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ABSTRACT

The Internet of Things (IoT) enables connections of trillions of sensors and data collection for

connectivity and analytics. The amount of IoT-generated data has exploded due to the rapid

growth of interconnected IoT devices from a wide range of IoT applications. IoT systems

need an effective solution to ingest, store, and analyze the exploding scale of IoT data to

make the best of the limited resources in IoT systems, such as network, storage, energy, and

computation power. Given that IoT data is endless, heterogeneous, and dynamic, the thesis

proposes new compression techniques to handle those special data features. MOP handles

the endlessness of IoT data by pre-allocating encoding space for the dynamic incoming data

and enables in-situ queries in the encoded domain for fast query execution. BUFF addresses

the heterogeneity of IoT data by applying decomposed but compact encoding space for the

IoT numeric data with different statistics and achieves efficient query execution support

according to the host’s hardware. In addition, IoT’s dynamic data imposes challenges to

traditional compression selection strategies as there is no one-size-fits-all solution for IoT

systems with varying data statistics, complex workloads, and constrained hardware resources.

We introduce AdaEdge as a hardware-conscious encoding selection framework for resource-

constrained devices.
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CHAPTER 1

THESIS STATEMENT

Modern applications and systems are generating vast amounts of data every day. It is

expected that the amount of data generated in the future will continue to grow and largely

be driven by the Internet of Things (IoT) devices. Systems for storing and analyzing IoT data

need an effective solution to ingest, store and analyze the exploding IoT data to make the

best of the limited resources. To solve this problem, we propose new compression techniques

that compress the endless and heterogeneous IoT signal data quickly and effectively while

supporting efficient and accurate query execution according to the hardware specifics. These

compression techniques, together with resource-aware compression selection strategy, can

adaptively select the optimal compression approach to meet the system resource constraints

and workload requirements. The thesis divides the problem into the following research tasks

to achieve the goal.

• Endless streaming data Compression for IoT data should handle the endlessness of

the signal streaming data and adapt to any data distribution change. The compression

should provide efficient in-situ query execution in the encoded space.

• Heterogeneous numeric data An IoT-focused compression approach has to handle

the heterogeneity of IoT data, including the most popular numeric data type with

varying data statistics such as distribution, range, precision. The compression should

also provide efficient query execution on simple and advanced hardware.

• Compression selection for dynamic data The compression selection strategy

for IoT systems should be aware of changing data statistics, workload, and limited

resources, including network bandwidth connectivity, local storage and computation

power.

1



CHAPTER 2

INTRODUCTION

Internet of Things (IoT) systems generate massive amounts of heterogeneous data from

diverse sensors every second. Interconnected smart IoT devices, including consumer elec-

tronics such as smartphones, smart home devices, autonomous vehicles, wearables, and

connected healthcare, are widely used by IoT applications. Collecting a large amount of

sensor-generated data series is a critical first step before any downstream analytics are per-

formed. Recently, the International Data Corporation predicted that the global amount of

data will reach 175 ZB by 2025 [93]. Billions of IoT devices will be a significant driver of

this growth, which contributes more than 50% of the data volume. To keep up with the

storage demands stemming from all this data creation, new effective data storage layout and

compression techniques are necessary, instead of relying on increasing capacity supplied by

the storage industry or costly public cloud resources.

Many IoT systems use the cloud as a data storage and query processing backend. De-

pending on the IoT system design, the sensor sends data to its hub node - an edge device or a

router. The data is ingested and assembled into segments before sending to the cloud. Then

the data processing steps, such as compression, indexing, archiving, and query, are typically

processed on the cloud side. However, the cloud backend IoT framework has the following

problem: data transmission to the cloud is costly, especially for use cases with unstable or

poor network connections. Additionally, all raw data is uploaded to the cloud, including

useless data which may never be touched in the future, which wastes network and storage

resources.

As edge devices are getting more computational power and edge computing is becoming

more popular, pushing down compression, query, and analysis to the edge is an appealing

option. It is beneficial to many system by minimizing the data size needed to send, saving

network bandwidth, saving the edge and cloud resources for storing data, and speeding up the

query with the right encoding techniques. Such pushing down also allows query processing on
2
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Figure 2.1: Various categories of IoT sensors

the edge directly, which could significantly decrease query latency and make the system more

robust to the network disconnection. All these benefits contribute to the system’s overall

cost saving on storage, network, and computation. However, the edge is usually resource-

constrained compared with cloud capabilities in terms of network bandwidth, storage, and

computation power. The limited resource brings challenges to compression design and query

execution, which are not well addressed by traditional compression approaches. Therefore,

more dedicated compression solutions are necessary for IoT systems.

The compression for IoT data should consider three unique features of real-time IoT data:

IoT data is heterogeneous, endless and dynamic. IoT system generates heterogeneous

data because of the variety of data acquisition devices [69], as is shown in Figure 2.1. The

heterogeneous data here does not only mean the data with many different data types

but also the data with varying data statistics, including range, precision, cardinality, and

distributions. IoT data typically differs from this historical dataset. The traditional analysis

3



over static and fixed data that can provide whole date statistics for the data processing and

compression task. In contrast, the IoT system generates endless streaming, and its statistics

change over time dynamically.

To compress IoT data efficiently, we need to build dedicated compression approaches

for IoT data and a compression selection framework to handle dynamic data features and

different system constraints. This thesis proposes MOP [73] to address the endless IoT

data by providing efficient single pass, best effort order-preserving dictionary encoding for

streaming data. The thesis also introduces BUFF [72] to deal with the heterogeneous data

from IoT systems by enabling range and precision aware decomposed float compression for

IoT numeric data. With an extensive evaluation of many compression for IoT data, we

find there is no one-size-fits-all solution for IoT data compression. An adaptive compression

selection strategy is needed to choose the best compression fit for the incoming IoT data

based on the data statistics and workload. This thesis proposes AdaEdge as a dynamic

compression selection framework for resource constrained devices. We here give each system

a high-level overview as follows.

MOP: Dictionary encoding, or domain encoding, is an important form of compression

that uses a bijective mapping to replace attributes from a large domain (i.e. strings) with

a finite domain (i.e. 32 bit integers). This encoding both reduces data storage and allows

for more efficient query execution. Traditional dictionary encoding only supports efficient

equality queries, while range queries require that encoded values are decoded for evaluating

the predicates. An order-preserving dictionary allows for range queries without decoding by

ensuring that encoded keys follow the same order as the values in the dictionary. While this

approach enables efficient queries, it requires that the full set of values is known to create

the mappings. In this work, we bridge this gap by introducing mostly ordered dictionaries

that use a best-effort dictionary generation based on sampling the input dataset. Query

evaluation on a mostly ordered dictionary avoids decoding when possible and gracefully

degrades performance as the ratio of ordered values decreases.

4



BUFF: Modern data-intensive applications often generate large amounts of low precision

float data with a limited range of values. Despite the prevalence of such data, there is a

lack of an effective solution to ingest, store, and analyze bounded, low-precision, numeric

data. To address this gap, we propose BUFF, a new compression technique that uses a

decomposed columnar storage and encoding methods to provide effective compression, fast

ingestion, and high-speed in-situ adaptive query operators with SIMD support. Compared

to the state-of-the-art float compression techniques, BUFF achieves up to 50× speedup for

filtering and aggregations, and 1.5× improvement for ingestion with a single thread, while

offering comparable compression sizes to the state-of-the-art approaches.

AdaEdge: Different compression approaches may have varying accuracy impacts and

efficiency on different workloads. There is no one-size-fits-all compression solution for IoT

systems with varying data statistics, workloads, and hardware constraints. The thesis

introduces AdaEdge as a hardware-conscious encoding selection framework for resource-

constrained devices. AdaEdge is a best-effort compression selection framework to preserve

application-critical information as much as possible within the system constraints. AdaEdge

uses a LRU based compression policy to compress the data based on its staleness and impor-

tance. AdaEdge applies multi-armed bandit algorithm to assist the compression selection,

optimizing workload targets such as compression ratio, compression throughput, workload

accuracy, or their weighted combinations. It provides lossy and lossless compression selection

depending on the hardware constraints. AdaEdge supports an online mode to handle the

network constraints for edge node, and an offline mode with data evolving policy to conserve

workload-specific information.

In the rest of this dissertation, we first present the aforementioned mostly dictionary

encoding designed for endless streaming data in Chapter 3, and range and precision aware

decomposed float compression in 4. We introduce AdaEdge as a hardware-conscious encoding

selection framework for resource-constrained devices in Chapter 5. The thesis concludes in

Chapter 6.
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CHAPTER 3

MOSTLY ORDER PRESERVING DICTIONARIES

Database compression is critical for current data-intensive systems where the rate of data

growth is outstripping growth of processing speeds, memory capacity, and I/O bandwidth.

Columnar databases enable efficient compression in two primary ways. First, the ability to

organize data by attributes reduces entropy and thereby improves compression effectiveness.

Second, through use of columnar encoding [9] (i.e. run-length encodings, delta encoding, and

dictionary encoding) the database supports efficient in-situ query processing, whereas prior

use of byte-oriented compression (i.e. gzip, snappy) requires decompression as a blocking

step before query execution [47], which can be CPU-intensive [40].

While all columnar encodings offer compression benefits over unencoded data, query

benefits can be limited given the value domain and data distribution [9]. For non-numeric

data types, such as dates and strings, dictionary encoding can translate a large and near

infinite domain to a smaller finite and dense domain, often integers [97]. Dictionary encoding,

or domain encoding, creates a bijective mapping from an arbitrary infinite source domain

(value domain) to a fixed size target domain (code domain). The translated codes as well as

the mapping are stored as the encoded result. Since the domain is smaller, it allows values

further compression using methods such as bit-packed encoding (e.g. truncating unnecessary

bits, such as using 3 bits to represent integers 0-7) [97, 55], as well as supporting fast query

execution via efficient hardware instructions [55]. As a result, dictionary encoding is widely

supported in many analytic platforms systems [101, 18, 97, 1, 75, 48], and offers significant

benefits for string data types that are common in many domains, such as enterprise data [41]

and open data initiatives [55]. Note that we limit our focus to global dictionaries that

maintain a single mapping for an entire column, instead of a local per-block dictionary.

For query filtering with equality predicates, dictionary encoding allows the query to

translate the predicate value(s) to the code domain and evaluate the predicates directly on

the encoded data. Prior work studies variations of dictionary encoding algorithms on their
6



trade-off between compression ratios and decoding speed [78]. However, for query range

predicates, the system must decode encoded values to evaluate the predicates. To avoid this

expensive translation, the use of order-preserving dictionaries can allow range predicates

to be evaluated without decoding [20]. Here, order-preserving dictionaries work by ensuring

that encoded keys maintain the same order as values (e.g. for mappings k1 = v1 and k2 = v2,

k1 < k2 iff v1 < v2). Note that we refer to order-preserving dictionaries as OP for short.

Generating the mapping to support OP dictionaries comes at a cost. If the code domain is

a finite domain, such as 32-bit integers, then the entire set of values must be known and fixed

before the dictionary encoding can occur, as preserving the order requires sorting the values

first [20]. If the code domain is an infinite domain, such as double values, an order preserving

scheme can be generated for a set of unknown values using a Dewey Decimal style coding,

where new values can be inserted using increasing precision [103]. While this approach works

when the domain is unknown or not-fixed, it suffers from reduced compression (e.g. larger

code domain values and no bit-packing), less efficient CPU operations, and lacks the ability

for dense SIMD operations that depend on small key values [55].

Order 
Preserving

Finite 
Domain

Unknown 
Values

Pick
Two

Figure 3.1: Tension between three properties of OP dictionary

Therefore, in Figure 3.1, we propose a conjecture for dictionary encodings that it is im-

possible to simultaneously provide more than two out of the three properties: the dictionary
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is order preserving (i.e. OP), the encoded keys have a finite domain (i.e. integer codes),

and if the encoding tolerates an unknown value domain (i.e. unknown values). For example,

if we support an unknown value domain and OP, the integer code domain property can be

violated when there is no more “code space” for new values, and a more complex code do-

main must be used to keep the OP property. Otherwise, if we require OP and integer codes,

recoding (e.g. redoing the encoding with a known domain) is needed when there is no valid

code space to maintain ordering.

While many applications know the domain of values to encode a priori, several important

scenarios exist where the values are unknown when the encoding occurs. First, for data that

is continuously being loaded into a data warehouse or lake, the entire set of values may not

ever be known or known before analysis must begin – either of which could prevent use of an

OP dictionary if integer codes are desired. Second, for massive static datasets, generating

an OP dictionary requires taking a full pass on the dataset before encoding to learn the full

value set. Given the potential costs of scanning and parsing the dataset, this extra pass may

be prohibitive for scenarios that want to begin analysis quickly.

Observe that if a dictionary encoding supports unknown values and an integer code

domain, we may achieve the OP goal by pre-allocating a huge code space for a dictionary,

but at the cost of larger bit representation for each value. Despite this, one cannot guarantee

there will be no code space conflicts in the future, especially in the presence of skewed

data distributions. This inability to guarantee ordering though, leads to the key research

questions of this paper which are can a database system leverage a dictionary encoding that

is partially ordered and given the ability to sample a dataset, what is the ideal pre-allocation

key allocation?

In this paper, we present a best-effort order preserving dictionary encoding: a mostly

order preserving dictionary encoding (MOP). It pre-allocates a code space for an order

preserving dictionary based on estimated statistics, such as record count and cardinality.

A backup code space is reserved to handle potential code space conflicts, which we explore
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both with unordered and cascading ordered variations. For distributed generation, MOP

leverages a leader protocol to synchronize and update local dictionary views of its writers.

For a MOP that has 90% of the keys ordered, we are able to reduce query filtering latency

by up to 47% compared to decoding a standard dictionary, and 9% slower than a order

preserving dictionary according to our experiments. In addition we propose a nested MOP,

Cascade-MOP or C-MOP, that minimizes the amount of disordered data at the cost of more

complex query evaluation.

To evaluate the effectiveness of MOP, we implement a prototype within the open-source

columnar format Parquet [18]. With this prototype we consider how to construct a MOP

without knowing the value domain a priori and demonstrate how to leverage MOP to ac-

celerate range queries and sort operators. The rest of the paper is organized as follows.

Section 4.1 discusses related work. Section 4.2 overviews MOP and key definitions. Sec-

tions 3.3 and 3.4.2 cover MOP generation and query execution respectively. Section 3.4.3

evaluates MOP for both range filtering and generation. The paper concludes in Section 3.7.

3.1 Background

While there is a large body of research on compression and encoding for columnar databases,

we mainly focus on dictionary encoding and its query optimizing on encoded data. In this

section, we review previous efforts on this topic. We first introduce dictionary encoding and

review the state-of-the-art, then briefly discuss consensus protocols which our dictionary

encoding is based on in a distributed environment.

3.1.1 Dictionary Encoding

Dictionary encoding creates a bijective mapping between values of variable length to compact

integer codes, and replaces the original data entries with corresponding codes. The dictionary

used in the encoding process is then attached to the encoded data, as part of the encoding
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output. Dictionary encodings are information-lossless as described by Lempel and Ziv, and

such encodings can achieve the theoretical lower bound of compression ratio defined by

Shannon entropy [66, 114]. A dictionary can be global or local. For global dictionaries, a

single dictionary is used for the entire column; for local dictionaries multiple dictionaries

exist, and each are valid only for some partition of the data (i.e. block, page, or row-group).

Dictionaries may be random such that keys are assigned with no order, or may be order-

preserving such that keys preserve an order of the values (e.g. for mappings k1 = v1 and

k2 = v2, k1 < k2 iff v1 < v2). Note that while order-preserving dictionaries can be local or

global, they primarily are used for global dictionaries for query performance benefits [20].

Compression techniques help reduce I/O operations and data storage, and therefore are

prevalent for analytic systems. Many byte-oriented or block-oriented compression techniques

require data to be decompressed before querying [53]. These compression techniques, such

as GZip and Lempel-Ziv [115], typically require expensive CPU cycles. Columnar encoding

schemes, such as run-length encoding or dictionary encoding, trade-off CPU overhead for

larger storage and the ability to directly query on the encoded data [9].

Research has explored optimizing dictionary encoding for database systems. Chen et

al. [30] proposes a hierarchical dictionary encoding scheme for string attributes, supporting

encoding at different granularities (attribute level, word level, prefix level, etc.). Paradies

et al. [87] demonstrates an entropy-based approach that is adaptive to user query patterns.

Column-oriented databases, such as MonetDB [117] and C-Store [101], use dictionary en-

coding to allow arbitrary types to be converted to consecutive integer codes; this enabling

other encoding schemes, such as bit-packing (i.e. truncating unnecessary bits), run-length

encoding, and delta encoding to be applied, further reducing storage size.

In addition to the encoded data storage, the dictionary itself can have substantial con-

tribution to storage space. Muller et al. [78] make a thorough comparison between various

dictionary compression algorithms regarding decoding speed and space consumption, and

propose an empirical decision tree based approach to select a dictionary algorithm that is
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either optimized for access speed or storage space on a given dataset. Zukowski et al. [118]

propose PDICT compression scheme that allows infrequent values to be exceptions from the

dictionary in order to reduce dictionary size on skewed frequency distributions, thus better

compression performance.

In addition to compression, research explores how dictionary encodings affect query per-

formance. Chen et al. [30] design a compression-aware optimizer to estimate overhead

brought by accessing compressed data. Ray et al. [92] and Abadi et al. [9] show that by

rewriting query predicates, one can efficiently skip the decoding step and execute queries

directly on encoded data, which is beneficial to query performance due to reduced I/O re-

quests and leverage in MOP. Jiang et al. [55] demonstrates how a SIMD-based algorithm

can filter up to 18 billions entries per second on dictionary encoded data that is bit-packed.

While standard dictionary encodings only support querying directly on encoded data

for equality predicates, an order-preserving dictionary [14] can support direct evaluation for

range queries. For non-supported queries, either the encoded values must be decoded using

the dictionary and evaluated against the predicates, or the predicates must be evaluated

against the entire dictionary and passing keys are recorded. Antoshenkov et al. [15] propose

an order-preserving data structure for DBMS and Binnig et al. [20] adapt the idea for in-

memory analytic databases. Order preserving dictionaries require that the entire value space

is known before encoding the dataset.

Dictionaries can be implemented using various data structures, such as an array, hash

table, or trie [43] and different compression strategies, such as Huffman coding, Hu-Tucker

coding [51], front coding [110], and RE-PAIR [65]. These compression strategies have full

access to entire value corpus and thus can achieve better compression ratio, they all suffer

from higher latency and low throughput [59], rendering them unsuitable for many database

applications. In this paper, we focus our discussion on hash table-based dictionary with no

compression strategy applied on the dictionary.
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3.1.2 Consensus Protocol

When multiple distributed, shared-nothing nodes participate in the dictionary generation

process in parallel, consensus protocols need to be employed to ensure a global unique key-

value mapping. Consensus protocols are a family of algorithms for distributed systems that

makes sure when multiple write attempts for a key occur, only one value is chosen for all

participating nodes.

Many previous systems employ consensus protocols that provide eventual consistency to

improve system throughput. Wuu et al. [111] presents using distributed logs to maintain

unified dictionary views on each node. Amazon’s Dynamo [34] designs a key-value store that

employs a quorum and version based eventual-consistency algorithm to resolve value-conflict

between nodes. These are closely related to our distributed-dictionary generation problem.

However, in our scenario, each node encodes data stream and emits the results to output

devices in real-time. Nodes only maintain local data copies of limited size, and are not

allowed to re-encode data that has been written out. Eventual consistency does not fit in

this case as there’s no time bound on when a change will be propagated to nodes, which

may cause incorrect data to be emitted. In this paper, we limit our discussion to consensus

protocols that are able to provide a stronger consistency guarantee. We focus on two families

of consensus protocols: protocols with a distinguished leader, such as GFS [46], Raft [79],

and RAMCloud [80], and decentralized protocols, such as Paxos [64].

Protocols with Distinguished Leader In this type of protocol, a unique node is

designated([46, 80]) or elected([79]) to be leader, and all other nodes serve as followers.

Followers who want to make write operations send requests to leader, who computes a final

image based on the requests and broadcasts the results to all followers.

The distinguished leader protocol approach is easy to understand and simpler to imple-

ment [79]. In addition, the leader always maintains an up-to-date image of global dictionary,

allowing easy access to the information. However, a single leader architecture is vulnerable

to single node failure and requires a complicated process to recover. In addition, the leader
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node can easily become performance bottleneck under high throughput.

Decentralized Protocols Two-phase commit (2PC) and Paxos are well-known decen-

tralized protocols. These protocols allow any node in the system to propose a change. The

nodes then vote to approve or reject the change. A unanimous agreement (2PC) or majority

agreement (Paxos) is needed for the change to be approved. A decentralized protocol is

more robust against single node failure, and allows the throughput to be evenly distributed

among nodes in the cluster. But it may generate more network traffic when voting to reach

an agreement. It can also suffer from competition of requests from different nodes and thus

fail to make progress when trying to reach consensus. Bully algorithm [45] alleviates the

blocking issue by always allowing the nodes with higher ID to move on.

In this paper, we implement both the distinguished leader protocol and decentralized

protocol 2PC with bullying for distributed dictionary generation.

3.2 MOP Overview

Here we introduce the MOP organization, key space layout, necessary data structures, and

a natural extension of MOP.

3.2.1 MOP Definitions

A Mostly Order Preserving Dictionary (MOP) is a bijective mapping of keys K and values

V consisting of two sections. As shown in Figure 3.2 the first section is order preserving

and the second is not. Key space is pre-allocated for the ordered section and the disordered

section grows as needed, such that after initialization the MOP specifies at most m keys are

ordered, while the dictionary can grow to n keys (with n ≥ m).

The initialization phase looks at a sample (or head) of records from the dataset to be

loaded by collecting statistics and a set of values (B) to bootstrap the ordered section.

These values are distributed evenly throughout the ordered section. Our allocation strategy
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Figure 3.2: Key space for MOP dictionary

determines how much space to use for the ordered section and how keys should be spaced

in the section. During the generation phase, when inserting a value v ∈ V into the MOP

to get its corresponding key k, we distribute the incoming items into the ordered section.

When code space conflicts happen (e.g., cannot insert the value without violating ordering),

the unsettled items will be appended to the end of code space in the disordered section

sequentially (e.g., v’s key k will be m < k ≤ n). We refer to this as a spillover. Given a

MOP dictionary, ordered ratio r is defined to indicate the proportion of ordered entries in

the dictionary:

r = 1− n−m+ 1

|V |

A padding ratio p is defined to indicate the proportion of empty keys in the ordered space:

p =
n− |V |

n

We use r and p for query and storage evaluation respectively. Therefore, the goal of MOP is

to maximize the ordered ratio r as much as possible, while trying to avoid excessive “bloat”

of the key space by minimizing p. In Section 3.3 we discuss how MOP allocates keyspace

and assigns keys. Note that unless bit-packing is specified prior to encoding, n is not fixed

and can grow. If bit-packing is used n is fixed and the dictionary can only hold 2n keys, and

if additional keys are needed the dictionary must be entirely recoded (e.g. regenerate). For

the rest of the paper we focus on the case where n is dynamic, unless specified.

Given that it is impossible to guarantee that the ordered ratio of a MOP = 1, there will

be some records that cannot fit into the ordered section. A natural extension to explore
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Figure 3.3: Key space for C-MOP dictionary

is instead of a single ordered section, is cascading ordered sections before defaulting to a

disordered section.

3.2.2 Cascade-MOP

With a Cascade-MOP (C-MOP), we nest multiple levels of order-preserving sections before a

single disordered-section. By default we limit nesting to eight levels, but this is configurable.

Here, when spilling a value to the disordered section we instead treat it as a new order-

preserving section. Rather than appending to the end of the key space, we allocate a new

nested ordered key space for those unsettled items. For this new zone we allow for refinement

in our allocation strategy, in particular how much space to allocate and how to bias the initial

placement of spilled values. We call each order-preserving section an OP zone. Figure 3.3

shows the layout of a C-MOP with k levels. The first zone runs from keys (0,e0), the

next from (e0 + 1, e1), and so on until the number of OP zones grows until it reaches the

user-defined limit (8 by default). A final disordered section exists after the OP zones. In

Section 3.3.2 we discuss determining the number of cascading levels.

3.2.3 Dictionary Generation Assumptions

For this paper we assume there is a single coordinator (thread, process, or node) that is

responsible for assigning keys to values. There are n workers (threads, processes, or nodes)

who are each reading a partition of a data file that contains records to write to a database.

For attributes that are encoded using a dictionary, each worker maintains a local copy of

the dictionary. When a value is to be encoded it first checks the local dictionary, and if
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the value is not found it requests the key from the coordinator by providing the value. For

performance reasons, the worker may batch requesting values together and the coordinator

may batch requests from workers together – this is respectively referred to as worker batch

size and coordinator batch size. When waiting for keys the workers block writing the current

data records, and the leader broadcasts new keys to all workers, which is subsequently added

to their local dictionaries when processed. Once the key for the value is found the worker

writes out the encoded key for the record. We assume that once a worker writes an encoded

value it cannot be changed, unless the process restarts (e.g. recoding). While we discuss the

process for one attribute encoding for a data load, the process works for multiple attributes

with separate metadata and attribute identifiers in the request.

3.3 Methodology

In this section we discuss the steps of MOP and C-MOP generation. This is broken into

three main steps: initialization, encoding, and finalization. For C-MOP, we explain how

spillover differs. For exposition we assume there is a coordinator managing the dictionary

and multiple workers encoding values and requesting keys from the coordinator. We assume

a shared-nothing architecture with workers starting with a distinct partition of the input

dataset. Other approaches, such as threads with locks, are valid with minimal changes.

3.3.1 Initialization

When generating a new dictionary all workers notify a coordinator about the attribute to

encode, which may come from a file containing multiple attributes. This message includes

the worker’s coarse estimation about the data to encode (i.e. file size). The leader responds

by requesting from each worker a sample of the dictionary to bootstrap the MOP. We refer

to the percentage of records as lookahead ( i.e. a lookahead of 0.10 is a 10% a sample). The

worker preprocesses the sample of records before sending out a sample of the dictionary,
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Figure 3.4: MOP generation example

which includes a set of records and several features (i.e. sortedness, estimated cardinality).

These features help the coordinator understand the values to encode. By default, workers use

the head of the file to sample unless otherwise specified. In rare cases, the leader will force

workers to redo sampling using a uniform sampling strategy. This occurs if the features

collected from workers indicate a high probability the attribute is sorted. To determine

sortedness of an attribute, we use Kendall’s τ which generates a real number in [−1, 1]. An

output of 1 denotes a fully sorted attribute and −1 denotes a fully inverse-sorted attribute.

Once the sample is collected, the number of unique values in the sample data is counted

and divided by the lookahead proportion to determine the estimated cardinality of the unique

values in the data. The size of the order preserving section’s key space is pre-allocated based

on the estimated cardinality and a slack parameter which determines slack space between

keys. The sample values are then uniformly distributed over the key space as shown in Figure

3.4. It is worth noting that this process could leverage more advanced sample-based distinct

value estimators [29]; however, our experiments in Section 3.6.3 show these approaches add

limited value to MOP performance. Given apriori distribution information, the sample values

can be biased to the distributed key space, which we discuss in Section 3.6.3.

The space left between two ordered keys allows new input unique values to be ingested

if encountered later in order to retain the overall ordering. We calculate this slack space
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by dividing a controlled parameter pitch by the lookahead proportion. By adjusting pitch,

the slack space can be scaled to allow for more or less key space available for new unique

value batches. A higher pitch gives a larger initial dictionary with more space between the

bootstrapped values. Too much slack may result in a dictionary to be sparse or padded (e.g.

many empty cells), and too little slack results in the inability to order keys properly. As we

later show, C-MOPs can achieve a high ordered ratio with a pitch of 1, and single layer MOPs

can benefit from a pitch of 3, but this increases the key space. Once the initial bootstrapped

dictionary is generated, the coordinator sends it to all workers, and the encoding process

begins.

3.3.2 MOP Encoding

In the encoding stage, the remaining unique values get inserted into the MOP in groups of

values, or batches. Each worker can batch a configured number of values (worker batch) then

send them to the coordinator, which in turn can batch a set of requests (coordinator batch)

to insert into the MOP. In addition to amortizing message overhead, batching multiple values

for insertion can help with proper spacing of values and reduce spillover.

For every value in each batch, if there is space in the order preserving section, the value

is inserted there uniformly between the two already inserted ordered values that the new

value’s ordering falls between. If multiple values in this batch fall in the same range, they

will be evenly spaced. Figure 3.4 shows a sample key insertion for the first batch values.

If no space is left for inserting a value in the ordered section, the value will be spillover

either to a disordered section for MOPs or to a cascading ordered section for C-MOPs.

MOP Spillover

With MOP, when values spillover they are added sequentially to the end of the dictionary

in the disordered section. For example, in Figure 3.4 in the second batch, no space exists

for carrot between bean and cherry. The carrot value then gets appended to the end of the
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ordered key space in the disordered section. This batching process repeats until all data has

been processed.

C-MOP Spillover

The C-MOP encoding process works in a similar fashion, with the difference being when

there is no space left in an order preserving section for inserting new values, the spillover(s)

may create another order preserving zone. Here, the process will add any pending requests

to the current set of values to encode. All spilled-over values will be used to seed the next

OP zone. Spillover can result in creating a final disordered section if we believe the encoding

is nearing completion or we hit a prescribed maximum number of OP zones, which is the

strategy we use.

When creating the next OP zone, we determine how large to make the zone based on

the prior zone’s size multiplied by a MOP zone ratio, which is set between 0.20 and 2.0.

To determine the ratio we examine the estimated cardinality for the prior zone (scaled by

estimated progress of the dataset), and the observed cardinality for the prior zone(s). If the

observed cardinality is less than the estimated cardinality, we set the MOP zone ratio to

0.2 with the expectation that the spillover is due to the distribution being slightly deviated.

If the observed cardinality is much higher than the estimated cardinality, we set the ratio

closer to 2.0 as we assume our estimates were way off or that the distribution in the dataset

has changed and we should account for larger capacity to avoid introducing an additional

OP zone.

We explore biasing the placement of values into new OP zones using a histogram of the

prior zone(s). Here, we create a histogram of values bucketed on the original sample values.

We then look at all values currently inserted into the dictionary and count the number of

values that either landed between the sample values or would have landed between the sample

values if space permitted. Next, we partition the new OP zone into sections whose sizes are

scaled by the histogram data. Values inserted into these OP zones will be distributed evenly
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within their respective sections. As we later demonstrate, this approach works well under

certain use cases, but we opt for the same MOP allocation strategy of uniformly placing

values in the key space for simplicity.

3.3.3 Finalization

Once all values are encoded, the process is finalized. For each OP zone and the disordered

section we create a zone map of min and max values for query evaluation and record the

starting position of this zone (i.e. the first key). Figures 3.2 and 3.3 respectively show the

final organization for MOP and C-MOP. The generated dictionary is written to the output

file.

3.4 MOP Queries

In this section, we describe how MOP/C-MOP supports query operator execution efficiently.

MOP is optimized for equality predicates, range predicates, and sorting. These operators

can work directly on encoded data with little or no decoding overhead. For other operators,

data needs to be decoded and materialized, just as when using a normal dictionary. The

goal of our query evaluation is to rewrite any query q that filters or sorts on a MOP encoded

attribute x, such that it minimizes decode operations and evaluates as much of the query

directly on the encoded keys, as opposed to evaluating predicates against decoded values.

3.4.1 Equality Operator

An equality operator (x = va, x ̸= va) can be performed efficiently on MOP just as on a

normal dictionary. When taking x = va, for example, we first check if there exists a key

k in MOP satisfying MOP (k) = va. A miss means no value in the column matches the

predicate and the execution can return prematurely. Otherwise, we scan the encoded entries

ki, looking for ki = k. This operation skips decoding operations on the encoded entries and
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thus saves CPU overhead.

3.4.2 Range Operator

Without loss of generality, we discuss in this section how to execute an inclusive range

operator (x ∈ (va, vb)) on a MOP encoded column; the approach can be generalized to a

compare operator, exclusive ranges, and like predicates with constant prefixes, as well as

conjunctive and disjunctive combinations of these operators.

MOP and C-MOP can both be viewed as a combination of multiple order-preserving

dictionaries (OP) and an unordered dictionary (DIS), where MOP contains only one OP,

and C-MOP can have multiple OP sections. We first discuss the execution of a range

operator on OP and DIS separately, then show how to combine the results to obtain the

final result. An inclusive range operator for an OP can be easily extracted from a query

q via query rewriting. To evaluate x ∈ (va, vb), we first find the corresponding key range

ka = min({k|OP (k) ≥ va}) and kb = max({k|OP (k) ≤ vb}), then perform a scan on the

encoded column, looking for entries satisfying k ∈ (ka, kb). This process involves no decoding

operations.

When executing a range operator on DIS, we compare the zone map (vmin, vmax) of DIS

against the query range and consider three cases.

Type 1 (vmin, vmax) ∩ (va, vb) = ∅. In this case, DIS does not contain any value within the

query range, and can be safely skipped for the query.

Type 2 Here, the query range and zone map overlap. In this case, for the keys in DIS we

perform a decode operation and compare the decoded result against the range. Let ks

be the starting key in DIS. For each encoded entry k, we check k ≥ ks to make sure

the key belongs to DIS, and, if so, we decode v = DIS(k) and check if v ∈ (va, vb).

This operation only involves decoding keys belonging to DIS, which is relatively small

compared to decoding the entire column.
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Type 3 (vmin, vmax) ⊆ (va, vb). In this case, all keys in DIS are included in the query range.

Let ks be the starting key in DIS; we can rewrite the range query to be k ≥ ks and

execute it on the encoded column. This involves no decoding operations.

As a MOP contains two sections, OP and DIS, with disjoint key ranges, executing a range

operator on MOP is equivalent to first applying the operator to OP and DIS separately

then performing a disjunction of the results. As an example, we consider a query x ∈

(apple, cherry) on the MOP shown in 3.4. The operator on OP is rewritten as k ∈ (0, 4). As

“cherry" is within the zone map of DIS, we also need to perform decoding for keys belonging

to DIS, which yields k ≥ 14 ∧ decode(k) ∈ (apple, cherry). The result, as the disjunction of

the two parts, is then

k ∈ (0, 4) ∨ (k ≥ 14 ∧ decode(k) ∈ (apple, cherry))

Similarly, query x ∈ (apple,mango) will be translated to k ∈ (0, 11) on OP, and, as

“mango" is larger than vmax of DIS, it is translated on DIS as k ≥ 14, and the result is

k ∈ (0, 11) ∨ k ≥ 14
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Min_val,Max_val, Start_pos etc.OP Zone 0 Zonemap OP Zone 1 Zonemap OP Zone 
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Figure 3.5: Steps for range filtering with C-MOP

C-MOP is comprised of multiple OP sections and a DIS section, with their key ranges
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non-overlapping, and thus can be processed in a similar manner as described above in MOP.

More precisely, we first execute the operator on each section independently and perform a

disjunction of the result. To further optimize query evaluation, we utilize a zone map for

each ordered section, or zone, to minimize unnecessary zone look ups. To further optimize

the result, we also perform range merging. If the final result contains range clauses that

are adjacent to each other, e.g., k ∈ (k1, k2] ∨ k ∈ (k2, k3), they will be merged together

as a larger range k ∈ (k1, k3). This step reduces the number of ranges to be evaluated and

potentially improves efficiency. This is shown in 3.5. Evaluating a range operator for a

C-MOP works as follows:

Check the zone map for the disordered section to decide the query type: As with

a MOP, step (1) is to check the type of query to determine if the disordered section is needed.

Check the zone map for each OP zone to see if skipping is possible: For each OP

zone, step (2) checks its zone map before getting the appropriate keys in that zone. If the

query range is disjoint with zone map, this zone is skipped.

Range query translation per OP zone: If skipping a zone is not feasible, for step

(3) the range query is translated into the qualified key range for this OP zone (i.e. ka =

min({k|OP (k) ≥ va}) and kb = max({k|OP (k) ≤ vb})). After query translation, each OP

zone outputs either skipped or a qualified key range that is added a disjunctive predicate.

Qualified range merging: A large number of qualified ranges adds more integer operations

for verification on each record. In order to eliminate unnecessary compare operations, we

merge key ranges into a larger one if they are adjacent in step (4).

3.4.3 Sort Operator

A sort operator for a MOP shares similar logic with range filtering, by leveraging the or-

deredness of the MOP dictionary. To avoid decoding the disordered section, we temporarily

expand the key space to sort disordered keys in relation to the sorted section. The MOP

sort operator pre-scans the dictionary and temporarily assigns dictionary entries in the dis-
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ordered section with a float key that follows the orderedness in the ordered section and new

float keys. We then build a mapping from the old integer code to the new float code for

entries in the disordered section. We apply a sorting algorithm on encoded integer values

and translated float values, without decoding any values.

sort(k)

0 1 2 3 4 5 6 … m-1 m m+1 … n

OP Zone
Zonemap:
Min_val,Max_val, Start_pos etc.

Ordered Section Disordered Section

Zonemap

Figure 3.6: Sort with MOP

To perform sort operation on a MOP encoded column, we create a bijection sort : N → R

which maps all keys in MOP (OP,DIS) to a real number space, satisfying that

1. For (k, v) ∈ MOP , the dictionary (sort(k), v) is fully order-preserving.

2. For k ∈ OP, sort(k) = k.

With property 1, we can apply sort to the encoded entries {ki}, and do a merge sort on

the sequence {sort(ki)}. In addition, by property 2, the dictionary sort uses contains much

less entries than MOP (it only contains keys in DIS), making the sorting operation more

efficient than first decoding the entries and then perform sorting.

Now we explain how to define the bijection sort for MOP (OP,DIS). We construct a

sorted list Lsort, and a dictionary Dkey. For each entry (ko, vo) ∈ OP , we insert vo into Lsort.

Then for each entry (kd, vd) in DIS, we perform a search in Lsort to find two adjacent entries

(v1, k1) and (v2, k2) satisfying v1 < vd < v2, insert vd into Lsort, and insert (kd,
k1+k2

2 ) into

Dkey. The sort bijection is then defined as

sort(k) =

 k k ∈ OP

Dkey(k) k ̸∈ OP
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The goal of our experimental evaluation is twofold. The first section evaluates MOP’s

and C-MOP’s ability to improve query performance for range filtering and sorting. We

compare these against order preserving and dictionaries that require decoding (e.g. non-

order preserving). We evaluate across varied ordered ratios and selectivity ratios with a

synthetic and real-world dataset. The second section evaluates MOP’s and C-MOP’s ability

to generate highly ordered dictionaries and to understand what are the critical factors in

doing so.

3.5 Experimental Setup

All experiments were performed on servers with 2 Intel(R) Xeon(R) CPUs E5-2670 v3 @

2.30GHz, 128GB memory, 250GB HDD, Gigabit Ethernet, and Ubuntu 14.04. Experiments

use a real-world dataset of taxi rides from New York City [7], the lineitem table from TPC-H,

and two synthetic datasets derived from an English word dictionary based on uniform and

zipf distributions. Unless otherwise stated we use scale factor 30 for TPC-H and 15 million

rides from the taxi dataset. The default MOP configuration has a lookahead of 0.1, pitch

size of 1, and a worker batch size of 20. The default C-MOP layer ratio is 0.2.

For these experiments we use the Parquet file format as our query performance testbed.

Parquet is an open-source column-oriented file format for distributed analytic frameworks,

such as Spark and Impala [113, 63]. It provides efficient data compression and encoding

schemes with the ability to handle complex nested data types (e.g. lists and maps) [75]. In

the Parquet file format, values from each column are logically organized to be adjacent and

physically stored in contiguous memory locations for improved compression and query I/O.

Parquet supports distributed writers by storing metadata at the end of the file. As Parquet

only has native support for local dictionary encoding, we add a global dictionary encoding

feature into Parquet. We write a stand-alone query engine in Scala that filters and joins

on attributes with equality and range predicates. Depending on the query and encoding

predicate evaluation can occur directly on the dictionary key (i.e. query rewriting) or by
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Figure 3.7: Parquet Columnar Store Format

decoding the encoded keys.

As shown in Figure 3.7, a Parquet file is made up of several row groups, which are

indexed by block metadata saved in a file footer. A row group consists of several column

chunks with metadata also in the file footer. In each column chunk, there are data pages and

a dictionary page if dictionary encoding enabled. The dictionary is stored in a dictionary

page per column chunk. Columns are aligned in row group level, which means all data for a

given row is organized in the same row group. In the file footer metadata is organized about

column chunk metadata, zone maps (e.g. min, max and number of nulls), encoding, and

compression information. In order to evaluate query performance of both local dictionary

and global dictionary with the same system, we implement global and OP dictionaries in

Parquet.

3.6 Evaluation

We firstly show query performance on MOPs encoded datasets to prove their abilities of

improving query performance for range filtering and sorting operator. Then we show MOPs

generation experiment results to understand the critical factors of generating MOPs.

3.6.1 Range Filtering Evaluation

In this section, we encode the given dataset under different MOP or C-MOP configurations in

order to generate various ordered ratios. Order preserving and standard dictionary encoded

datasets are generated for comparison. All encoded datasets are stored in Parquet’s file
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taxi dataset

format.

Using a stand-alone Java query execution framework, we evaluate the three types of

range queries discussed in Section 3.4.2 by decoding dictionary keys (decoded) and directly

evaluating queries on keys via query rewriting (direct). In the following experiments, we

use MOP Decoded for cases where we use the MOP organization but fully decode every

value for checking the predicate, and we use MOP Direct to indicate best-effort filtering on

encoded keys when possible (i.e. types 1, 2, and 3). Dict Decoded represents filtering on a

dense dictionary (e.g. no padding) when decoding every value for a predicate evaluation. OP

Direct indicates a dense sorted dictionary with predicate evaluation without any decoding on

an OP encoded dataset. For all filtering evaluation, we do not materialize the output values

and instead evaluate as a filter for late materialization that creates a bitmap indicating the

records that satisfy the predicates [101]. Unless otherwise stated, we run each query 15 times

and report the average running time.

Taxi Dataset Filtering

We evaluate query performance on the taxi ride dataset. We encode column pickup_latitude

from the trip_data table with OP and MOP dictionary encoding respectively and use Par-

quet’s default encoding for other attributes [7]. With MOP’s default configuration, we can

achieve a 94.2% ordering. We manually tune MOP parameters to get dictionaries with

different ordered ratios.
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Figure 3.8 shows the range query performance on the default MOP encoded dataset

compared with the OP encoded dataset. MOP Direct performs similarly to OP Direct in

terms of range filters for Type-1 and Type-3. The two counterparts have similar performance

as neither decode the value during query processing. However, MOP Decoded is about 10%

slower than Dict Decoded for all types of range queries as there are more entries in the

MOP dictionary due to dictionary padding. For Type-2 range filters, MOP Direct is slightly

slower than OP Direct but is still far more efficient than decoded filtering. We have a detailed

analysis on Type-2 range queries with varying ordered proportions in following experiments.

Figure 3.9 shows the percentage of records encoded by ordered key versus MOP ordered

ratio. Unlike the linear trend for TPC-H, which has a uniform distribution, the percentage

of records encoded by ordered key grows rapidly on the Taxi dataset. This is typical for

skewed distributions as it is more likely to capture the frequent records early. Therefore,

Type-2 range queries can still perform efficiently with small MOP sorted ratios (i.e. 30%).

As shown in Figure 3.10, Type-2 direct filtering on MOP encoded datasets takes more

time as the ordered ratio decreases, as more values need to be decoded. MOP Decoded

performs better at the same time due to fewer entries being present in the MOP dictionary.

Regardless, MOP Direct always outperforms the best decoded filter, even on datasets with

low ordered ratios.

TPC-H Dataset Filtering

Using a TPC-H dataset of scale 30, we encode the table lineitem into a Parquet file with

different dictionary encodings for the shipdate column and Parquet’s default encoding for

other columns. We apply a range filter on the shipdate column with varying selectivity.

We achieve a 100% ordered ratio on the shipdate attribute with the MOP default space

allocation strategy. Therefore, we manually adjusted our space allocation strategy to get

MOP encoded files with different ordered ratios. In the following experiments, we fix slack

to 5 and change the lookahead.
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In Figure 3.11, we show the performance of three types of range queries on datasets

with different dictionary encoding variations. We generate a MOP encoded file with an

ordered ratio of 90.1% by manually setting the lookahead to 0.00001. These results show

that direct query on MOP performs 1.5 to 2.2 times better than the regular decoded query

version but 7% to 14% slower than a direct query on OP encoded datasets. The two direct

queries perform quite similar to each other on Type-1 range queries, while they have a

relatively greater performance difference on Type-2 and Type-3 queries. MOP direct Type-

2 queries are slower as they decode records with keys from the disordered section before

verifying the records. It is also slower than OP direct query on Type-3 queries as one more

integer operation is needed to verify the records with disordered key. Even though disordered

section decoding is not eliminated for Type-2 range queries, the MOP Direct query is still

quite efficient because decoding is avoided on more than 90% of records. MOP direct query

performance for Type-2 range queries varies as the proportion of records encoded by the

ordered section changes, which is further dependent on the MOP ordered ratio. Again, Figure

3.9 shows the percentage of records encoded by the MOP ordered section increases uniformly

as the MOP ordered ratio increases. This trend is typical for most uniformly distributed

workloads as every value has relatively similar frequencies. Therefore, the MOP direct query

performance on Type-2 range queries should be proportional to the MOP ordered ratio.

As we decrease the lookahead from 0.0001 to 0.000001, the MOP ordered ratio decreases
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Figure 3.14: C-MOP range filter on taxi dataset with increasing the number of cascading levels.

from 99.8% to 25.9%. Figures 3.12 and 3.13 show the query performance for Type-2 queries

on a dataset with different MOP ordered ratios. The dashed lines show the baseline query

times for the regular decoded query and direct query on an OP encoded file, and the bars

show the query time on a MOP encoded file with corresponding ordered ratios. Overall, the

decoded query becomes more efficient as the ordered ratio decreases as less key space is used

for the MOP dictionary, resulting in more efficient value decoding. However, it does not

offset the overhead caused by an increased decoding workload in the MOP direct query. As

more values need to be decoded for a direct query, the query time increases proportionally

as the ordered ratio decreases. Please note that the datasets we are using are tuned to show

the Type-2 query performance on different ordered ratios. However, we can achieve 100%

ordered ratio using MOP default settings, where MOP’s performance is almost identical to

that of OP.

C-MOP Filtering

Figure 3.14 shows range filter performance for a C-MOP with an increasing number of cas-

cading levels for the Taxi dataset; TPC-H results are not included as it does not benefit

from cascading due to its uniform distribution and low cardinality. Three sub-figures cor-

respond to types of range filters respectively. In this experiment set, there are 1 qualified

key range and 2 qualified key ranges on C-MOP datasets for queries of Type-1 and Type-3

respectively after range merging. For Type-2 queries, the number of qualified key ranges is
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always equal to the number of OP Zones after range merging. With deeper cascading levels,

there will be more OP Zones thus more qualified key ranges need to be checked, resulting

in more integer operations for each record. However, the overhead from checking multiple

qualified key ranges is alleviated by qualified range merging and offset by fewer disordered

keys needing to be decoded. Therefore, the increasing cascading level shows minimal impact

on filtering performance overall and in the next section we demonstrate space savings gained

by cascading.

3.6.2 SORT Evaluation

In this experiment, we implement a MOP sort operator based on a recursive quick sort

algorithm as described in Section 3.4.3. Figure 3.15 shows the sort performance on the Taxi

dataset. The bars indicate end-to-end sorting time for a MOP encoded dataset with different

ordered ratios, and the dashed lines show the baseline query time for regular decoded sorting

and direct sorting on an OP encoded file. Overall, MOP sorting is slightly worse than OP

direct sorting, but outperforms a decoded sorting. In spite of some inevitable translation

overhead for entries from the disordered section, sorting operations primarily on integers and

some floats are far more efficient than that of strings. MOP sorting takes more time as the

ordered ratio decreases as there is more encoded value translation needed from entries in the

disordered section. However, MOP sorting is still superior to decoded, even with a relatively

low ordered ratio.

3.6.3 MOP Generation

In this section, we analyze the effects of changing each of the MOP generation parameters:

lookahead, pitch, number of layers, and MOP layer ratio. We also look at the MOP’s ability

to dynamically adjust the number of keys allocated and the way values are distributed based

on incoming data. We measure MOP generation performance by looking at the runtime of

the generation and the ordered percentage of the resulting dictionary when using different
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Figure 3.15: SORT Operator Runtime

datasets. Given the results of the prior section, for many workloads an ordered ratio of at

least 70% gives the largest filtering performance improvement, which is trivial to achieve

for most cases. As the ordered ratio nears 90%, filtering performance nears that of order

preserving dictionaries. For many of these experiments, we highlight a trade-off between

space and orderedness to allow the reader to understand how the impact of generation

parameters. Based on these observations we believe a pitch size of 1, lookahead of 10%,

worker batch size of 20, and at least 3 cascading layers with an auto layer-ratio set to 0.2

results in a good compromise of orderedness and performance. Therefore, unless otherwise

stated, the experiments use this configuration. The default setup uses one server for the

coordinator and one for all workers, with experiments including network latency in runtimes.

As shown in Figure 3.16, we evaluate MOP, C-MOP and OP generation performance with

scaling the number of workers. We also show a local non-ordered dictionary as a performance

baseline. For MOPs, we use a configuration with lookahead of 10%, worker batch size of

100. For C-MOP, we use a cascading level of 4. In Figure 3.16(a), the dictionaries are

generated on the shipdate of the lineitem table with TPC-H scale 30. In Figure 3.16(b), the

dictionaries are generated on the pickup latitude of the full taxi dataset, which is roughly 30
32
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Figure 3.16: Average generation time.

GB and 125,000 values spread over 173 million records. This experiment parses the input

CSV file and writes out the entire Parquet file. The leader and workers are co-located on

a single machine that has 16 HDDs striped via RAID 0. Note that for a single OP worker,

one process reads the file, sorts the keys, and then writes the file. For multiple workers,

each worker reads their segment and sends values to the leader, who after sends the updated

dictionary for workers to encode with. MOP is faster than OP in most cases and preforms

close to local dictionary encoding in TPC-H due to the relatively low cardinality. When

the cardinality for the target column is relatively high, as with taxi, MOP has overhead

for frequent coordination with the leader. MOP outperforms OP in most cases due to not

learning the domain first (i.e., OP 1st scan), except for occasional cases with few workers

where one worker blocks more than others when waiting for keys (i.e. 2 workers on Taxi).

C-MOP performs quite close to MOP in terms of generation time as C-MOP only applies

more key allocation for the spillover values, whose number is usually small.

Lookahead

For these MOP generation experiments, we test MOP performance when changing lookahead

(sampling rate of the first X% of the file). Here, all datasets use approximately 173 million

records. Figure 3.17(a) shows resulting ordered percentages and speeds of generating MOPs
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Figure 3.17: Evaluating the effect of lookahead on MOP generation performance (Runtime and
Ordered Percentage).

with different data skews. Skewed datasets have more repeated values, so key allocation

costs are reduced leading to lower runtimes. Skewed workloads are also more predictable,

leading to higher ordered percentages.

The higher variation in the uniform distribution workloads resulted in less predictable

data that also lead to lower ordered percentages. Generating a MOP using the taxi dataset

also resulted in higher ordered percentages than either of the synthetic workloads. This is

because MOP predicted that the cardinality of the data was larger than it actually was,

resulting in extra slack space being allocated. This extra slack space allowed a higher per-

centage of batch values to fit in the ordered section at the cost of a more inflated key space.

In Figure 3.17(b), we also show the costs of different lookahead percentages. As expected

there is a linear growth for the datasets due to sampling from the head of the file, and the

Taxi dataset is slower due to parsing 14 attributes to encode a single attribute. The Zipf

and Uniform workload each only has one attribute per record, reducing the CPU intensive

task of parsing and validating [40]. This result shows that high lookahead percentages can

come with a high cost.
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Figure 3.18: Evaluating the effect of pitch on MOP ordered percentages using uniform, zipf, and
taxi workloads.

Pitch

Here we discuss the impact of scaling the slack space between sampled values with the pitch

parameter. The slack space, or the empty space left between sample values, is calculated by

dividing pitch by lookahead, which for these experiments is set to 10%. In Figure 3.18, we

show how adding more space in between sample values affects the MOP’s ability to make

ordered datasets. Overall, all workloads see similar benefits from an increase in pitch with

respect to the ordered percentage.

As pitch scales the initial space between sample values, it changes the amount of room left

for encoding values in the ordered section of the dictionary, which results in fewer values in the

disordered section. By changing the pitch, we are able to adjust the ordered percentage of the

resulting MOP, but to increase the ordered percentage we incur the costs of having a larger

key space, which can result in a larger file (Sec. 3.6.4) and worse query performance [55].

Worker Configuration

For these experiments we measure how worker batch size and the number of workers affects

MOP generation. In these experiments, we do not materialize the encoded file, the leader

process and worker processes are run on different machines to account for network latency,

and the generation is run on files with 100, 000 values. Figure 3.19(a) shows how changing the
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Figure 3.19: Worker configurations

the worker batch size affects the runtime of the MOP generation. By increasing the amount

of batching being done by the workers, we increase the number of new values the worker

will discover at once. As all values new to the worker need to be sent to the coordinator

as a proposal, increasing the amount of items sent at once will decrease the total number

of messages that need to be sent. This will in turn reduces message passing overhead and

subsequently runtime. In Figure 3.19(b), we show how parallelism, through adding more

workers, affects the speed at which a MOP can be generated. As expected, we see that

the sharp decrease in the runtime early on indicates that the MOP generation is able to

effectively leverage parallelism, but with adding many workers the benefit gains diminish as

the coordinator is not able to allocate keys faster than the workers propose them. Partitioning

the keyspace for multiple leaders could enable higher parallelism if needed.

Coordinator Batch size

This experiment shows how changing the coordinator batch size, or the number of worker

proposals being received at once before processing, affects the MOP generation. The coor-

dinator batch size was tested for values between 1 and 22.
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Figure 3.20: Evaluating the effect of coordinator batch size on MOP generation runtime using
uniform and zipf workloads. 24 workers are being used with worker batch size set to 1

In Figure 3.20, we show that, for uniform workloads, by increasing the coordinator batch

size, up to a point, the key allocation process runs faster as the coordinator can process

groups of values more efficiently than a single value at a time. However, by making the

coordinator do more work before sending keys back to the workers, we incur costs on the

worker side because the workers must wait for a response before they continue processing

values. This results in the eventual increase in runtime that happens with large coordinator

batch sizes. Unlike the uniform workload, the zipf workload does not see much change in

runtime as workers will not have to send as many messages to the coordinator. This means

leader does not need to process many values, and the workers do not need to wait for many

responses.
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Impact of C-MOP Layers’ Size and Spacing

These experiments show how additional C-MOP layers affect ordered percentages, where all

values within any C-MOP layer are considered ordered and all values that fail to fit into any

level to be included in the disordered section. The tests in Figure 3.21 show that increasing

the layer count increases ordered percentage as each successive layer creates more space for

encoded values to be inserted into. Figure 3.21 also shows that increasing the MOP layer

0.0 0.5 1.0 1.5 2.0
MOP Layer Ratio

0.6

0.8

1.0

Or
de

re
d 

Ra
tio

Zipf 1 Layer MOP
Uniform 1 Layer MOP
Taxi 1 Layer MOP

Zipf 2 Layer C-MOP
Uniform 2 Layer C-MOP
Taxi 2 Layer C-MOP

Zipf 3 Layer C-MOP
Uniform 3 Layer C-MOP
Taxi 3 Layer C-MOP

Figure 3.21: Evaluating the effect of MOP layer ratio on MOP ordered percentages using uniform,
zipf, and taxi workloads.

ratio parameter increases the ordered percentage of the dictionary. The first layer of the

C-MOP is calculated in the same fashion as in the normal, single-layer MOP. The successive

layer sizes are set by multiplying the previous layer size by the MOP layer ratio. For example,

if the MOP layer ratio is 0.20 and the first layer’s key space size is 1000, the second and third

layer key space sizes would be 200 and 40 respectively. In this experiment, we tested ratios

between 0.10 and 2.00. Larger ratios result in larger key spaces of the new layers, so more

space exists in the ordered part of the dictionary for new values. Therefore, by increasing

this ratio, we can increase the orderedness of the MOP, but the size of the key space being

allocated will grow. Given these results and the minimal query overhead, we believe at least
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three layers should be used. In the following experiments we further analyze the impact of

sizing the layers.

Handling Distribution Changes

In this section, we will discuss the C-MOP’s ability to correct for a worst-case scenario of

large changes in incoming data distributions. By recalculating the estimated cardinality

when new layers are being created, the C-MOP can dynamically grow the MOP layer ratio

if the number of distinct incoming values was underestimated initially. This ratio will be

set between 0.20 and 2.0 as previous experimental data showed that a too small ratio would

not sufficiently increase ordered percentage and a too large ratio would over-inflate the key

space.
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Figure 3.22: Evaluating the effect of dynamic MOP layer ratios when correcting for data distribution
changes.

To demonstrate how C-MOP can correct for large distribution changes, we ran an exper-

iment on a synthetic file where the first 20% of the file had a zipf distributed workload and

the remaining 80% was uniform. When varying lookahead from 10% to 50%, Figure 3.22

shows how 1, 2, 4 8, and 16 layer C-MOPs using both a static MOP layer ratio percentage
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of 0.20 and the dynamic MOP layer ratio handles distribution changes based on the amount

of data collected on the new distribution.

For lookaheads less than or equal to 0.20, both single layer MOPs and static ratio C-

MOPs performed poorly as they had no information of the distribution change. However,

dynamic ratio C-MOPs expect to need more space after seeing the distribution change, and

work to correct initial estimated cardinality mispredictions. Furthermore, as each successive

layer will have more time to learn, adding additional layers will greatly improve ordered

percentages. This shows that adaptively changing the MOP layer ratio allows for robustness

in the presence of adverse datasets.

Cardinality Estimation

Table 3.1 compares our simple cardinality estimator that divides the number of distinct values

in the sample by the lookahead and a more advanced adaptive estimator [29] that separately

estimates high frequency and low frequency cardinalities based on the sample. As the simple

estimator generally overestimates the actual cardinality, it generates MOPs/C-MOPs with

more padding and a higher ordered ratio than the adaptive estimator which generally has

lower and more accurate cardinality predictions. For good MOP generation performance,

we look to have a high ordered ratio and a low padding ratio to improve query performance

and decrease file size. However, there is a tradeoff between the ordered and padding ratios.

Increasing the number of keys allocated to the ordered section of the dictionary will increase

the ordered ratio at the cost of extra padding and vice versa. As the cardinality estimation

only affects the size of the key space, it does not improve general MOP performance. On a

given dataset, for a fixed pitch, an estimator could have good ordered ratio performance, good

padding ratio performance, or be somewhere in the middle. Scaling the key space through

pitch allows the MOP to be easily tuned along the ordered ratio-padding ratio performance

spectrum for any given cardinality estimate–so long as the estimate is not completely off base.

As our simple estimator and adaptive estimator produce reasonable estimates, we chose to
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use the naive estimator as it is less computationally expensive. However, as described in the

next experiment, the ordered ratio-padding ratio trade-off results in no padding ratio benefit

when using one estimator over another.

Method Pitch
Ordered 
Ratio

Padding 
Ratio

Ordered 
Ratio

Padding 
Ratio

Ordered 
Ratio

Padding 
Ratio

1 0.711 0.699 0.662 0.457 0.910 0.850
2 0.818 0.840 0.802 0.688 0.950 0.924
4 0.891 0.918 0.896 0.837 0.975 0.962
8 0.945 0.956 0.950 0.959 0.988 0.981
1 0.470 0.265 0.686 0.501 0.755 0.356
2 0.582 0.481 0.813 0.711 0.796 0.540
4 0.698 0.677 0.902 0.848 0.868 0.755
8 0.806 0.823 0.953 0.923 0.919 0.868
1 0.960 0.740 0.743 0.532 0.979 0.879
2 1.000 0.868 0.890 0.741 1.000 0.939
4 1.000 0.933 0.973 0.867 1.000 0.970
8 1.000 0.966 1.000 0.933 1.000 0.984
1 0.621 0.302 0.771 0.573 0.821 0.445
2 0.779 0.529 0.903 0.761 0.865 0.615
4 0.934 0.720 0.975 0.877 0.932 0.800
8 1.000 0.853 1.000 0.938 0.985 0.893

C-MOP 
Adaptive

Zipf Uniform Taxi

MOP 
Simple

MOP 
Adaptive

C-MOP 
Simple

Table 3.1: Evaluating cardinality estimation techniques.

Key Space

Here we compare key space sizes between single-layered MOPs and multi-layered C-MOPs

with both the simple and adaptive estimators. For each experiment, we adjusted the pitch

until dictionaries were 70%, 80%, and 90% ordered. The average key space needed to achieve

these ordered percentages are shown in Figure 3.23. All MOPs were generated using the

same sets of zipf, uniform, and taxi data. C-MOP generation can better leverage key space

in several, smaller order preserving sections than one large one as new layers can correct

for distribution changes and help correct mispredictions made while sampling. By adding a

second layer, we can generally see a reduction in the key space needed to produce a dictionary

when compared to single-layered MOPs. The MOP generation is better able to leverage the

allocated space in several, smaller order preserving sections than one large one. If the initial
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sample is not fully representative of the distribution of data, there will be values that the

MOP did not account for. These values will then overflow into the successive layers and

influence the distributions of the new layers. The layering in C-MOPs can then work to

correct mispredictions made in the initial sampling process.
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Figure 3.23: Evaluating the space saving benefit of C-MOP with regard to padding ratio.

The choice of estimator is also shown to have no effect on the padding ratio as reaching

a target ordered ratio requires adjusting pitch until a specific slack value is reached. For

example, to achieve an ordered ratio of 0.70, there needs to be enough slack space between

sample values for 70% of the data to fit into the ordered section(s), regardless of the initial

cardinality estimation.

MOP generation performance with regard to padding is dependent on the distribution of

values, so we do not see any padding benefit when using different estimators. We therefore

use a simple estimator as it is less computationally expensive.

Figure 3.24 also shows how different techniques for allocating keys to successive layers

affects the key space used. When the distribution stays constant throughout the file, as in

the uniform workload, a significant benefit can be had by using a histogram of the previous

data to influence the distribution in the successive layers. The histogram insertion technique

is able to make corrections based on all data seen before the first spillover into a new layer, so

it is able to notice congested segments in the dictionary and take care of values that spill over
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in these regions effectively. However, in cases where distributions do not stay constant, the

uniform insertion technique has small benefits over the histogram method. As the uniform

method does not bias key spaces based on any previous information, it is not penalized for

predicting wrong, which may happen when changes in incoming values cause spillovers in

unexpected ranges, like seen in the zipf and taxi workloads. Therefore, while a histogram

based approach can benefit certain cases, we opt for simplicity and stay with a uniform

allocation strategy.
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Figure 3.24: Evaluating the benefit of C-MOPs with regard to padding ratio when using uniform
and histogram insertion techniques for the second layer.

Column Sortedness

As described in Section 3.3.1, MOP draws the sample from the file head by default and falls

back to a uniform sampling strategy if the file appears sorted (i.e. Kendall’s Tau [60] ≥ 0.8

or ≤ −0.8). In Figure 3.25 we observe generating a MOP on sorted columns to justify this

approach. Experiments are run on both a sorted and randomized version of three different

columns, one with a zipf distribution, one with a uniform distribution, and one from the taxi

dataset. The MOPs for the randomized columns were generated using a head sample, and

the MOPs for the sorted columns were generated using both a head sample and a uniform

sample. Each sampling strategy for each column was then used to generate both a 1-layer
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MOP and an 8-layer C-MOP.
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Figure 3.25: Evaluating the impact of sorted data and sampling strategy on a MOP’s ordered ratio.

When using head sampling on sorted columns, MOPs have poor ordered percentages. All

batch values being inserted after the sample will be greater than the largest already inserted

value, so the only available room in the ordered section is in the remaining space after the

last sample value.

When forced to resample uniformly, the sample values will reflect the overall column

distribution, so ordered percentages increase. However, generation then incurs the costs of

taking a uniform sample. To read and parse the file sequentially, the entire column may

have to be read before the batching process. In certain cases, sampling may be cheap, such

as a large file stored on a distributed block store, and uniform sampling is then preferred.

For this work we target head-based samples, as we assume that random access is expensive

and reading random records is expensive due to string escape characters (e.g. line breaks

occurring outside of record delimiters).
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3.6.4 Overall Compression Performance

In this experiment set, we mainly focus on dictionary and bit-packing hybrid encoding com-

pression performance. With dictionary encoding only, there is no storage overhead difference

for MOP regardless of the key space used, as each record always takes exactly 4 bytes, which

is not the case when bit-packing is introduced. Here, we use bit-packing encoding to further

encode the targeted attributes in the previous experiment and report the column size. We

use bit-packing locally in each partition of a Parquet file (called row groups) that truncates

the keys to use the fewest bits to represent the largest key in the partition (i.e. 3 bits needed

for keys 0–7).
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Figure 3.26: Encoded Column Size and Dict Padding

As is shown in Figure 3.26(a), the dashed line indicates the column size for the order

preserving dictionary encoded dataset and the bars show the column size for MOP encoded

datasets. The blue line corresponding to the right vertical coordinate represents the padding

ratio in the MOP dictionary. For certain ordered ratios there is the same storage cost

compared with OP. Even though the key space used for MOP increases, the number of bits

to represent the max value does not change. For TPC-H one more bit is added on each record

for the dataset with ordered ratio from 72.0% to 90.1%, and two more bits are needed if we

want achieve MOP ordered ratio 99.8%. Three more bits are needed to get MOP ordered
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ratio > 90% on targeted attribute of the Taxi dataset. According to our experiment, 9.9%

and 11.3% extra storage (compared with OP encoded column size) are required respectively

for targeted attribute in the TPC-H and Taxi dataset to achieve a MOP ordered ratio > 90%.
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Figure 3.27: Scanning and decoding 180 million values.

Figure 3.27 shows the impact of padding ratios on scanning and decoding. Here, we take

TPC-H lineitem shipdate and generate various MOPs with varied padding ratios (via ordered

ratios). We then do a full scan of the column and decode every encoded key sequentially.

These results show that a larger dictionary negatively impacts decoding performance.

3.7 Conclusion

In this paper we introduce mostly order preserving dictionaries (MOP) for supporting ef-

ficient range queries on encoded datasets. We present a technique for generating a MOP

with a limited sample of the input dataset while minimizing the size of the dictionary. In

addition, we introduce a variation that uses cascading MOPs (C-MOP) that has multiple

levels of ordered keys. We present query rewriting rules to minimize decoding of keys to

minimize predicate evaluation latency. We implement MOP and C-MOP in the open-source

columnar framework, Parquet, and evaluate query and generation performance. Our results
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demonstrate that MOPs are able to accelerate range filtering and sorting, and achieve high

order ratios with small samples.
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CHAPTER 4

DECOMPOSED BOUNDED FLOATS FOR FAST

COMPRESSION AND QUERIES

Modern applications and systems are generating massive amounts of low precision floating-

point data. This includes server monitoring, smart cities, smart farming, autonomous ve-

hicles, and IoT devices. For example, consider a clinical thermometer that records values

between 80.0 to 120.9, a GPS device between -180.0000 to 180.0000, or an index fund be-

tween 0.0001 to 9,999.9999. The International Data Corporation predicts that the global

amount of data will reach 175ZB by 2025 [93], and sensors and automated processes will

be a significant driver of this growth. To address this growth, data systems require new

methods to efficiently store and query this low-precision floating-point data, especially as

data growth is outpacing the growth of storage and computation [85].

Several popular formats exist for storing numeric data with varied precision. A fixed-point

representation allows for a fixed number of bits to be allocated for the data to the right of

the radix (i.e., decimal point) but is not commonly used due to the more popular floating-

point representation. Floats (or floating-point) allows for a variable amount of precision by

allocating bits before and after the radix point (hence the floating radix point), within a

fixed total number of bytes (32 or 64). For floats, the IEEE float standard [50] is widely

supported both by modern processors and programming languages, and is ubiquitous in

today’s applications.

However, two main reasons result in floats not being ideal for many modern applications:

(i) an overly high-precision and broader range that wastes storage and query efficiency; and

(ii) not being amenable for effective compression with efficient in-situ filtering operations. For

the former reasons, many databases offer custom precision format, typically referred to as a

numeric data type. For example, consider Figure 4.1 that shows how precision varies for the

IEEE float standard and sample application requirements on GPS and temperature datasets.
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Figure 4.1: Many datasets only span a fixed range of values with limited precision, which is a small
subset of broad float number range and precision.

The numeric approach allows for “just enough” precision but is not well optimized for efficient

storage and filtering. Several methods have been explored for the latter reason, but due to

the standard format, compression opportunities are limited for compression effectiveness,

throughput, and in-situ query execution. This paper proposes a new storage format that

extends the ideas of a numeric data type that supports custom precision but is optimized

for fast and effective encoding while allowing to work directly over the encoded data.

To motivate our design, we first describe short-comings with popular compression tech-

niques for bounded-precision floating data. Specifically, the recently proposed Gorilla method

[88] is a delta-like compression approach that calculates the XOR for adjacent values and

only saves the difference. Gorilla achieves compression benefits by replacing the leading and

trailing zeros with counts. Gorilla is a state-of-the-art compression approach for floats, but

it does not work well on low-precision datasets as low-precision does not impact float’s rep-

resentation similarity. In addition, Gorilla’s encoding and decoding steps are slow because of

its complex variable coding mechanism. Alternative float compression approaches leverage
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integer compression techniques by scaling the float point value into integer [21]. Despite

their simplicity, these approaches rely on multiplication and division operations that are

usually expensive and, importantly, cause overflowing problems when the input value and

the quantization (i.e., scaling) factor are too large.

General-purpose byte-oriented compression approaches, such as Gzip [35], Snappy [108]

and Zlib [44], can also be applied to compress floats. The input float values are serialized

into binary representation before applying byte-oriented compression. These compression

approaches are usually slow because of multiple scans looking for commonly repeated byte

sub-sequences. Furthermore, full decompression is needed before any query evaluation. Dic-

tionary encoding [97, 73, 15] is applicable for float data, but it is not ideal since the car-

dinality of input float data is usually high, resulting in an expensive dictionary operation

overhead. Note that we are only considering lossless formats or formats with bounded loss

(e.g., configurable precision). Lossy methods (e.g., spectral decompositions [38] and repre-

sentation learning [82]) may compress the data more aggressively but often at the cost of

losing accuracy.

Decades of database systems demonstrate the benefit of a format that allows for a value

domain that includes a configurable amount of precision. We take this approach, and to

address the above concerns, integrate ideas from columnar systems and data compression

for our proposed method, BoUnded Fast Floats compression (BUFF). BUFF provides fast

ingestion from float-based inputs and a compressible decomposed columnar format for fast

queries. BUFF ingestion avoids expensive conditional logic and floating-point mathematics.

Our storage format relies on a fixed-size representation for fast data skipping and random

access, and incorporates encoding techniques, such as bit-packing, delta-encoding, and sparse

formats to provide good compression ratios1 and fast adaptive query operators. When

defining an attribute that uses BUFF, the user defines the precision and optionally the

minimum and maximum values (e.g., 90.000-119.999). Without the defined min and max

1. Compression ratio is defined as compressed_size
uncompressed_size .
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values, our approach infers these through the observed range, but at a decreased ingestion

performance. Our experiments show the superiority of BUFF over current state-of-the-art

approaches. Compared to the state-of-the-art, BUFF achieves up to 35× speedup for low

selective filtering, up to 50× speedup for aggregations and high selective filtering, and 1.5×

speedup for ingestion with a single thread, while offering comparable compression sizes to

the state-of-the-art.

We start with a review of the relevant background (Section 4.1), which covers numeric

representations (Section 4.1.1) and a wide range of compression methods (Section 4.1.2). In

Section 4.2, we present BUFF compression and query execution with four contributions:

• We introduce a “just-enough” bit representation for many real-world datasets based on

the observation of their limited precision and range (Section 4.2.1).

• We apply an aligned decomposed byte-oriented columnar storage layout for floats to

enable fast encoding with progressive, in-situ query execution on compressed data

(Section 4.2.2).

• We propose sparse encoding to handle outliers during compression and query execution

(Section 4.2.3).

• We devise an adaptive filtering to automatically choose between SIMD and scalar

filtering (Section 4.2.4).

We evaluate BUFF with its competitors in terms of compression ratio and query performance

in Section 4.3, and conclude in Section 4.4.

4.1 Background and Related Work

In this section, we first introduce several numeric data representations, including the most

popular float format. Then, we review several float compression approaches with a set of
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Value Fixed<2,20> 32-bits Float Gorilla
Step 1 XOR with previous value Step 2 write control bits, length and difference bits

0.66 00.10101000111101011100 00111111001010001111010111000011 00111111000111101011100001010010
1.41 01.01101000111101011100 00111111101101000111101011100001 00000000100111001000111100100010 [b11,d8,d22] 10011100100011110010001
1.41 01.01101000111101011100 00111111101101000111101011100001 00000000000000000000000000000000 [b0]
1.50 01.10000000000000000000 00111111110000000000000000000000 00000000011101000111101011100001 [b11.d9,d22] 11101000111101011100001
2.72 10.10111000010100011111 01000000001011100001010001111011 01111111111011100001010001111011 [b11,d1,d31]1111111111011100001010001111011
3.14 11.00100011110101110001 01000000010010001111010111000011 00000000011001101110000110111000 [b10]0000000011001101110000110111000

size(bits) 132 192 176

Sprintz Mostly Dictionary Gzip

Step 1 
Quantize×100

Step 2 prediction Predicted 
value

Step 3
delta

Step 4
bit-packing Step 1 quantize Step 2 mostly16 Step 1 dictionary 

encoding encoded Step 2
bit-packing

Step 1 LZ77; Step 
2 Huffman coding

66 66 1000010 66 0x0042 0 000 3f28f5c3
141 66 75 1001011 141 0x008D 1 001 3fb47ae1
141 141 0 0000000 141 0x008D 1 001 [8,8]
150 141 9 0001001 150 0x0096 2 010 3fc00000
272 150 121 1111001 272 0x0110 3 011 402e147b
314 272 42 0101010 314 0x013A 4 100 404[40,5]
size(bits) 42 96 210 328*

Vk = Predictor(
Vk-1, Vk-2, …)

Leading zeros Meaningful bits Trailing zeros

Control bits: 10 if use previous meaningful bits range

# leading zeros (decimal) # meaningful bits (decimal)

Lookup table

[a,b,c]->d

…

0.66 0

1.41 1

1.50 2

2.72 3

3.14 4

Sign bit
Exponent bits Mantissa bits

Fractional bits

Control bits: 0 if xor=0
Control bits: 11 if  current meaningful bits does not fit bit 
range of previous meaningful bits 

Integer bits

Fractional bitsInteger bits

*For Gzip, we skip showing step 2 Huffman coding for space, and report the final encoded size.

Figure 4.2: Compression examples for different approaches.

examples. Finally, we include popular query-friendly data structures that have influenced

our compression format.

4.1.1 Numeric Data Representation

Numeric data representation is the internal representation of numeric values in any hard-

ware or software of digital systems, such as programmable computers and calculators [99].

Many data representations are developed according to different system and application re-

quirements. The most popular implementations include fixed-point (including numeric data

type) and float-point.

Fixed-point uses a tuple < sign, integer, fractional > to represent a real number R:

R = (−1)sign ∗ integer.fractional

Fixed-point partitions its bits into two fixed parts: signed/unsigned integer section and

fractional section. For a given bits budget N , the fixed-point allocate a single bit for sign, I

bits for the integer part, and F bits for the fractional part (where N = 1+I+F ). Fixed-point

always has a specific number of bits for the integer part and fractional part. Figure 4.2 shows

examples of fixed-point; as we can see from the “Fixed” column, the radix point’s location
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is always fixed, no matter how large or small the corresponding real number is. Fixed-point

arithmetic is just scaled integer arithmetic, so most hardware implementations treat fixed-

point numbers as integer numbers with logically decimal point partition between integer and

fractional part. Fixed-point usually has a limited range (−2I ∼ 2I) and precision (2(−F )),

thus it can encounter overflow or underflow issues. A more advanced dynamic fixed-point

representations allow moving the point to achieve the trade-off between range and precision.

However, this is more complicated as it involves extra control bits indicating the location of

the point. Fixed-point is rarely used outside of old or low-cost embedded microprocessors

where a floating-point unit (FPU) is unavailable. Fixed-point is currently supported by few

computer languages as floating-point representations are usually simpler to use and accurate

enough.

Floating-point uses a tuple < sign, exponent,mantissa > to represent a real number R:

R = (−1)sign ∗mantissa ∗ βexponent

Instead of using a fixed number of bits for the integer part and fractional part, Float point

reserves a certain number of bits for the exponent part and mantissa, respectively. The base

β is an implicit constant given by the number representation system, while in our floating-

point representation, β equals to 2. The number of significant digits does not depend on

the position of the decimal point. For a given bit budget N , the floating-point allocates a

single bit for sign, E bits for the exponent part, and M bits for the mantissa part (where

N = 1+E+M). The IEEE standard defines the format for single and double floating-point

numbers using 32 and 64 bits, respectively. The exponent is encoded using an offset-binary

representation with the zero offset by exponent bias:

R = (−1)sign ∗ 1.mantissa ∗ 2exponent

The IEEE standard specifies a 32-bits float as having: Sign bit: 1 bit, Exponent width: 8
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bits (offset by 127), and Significand precision: 24 bits (23 explicitly stored). Figure 4.2 shows

several examples of 32-bits float format; as we can see from the ‘32-bits float’ column, the

underlined bits correspond to the fractional bits, and the radix point is floating base on its

represented value.

Numeric data type allocates enough bits for a given real number depending on the precision

and scale of the input. Numeric data type can store numbers with a very large number of

digits and perform calculations exactly. To declare a column of type numeric, we use the

syntax: NUMERIC(precision, scale). The scale is the count of decimal digits in the fractional

part, to the right of the decimal point. The precision is the total count of significant digits

in the whole number, that is, the number of digits to both sides of the decimal point (e.g.,

65.4321 has a precision of 6 and a scale of 4).

The Numeric data type is used in most database systems, e.g., MySQL, PostgreSQL,

Redshift, and DB2, when exactness is required. However, the flexibility and high precision

come at the cost of more control bits associated with each value. The storage cost of the

Numeric type varies depending on the system implementation. PostgreSQL uses two bytes

for each group of four decimal digits, plus 3 ∼ 8 bytes overhead for each value. In MySQL,

Numeric values are represented in a binary format that packs nine decimal digits into four

bytes. This makes the Numeric type inefficient for space. Besides, the query on Numeric

data type is either by materializing to float point for approximate calculation or using its own

exact arithmetic which is very expensive compared to the integer types or the floating-point

types described earlier.

4.1.2 Compression for Decimal Numbers

Due to the popularity of float-point data, several compression techniques exist, including

methods for float-point data, general-purpose methods, and migrated approaches from inte-

ger compression. We limit our discussion to lossless compression techniques.

Gorilla [88] is an in-memory time-series database developed by Facebook. It introduces
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two encodings to improve delta encoding: delta-of-delta (delta encoding on delta encoding,

e.g., [101,102,103, 104] are encoded as [101,1,0,0]) for timestamps, which is usually an in-

creasing integer sequence, and XOR-based encoding for value domain, which is a float type.

In the XOR-based float encoding, successive float values are XORed together, and only the

different bits (delta) are saved. The delta is then stored using control bits to indicate how

many leading and trailing zeroes are in the XOR value. Similar compression techniques are

also used in numerical simulation [71, 52, 70] and scientific computing [91, 27]. Figure 4.2

shows an example of Gorilla encoding with the first step calculating XOR, and the second

step writing the control bits, number of leading zeros, number of meaningful bits, and actual

meaningful bits. We use 32-bits to save space even though Gorilla was originally designed

for 64-bits format. Gorilla is the state-of-the-art approach for float compression, which is

widely used in many time series database systems, such as InfluxDB [4] and TimescaleDB

[6].

However, Gorilla compression uses variable-length encoding, which means records are not

aligned with their encoded bits. The encoded bits have to be decoded sequentially to reach

the target records. Each value depends on its previous record; thus, for a target value, all

previous values must be decompressed. Those features impede effective record skipping and

random data access.

Sprintz [21] was initially designed for integer time series compression. Sprintz employs

a forecast model to predict each value based on previous records via a lookup table, and then

encodes the delta between the predicted value and the actual value. Those delta values are

usually closer to zero than the actual value, making it smaller when encoded with bit-packed

encoding. It is also possible to apply Sprintz to floats by first quantizing the float into an

integer. As is shown in Figure 4.2, we first multiply input values by 100 and get a series of

integers. Then we predict the next value based on the prediction model. In the third step,

we calculate the delta between the prediction and actual value, and compress the delta with

bit-packing encoding in the last step. Sprintz uses fixed-length for encoded values, which
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is easy to locate the target value. However, to decode the target value, we need to fully

decode prior values, since previous values are still needed to predict the current value and

then decode the value with compressed delta. Furthermore, the multiplication of decimal

numbers is costly and potentially raises integer overflow issues during quantization.

Mostly encoding encodes the data column where its data type is more extensive than

most of its stored values required. Mostly encoding is used for integer and numeric data

type compression in the Amazon Redshift data warehouse [48]. For numeric values, Mostly

encoding quantifies floats into an integer before applying compression. Most of the column

values are encoded to smaller data representation with mostly encoding, while the remaining

values that cannot be compressed are stored in their original form. Mostly encoding can be

less effective than no compression when a high portion of the column’s values cannot be

compressed. Figure 4.2 shows an example of Mostly encoding. It first quantifies the float

values and then applies MOSTLY16 (2-byte) for the given data as it needs 9 bits for each

quantized value (we use hex to save space). This representation is less effective than bit-

packing encoding that stores input value using as few bits as possible.

General-purpose byte-oriented compression encodes the input data stream at the

byte level. Popular techniques, such as Gzip [35], Snappy [108] and Zlib [44] derive from the

LZ77 family [116] that looks for repetitive sub-sequence within a sliding window on the input

byte stream and encodes the recurring sub-sequence as a reference to its previous occurrence

(first step in Figure 4.2). For a better compression ratio, Gzip applies Huffman encoding

on the reference data stream (second step in Figure 4.2). Snappy only applies LZ77 but

skips Huffman encoding for higher throughput. Byte-oriented compression treats the input

values as a byte stream and encodes them sequentially. The data block needs to be fully

decompressed before any original value can be accessed.
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4.1.3 Query-friendly Storage Layout

Compression should not only keep the data size small but also support fast query execution.

Prior work speeds up query performance by introducing a hierarchical data representation

layout. Some works [67, 106, 90, 77] are orthogonal to data compression but are applicable

to BUFF to speed up the query performance.

DAQ [90] uses a bit-sliced index representation and computes the most significant bits

of the result first then less significant ones. With bit-sliced index representation, it performs

efficient approximation and provides efficient algorithms for evaluating predicates and ag-

gregations for unsigned integers type. Column Sketch [49] introduces a new class of indexing

scheme by applying lossy compression on a value-by-value basis, mapping original data to a

representation of smaller fixed width codes. Queries are evaluated affirmatively or negatively

for the vast majority of values using the compressed data, and check the original data for the

remaining values only if needed. PIDS [57] identifies common patterns in string attributes

from relational databases and uses the discovered pattern to split each attribute into sub-

attributes and further compress it. The sub-attributes layout enables a predicate push-down

to each attribute. And the intermediate result from the prior column could be projected to

the following attributes efficiently with the aid of fast data skipping and progressive filtering.

BitWeaving [67] provides fast scans in a main-memory database by exploiting the paral-

lelism available at the bit level in modern processors. It organizes the input codes horizontally

or vertically into a processor word, allowing early pruning techniques to avoid accesses on un-

necessary data at the bit level and speed up the scan performance. ByteSlice [42] is another

main memory storage layout that supports both highly efficient scans and lookups. Similar

to BitWeaving, ByteSlice assumes encoded binary as input. But instead of stripping the

input code in bit units, ByteSlice decomposes the input code at the byte level and pads the

trailing bits into a byte to achieve better read/write speed and be compatible with SIMD

instructions. MLWeaving [106] is an in-memory data storage layout that allows efficient

materialization of quantized data at any level of precision. Its memory layout is based on
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BitWeaving, where the first bit in a batch of input values is saved as a word, followed by

the second bits of the same batch, and so on. Data at any level of precision can be retrieved

by following a different access pattern over the same data structure. Using lower precision

input data is of special interest, given their overall higher efficiency.

These techniques speed up query performance by progressively filtering out disqualified

records and narrowing down the records that need to be parsed. They mainly process a

query in their defined unit (either sub-attributes or bits) on their columnar data layout.

This fine-grained columnar data layout is the foundation for BUFF.

4.2 BUFF Overview

Many applications generate data that varies within a specific range with limited precision.

Based on our discussion of state-of-the-art, none can leverage this feature to support effi-

cient compression and query execution. To alleviate those deficiencies, we propose a novel

compression method for floats. The compression works at two levels: eliminating the less

significant bits based on a given precision (Section 4.2.1), and splitting float into the integer

part and fractional part, then compressing those bits separately with two splitting strategies

(Section 4.2.2). We then introduce sparse encoding to handle outliers to avoid compres-

sion performance deterioration (Section 4.2.3). In the end, we describe query execution on

our compressed data format (Section 4.2.4). With these techniques, we achieve both good

compression ratio and outstanding query performance.

4.2.1 Bounded Float

Computer systems can only operate on numeric values with finite precision and range. Using

floating-point values as real numbers does not clearly identify the precision with which each

value must be represented. Too small precision yields inaccurate results, and too big wastes

computational and storage resources [36]. We target applications that need limited precision
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and data that falls within a finite range. Therefore, our proposed compression takes full

advantage of the range and precision features of a given dataset.

Bounded Precision

Float point data-type uses most bits for mantissa, which is not necessarily needed for many

sensors or applications since many sensors usually provide limited decimal precision (e.g.,

the clinical thermometer has one place of precision 0.1 °F). However, the decimal precision is

not aligned with those mantissa bits in a float due to the floating radix point in the format.

Float format makes the most of its mantissa bits to get the best approximation for the

given number. With 0.1 for example, all 52 mantissa bits are used to get its approximation

(0.10000000000000000555) in IEEE double format. This mechanism is intended to support

high precision for float format, but it impedes efficient float compression in most real-world

cases. Those mantissa trailing bits provide far more extra precision than required, which

leads to a huge bits change with a tiny number fluctuation. For example, Gorilla achieves

good compression by first applying XOR to the current number with the previous one, then

removing the leading and trailing zeros. The problem here is that mantissa bits are too

sensitive to the number changes, making it difficult to leverage the trailing zero benefits.

Suppose we know the precision of the incoming numbers. In that case, we can provide just

Table 4.1: Bounded float still keeps decimal precision

Real number Sign Exp(8 bits)Mantissa(23 bits) Actual value

3.14
binary 010000000 10010001111010111000011 3.1400001

bounded-2 010000000 10010001100000000000000 3.13671875
≈ 3.14

enough precision support by eliminating the less significant mantissa bits. At the same time,

we are still able to provide a guaranteed precision float for downstream analytic. Table 4.1

shows float representation of a given value 3.14. As is shown in the binary row, the float

format saves the closest approximation as 3.1400001. If we only care about two decimal

positions after the decimal point, as is shown with bounded-2 row, we can remove some
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trailing bits, while its value is still possible to approximate to the original value with two

places of precision. The removal of insignificant bits saves a lot of bits when representing a

number with a given precision. This is one motivation for BUFF. To efficiently determine the

number of fractional bits need for different required precision, we run brutal-force verification

on all possible numbers under each precision requirement. We get the maximal factional bits

needed for its corresponding precision, as shown in Table 4.2, which becomes the lookup

table for bounded precision. We only provide up to 10 digit places precision here as it is

good enough for most datasets. We can extend to higher precision, but it is less meaningful

as commonly used float only has 52 bits for mantissa.

Table 4.2: Number of bits needed for targeted precision
Precision 1 2 3 4 5 6 7 8 9 10
Bits needed 5 8 11 15 18 21 25 28 31 35

Bounded Range

Another observation for most application scenarios is bounded range, The measured value

is delimited by a lower and an upper measuring bound limit that defines the measuring

span. The bounded range could result from either the measuring range of the instrument

(e.g., clinical thermometer measuring range from 35◦C to 42◦C), the physical definition of

measurand (e.g., CPU usage is defined between 0% to 100%), or based on other domain

knowledge. The bounded range is another feature that is helpful when compressing the data

since we only focus on the given range, and we can encode the number in a more concise but

accurate manner. BUFF can work with no provided ranges, but as our experiments show, it

hinders ingestion performance as the compression and allocation needs to find the minimal

and maximal observed value when encoding a set of values. With bounded precision and

range, we can get rid of the less useful and redundant bits initially designed for higher preci-

sion and broader range. With those two techniques, we can get a condensed representation

of the input data. In addition to the compression benefits, BUFF also adopts float splitting
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to organize our compressed data better.

4.2.2 Float Splitting and Compression

1 0 1 1 1. 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0

0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 1

Integer part fractional part

1 0 1 1. 1 1 0 0 0 1 1 0 1 0 0 1

1 0 1 1 1 0 0 1

Integer part

fractional part

1 1 0 0 0 1 1 0

First byte Following bytes/bits

Byte-oriented fractional splitting

② Range offset

① Integer and fractional parts extraction

01000001101110010010000111001011

1 0 1 1. 1 1 0 0 0 1 1 0 1 0 0 1

0 1 1 0 1 0 0 1

First byte Following bytes/bits

Byte-oriented Splitting

3

1 0 1 1. 1 1 0 0

Binary for float 23.1415:

0 0 1 1. 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0

Range: (20, 30)

sign: + exp:4

Implicit bit

15 bits needed for 4 digit precision 

Figure 4.3: Extracting range bounded integer part and precision bounded fractional part for float
number

The basic idea of float spitting is decomposing the input number into integer and frac-

tional parts. This division separates the given number by radix point in a logical way and

organizes each component into a different physical location. We can then apply efficient

compression to those two parts, respectively. Bit splitting on fixed-point numbers is intu-

itively easy to do as its fixed position for the decimal point. However, the splitting is not

easily applicable to float data directly, since float numbers are not aligned by the radix point.

We extract both parts of a given float number with bit operations. First, we extract the

exponent with a bit-mask to locate the decimal point. With the exponent value, we then

bit-shift the float number and extract all left-side bits (including one implicit bit) as the

integer part, and right-side bits as the fractional part. Figure 4.3 shows how this process

works for a float value 23.1415 with scale 4 represented in 32-bit IEEE format. The expo-

nent (marked with green font) is decoded as 4, which means the integer part has 5 bits (with

a single leading 1 given implicitly by IEEE standard). We then 1○ extract 4 leading bits

from the mantissa(marked with red) and add a leading 1 to get the integer part. Based on

Table 4.2, we extract 15 following bits as fractional part for required precision 4. 2○ With

the range information either given by user or detected by our encoder, we offset the integer
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part by the minimal value to further condense the range space. This splitting is fast and

efficient with only bit-wise operations and no if branches. It can be further improved if the

user-provided data range has the same exponent value (e.g. all values fall within the same

power of 2), in which case those float numbers have a fixed decimal point location, and float

splitting could be conducted easier with direct bit-masking.

The float splitting divides the given float numbers into two components and then com-

presses each component separately. We discuss its potential benefits on progressive filtering

and data skipping later in Section 4.2.4. Here our analysis focuses on its compression effi-

ciency in terms of compression ratio and reads/writes throughput. The encoded bit length

of the integer part is determined by the range of input numbers, while the encoded bit length

for the fractional part is determined by the actual precision required. We can compress both

parts effectively with delta and bit-packing encoding for the integer part and bounded preci-

sion for the fractional part. The fixed-length encoding simplifies the encoding and decoding

process and makes it possible for data skipping to be applied on the encoded bits directly,

which improves performance.
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Figure 4.4: Byte-oriented columnar layout

However, float splitting introduces some overhead for the compression process. Byte-

oriented reads/writes are more efficient than bit-oriented operations because of low-level

data type boundary-crossing issues where the CPU needs to unpack and offset the bits to
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align them on byte boundaries. Assume we have m bits to read/write, this could be finished

by
⌊m
8

⌋
times byte read/write, and at most one more bit read/write for remaining m−

⌊m
8

⌋
bits. Whereas float splitting divides m bits into x bits and y bits (where x+y = m), and this

leads to
⌊x
8

⌋
+

⌊y
8

⌋
times byte read/write, and at most twice bit read/write for remaining

x −
⌊x
8

⌋
bits and y −

⌊y
8

⌋
bits. Additionally, the integer part usually takes less than one

byte for many datasets because of the narrow value range for many measurands. To avoid

slowness of bits read/write, we can always pad int bits with several following fractional bits

to extend it into a byte. This keeps the fine-grained float splitting, but good read/write

performance as well. If the goal is to save m bits anyway, we should split the bits in a more

efficient way. This is the motivation of our advanced splitting version: byte-oriented float

splitting.

Byte-oriented float splitting compression works similarly to the float splitting discussed

previously. We first extract integer bits and just enough fractional bits that meet the preci-

sion requirement, then offset the intermediate value by minimal value before writing those

bits in the byte unit separately. Each byte unit is treated as a sub-column and stored to-

gether. We store the remaining trailing bits of each record as the last sub-column, as is

shown in Figure 4.4. We save the range and precision information as metadata along with

compressed data to guarantee the decompression capability. With byte-oriented float split-

ting, compression and decompression are improved because of the fast byte reads/writes. We

can also support custom variable precision materialization and achieve more efficient query

execution because of a byte-oriented splitting layout.

4.2.3 Handling Outliers

In addition to variable precision materialization support brought by byte-oriented splitting,

we can also handle outliers efficiently.

Outliers in the input data sequence are the data points that differ significantly from

others. Outliers enlarge the value range significantly and further inflates the code space,
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Figure 4.5: Sparse encoding condenses sub-column.

which requires more bits to encode the input data sequence. For example, 99% of the

input value can be represented by 1 byte, while 1% needs 4 bytes. Encoding all numbers

in the same length inflates the code space to 4 bytes because of the 1% outliers. The

code space inflating, if not handled well, will deteriorate the compression effectiveness and

query efficiency. Outliers can be too large or too small that are far away from the common

range. While in either case, the outliers usually only inflate the higher bits either with

padding zeros or padding ones. When there are both large and small outliers, the padding

bits can be any bit sequence between all zeros and all ones. This requires us to detect

outliers and distinguish the most frequent value in the higher encoded byte. We first head

sample the dataset and then apply Boyer–Moore majority voting algorithm [24] in each

compressed byte unit to find the majority item (occurring more than 50%). If the majority

item has a frequency greater than 90%, we get most frequent value and re-organize the

corresponding byte column to achieve better compression by sparse encoding as shown in

Figure 4.5: we keep the frequent value at the beginning and use a compressed bit-vector

to indicate the outlier records, followed by outlier values in the current byte column. The

outlier handling enables better compression performance and faster query execution with

the aid of bit vectors. Higher byte columns can be skipped for most queries that target on

some normal values only.

Sparse encoding requires a number of bits to be allocated per frequent value, to indicate
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if a value uses a frequent value or is an outlier. Compared with pure byte representation,

sparse encoding further reduces the compressed data size if only there is a frequent item

with a frequency greater than 1/8, assuming 1 bit overhead per record in the bit-vector.

However, the outlier scheme comes with costs that special logic is required to handle outliers

during compression and query execution. So we apply factor analysis on the frequency

of frequent item through micro-benchmark with controlled outlier ratio. According to our

experiments, sparse encoding achieves a significant query boost compared with pure byte

representation when the frequency of frequent item is greater than 90%, which is the current

default threshold in BUFF.

4.2.4 Query Execution

In addition to the compression benefits, byte-oriented float splitting improves the query

execution on the target float columns in the following aspects: byte-oriented data arrange-

ment enables fast reading/writing and value parsing. Fixed-length coding helps effective

data skipping to save CPU resources. The sub-column layout enables predicate push-down

and progressive query execution. For efficient query execution directly on the encoded sub-

columns, we apply query rewriting to decompose original query operators into a combination

of independent query operators on sub-columns. Those translated query operators could be

executed independently and combined to obtain the final results. If we evaluate each query

operator on the sub-column one at a time, it is possible to skip some records that are de-

termined to be qualified or disqualified already by previous sub-column query operators.

Therefore, only a small amount of records need to be parsed and further checked.

Progressive Filtering

With byte-oriented float splitting compression, we can progressively evaluate the translated

filter on each sub-column sequentially, and obtain the final results when all filters are finished.

For a given predicate x OP C where x is the attribute stored using BUFF, OP is the operator,
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and C is the operand of this predicate. Instead of decoding each record and matching the

predicate, we rewrite the filtering predicate on the target column into a combination of

filtering predicates on its compressed sub-columns. Assume there are k sub-columns x1, x2,

x3, ..., xk, we can get translated operands on those sub-columns as C1, C2, C3, ..., Ck and

then apply filtering on each sub-column to obtain the final results [57].

To save computation in the filtering, we can avoid evaluating some records based on

our current observations. During the progressive filtering process, all the intermediate re-

sults on each sub-column are shipped by a bit-vector, similar to late materialization [100].

Two bit-vectors RESULTS and TO_CHECK are maintained to indicate the qualified

rows and suspecting rows, respectively. The following filter only needs to further parse

and check the suspecting rows in TO_CHECK bit-vector, then add qualified row numbers

into RESULTS and suspensive row into TO_CHECK for the filter of the following sub-

column. When the filtering level goes deeper, there will be fewer records that need to be

checked. We can even early prune the filter execution in some special cases if there is no

item in the TO_CHECK bit-vector. Even for the cases where early pruning is not hap-

pening, progressive filtering can avoid a lot of value parsing and check, especially valuable

for the trailing bits sub-column where value parsing is more expensive. Progressive filtering

is eligible for most filtering query executions. We describe its detailed implementation for

EQUAL and GREATER predicate here. Other predicates such as GREATER_EQUAL or

LESS_EQUAL can be achieved by logically combine existing predicates, NOT_EQUAL can

be achieved by negating the EQUAL results.

Equality filtering predicate x = C can be decomposed as x1 = C1 ∧ x2 = C2 ∧ x3 =

C3∧ ...∧xk = Ck by query rewriting, which intuitively indicates the equality predicate could

hold if and only if equality holds on all sub-columns. This can be formulated as:

x = C ⇐⇒ ∧k
i=1(xi = Ci)
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The predicate push-down enables efficient progressive filtering on the sub-columns where we

can execute the most selective predicate to maximize the filtering benefits - to filter out dis-

qualified records as much as possible in the early phase. For filtering on the first sub-column,

qualified rows are added into TO_CHECK bit-vector for filtering on the following sub-

columns. Data skipping is used in the following evaluation, and only rows in TO_CHECK

are parsed and further evaluated. Disqualified rows are removed from TO_CHECK bit-

vector. In the last sub-column, all qualified rows are added into RESULTS bit-vector as a

final result for the filtering predicate x = C.

With the previous example in Section 4.2.2, if given an equality filtering predicate x =

23.1415, we can extract the bits of bounded range and precision 0011.001001000011100 with

the aid of range and precision in the metadata. Then we can rewrite the predicate as

x1 = 00110010 ∧ x2 = 01000011 ∧ x3 = 100. On the encoded file shown in Figure 4.4,

progressive filtering starts with evaluating all values in the first sub-column x1, and row 1

and n− 1 are qualified with the first predicate, so they are added to TO_CHECK. On the

second sub-column x2, only row 1 and n−1 need to be checked, and row n−1 is disqualified,

thus removed from TO_CHECK. On the third column x3, only row 1 is evaluated and

qualified, thus row 1 is added into RESULTS bit-vector returned as a final result.

Range filtering predicate x > C can be decomposed as a combination of xi = Ci and

xi > Ci after query rewriting. For example, x1 > C1 is sufficient to induce x > C. While

x1 = C1 indicates further evaluation is needed for x2. Then we proceed to sub-column 2

predicate evaluation. Similarly, if x2 > C2, we have x > C. Otherwise if x2 = C2, we

proceed to sub-column 3. The evaluation is repeated until all sub-columns are processed. It

can be formulated as:

x > C ⇐⇒ ∨k
i=1[∧

i−1
j=1(xj = Cj) ∧ (xi > Ci)]

For the first step, all records are parsed and evaluated. Only rows in TO_CHECK bit-
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vector from the previous step are decoded and evaluated in the following evaluation step.

There are two categories of records generated for each step: qualified rows (where xi > Ci))

are added to RESULTS bit-vector and unsettled rows (where xi = Ci)) are added to a

new TO_CHECK bit-vector. On the last sub-column, all qualified rows are added to

RESULTS bit-vector, which is returned is a final result for the filtering predicate x > C.

During any filtering step, an early stop is activated when the TO_CHECK bit-vector is

empty and all following bits are skipped. NULL is returned for equality filtering, and the

intermediate RESULTS bit-vector is returned for range filtering in this case. We introduced

cold start filtering cases where all records are potentially qualified. However, our filtering

operators can be applied to the cases where intermediate query results are provided in the

form of bit-vector, by using given bit-vector as TO_CHECK for start sub-column.

Progressive Aggregation

Byte-oriented float splitting compression also facilitates some aggregation queries with the

aid of techniques mentioned above [90]. Query execution could be improved either by data

skipping for Min/Max queries or by transforming double operations into integer ones for

Sum/Average queries.

Min/Max information is stored as metadata in the compressed byte array for each com-

pressed segment. Therefore, efficient metadata lookup is sufficient to answer those queries.

However, metadata lookup is not applicable for custom query scope predefined by a filter.

Our compression approach also supports fast custom scope query execution, as encoded val-

ues are independently and neatly arranged in each sub-column level. Min/Max aggregation

queries perform similarly with the equality query discussed previously. Starting with the first

sub-column, the query executor finds the greatest/smallest value and puts all corresponding

rows into TO_CHECK bit-vector. The query executor then proceeds to the next sub-

column, evaluates all records corresponds to rows belonging to the previous TO_CHECK

bit-vector, and generates a new TO_CHECK bit-vector if applicable. The min/max value
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is assembled in the end and returned as final results after all sub-columns are evaluated. A

RESULTS bit-vector indicating the rows with min/max value is also returned along with

query results. Min/Max queries are efficient with BUFF because only very limited bits are

evaluated during the query execution with the aid of progressive filtering and data skipping.

In most cases, only a single row is qualified and added into TO_CHECK bit-vector for

the first sub-column. Thus, the following sub-columns evaluation is merely skipping to the

target row and assembling the specific single record, which is more efficient than decoding

all bits and comparing the decoded values.

Sum/Average aggregation queries are very efficient with our compression approach

with no full decoding needed. The byte-oriented splitting layout enables fast access to each

byte/bits component corresponding to different precision. Rather than decoding every record

into float value before applying the summation operation, value is accumulated on each sub-

column in the form of small integer until the final summation of the intermediate sum

results from each sub-column adjusted by its corresponding exponent and base value. The

final summation is returned as Sum result or further processed to get the Average result. For

example, on the encoded file shown in Figure 4.4, we first sum records in each sub-column,

and get sum(x1), sum(x2) and sum(x3) respectively. Then we scale the summation with its

corresponding basis. In this example, basis for column x1 is 2−4, x2 is 2−12 and x3 is 2−15.

Then the final sum result is sum(x) = sum(x1)∗2−4+sum(x2)∗2−12+sum(x3)∗2−15+B×N

where B is the base value (min value) of this encoding block and N is the number of entries.

We can further divide by N to get the average. The value is not fully decompressed to

the original double value during the query execution, and all the execution is achieved with

integer arithmetic, which improves the query performance.

Variable Precision Materialization and Aggregation

Reduced precision has emerged as a promising approach to improve power and performance

trade-offs [31]. Customized precision originates from the fact that many applications can tol-
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erate some loss in quality during computation, as in media processing and machine learning.

The byte-oriented encoding layout also enables variable precision materialization in addition

to full precision required by downstream analytic. For example, consider a system-agnostic

query like printf("%.2f", latitude) where AVG(temp)>90°F. We can skip reading the trailing

bytes/bits for temp column if we get AVG(temp)>90° with several leading bytes, and only

several leading bytes of latitude are needed for two digits precision printing. For any reduced

precision value read, BUFF aligns the requested precision with the least byte boundary cov-

ering the required precision. For example, for a given compressed dataset with 4 bits for

the integer and 18 bits for the fractional part (supports 5 digit precision at most), BUFF

materializes 2 bytes (⌈(4 + 11)/8⌉) to support 3-digit precision query.

BUFF also provides deterministic approximate aggregation query processing on data

with reduced precision as suggested by DAQ [90]. Recall previous example in Section 4.2.2,

on the encoded file shown in Figure 4.4, we can get deterministic approximate aggregation

result by only reading the partial data. Similar to progressive aggregation execution in

Section 4.2.4, we can get an sum approximation by reading the first sub-column as sum(x) =

sum(x1) ∗ 2−4 +B ×N with a deterministic lower bound = sum(x1) ∗ 2−4 +B ×N where

all trailing bits are zeros, and a upper bound = sum(x1) ∗ 2−4 + (B + 2−4) × N where

trailing bits are ones. Similarly for avg query, we get a deterministic bound by reading first

sub-column as [sum(x1)∗2−4/N+B, sum(x1)∗2−4/N+(B+2−4)]. As we read and process

more data, we can provide a more accurate result.

Data Skipping

Data skipping is another technique used to enhance query performance. After scanning a

sub-column, we know some records in the remaining columns do not satisfy the predicate,

and we can skip them. The byte-oriented encoding layout enables efficient data skipping

in the following aspects: byte-oriented layout guarantees efficient data reading and skipping

without handling any cross-boundary issue. The fixed coding length for each component
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enables efficient skipping with simple bits length calculations. The trailing bits in the last

component are mostly skipped based on the previous evaluation. In some cases, we can early

prune the query execution and totally skip checking the following bytes and trailing bits if

no records need to be further checked. Besides, data skipping enables fast records access for

custom row-level scope queries, such as queries on a given time interval for time series data.

Data can still be skipped efficiently without parsing the irrelevant entries.

Adaptive filtering

Different from prior works that use SIMD to accelerate query execution [56, 109, 89, 42],

BUFF uses a workload-adaptive execution strategy. When SIMD is available, BUFF will

use SIMD as much as possible. However, SIMD is not always the best when compared with

the scalar progressive filtering. SIMD is usually good on low selective filtering, where a large

percentage of records are evaluated. While progressive filtering is extremely efficient on high

selective filtering tasks. For each sub-column, BUFF will choose either the filtering strategy

based on density ratio r = #candidates/#records. By default, SIMD execution is used

for the first sub-column unless a sparse bit-vector is provided as input. For the following

sub-columns, BUFF uses SIMD execution if the density ratio is high and progressive filtering

otherwise.

We perform a sensitivity analysis to find the crossover point. Progressive filtering takes

more time as the density ratio increases and crosses over the constant SIMD cost at a density

ratio 0.06, which is the current SIMD threshold used in BUFF’s adaptive filtering. The

threshold number 0.06 means progressive filtering covers many query predicates since the

average item frequency for sub-column is 1/28 ≈ 0.0039, assuming a uniform distribution.

And for other highly skewed cases, sparse encoding helps in query execution. Please be noted

that, the SIMD threshold changes on different hardware.
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4.3 Evaluation

Compression approaches should keep the compressed data size smaller and support fast

query execution, including fast filtering and aggregation queries. This section applies the

compression techniques mentioned above on various datasets covering common applications

with bounded float and reports both compression and query performance. In addition, we

also include end-to-end complex query evaluation on Time Series Benchmark Suite (TSBS)

[5].

All experiments were performed on servers with 2 Intel(R) Xeon(R) CPUs E5-2670 v3

@ 2.30GHz, 128GB memory, 250GB HDD, and Ubuntu 18.04. All our implementations and

experiments are done in Rust 1.49.0 and we use AVX2_m256i for SIMD. To use ByteSlice for

floats we re-implement ByteSlice in Rust, also implement Gorilla and Sprintz in Rust. For

Gzip and Snappy, we use rust flate2 and parity-snappy libraries respectively. We apply Gzip

level-9 in our experiments. All our implemented baseline achieve their claimed throughput

(e.g., Snappy: 250MB/s Gzip: 20-50MB/s, Sprintz: 200MB/s).

4.3.1 Datasets
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Figure 4.6: Datasets have bounded range and precision

Our dataset covers various applications: stock data [2], taxi data from NYC (GPS) [7],
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DevOps monitoring (CPU) [95], city temperature (TEMP) [62], humidity [25, 26], power grid

(PMU) [98], magnet motor (Current) [8], household electric power consumption (House) [3]

and machine learning [81]. As most datasets are shared using a txt or csv format, we can

easily extract the precision by counting the fractional digits. As we target a compression

technique that would work with application code or a database, we evaluate an ingestion

process that sends data in the IEEE 64-bit float format which is used by many applications

and compression evaluations [107, 71, 31, 27, 33, 88]. Figure 4.6 shows the data range,

distribution and scale (precision) for representative measurements of those datasets. The

x-axis shows data range including all outliers if any. For GPS we use the latitude attribute.

The data distribution varies on different measurements. Those datasets cover data with

different precision with/without outliers. Many datasets have a very skewed distribution,

where most records are clustered around a tiny area. As an example, most data points in

NYC’s GPS dataset fall into the city area with coordinate between (40.702541, -74.007347)

and (40.793961, -73.883324). The high decimal position with scale 6 guarantees sub-meter

level precision of the data points. Similarly, all these measurements have limited range and

bounded precision. In addition to those read world datasets, we also generate datasets from

TSBS. Here, we use the IoT dataset with a scale 1000, which includes 9.1 billion data points

about tracking information for trucks.

4.3.2 Optimized Baselines

During our evaluation, we found that the idea of bounded precision can improve Gorilla.

Therefore, we provide an optimized version of Gorilla for comparison. In addition, we include

fixed-point with bounded precision and ByteSlice variations for float as baselines.

Optimizing Gorilla

When we apply Gorilla on our datasets, we get a poor compression performance for most

datasets. For datasets, such as CPU and Temperature, the compressed size is close or even
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larger than the original size. After detailed analysis, we notice that many data points in

these datasets fluctuate over value 0 or ±2. There are two reasons why Gorilla is sub-

optimal on datasets covering those values. First, float numbers fluctuating around 0 flips

the sign bit (the leading bit). Also, when floats fluctuate around an absolute value 2, they

flip the leading bit of exponent bits as exponent value 1 is encoded as 10000000 in a 32-

bits float. Second, high precision floating numbers make the mantissa bits sensitive to the

value change, especially for those less significant bits. For these two reasons, Gorilla fails to

perform efficient trailing zero compression and performs poorly on these datasets.

To improve the compression performance of vanilla Gorilla, we have two different direc-

tions to work on:

• Leverage the leading zeros by offsetting the input numbers to avoid the "pitfall" value

points.

• Use bounded precision float for the input numbers to eliminate the less significant bits

in the mantissa part.

We verified those two solutions on our datasets. We found the former solution improves

compression ratio performance slightly but at the cost of slowing down the compression

throughput significantly, since we have to offset the value before we can apply gorilla en-

coding. However, the latter solution significantly improves compression performance. In the

following evaluation section, we include the latter Gorilla version ( GorillaBD). Nevertheless,

GorillaBD only improves the compression performance and can do nothing to speed up the

query execution because of the complex variable encoding/decoding mechanism inherited

from Gorilla. This motivates us to devise a new compression for floats.

Bounded Fixed-point

As discussed in Section 4.1.1, fixed-point is not precision aware, since it uses every bit to

approximate the value no matter what precision is needed. Additionally, fixed-point is not
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optimized for custom ranges, since it represents a range −2I ∼ 2I . In order to include

fixed-point into our evaluation, we implement bounded fixed-point (as FIXED) as a baseline

with bounded precision applied to achieve just-enough precision and delta encoding used to

offset the custom range. In FIXED, we scan the file and encodes the datasets with bounded

fixed point representation.

ByteSlice variations for float

ByteSlice is designed for an input code of a bit-packed integer, which is not directly applicable

to float numbers. In order to apply ByteSlice on floats, a conversion from the integer code

is needed to meet the ByteSlice input requirement. We can either borrow from BUFF to

extract the aligned bit representation of float (BUFF-SLICE) or scaling float into integer

(SCALED-SLICE), and then bit-pack those code into ByteSlice. We compare against both

ByteSlice variations.

4.3.3 Performance Overview

The radar chart of Figure 4.7 shows the overall performance of all float compression ap-

proaches above. We normalized the performance results into a range between 1 and 10 on

each dimension uniformly, and then take the average of all workable datasets (Sprintz and

SCALED-SLICE fail on some dataset which are not included here). ByteSlice variations

do not provide a specialized aggregation solution, so we materialize before max and sum

operation. For all metrics here, higher is better. As we can see, the state-of-the-art Gorilla

approach does not work well on those datasets. Sprintz and FIXED perform well in terms

of compression ratio and materialization performance on those datasets while performing

poorly on other performance dimensions. ByteSlice variations are good on materialization

performance but sacrifice compression ratio because of bit padding. BUFF performs best

in terms of query and compression throughput. In addition, it handles outliers data quite

well and achieves a better compression ratio on outlier-included datasets (e.g., GPS, Stock
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Figure 4.7: Compression performance overview (greater is better, CR: compression ratio, Cthr:
compression throughput). BUFF outperforms in query and compression throughput.

dataset). For some query types, such as min/max and high selective equality filtering, BUFF

is up to 50× faster than other compression baselines. General-purpose approaches (e.g., Gzip

and Snappy) perform poorly in these dimensions.

4.3.4 Compression Performance

We evaluate both the compression ratio and compression throughput on our datasets and

benchmarks. A good compression must be fast and effective.

Compression Ratio

Figure 4.8 shows the compression ratio for each compression approaches. Gorilla compres-

sion performs poorly on most of our datasets as there are very limited repeated or similar

adjacent values. GorillaBD works better than Gorilla since many trailing bits are formatted
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vanilla Gorilla (Sprintz and Scaled-slice fails on PMU).

by bounded precision float, resulting in a better compression ratio. BUFF performs simi-

larly with Sprintz and FIXED since they leverage the bounded precision and range to map

the numbers into almost the same finite encoding space. Value range and value precision

determine the number of bits needed for the integer and the fractional parts. The slight com-

pression ratio difference between Sprintz and BUFF comes from the dividing of bits, which

wastes some code space when the bits are not fully used. However, this brings a huge query

benefits, which we will show in Section 4.3.5. In addition, as mentioned in Section 4.2.3,

BUFF can detect outliers and enables sparse encoding to compress the leading byte column

further, resulting in a better compression ratio on GPS and Stock dataset compared with

Sprintz and FIXED. ByteSlice variations pads the trailing bits for better query performance,

so it is less effective than BUFF, FIXED, and Sprintz on most datasets. The Byte-oriented

compression approaches compress data by searching common sequences at the byte level, so

Byte-oriented compression performs efficiently on temperature datasets because of the low

cardinality brought by low data precision but performs poorly on datasets with less repeated

values.
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Compression throughput

In addition to the compression ratio, we also evaluate compression throughput. We count

the time, including loading data from memory, applying compression, and writing back

to memory. Figure 4.9 shows compression throughput for all float compression approaches.

The leftmost bar corresponds to BUFF with/without user-provided range stats. With ranges

given by a user, our method can skip the range checking step in the float decomposing step

and achieve higher compression throughput. We refer to it as “Fast-Buff” as is indicated

by the star marker bar with the light green bar as a base. Overall, BUFF outperforms

all its competitors on most datasets. Gorilla relies on XOR between two adjacent values,

then dynamically decides the number of leading and trailing zeros, and writes the middle

residue bits. Gorilla’s complicated encoding mechanism and variable encoded length limit

its encoding throughput.

BUFF is faster than FIXED and Sprintz because of its fast byte-oriented writing. Ac-

cording to profiling, BUFF byte-oriented writing is 6% ∼ 12% faster than writing bits.

Sprintz for float also relies on arithmetic multiplications to quantify input float values into

integer values, which causes overflow issues such that Sprintz and SCALED-SLICE fail on

the PMU dataset. Overall byte-oriented compression is slower than BUFF and Sprintz.

Snappy achieves the highest compression throughput on the CPU dataset, but Snappy per-

forms poorly on the CPU dataset in the previous compression ratio experiment, where no

compression is achieved at all. According to previous experiments, Gzip compression pro-

vides a higher compression ratio but uses more CPU resources than Snappy, thus lowering

compression throughput. Compared with ByteSlice variations, BUFF writes fewer bits but

pays more overhead on writing the last trailing bits. Therefore, we can see very similar

compression throughput on most datasets for both approaches, but BUFF is faster on GPS

and Stock datasets where more space is saved by sparse encoding.
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4.3.5 Query Performance
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Figure 4.10: Low selective
equality filter
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Figure 4.11: Low selective range
filter
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Figure 4.12: High selective
equal filter

We also evaluate decompression and query performance. We measure execution time,

including reading the data block from memory, parsing data, and evaluating the query. For

all queries evaluated, we leverage each compression approach’s characteristics to speed up

its query as much as possible. Techniques, such as query rewriting, early pruning, and

progressive filtering, are used for each approach whenever feasible, as discussed in each

experiment section. We use the most frequent value (lower selectivity) in the corresponding

dataset as a predicate operand to conduct a fair comparison for all equality filtering and

range filtering. Progressive filtering is less efficient with low selectivity predicate as fewer
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values are skipped during query execution. We also run high selectivity queries to show

BUFF’s potential. SCALED-SLICE and Sprintz bars for PMU dataset are missing as they

fail on PMU dataset because of an overflow issue.

Filtering

We include filtering performance evaluation with query rewriting, early pruning, progressive

filtering, data skipping and SIMD execution enabled when possible. For BUFF, instead of

materializing all records before applying the filtering predicate, we rewrite the query into

query predicates combination on all sub-columns, then apply the translated query predicate

on each sub-column sequentially. We also use adaptive filtering and data skipping with the

aid of intermediate bit-vector results. For Sprintz and FIXED, we apply query rewriting

techniques to avoid decompression overhead. For ByteSlice variations, we adopt their SIMD

solution for filtering queries.

Our first experiment set shows low selective equality filtering performance. In Figure

4.10, BUFF achieves outstanding performance compared to all the other competitors. This

speedup is mainly from adaptive filtering and data skipping. As we execute the predicate on

the first sub-column, only a tiny part of the input records are qualified and need to be further

checked in the subsequent sub-column predicates. For most datasets, less than 5% of entries

are qualified and need to be further checked after filtering on the first sub-column with BUFF.

However, for GPS and Stock datasets, more than 90% entries are still qualified because of

code space inflated by outliers. As we hit the frequent value in this case, we can skip decoding

the first sub-column by directly using a bit-vector from sparse encoding, which speeds up

the query. Sprintz and FIXED filtering use query rewriting to avoid record decompression as

well. Compressed bits are extracted and compared with the translated to the target directly

by using integer arithmetic. ByteSlice variations are always the second to the best approaches

due to the SIMD speedup and early stopping. BUFF has a better data and code locality, as

it works on the same predicate for the current sub-column. While ByteSlice needs to load
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all sub-columns and jump to different sub-column with corresponding predicate evaluation

in each iteration. Additionally, always using SIMD can slow down ByteSlice’s throughput

as a single match , resulting in SIMD loading and evaluating for all adjacent records within

the same SIMD word length. In BUFF, data skipping can efficiently jump to the target

record and avoid unnecessary data loading. Except for these aforementioned approaches,

decompression is required before predicate evaluation on float numbers. General-purpose

byte-oriented compression approaches are sequential algorithms and need to decompress the

last bits before the original data can be accessed. Gorilla encodes value with different bits

and variable bits representation, which impedes query translation and data skipping. These

bring a high latency for filtering the compressed data with those methods.

Figure 4.11 shows the low selective greater than range filtering experiments with the

same operand. As we can see, the range filtering performs similarly to equality filtering

but with smaller throughput overall. The selectivity of the range query is much lower than

previous equality filtering. There are more qualified records in this case, which triggers the

IF branch that edits the bitmap more frequently. Thus filtering throughput is deteriorated

compared with previous equality filtering experiments. Similarly, ByteSlice variations is

slower than equality filtering because of more comparison and less early stop. However,

BUFF still performs best. Similar to equality filtering, all other approaches require full

decompression. As we can see from the figure, their filtering performance is proportional

to their materialization performance, which we will discuss later in Section 4.3.5. Figure

4.12 shows high selective equality queries that filter out majority of records. BUFF is

more efficient on the high selective query as more bits are skipped by progressive filtering.

Overall, BUFF achieves 20× for average query speedup compared with the second-best

float compression approach. BUFF has similar trends on high selective range queries, and

it achieves 16× on average query speedup compared to the second-best float compression

method (we omit the figure).
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Aggregation

An aggregation query is another frequent query for numeric data analysis. We evaluate the

query performance of min/max and sum for all compression approaches.
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Figure 4.13: Max throughput

Figure 4.13 shows min/max query throughput. The query time includes bit parsing and

query execution. Even though we can quickly extract min/max value from data statistics in

the metadata block for BUFF, we force aggregation query execution on compressed data for a

fair comparison, and this is necessary for aggregation with a filter. In addition to this setting,

we enable all the techniques used in previous experiments. For min/max aggregation, we

can use progressive filtering and data skipping for BUFF. For FIXED and Sprintz, we find

the min/max integer code directly then convert this value into float numbers. For other

approaches, float numbers are decompressed for evaluation. The result shows that BUFF

achieves 22× on average query speedup than the second-best float compression approaches

Sprintz or FIXED. The min/max value is usually with a low frequency such that only a

tiny portion of entries are added to the bit-vector and need to be checked in the following

sub-columns. This makes BUFF extremely efficient for min/max aggregation queries since
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Figure 4.14: Sum throughput

a huge amount of entries (bits) are skipped during the evaluation step.

The sum query performs similarly to materialization as all compressed data has to be

decompressed, and all techniques mentioned previously are ineligible in this scenario. Figure

4.14 shows the sum query throughput on the same dataset. BUFF outperforms all its

competitors. For Sprintz, FIXED and BUFF, we use lazy materialization to avoid the

overhead of full decompression for each entry. The sum intermediate result is calculated with

an integer representation for Sprintz and FIXED, then converted back to float numbers at the

very end. This is similar to sum operator with BUFF, where the sum is calculated on each

sub-column with its integer representation respectively and concatenated into a final float-

point result in the end. The performance difference between those approaches comes from

the more efficient reading and parsing of BUFF and no data dependency between adjacent

numbers. All other approaches perform poorly since full decompression is inevitable.
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Figure 4.15: Materialization throughput

Full Materialization

Materialization performance varies a lot for each compression approach. Overall, material-

ization overhead is comprised of bit parsing time and assemble time. Fixed-length encoding

helps for bit parsing. As is shown in Figure 4.15, Sprintz and FIXED perform better than

BUFF as they read single fixed-length data chunk during materialization, which is faster

than Gorilla that reads variable-length bits for each record, and BUFF where multiple data

chunks need to be fetched as requested, then parsed and concatenated into a float number.

However, BUFF is still comparable with Sprintz and FIXED thanks to the efficient reading

and parsing of BUFF. ByteSlice variations are faster than BUFF because of its fast byte

reading and decoding benefits. Since BUFF bit extraction is more efficient than the scaled

version on decompression, BUFF-SLICE is always faster than SCALED-SLICE. Gzip is the

slowest among all candidates since it has to decode Huffman encoding before restoring the

recurring sub-sequences. Snappy achieves a better performance than Gzip because it skips

Huffman encoding for higher throughput.
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Materialization and Aggregation with Requested Precision
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Figure 4.16: Materialization and aggregation with targeted precision boosts throughput by only
reading the leading bytes.

We also show the versatility of BUFF on variable precision materialization and aggre-

gation support, which are especially useful when users only care about limited precision in

formatted output and fast estimation of aggregation queries. Figure 4.16 shows the materi-

alization and aggregation with requested precision on the UCR dataset. The red line-based

right y-axis shows the bits needed to support the requested precision. The query performance

linearly increases as bytes read decreases. A single expensive bit read can significantly slow

down the query performance, as we can see from the first set of results on full data with 3

bytes and 1 bits read.

1-Nearest Neighbor

One nearest neighbor (1NN) is a popular machine learning tasks where an entry X is assigned

to the nearest neighbor’s class. In addition to SQL tasks, We also include 1NN experiments

to explore the impacts of BUFF on 1NN accuracy.

We run 1NN task on the UCR dataset collection with different BUFF precision for the

input float numbers, and report the 1NN accuracy result for all 128 datasets. For better
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Figure 4.17: Relative 1NN accuracy on 128 UCR datasets shows reduced precision has a limited
impact on accuracy.

representation, the accuracy number for each dataset is normalized by its corresponding

accuracy of full precision input. As is shown in Figure 4.17, relative accuracy decreases

gracefully as the BUFF precision goes down. Nevertheless, we still achieve outstanding

performance even with reduced precision greater than one. This experiment shows BUFF

has a good potential of saving storage and network transmission cost for some machine

learning tasks without loss of precision.

4.3.6 Benchmark Evaluation

In this set of experiments, we show complex query performance with TSBS. On TSBS, we

generate “last-loc", “low-fuel" and “high-load" queries, which respectively include projection

on longitude and latitude attributes (project), filtering on a fuel_state attribute containing

single sub-column with BUFF encoding (range-single), and filtering on current load attribute

(range). In addition to the float-related operations, those end-to-end queries also include

any filter, join, sorting on timestamp, string, or integer attributes. The runtime for these

columns is independent of float compression approaches, so we take do not show them and

only focus analysis on query runtime of float attributes. For Gorilla, the float-associated cost

makes up 54% to 76% of the total runtime. However, BUFF can diminish those costs to 1

or 2 orders of magnitude smaller on those queries. Figure 4.18 highlights the query runtime
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Figure 4.18: TSBS query runtime for float attributes.

on float attributes, BUFF always performs the best over all other baseline and is faster than

ByteSlice variations on TSBS range filter queries since adaptive filtering chooses progressive

filtering execution for the highly selective filter.

4.4 Conclusions

This paper proposes BUFF, a novel decomposed float compression for low precision floating-

point data generated everywhere and every day. BUFF uses “just-enough” precision for a

given dataset, and leverages the data distribution feature (range, frequent value) to sim-

plify its encoding mechanism and enhance the compression performance. The compression

supports efficient in-situ adaptive query on encoded data directly. In addition, BUFF pro-

vides fast aggregation and materialization for different precision levels. BUFF’s precision

bounded technique is also applicable to the state-of-the-art Gorilla method and improves

Gorilla’s compression performance significantly. Our evaluation shows BUFF achieves fast

compression and query execution, while keeps comparable compression ratio to the best ap-

proaches. Future work includes studying the performance of Buff for common downstream

complex analytical tasks, such as classification [86], clustering [83, 84], and anomaly detection

[23].
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CHAPTER 5

ADAEDGE: A DYNAMIC COMPRESSION SELECTION

FRAMEWORK FOR RESOURCE CONSTRAINED DEVICES

The Internet of Things (IoT) refers to the billions of physical devices worldwide connected to

the internet, all collecting and sharing data. IoT devices generate vast amounts of data from

various sensors every day. Data systems typically employ different compression approaches

to reduce on-disk or in-memory data sizes and improve bandwidth and storage utilization on

the centralized cloud. As edge devices gain more computational power and popularity, sup-

porting compression, query, and analysis on the edge side is a good option to reduce the IoT

system’s cost. Pushing compression down to the edge makes ingested data pre-compressed,

which benefits many system aspects. It minimizes the data that needs to transfer, saves net-

work bandwidth, saves the edge or cloud resources for storing data, and typically improves

query performance. However, the edge is usually resource-constrained compared with cloud

servers in terms of network bandwidth, storage, and computation power. Those limited

resources bring new challenges and constraints to compression design and selection.

The IoT data from a signal sensor can statistically change over time, so it is difficult

for a compression approach to always have efficient and effective compression over the data

stream. Modern data systems support a variety of lossless and lossy compression approaches

to process the data for mixed workloads. Different compression approaches have diverse

compression performance and even impact the workload accuracy differently in the cases of

lossy compression. Because of dynamic data features and various workloads across extended

IoT applications, it is impossible to provide a one-size-fits-all compression solution for all

kinds of data and tasks. Therefore, an adaptive lossless and lossy compression selection

strategy is necessary to select the optimal compression for the incoming IoT data based on

the data statistics, query workloads, and limited resources available on the host.

Compression selection is an optimization task accounting for the data features, hardware
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specifics, and workload information. Compression selection can optimize for different per-

formance targets, including space usage, compression throughput, and query performance.

Abadi decision tree [10] is one of the first projects to explore compression selection for in-situ

query execution on compressed data. It introduces a rule-based encoding selection approach

that relies on the global knowledge of the dataset features. LEA [28] is a compression se-

lection framework that builds difference regression models to predict the compression and

query performance, then selects the optimal compression according to the optimization tar-

get. CodecDB [58] builds a neural network model to predict optimal compression based

on the collected data features. It also provides specialized operators which can operate on

encoded columns directly. Hyrise [22] uses separate models to predict compressed size and

query operator performance, then use linear programming or greedy heuristics to get the

best encoding for each data chunk. Beside these projects, Open-source columnar formats

such as Apache Parquet [18], ORC [17] and Arrow Feather [16], and some commercial data

systems such as Vertica [76] and MySQL [37] choose to hard-coded compression selection

based on the column data type. However, those conventional compression selection focuses

mainly on lossless compression approaches and optimizes for either storage or SQL query

performance. Besides, they do not consider the more limitations and constraints for edge

devices in the IoT systems, such as the cases where an offline edge device needs to ingest

and hold more data than its storage capacity temporarily.

Edge devices usually have more constraints and limitations from the hardware and system

environment, including limited storage, bandwidth, and computation power. Traditional

lossless compression approaches come with a compression limitation defined by the entropy

of the data. So it is impossible to always keep 100% accurate data representation with

limited system storage resources. Lossy compression approaches are widely used by many

time-series databases to control storage consumption. Some systems directly remove data

ingested earlier than a given time or exceeding a storage threshold. RRDtool [104], and

InfluxDB [4] remove old data exceeding a certain period to take back space for new data.
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ModelarDB [54] trades the query accuracy for storage space by selecting the best model

to approximate the data with user-defined error bounds according to the storage budget.

SummaryStore [11] reclaims the storage space by replacing the data with data summaries

with a specific compression ratio. TVStore [13] uses a time-varying compression framework

to bound storage. These projects mainly rely on a single lossy compression approach to

compress the data according to the storage budget. A selection strategy among different

lossy compression approaches is not discussed. Furthermore, previous works mainly focused

on the lossy impacts for the accuracy of dashboard queries and some SQL operations, while

widely used machine learning tasks are not well studied as an optimization target.

Different lossy compression approaches may impact the accuracy and efficiency of different

workloads. There is no one-size-fits-all compression solution for IoT systems with varying

data statistics, workloads, and hardware constraints. We, therefore, propose AdaEdge as a

hardware-conscious encoding selection framework for resource-constrained devices. AdaEdge

is a best effort compression selection framework with the following contribution:

• Multi-armed bandit assisted lossy and lossless compression selection depending on the

hardware constraints and workload target.

• Online and offline mode compression selection solutions for resource-constrained de-

vices to conserve mission-critical information.

• Multiple optimization targets supported, including compression ratio, throughput, ag-

gregation queries and machine learning task accuracy.

• LRU-based compression policy to compress the data based on its importance.
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5.1 Background

In this section, we first introduce several lossy and lossless compression approaches. We then

discuss the compression selection problem in IoT system setting and frame the compression

selection problem as a reinforcement learning problem. Finally, we introduce Multi-Armed

Bandit Problem, its variations, and applications.

5.1.1 Lossless and Lossy Compression

There are two types of compression: lossless compression where the original data can be

fully recovered from compressed data, and lossy compression where the original data cannot

be recovered. We discussed many lossless compression approaches in Section 4.1.2, including

byte-compression techniques, such as Gzip and Snappy, and lightweight encodings, such as

dictionary encoding, Gorilla [88], Sprintz [21], and BUFF. Lossless compression is widely

used to persist historical data and unstructured media data. However, lossless compression

capabilities are always bounded by the entropy of the input data. The entropy conveyed

by a piece of information defines the minimal bits required to represent the corresponding

information losslessly. This implies a lower bound for a 100% accurate representation of the

given information. When the system does not provide enough storage budget, all the existing

data compression selection frameworks fail to get an encoding solution. However, these

scenarios are quite typical in IoT systems. The dynamic resource and hardware constraints

in IoT systems may require extremely aggressive compression to meet the limited constraints.

In this case, if we still want to keep data smaller, we need to pay the cost of partial information

loss while we want to keep the minimal impact on the task accuracy.

In order to handle such scenarios, we include some basic lossy compression in AdaEdge.

Lossy compression can achieve a much higher compression ratio than lossless compression

by giving up partial information. To better serve our use case, the lossy compression used

by AdaEdge should be easily configurable with any given compression ratio and easy for
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recoding without much effort for decompression. Our AdaEdge framework currently supports

the following lossy compression approaches.

BUFF is designed to be a lossless compression approach, but it can be used as lossy

compression if we compromise on the precision of the float value. In AdaEdge, we include

the BUFF lossy version as a lossy compression option, as noted by BUFF-lossy. BUFF-

lossy achieves more aggressive compression by ignoring insignificant bits. This is the least

significant change to the given input value, which is beneficial to the tree-based machine

learning tasks, which are sensitive to the feature value change.

Piecewise Linear Approximation (PLA) [96] is a linear generalization method that

enables linear approximation for the values under each data segments, and the resource

budget bounds the number of segments. Largest Triangle Three Buckets (LTTB) is a variant

of the widely accepted and used Visvalingam-Whyatt (VW) algorithm [105]. LTTB is used

as the line generalization method of TVStore [12] and TimeScaleDB [6]. As compared to

other line generalization algorithms, LTTB has much lower complexity. It can compress

data in almost a single pass while preserving visually important points like its counterparts.

Simplicity and data preservation are two key features of LTTB. The linear generalization

method can keep the visual similarity of the signal, so it is good for dashboard queries.

Piecewise Aggregate Approximation (PAA) [112, 61] is designed to reduce the

dimensionality for time series data mining by representing time series as mean values of

segments. While the simple dimensionality reduction can be used as a form of lossy com-

pression. PAA saves space by keeping the mean values of an equal-sized window, and it’s

configurable to achieve different levels of lossy approximation by adjusting the window size.

Since PAA keeps the mean values for each window, it is usually good at preserving Sum and

Avg aggregation query accuracy.

Fourier transform [39] converts a signal from its original space or time domain to a

representation in the frequency domain and vice versa. Fast Fourier Transform (FFT) is an

algorithm that computes the discrete Fourier transform of a sequence, or its inverse. Once
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the original sequence is transformed into its composite frequency parts, the less important

frequencies could be ignored from the data without distorting the original sequence a lot, thus

reducing file sizes. FFT achieves more aggressive compression by ignoring more components

with high frequency. It is usually good for the distance evaluation of high-dimensional data.

RRD-sample. We also include a random sampling method to simulate the RRDTool

compression logic which bounds storage by deleting data when the storage quota is reached.

So instead of deleting the old segment, AdaEdge keeps one random value from this segment

for late queries and duplicates the value to a whole segment for the relevant workload when

necessary.

Overall, all the lossy compression in our framework are easily configurable to achieve the

desired compression ratio. And easy to adjust the level of compression for the given data.

Given storage budget, AdaEdge is able to choose from Lossy compression sets including

BUFF-lossy, PAA, FFT, PLA, RRD-sample for aggregation queries and machine learning

tasks including Decision tree, Random forest, KNN, K-means, Etc.

5.1.2 Compression selection

Data compression is crucial for many data systems and applications. Compression helps save

network and storage resources, which is extremely important for some resource-constrained

devices and systems. Depending on the system hardware, the compression has to work

under a series of resource limitations while guaranteeing the accuracy of tasks. Ideally,

lossless compression is qualified for the given hardware limitations, and the data can be

fully recovered before sending to the downstream applications. At the same time, lossy

compression approaches are needed when there are more harsh storage constraints. The

compression should be more aggressive to save system resources while minimally affecting

task accuracy. The lossless compression selection will mainly focus on the compressed data

size and compression throughput, while the lossy compression selection will be more focus

on the accuracy loss of the workload.
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The resource constraints derive from many aspects of the system, including data ingested

rate, limited memory, storage and network bandwidth. The constraints can also come from

the requirements of the downstream application and workload: the compression should help

speed up the workload and diminish the workload accuracy loss. Those constraints impose

requirements on the compression ratio, compression throughput, query throughput, and task

accuracy.

We formulate compression selection as an optimization problem for the resource-constrained

system. The system constraints are denoted as Ibgt for given signal ingestion rate, Bbgt for

network bandwidth, Sbgt for local storage capacity. The data sequence is organized in the

form of segments with a fixed number of consecutive data sequences (original size denoted as

U). There is only one compression scheme is selected for each segment. vij = 0, 1 indicates

whether compression cj is selected for segment xi, then we have
∑k

j=1 vij = 1 for any given

segment i assuming k compression approaches in the compression candidate set C. In terms

of the compression performance, we also use rij to indicate the estimated compression ratio

of compression cj on segment xi. tij indicates the estimated compression throughput of

compression cj on segment xi. eij indicates the estimated query error of lossy compression

cj on segment xi. For n segments, we can get the total compressed size

S = U ×
n∑
i

k∑
j

(rij ∗ vij)

Average egress rate

B =
Ibgt
n

×
n∑
i

k∑
j

(rij ∗ vij)

So when we optimize for the given network bandwidth Bbgt, we formulate the lossless com-

pression selection as

argmin
V

S(V ) s.t. Icomp(V ) ≥ Ibgt and B(V ) ≤ Bbgt
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where V is the compression assignment for each segment comprised by vij and Icomp(V )

indicates the compression throughput with given V . The lossless compression selection

should handle the given ingested signals and generate compressed data with egress rate

under the network capacity. If no solution for this optimization problem is feasible, a lossy

compression selection problem is needed to meet the harsh requirements. To optimize for

the given network bandwidth Bbgt, we formulate the lossy compression selection as

argmin
V

ET (V ) s.t. Icomp(V ) ≥ Ibgt and B(V ) ≤ Bbgt

where ET (V ) is the accuracy loss for the given task T with the given compression assignment

V . The goal switches to minimizing the task accuracy loss within the system constraints.

For the systems without a network to constantly egress the data out, the compression

selection target switches to keep ingesting the new data while minimizing the task accuracy

loss when shedding the data. We formulate the compression selection problem as

argmin
V

ET (V ) s.t. Icomp(V ) ≥ Ibgt and S(V ) ≤ Sbgt

where we keep evolving the data to meet the system’s limited storage budget while ensuring

the selected compression approaches are capable of handling the given signal.

The compression selection component should be able to automatically select the optimal

compression approach, given the workload, data arrival rates, and resource capacity. The

compression selection in our framework requires a lightweight reinforcement learning frame-

work to efficiently summarize the past compression performance and provide compression

suggestions based on the latest observation from system feedback. So it is a perfect fit for

the multi-armed bandit (MAB) problem.
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5.1.3 Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem (MAB), also called K-armed bandit problem [102, 74],

is a problem where an agent repeatedly makes a choice among a fixed number of different

options, or actions which return agent rewards. Each action has a different probability

distribution that determines how much reward is given, and these distributions are unknown

to the agent aforehand. The objective is to maximize the expected total reward over some

time period, which is called total expected return.

Assuming we have a bandit with k armed, each of the k arms is associated with an

expected reward q(a) given that arm action a is selected. We denote the arm selected at

time step t as At, its corresponding reward as Rt. If action a is selected at time step t, we

have the expected reward

q(a) = E[Rt|At = a]

Since we do not have the reward value for each action aforehand, we need a good estima-

tion of it. We denote the reward estimation for action a at time step t as Qt(a). The closer

Qt(a) is to q(a), the better action bandit can make. In the ideal case where estimation Qt(a)

is 100% accurate, we would always select the action with the highest value to maximize the

total return. The action chosen at time step t can be formulated as:

At = argmax
a

Qt(a)

This is the intuition of greedy action, where the agent always selects the arm action with

the highest reward estimation. When the agent follows the greedy suggestion, it exploits the

bandit system’s current knowledge. While purely exploiting will only bias the bandit system

on the former knowledge, some proper exploring action is needed. The exploring action is

basically trying on the non-greedy actions, which helps to improve the reward estimation of

the non-greedy actions. Exploitation action is the right thing to do to maximize the expected

reward in one step, but exploration may produce a greater total reward in the long run.
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There are many sophisticated variations for balancing exploration and exploitation for

particular mathematical formulations of the multi-armed bandit problem. ϵ-greedy is a ba-

sic solution of balance exploration and exploitation for MAB problem, with ϵ possibility

to choose the non-greedy action. The Optimistic ϵ-Greedy Algorithm is a simple modifi-

cation by setting the initial action estimates to high values in a regular greedy algorithm

to push it explores the whole candidate action searching for optimal action. Rather than

performing exploration by simply selecting an arbitrary non-greedy action, chosen with a

probability ϵ that remains constant, the Upper Confidence Bound (UCB) algorithm changes

its exploration-exploitation balance as it gathers more knowledge of the environment. It

moves from being primarily focused on exploration, when actions that have been tried the

least are preferred, to instead concentrating on exploitation, selecting the action with the

highest estimated reward. There are many other variations for bandit algorithms, such as

Gradient Bandit, Contextual Bandits [32], etc. We omit discussion as it is not close relevant

to this paper.
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5.2 AdaEdge Overview

AdaEdge is an adaptive hardware-conscious compression selection framework for resource-

constrained devices. AdaEdge can select the optimal compression according to system re-

source limitations, incoming data statistics, and query workload.

5.2.1 AdaEdge Framework Constraints

We first introduce the basic constraints of the AdaEdge framework. As we can see from

Figure 5.1, There are several limitations and constraints in AdaEdge. The first one is the

signal generation rate from the sensor, which ranges from zero to millions of data points per

second. In AdaEdge, we assume no back control to the sensors regarding the data generation

rate, so the ingestion rate is a hard constraint for our framework. AdaEdge should be able

to ingest all incoming data and process with proper compression, or downsampling when

necessary. In our compression selection step, all selected compression must be able to handle

the given ingestion rate from the sensors.

The network bandwidth is another hard constraint for AdaEdge. Broadband networks

are popular in all the countries in the world. However, the low bandwidth networks are still

popular and they play critical roles in the modern IoT ecosystem. The network bandwidth

varies depending on the network connection technology. In practice, the bandwidth changes

for a cellular network from 0.01 Mbps to 200 Mbps. In addition, the network bandwidth

varies significantly in cases of network congestion or edge device movement. Network discon-

nection is typical for IoT edge devices in some harsh environments. AdaEdge is able to handle

all different network connection cases and provide proper data ingestion and compression

solutions accordingly.

The edge node has a very limited storage space compared to an advanced cloud server.

According to the system design, the storage device on the edge can be SSD or HDD. Storage

devices are carefully accessed on the edge device. For the sake of device lifetime and power
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Figure 5.1: AdaEdge overview

consumption, some industrial systems are designed to avoid using storage devices for daily

operations but only save the storage devices for a particular use during offline cases.

The last limited resource on edge is power. Many edge devices are designed for demanding

environments and deployed in remote areas without sustainable power supply. When the

battery becomes the only power supply for a given edge node, any task running on the edge

should consider the power consumption. In AdaEdge, we mainly focus on the network and

storage constraints, and we leave the power constraints as a future work.

Based on those constraints, we classify the IoT use case into two modes. In terms of

network connection, we introduce online and offline modes for AdaEdge.

Online mode

The online mode views the edge node as a data hub, and the goal is to transfer the signal

data as much as possible within the given constraints, including signal rate and network

bandwidth. For the online mode, AdaEdge keeps all data ingested and compressed in memory

before sending those segments out through network protocol. The selected compression

should be able to handle the given signal generation rate, and the compressed file size should

be within the network transmission capacity.

Figure 5.2 show an example with 4 million data points generated per second. The line
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Figure 5.2: compression should be able to handle the given signal generation rate. An example
shows a signal with 4 million data points generated per second.

shows the ingestion rate (the size of data generated per second), and the bars are the in-

gestion rate (the size of data compressed per second at full speed) for different compression

approaches. We can see from the figure that most compression methods are qualified to

compress the signal example except for Gzip and Kernel methods which are usually slow

in compressing the data. As we can see from Figure 5.3, The first bar is the original 4M

data points. Without compression before data transmission, it is impossible to transfer the

ingested data to the cloud with the given network setting. But assuming we use 4G here,

then many lossless compression such as Sptintz, BUFF, dictionary encoding, and lossy com-

pression can send out the compressed data under the 4G network. However, if with the 3G

network, there is no qualified lossless compression. So depending on the query workload, we

need to choose corresponding lossy compression to minimize the query error rate.

For the online mode, we keep all data ingested and compressed in memory before we send

out those segments through a network protocol. We omit saving data to the local storage to

save storage space for future offline cases, save power and prolong the lifespan of the storage

device. We choose the best lossless compression by default. In the particular case of no
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qualified lossless compression, we chose lossy approaches optimized for the target workload.

Offline mode The edge node serves as a local computation and storage node for use

scenarios with poor network or no connection. The goal switches to keep ingested data in

the form of mission-critical information as much as possible for data offloading if a future

connection is expected.

As is shown in Figure 5.4, he offline mode performs differently from the online mode

which always optimizes for the compressed size. Instead, load shedding is needed when local

storage runs out of space. For all ingestion data, we use the local disk as temporary storage.

When there is not enough space, we do more aggressive compression (even lossy compression)

on less valuable or less informative segments instead of removing some segments.

The informativeness can be measured by the query usage of the given segment. A query

counter for each segment is a straightforward solution for measuring the informativeness of

segments. However, the informativeness should also reflect the contribution of each segment

to the query. For example, segment A with 1% qualified entry should be less informative for

segment B with 99% qualified entry. The cluster centroid should be more informative than

a normal vector for the distance measure. AdaEdge builds dedicate segment management
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Figure 5.4: AdaEdge keeps evolving the ingested data with the given storage budget for offline mode
devices.

component with standard GET and PUT APIs for different policy. AdaEdge uses a LRU

based compression policy by default, which is discussed in Section 5.2.5.

5.2.2 AdaEdge Workflow

AdaEdge allows the collection and aggregation of data from multiple device clients. The

framework can be configured to accept multiple signals corresponding to a metric that the

sensor produces, such as temperature and humidity. AdaEdge ingests data points gener-

ated by the remote sensor clients, caches them into fixed-size arrays, attaches a timestamp

for the segment, and pushes it to the uncompressed buffer. As the uncompressed buffer

is being filled, compression threads offload data from the uncompressed buffer and process

them. The compression selection threads are adaptively configured to use different compres-

sion approaches based on storage capacity, network bandwidth, ingestion rate, and specified

analytical tasks. If the uncompressed buffer exceeds its capacity, which may happen when

the ingestion rate exceeds the compression speed, the data is flushed to the disk. The com-

pression threads push the compressed data into a compressed buffer pool, which can also

flush to disk. AdaEdge can execute queries or analyses (e.g., aggregation queries, clustering)
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over the compressed data or the raw time-series segments in the uncompressed buffer. Each

segment in the framework is associated with metadata describing its compression configura-

tions, which can be used for the codec to do further compression or decompression for the

downstream workload.

AdaEdge currently supports byte-compression techniques, such as Gzip and Snappy, and

lightweight encodings, such as dictionary encoding, Gorilla [88], Sprintz [21],and BUFF [72]

for numeric data. AdaEdge also supports specialized lossy time-series representation meth-

ods (i.e., lossy compression), such as Piecewise Aggregate Approximation (PAA) [112, 61],

Fourier transform [39], Piecewise Linear Approximation (PLA) [96] and BUFF-lossy. These

approaches differ in terms of compression ratio, throughput, query efficiency, and workload

accuracy. There is no one size fits all approach for any time series or task. With system

resource limitations defined by edge devices, AdaEdge is able to switch the compression

approach according to the optimization target adaptively. AdaEdge currently supports opti-

mization targets, including space (data compression ratio), time (compression runtime), and

accuracy (machine learning model and aggregation query accuracy).

The compression selection component in AdaEdge is able to automatically select the com-

pression approach, given the workload, data arrival rates, and resource capacity. AdaEdge

compression selection requires a lightweight reinforcement learning framework to efficiently

summarize the past compression performance and provide compression suggestions based

on the latest observation from system feedback. The compression selection component of

AdaEdge is a perfect fit for the multi-armed bandit (MAB) problem. As the signal is ingested

into the system, AdaEdge compresses the uncompressed segments and puts them into the

compressed buffer. Once compression is finished for segments, AdaEdge runs an evaluation

process to monitor the compression ratio, compression throughput, target workload accu-

racy, Etc. This information is used for the MAB component to estimate the potential reward

by applying each compression candidate. Recall the MAB greedy algorithm logic, the com-

pression selection for AdaEdge is selecting the compression arm with the highest estimated
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value of the optimization target. So the Qt(a) from section 5.1.3 will be the optimization

target estimation for compression action a at time step t.

In AdaEdge, there could be more than one MAB instance for the AdaEdge compression

selection component, depending on the use case. For AdaEdge online mode, a target com-

pression ratio can be derived from the existing system constraints. For example, an edge

node ingests the given signal containing double-precision floating-point number (8 bytes per

value) at ingestion rate I points per second and network bandwidth B bps. In order to send

the ingested signal out through the given hardware, the derived target compression ratio is

R = B/(8∗ I) if we ignore the network packet header overhead for each network layer. With

this target compression ratio R, AdaEdge applies lossless compression on ingested segments

by default and falls back to lossy compression if R is not achievable by lossless compression.

So for the lossless encoding selection, there is no impact on the task accuracy loss, so the MAB

optimization target is the compressed size only. When finished compressing the segment,

the compressed segment size is updated to the corresponding arm in the MAB component,

which is used to improve the reward estimation of MAB. The compression selection decision

is made based on those estimations. When lossless compression doesn’t work for the target

compression ratio R, another MAB instance is initialized for the lossy compression selection.

Lossy compression means the decompressed data is not 100% restoration of the original data;

thus, it negatively impacts the workload accuracy. All lossy compression approaches cur-

rently supported by AdaEdge are easily configurable for any given target compression ratio,

so the compressed segment from different lossy compression has the same size, which meets

the target compression ratio. Therefore, the compressed file size is no longer critical for lossy

compression, while task accuracy becomes the most crucial factor. The workload accuracy

could be the MAB optimization target. AdaEdge periodically checks the optimization target

for all lossy compressed segments and updates the latest reward value for the corresponding

arm to support better future action suggestions.

The offline mode for AdaEdge is more complicated than the online mode, as there is
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Figure 5.5: AdaEdge keeps ingesting the latest data while applies different levels of compression on
the early segments to free space for incoming data. The red rectangle denotes an arbitrary segment
in AdaEdge, with the rectangle length showing its current size.

no clear target compression ratio derived from the system constraints. An actual use case

could be an offline edge device without any network connection, so there is no way to egress

the ingested data. The data must keep evolving within the limited storage budget given

by the system. The goal of AdaEdge compression selection in the offline mode is to try

to keep application-critical information as much as possible to minimize the potential task

accuracy loss under the given storage budget. The data evolving here is achieved by applying

more aggressive compression on the data with less critical information. Figure 5.5 shows the

cascade compression for the offline mode. For a given segment in the uncompressed buffer,

AdaEdge applies lossless compression by default to save space for future segments. When

a pre-defined threshold is reached, the recoding process is waked up to further compressed

the segments in the compressed buffer. As the system keeps ingesting more and more data

points, there will be more space needed, thus, more aggressive compression will be applied

to the old data segments. The compression sequence of the segments depends on the cache

maintenance policy, which will be discussed in Section 5.2.5.

Similar to the online mode, AdaEdge creates multiple MAB instances for different com-

pression levels for offline mode. Each MAB instance corresponds to a specific compression
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ratio range. This design is based on the observation that the optimization target changes

significantly across different compression ratio ranges, and a single MAB instance for lossy

compression selection is hard to reflect the compression ratio impact on the optimization

target. For a given uncompressed segment, the lossless compression selection MAB instance

suggests the optimal lossless compression and compresses the segment to save space. So

the compression size is the optimization target for the lossless compression selection MAB

instance. The compressed size is then updated to the MAB instance for future estima-

tion. AdaEdge keeps ingest the new data points until the predefined threshold θ is reached.

When more space is needed for the new ingested segments, AdaEdge initializes the lossy

compression on the compressed segments, by default shrinking the size to half of the input

size where we can derive a target compression ratio for the current segment. So the lossy

compression selection component needs to refer to the MAB instance corresponding to the

target compression ratio range, and the suggested action is the optimal compression for the

optimization target within that specific compression ratio range. AdaEdge periodically eval-

uates the target task for each MAB instance on the compressed segment belonging to its

corresponding compression range. AdaEdge keeps compressing and recoding the segment

within the given storage budget until the egress option is available.

5.2.3 Optimization target

AdaEdge currently supports single workload targets, including aggregation query (min, max,

sum, average) accuracy, Machine learning task (KMean, KNN, Random forest, decision tree,

Etc.) accuracy, and compression throughput. It’s easy to deploy other workload targets with

a clear quantitative evaluation rule in AdaEdge.

In AdaEdge, the machine learning task accuracy evaluation on a lossy compressed seg-

ment is defined as follows: with lossy compression, we can get its compressed representation

Rl. Before feeding it into the machine learning task, we need to decompress it into Xl. Given

the task T and a pre-trained model M , we get the prediction results Yl = M(Xl). For the
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machine learning task evaluation on lossy compressed data, we define the accuracy as the

ratio of matched prediction label:

ACCml =
|{x|x ∈ X AND M(xl) = M(x)}|

|X|

Here we assume the task model M is the pre-trained model on the original dataset X and

provided to the compression task as a given input model. Model M could be either trained on

the edge device or pre-downloaded from the cloud. AdaEdge has a dedicated serialization and

deserialization module to manage the machine learning model instance. AdaEdge loads and

deserializes the corresponding binary file into a machine learning instance for performance

evaluation when a particular machine learning task is defined as the optimization target.

In addition to the machine learning tasks, AdaEdge defines relative loss for aggregation

queries as other work does for approximate query processing evaluation [68]:

Accagg = 1− |Vtrue − Vlossy|/|Vtrue

Where Vtrue is the real value we get from the aggregation operator on the original data, while

Vlossy is the estimated value on the lossy decompressed data. The compression throughput

is defined as

Cthr = So/Tc

where So is the original file size and Tc corresponds to the compression runtime. A fast

compression usually means less number of instruction for the compression codec, which

consumes less power [19]. Besides the compression task in AdaEdge always has similar I/O

and memory access cost, meaning similar power cost. Therefore, a fast compression may

correspond to a power efficient compression approach, which is very importance for IoT

applications.

In addition to the single optimization target, AdaEdge also supports a hybrid weighted
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target, which we call a complex optimization target. We leave the user with the flexibility

of assigning different weights for each kind of task to support custom optimization targets

for the system. The complex target is defined as

targetc = w1 × ACCagg + w2 × ACCML + w3 × Cthr

where ACCs and Cthr are normalized, and w1 + w2 + w3 = 1.

5.2.4 Recoding optimization

AdaEdge may apply multiple times of recoding for the same segment. Traditional com-

pression requires full decompression before recoding, which may slow down the recoding

process. Similar to "virtual decompression" in TVStore [13], AdaEdge tries to avoid any

unnecessary decoding as much as possible. All the lossy compression approaches supported

in AdaEdge are easy to apply recoding without requiring any decompression beforehand.

When more aggressive compression is required, AdaEdge checks the original and target com-

pression methods and applies direct recoding on the compressed data without decompression

if possible.

AdaEdge currently supports "virtual decompression" for the recoding tasks with iden-

tical source and destination compression approaches. For example, we truncate the BUFF

compressed data by removing the trailing bits to achieve more aggressive compression. We

also apply PAA compression on the PAA compressed data to achieve PAA compression with

greater window size. We eliminate more insignificant frequency channels to compress the

FFT encoded segments further. We apply PLA compression on the PLA encoded segment

to get a smaller number of key data points to save more space. More similar work can be

done by enabling direct transcoding between different compression approaches, which need

specific compression optimization for each compression pair, so we keep that as future work.
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5.2.5 LRU-based compression

The compression and recoding sequence on the segments is important for minimizing the

negative impacts on the target workload. For example, the newly ingested fresh data are

usually more important than the old data in the system. More aggressive compression should

be applied to the old data when necessary, and latest data should be kept lossless if possible.

Previous work RRDTool [104] removes the old data in a round-robin way. TVstore [13] and

SummaryStore [11] apply more aggressive compression on the segment within certain time

range.

AdaEdge supports LRU-based compression policy, where the least recently used segments

are compressed first, and the frequently used data segments are less likely to be lossily

compressed. The LRU-based segment management component is implemented based on a

list. The segment management component returns to the compression or recoding threads

with the least recently used segments at the head of the list, and appends the compressed

segment to the end of the list. Meanwhile, all segments touched by the running queries will

be moved to the end of the list to ensure their least chance of being lossy compressed. The

LRU-based compression policy works well for AdaEdge where ingesting the signal and some

aggregation queries are the main tasks. The segment management component is easy to

adapt to other compression sequence policies. More investigation on different policies will

be interesting, which we leave as future work.
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5.3 Evaluation

In this section, we focus on the accuracy evaluation of aggregation queries and machine

learning tasks with varying compression approaches. We implement Gzip, Snappy, Gorilla,

Sprintz, and BUFF lossless compression, and PAA, PLA, FFT, BUFF-lossy and random

sample lossy methods in AdaEdge framework. The MAB-assisted compression selection

component’s action space for lossless compression selection includes Gzip, Snappy, Gorilla,

BUFF, and Sprintz. We use the default setting for Gzip, Snappy, and Gorilla compression.

For BUFF and Sprintz, we keep 4 digit precision on the CBF dataset, 5 digit precision on the

UCR dataset, and 6 digit precision on the UCI dataset according to the dataset statistics.

The action space for lossy compression selection includes lossy compression approaches such

as PAA, PLA, FFT, BUFF-lossy, and RRD-sample. For any given compression ratio target,

AdaEdge tunes the lossy compression parameters (such as the window size, number of data

points budget, number of frequency channels, and number of bits) accordingly to achieve the

compression ratio target.

We use optimistic ϵ-greedy for all the compression selection to encourage the exploration

of the whole candidate action for optimal action. For the offline mode experiments, we set

ϵ to 0.1 for MAB to better explore the knowledge of sub-optimal actions. For online mode

experiments, we set ϵ to 0.01 for better exploiting the optimal MAB action. We show the

compression selection performance of AdaEdge in both online and offline modes with single

or complex optimization targets.

All experiments were performed on servers with 2 Intel(R) Xeon(R) CPUs E5-2670 v3

@ 2.30GHz, 128GB memory, 250GB HDD, and Ubuntu 18.04. All our implementations and

experiments are done in Rust 1.49.0.
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5.3.1 Machine learning accuracy with given model

In our first set of experiments, we apply lossy compression (BUFF, PAA, FFT, PLA) on

UCR and UCI datasets (∼ 250 dataset) and then apply different machine learning tasks to

those lossy representations.

Figure 5.6 to 5.13 show the ACC and compression ratio numbers on the UCR and UCI

dataset with machine learning models, including decision tree, random forest, KNN, and

KMeans, respectively. The horizontal axis is the compression ratio achieved by correspond-

ing compression approaches, and the vertical axis shows the corresponding relative accuracy

defined in Section 5.2.3. As we can see from Figure 5.6 and 5.7, the tree-based task is sen-

sitive to lossy compression, since slight variations of the key data features might result in

a completely different branch, thus a different prediction in the inference phase. Overall,

BUFF-lossy works best in most compression ratio configurations as it has a minimal distor-

tion (bit level difference) from the original values. But we do notice BUFF-lossy performance

deteriorates at a low compression ratio. As is shown in Figure 5.10 and 5.11, BUFF-lossy

is worse than FFT, PAA and PLA around compression ratio 0.12 in the decision tree and

random forest evaluation on the UCR dataset. In addition, BUFF-lossy fails to support

our dataset for compression ratios lower than 0.11. With Figure 5.12 and 5.13, we can see

that both BUFF-lossy and FFT benefits high dimensional distance based task a lot. PLA

performs the worst overall for the machine learning tasks on our dataset.

With those experiments, we can see that the machine learning accuracy performance

varies for different lossy compression approaches on different target compression ratio targets.

It proves that a simple rule-based encoding selection solution is not good enough to handle

the changing data features and varying workloads. A dynamic compression selection model

is necessary to provide suggestions of optimal compression based on the incoming data

statistics, host system requirements, and downstream workload.
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Figure 5.6: Decision tree model accuracy on UCI
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Figure 5.7: Random forest model accuracy on UCI
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Figure 5.8: KNN model accuracy on UCI
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Figure 5.9: KMeans model accuracy on UCI
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Figure 5.10: Decision tree model accuracy on UCR

112



1.0 0.39 0.34 0.28 0.23 0.19 0.11

BUFF compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or

es
t

ac
cu

ra
cy

((a)) BUFF

1.0 1.0 0.4 0.34 0.28 0.24 0.2 0.12

FFT compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or

es
t

ac
cu

ra
cy

((b)) FFT

1.0 0.5 0.33 0.25 0.20 0.11 0.06 0.03

PAA compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or

es
t

ac
cu

ra
cy

((c)) PAA

1.0 0.5 0.2 0.17 0.14 0.12 0.1 0.06

PLA compression ratio

0.0

0.2

0.4

0.6

0.8

1.0

rf
or

es
t

ac
cu

ra
cy

((d)) PLA
Figure 5.11: Random forest model accuracy on UCR
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Figure 5.12: KNN model accuracy on UCR
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Figure 5.13: KMeans model accuracy on UCR
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5.3.2 Adaptive Compression Selection

We have seen the overall compression performance on historical data collections. We then

evaluate the AdaEdge compression selection on the steaming data with the running ingestion

process. In this experiment, AdaEdge ingests the data from a dummy client generating data

points from the CBF dataset [94]. The received data is then ingested as uncompressed

segments. AdaEdge applies compression selection on the ingested data segments according

to the system constraints. For comparison, we also include baselines with fixed compression

combinations.

Online mode

We start with AdaEdge online mode, where we have a clear target compression ratio

derived from the ingestion data rate and network bandwidth. AdaEdge adaptively chooses

the optimal compression for a given workload target. The compression process fetches the

segments from the uncompressed buffer and applies compression based on the MAB com-

ponent estimation. Figure 5.14 shows the machine learning accuracy loss across different

target compression ratio. The horizontal axis is the target compression ratio derived by sys-

tem constraints, and the vertical axis shows the corresponding relative accuracy loss. The

smaller the task accuracy loss is, the better compression it is on this given dataset. The MAB

line is the compression selection component used by AdaEdge. We also show the lossless

compression performance with solid lines and lossy baselines with dash lines. For lossy com-

pression baselines, PAA, PLA, and FFT can handle any target compression ratio between

1.0 and 0, while BUFF-lossy does not support a compression ratio below 0.125 on the CBF

dataset. Lossless compression has no accuracy loss for any workload, so they always get 0

for accuracy loss. We show negative values for different lossless compression for an easily

readable layout. AdaEdge uses optimal lossless compression when possible and falls back to

lossy compression otherwise. From Figure 5.14, MAB based compression selection always

selects the optimal compression for each target compression ratio. It selects BUFF-lossy for

compression range above 0.125 and choose either PAA or FFT for other compression ratio
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range. The variation on the MAB line comes from the exploration cost of MAB, in which

sub-optimal action is taken, thus inflating the accuracy loss.
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Figure 5.14: Machine learning model accuracy on target compression ratio

We also test AdaEdge encoding selection performance on the aggregation queries. Figure

5.15 and 5.16 show the relative aggregation accuracy loss for each compression approaches.

Since the accuracy loss is very low, we use a log scale here for the vertical axis. Similarly

to the previous experiment, we denote all the lossless baselines with a value smaller than

1.00e − 18 for better layout. Please note that there is no accuracy loss for all the lossless

compression. The AdaEdge compression selection works well on those two workloads, as it

picks PAA or FFT as optimal compression, which is the ground truth optimal for the sum

aggregations. The spikes on the MAB lines are also from the MAB exploration step. It’s

prominent because of the log scale, which amplifies the error from sub-optimal actions on a

tiny amount of segments. Similarly, AdaEdge chooses PLA for all the compression ranges

because of the outstanding performance of PLA for max aggregation queries.
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Figure 5.15: Sum aggregation query over target compression ratio
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Figure 5.16: Max aggregation query over target compression ratio

It is straightforward for AdaEdge to optimize for a single target. In the following exper-

iment, we run compression selection experiments optimizing for complex workload targets.

For time series data systems, aggregation query and machine learning task accuracy are

sometimes both important. AdaEdge also supports a complex optimization target consider-

ing both aggregation query and machine learning accuracy. A knob is provided to balance

two of them.

A = argmax
a

(w1 × Accagg(a) + w2 × AccML(a))

Figure 5.17 shows the sum aggregation query and random forest complex optimization target
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Figure 5.17: Sum aggregation query and random forest complex optimization target over target
compression ratio with weighted value w1 = 0.625 and w2 = 0.375.

for the online mode where a clear target compression ratio can be derived from the system

constraints. According to the baselines, there are two crossover points for the complex

optimization target: the first is a compression ratio of around 0.8, and the second is around

0.25. FFT is the ground truth optimal compression in the range 1 to 0.8, then BUFF-lossy

is the optimal compression in the range 0.8 t0 0.25, and then FFT becomes the optimal

again in the range 0.25 to 0. According to Figure 5.17, AdaEdge can adapt to the optimal

compression in most range. The outlier around compression ratio 0.15 is because of the

variation from the sum aggregation query.

Accuracy is not the only dimension for system performance evaluation. Data systems

care about compression speed in addition to task accuracy. AdaEdge is also able to support

the balanced optimization target between those two. Figure 5.18 shows the compression

selection performance with the optimization target as the combination of compression speed

and task accuracy.

A = argmax
a

(w1 ××Cthr(a) + w2 × AccML(a))

As we can see from the figure, the vertical axis is the complex target for speed and
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Figure 5.18: Compression speed and random forest complex optimization target over target com-
pression ratio with weighted value w1 = 0.524 and w2 = 0.476

accuracy combination, so greater is better in this figure. Overall, MAB is capable of selecting

the optimal compression. We can see a crossover point at 0.25 between PAA and BUFF-lossy,

and AdaEdge can handle those cases well.

Offline mode

AdaEdge offline mode aims to preserve workload-critical information as much as possible

within the system storage budget. So the compression process keeps fetching uncompressed

segments from the uncompressed buffer and applies a different level of compression based

on the segment importance. In this experiment, we reserve 10MB of space for AdaEdge to

ingest 80MB of data points with a recoding threshold 0.8. The horizontal axis in Figure 5.19

shows the ingestion timestamp. The two vertical axes correspond to space usage and machine

learning task accuracy loss. In this ingestion experiment, there are basically two types of

encoding selection: lossless compression selection that optimizes for minimizing compression

ratio to save space as much as possible, and lossy compression selection that optimizes

for machine learning tasks accuracy. Here we also include the baselines with all possible

compression pairs in the form "Lossless, Lossy". There are, in total, 25 baselines covering all

compression pair combinations. We only show several top compression pair representatives to

keep the figure clear and readable. "MAB, MAB" is our solution with MAB-based encoding
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selection strategies. During the ingestion experiment, we will periodically check the space

usage shown with the red lines in the figures.

In this experiment, we use 0.8 as a threshold for initializing a recoding process. As

we can see from Figure 5.19, all the compression pairs are capable of bounding the space

usage to a safe level defined by the recoding threshold, as we can see from the red lines. The

increasing slope of MAB space usage is slighter than Gzip, Snappy or Gorilla baselines shown

in subfigures 5.19(g), 5.19(h) and 5.19(i) respectively, since MAB lossless compression selects

Sprintz as the optimal lossless compression with the smallest compressed file size. The blue

line to the bottom shows the KMeans task accuracy loss. The task accuracy loss starts to

increase when the space usage line reaches the recoding threshold, where the lossy recoding

process is initialized. The slower the task accuracy loss line increases, the better compression

it is. As we can see, MAB-based lossy compression selection is always the best to choose the

optimal compression to minimize task accuracy loss.

In this experiment, MAB-based lossy compression selection chooses BUFF-lossy as opti-

mal lossy compression and then uses PAA as optimal lossy compression when BUFF-lossy

fails to compress the segment further. We can also see from the baseline subfigure 5.19(b),

the accuracy loss stays low when the recoding first starts, and increases quickly when more

data is ingested, requiring more aggressive compression for the old data. BUFF-lossy fails

and falls back to RRD-sample to further compress the segments in the late phase of the

ingestion experiment. In addition to KMeans, we also test AdaEdge on other machine learn-

ing tasks. The experiments show that AdaEdge could also adapt to the optimal solution on

other machine learning tasks, including KNN, random forest, and decision tree.
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0 10 20 30 40 50
Ingestion timestamp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

sprintz_paa_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

sprintz_paa_acc

((c)) Sprintz, PAA

0 10 20 30 40 50
Ingestion timestamp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

sprintz_fft_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

sprintz_fft_acc

((d)) Sprintz, FFT

0 10 20 30 40 50
Ingestion timestamp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

sprintz_pla_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

sprintz_pla_acc

((e)) Sprintz, PLA

0 10 20 30 40 50
Ingestion timestamp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

sprintz_rrd_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

sprintz_rrd_acc

((f)) Sprintz, RRD

0 10 20 30 40 50
Ingestion timestamp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

gzip_bufflossy_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

gzip_bufflossy_acc

((g)) Gzip, BUFF-lossy

0 10 20 30 40 50
Ingestion timestamp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

snappy_bufflossy_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

snappy_bufflossy_acc

((h)) Snappy, BUFF-lossy

0 10 20 30 40 50
Ingestion timestamp

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sp
ac

e 
us

ag
e

gorilla_bufflossy_space
0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
L 

ta
sk

 lo
ss

gorilla_bufflossy_acc

((i)) Gorilla, BUFF-lossy
Figure 5.19: KMeans accuracy loss over ingestion time
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5.4 Conclusion

AdaEdge provides an efficient and effective compression selection framework for data systems

with a clear target compression ratio or a clear storage budget. AdaEdge supports single

and complex optimization goals for the whole system, allowing users to choose the custom

optimization target for their data systems. It applies LRU based compression policy to

compress the data depending on its usage. It supports lossy and lossless compression selection

depending on the hardware constraints and user-defined workload target. AdaEdge deploys

a multi-armed bandit algorithm to assist the compression selection, and provides online and

offline modes to conserve workload-specific information as much as possible within the system

constraints.
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CHAPTER 6

CONCLUSION

Data systems employ compression to reduce on-disk or in-memory data sizes, improve band-

width and storage utilization, and save costs. Conventional compression approaches have

traditionally focused on minimizing file sizes. This strict focus on size alone, however,

overlooks considerations of critical importance to maximizing query execution performance.

Improperly-applied compression may hurt query performance, as many compression meth-

ods require complete decompression before query execution may proceed. Such compression

approaches waste computation resources and further optimization opportunities. Instead,

a good compression should be able to trade off compressed size with the ability to query

directly on the compressed data and speed up the query according to the host system’s

hardware. When designing a new compression, we should treat the compression as an opti-

mization opportunity for the workloads on the given data. The thesis applies this rule when

creating MOP, BUFF, and AdaEdge for IoT systems.

In Chapter 3, the thesis proposes MOP to encode the stream data in an order-preserving

way without full knowledge of the incoming data. MOP pre-allocates encoding space for

the incoming new entries, and optimizes the orderedness of the dictionary for better query

performance. The thesis presents a technique for generating a MOP with a limited sample

of the input stream while minimizing the size of the dictionary. In addition, the thesis

introduces a variation that uses cascading MOPs with multiple levels of ordered keys. The

query on MOPs performs similarly to order-preserving dictionaries with minimal overhead

for decoding. MOPs present query rewriting rules to minimize decoding of keys to minimize

predicate evaluation latency. The evaluation on Parquet demonstrates that MOPs are able

to accelerate range filtering and sorting, and achieve high order ratios with small samples.

In Chapter 4, the thesis proposes BUFF to handle the heterogeneous IoT data with

varying precision and ranges. BUFF addresses the heterogeneity of IoT data by applying

decomposed but compact encoding space for the IoT numeric data with different statistics.
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BUFF achieves efficient query execution support according to different hardware. BUFF sup-

ports efficient in-situ adaptive query execution on encoded data directly. In addition, BUFF

provides fast aggregation and materialization for different precision levels. The evaluation

shows BUFF achieves fast compression and query execution while keeping a comparable

compression ratio to the best approaches.

Similar rules also hold for compression selection. Instead of focusing on the compressed

size only, compression selection also takes the query performance and task accuracy (when

lossy compression approaches are included) into consideration. In Chapter 5, the thesis

proposes AdaEdge as a hardware-conscious compression selection framework for resource-

constrained devices. AdaEdge supports single or multiple optimization objectives for the

system to enable more robust compression selection focusing on not only size but also speed

and accuracy. AdaEdge introduces a LRU-based compression policy to compress the data

based on its importance and staleness. AdaEdge uses Multi-Armed Bandit assisted lossy and

lossless compression selection to adapt to the system hardware constraints and optimize for

the workload targets. AdaEdge supports multiple optimization targets, including compres-

sion ratio, throughput, aggregation queries and machine learning task accuracy. In addition,

AdaEdge provides online and offline mode compression solutions for resource-constrained

devices to conserve mission-critical information. The evaluation shows that AdaEdge is ca-

pable of choosing optimal compression for customized optimization targets defined by users

while still complying with the system constraints.

Compression is not a sole system design decision anymore. To better serve the overall

system performance goals, the design of data compression should adjust to the data access

patterns. A good compression should not only compress the data effectively but also support

efficient compression and query execution. With this rule, we can design fast and effective

compression solutions to boost the system’s overall performance goals: make data smaller,

and query faster and more accurate simultaneously.
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