returns the n most

similar molecules in terms of 3D shape overlay based on a user provided database. The action

space for a given state is then defines as the set of molecules that are the top n most similar

from a given database, such as PubChem. One benefit of this module is that enumerating

the actions is exceptionally fast and all actions are synthetically reasonably, at least up to the

quality of the database used. Candidates are run through the OpenEye BlockBuster filter to

remove those that are not sufficiently drug-like [OEChem, 2012a]. RLMM then selects some

of the candidates to simulate based on the policy. After simulation, RLMM selects a subset

of the simulated ligands for further modification.

The first action space uses the FastRocs toolkit from OpenEye, which utilizes paral-

lel GPUs to search a local database for known active compounds of similar shape to the

given ligand, comparing millions of potential compounds per second [Sheridan et al., 2008].

It returns a configurable number of sufficiently similar compounds for further analysis as

potential modifications to the ligand.

The second action space, "MoleculeGrow," uses the formulation of a molecular action

space from the MolDQN library [Zhou et al., 2019]. It "grows" the ligand by adding a

new atom to it (and a corresponding bond), then checks that it is chemically valid. A new

set of all possible valid modifications is produced and returned at each step. Successful

modifications are grown further at later steps in the modeling process.

The third action space is based on the derivation and models trained in this paper for

a scaffold-based navigation model. In this formulation there are two set ups depending

on the action space format. The action space can be defined through game-like controls

(Predecessor, Expand, Scaffold, Successor). The action space can also be defined through
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sampling neighboring nodes in the hypergraph view of the scaffold-based conception of chem-

ical space. In order to match the formulation of the previous two action spaces, the code for

ScaffoldBased action space follows the latter formulation.

Policies

In each episode of the simulation, the ligand structure will be perturbed to look for better

binding and/or new ligand structures. The changed structure will then persist as the base

structure in the next episode. RLMM supports various policies to allow for flexible choices

in how the ligand will be modified in each episode and which modifications will persist.

Currently, the library implements random and expert policies. In the random policy space,

a stochastic perturbation is made to the ligand and the updated ligand persists to the next

episode. In contrast, the expert policy computes docking scores, then chooses the modified

ligand with the best docking score to persist to the next episode.

Transformation of a JAK2-Kinase Decoy to a Lead Analog

A known decoy for the JAK2-kinase was retrieved from a decoy dataset, DUD-E[Mysinger

et al., 2012a]. The decoy was docked utilizing FRED to a JAK2-kinase structure (PDB:

5AEP) [Brasca et al., 2015]. RLMM ran starting with the inital decoy structure utilizing

an expert policy based on docking scores. The docking score policy took into account the

various conformations explored during the simulations by averaging the score over a series of

snapshots. The ligand was modified X times. The series of modifications is available in the

SI, along with a video of snapshots from the simulation including the alternating ligands.

The ligand with the lowest MMGBSA score was pulled and compared to similarity to known

active compounds.
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Optimizing a lead for SARS-CoV-2 Main Protease

A lead for the main protease was located with a publicly available crystal structure (PDB:

7LTJ)[Clyde et al., 2021d]. The crystal structure was obtained, cleaned by removing waters

and ions, and separated into protein and ligand. The system builder was set to model

explicit waters. Each cycle of RLMM simulated the proposed ligand in complex with the

main protease for 1 nanosecond. After each nanosecond of simulation, the trajectory was

analyzed by computing the MMGBSA score utilizing MMGBSA.py. The local scaffold area

of the ligand was enumerated, and each proposed new molecule was scored based on its fitness

judged by the policy. The policy utilized selected the ligand to simulate next by computing

docking scores against protein conformations seen so far. The system was run for 100 steps,

thus simulating 100 different ligands (and running collectively 100ns of simulation).

9.1.3 Discussion

RLMM is a flexible end-to-end environment for lead optimization. RLMM combines in-

formation from molecular dynamics simulations, generative models for exploring chemical

space, and a policy module to navigate drug design spaces with physics-based simulations.

By its flexible gym-like design, RLMM can be utilized for lead optimization and constrained

by the users for particular use cases.

One challenge of building an end-to-end drug design system formulated as a Markov deci-

sion process was the action space. Previous action space designs have forced non-synthetically

accessible action spaces based on generative models or been unstructured[Zhou et al., 2019,

Popova et al., 2018]. The scaffold-based approach allows for two formulations reinforcement

learning, first based on a discrete action space of growing or contracting a scaffold, and

second

RLMM is well positioned for deployment in future robotic laboratories. Robotic labora-

tories can provide rapid assay screening capabilities to RLMM[Gromski et al., 2020]. RLMM,
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while searching through a particular chemical space, can send successful or interesting com-

pounds to the lab for testing. The feedback from the test can be used to fine tune the

scoring model in RLMM. Given the flexibility of the action space design (for ligand design),

synthetic accessible libraries or even in-stock libraries can constrain the space so RLMM

only searches through compounds that the robotic laboratory has in-stock or can produce

through its reaction capabilities.

RLMM’s integrated design has utility outside of molecular design. Peptides, protein,

and antibody therapeutics have computational methods for simulation and binding affinity

characterization [Vanhee et al., 2011]. In-silico peptide design can be made possible with

RLMM. Peptides can be simulated, and modifications can be ranked and proposed based

on the data from the simulations (such as mutating, adding, or deleting a residue). To

modify RLMM for peptides, the simulation module would need to be modified to allow a

new protocol for simulation which is more suitable for peptide design [Raut et al., 2005].

Future work will follow up with peptide design computational and experimental results.

We present Reinforcement Learning for Molecular Modeling (RLMM), an RL gym-like

environment for lead optimization. RLMM brings together multiple efforts from molecular

modeling to de-novo drug design into a single toolkit aimed to accelerate research in-silico

drug design and autonomous discovery. We present a paradigmatic case of a lead optimisa-

tion from prior work for the 3CL-main protease from SARS-CoV-2 to illustrate the system

moving molecules towards known protease inhibitor designs, as well as creating interesting

analog series to assist the medicinal chemist in the lead-optimization process. Future work is

aimed at extending the system towards peptide design and including detailed experimental

characterization.
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9.2 LLMs as Generative Databases

Recent success of large language models (LLMs) generative abilities has overtaken and ex-

cited many new areas. Much of the debate around their utility and lasting-potential as a

driver of AI developed revolves around the contrast between data-regurgitation and novelty.

The arguments may go: if LLMs are stochastic parrots, then what utility can they actually

have? While this is an interesting research inquiry, this line of argumentation assumes that

stochastic parrots are not interesting computational objects of study. In this article, I take

on a different assumption and ask: in what ways might a parrot be useful?

I argue that LLMs conceptualized as a novel database tool are fruitful for three reasons.

First, certain kinds of database are not amendable to extremely large data (such as graph

databases) and LLMs may be able to provide a speed up both efficacy and memory. Second,

through theorizing LLMs as databases, one can explore the idea of generative versus non-

generative databases, provide deep connections for reinforcement-learning, and on-the-fly

generation and exploration of databases without full enumeration. Finally, the evaluation of

LLMs in situations where fact-grounding is necessary, such as in AI for Science and Security

(AI4SS) or recent EU regulations for high-impact situations, taking a database first approach

to LLMs unravels their scrutability. Rather than imagining LLMs are generative models, we

theorize them as retrieval models with some unique properties. While such an approach is

not ammenable to all database types (such as those with unclear generative functions, such

as social networks), domain-specific knowledge graphs are in scope. Future work in hybrid

approaches between databases and LLMs can be developed for these cases.

9.3 HPC and Drug Design

Future computing systems are being designed with AI for drug discovery in mind. Everything

from national super computing infrastructure to hardware accelerators are focused on virtual
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screening as outlined in this dissertation; however, as argued in chapter 8, it is unlikely these

approaches will deliver new orders of magnitude acceleration in our ability to screen larger

libraries and do so more accurately.

In large, the problem is calibration and accuracy of the underlying methods for under-

standing binding free energy. Current methods such as virtual screening do not take into

account experimental data, AI models are typically bootstrapped from cheap scoring func-

tions, and even simulations in staged workflows are based often on poor molecular force-fields.

Each of these challenges can be overcome, but it will require expanding the basic notion of

virtual ligand screening outlined in chapters 3 to 6 from a naive screening problem to a rich

problem of interrelated samples as outlined in chapter 7.
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