
UNIVERSITY OF CHICAGO

Time-Space Trade-offs in Cryptographic Primitives

by

AKSHIMA

A dissertation
submitted in thesis defense

for the degree of PhD
to the Department of Computer Science

of Physical Sciences Division
at the University of Chicago

Chicago, USA
September 2022

UNIVERSITY OF CHICAGO

Time-Space Trade-offs in Cryptographic Primitives

by

AKSHIMA

Approved by:

Dr. David Cash, Professor Adviser

Computer Science

Dr. Aloni Cohen, Assistant Professor Member of Committee

Computer Science

Dr. Hoeteck Wee, Senior Scientist Member of Committee

NTT Research

Date of Dissertation Defense: September 15, 2022

Acknowledgements

1

Abstract
of the Thesis of

Akshima for PhD
in Computer Science

Title: Time-Space Trade-offs in Cryptographic Primitives

The research in complexity theory, for a long time now, has been conscious of mem-
ory as a resource in building algorithms with improved asymptotic complexity. There
is an understanding to compare time-memory trade-offs as opposed to only running
times while choosing between algorithms to solve any problem. While cryptogra-
phers have recognized memory to be a resource, there has been little effort to analyze
cryptographic primitives in a memory-conscious manner until recently.

This work contributes towards the recent efforts of understanding the role of memory
in the security of cryptographic primitives. Our study is two-fold:

1. How much better can any adversary that is capable of performing pre-computation
and storing a bounded amount of information about the cryptographic primi-
tive (under attack) do?

2. Are there cryptographic applications which are provably more secure against
adversaries with lesser memory?

This work focuses on cryptographic hash functions for the first part of the study.
The study analyzes properties of collision resistance and multi-way collision resis-
tance for these functions.

For the second part of the study, the aim is to analyze double encryption against
the memory-bounded non-adaptive adversaries. It is known that meet-in-the-middle
(MITM) adversary against double encryption runs in about the time required to
brute force a single key, leading to the common-knowledge that double encryption is
no more secure than the original block cipher. However, this is when the adversary is
allowed to use as much memory as it would like. However, this is when the adversary
is allowed to use as much memory as it would like.

2

Table of Contents

ACKNOWLEDGEMENTS 1

ABSTRACT 2

TERMINOLOGY 5

ABBREVIATIONS 7

THESIS OUTLINE 8

1 Introduction 9
1.1 Part 1 . 9

1.1.1 Chapter 3[1] . 10
1.1.2 Chapter 4 [2] . 13

1.2 Part 2 . 21

2 Related Work 24
2.1 Part 1 . 24
2.2 Part 2 . 25

3 Short Collisions 26
3.1 Notations and Definitions . 27

3.1.1 Collision Resistance Definitions 27
3.2 Bounded-Length Auxiliary-Input Attack 29
3.3 Length 2 Collisions are Relatively Easy in the BF Model 31
3.4 Unbounded Length Collision AI Bound 32

3.4.1 Proof of Lemma 8 . 33
3.5 Length 2 Collision AI Bound . 39

3.5.1 Proof for Lemma 12 . 40
3.6 Impossibility of Improving Zero-Walk AI Attacks 48

3.6.1 Proof of Lemma 18 . 50

4 Bounded Length Collisions 54
4.0.1 Our results . 54
4.0.2 Our techniques . 55

4.1 Notations and Definitions . 59

3

4.1.1 Merkle-Damg̊ard Hash Functions (MD) 60
4.1.2 Collision-Resistance against Auxiliary Input (AI). 60

4.2 Auxiliary Input Collision Resistance for B = 2 Merkle-Damg̊ard . . . 63
4.2.1 Bounding Ei

1,E
i
2,E

i
3 . 69

4.3 Auxiliary Input Collision Resistance for B Merkle-Damg̊ard 73
4.3.1 Proof of Claim 36 . 75
4.3.2 Proof of Claim 34 . 79
4.3.3 Proof of Claim 35 . 82

5 Multi-Collisions 85
5.1 Definitions . 86
5.2 Results . 87
5.3 Proof of Theorem 40 . 87

5.3.1 Lower Bound . 87
5.3.2 Upper Bound . 88

5.4 Proof of Theorem 41 . 89
5.4.1 Lower Bound . 89
5.4.2 Upper Bound . 89

5.5 Proof of Theorem 42 . 91
5.5.1 Security bound . 91

5.6 Proof of Theorem 43 . 98
5.7 Proof of Theorem 44 . 100

6 Double Encryption 101

Bibliography 102

4

Terminology

Definition 1. Adversary is a malicious entity that attempts to prevent any cryp-
tosystem from achieving its goal.

Definition 2. Cryptographic Hash Functions, or simply referred to as Hash
Functions, are functions that map inputs of arbitrary size to fixed size outputs, i.e.,
H : {0, 1}∗ → {0, 1}ℓ for some fixed positive integer ℓ. They are one-way functions,
which means they are hard to invert. Brute force search or rainbow tables are used for
inverting these functions. Often times salted hash functions are used in applications
to make them harder to invert by brute force search or using rainbow tables. Salted
hash functions take an additional fixed size input called salt.

Definition 3. A Collision in a hash function H is defined as finding two distinct
messages in {0, 1}∗ that have the same output under H. m-way Collision in a
hash function H is defined as finding m distinct messages {0, 1}∗ that have the same
output under H where m is a positive integer.

Definition 4. Merkle Damg̊ard is a popular construction scheme for building
a collision resistant Hash function for arbitrary input sizes from collision resistant
compression functions on fixed input size. The scheme essentially breaks arbitrary
sized inputs into blocks of fixed size and applies the compression function in sequence
on these blocks.

Definition 5. Random Oracle O can be thought of as a machine implementing
a function H. Its internal working are assumed unknown. An input to it is called
query.

Definition 6. Pseudo Random Functions is a family of deterministic functions
that are efficiently computable and indistinguishable from a truly random function
by any efficient adversary.

5

Definition 7. Pseudo Random Permutations is a family of deterministic per-
mutations that are efficiently computable and indistinguishable from a truly random
permutation by any efficient adversary.

Definition 8. To prove security of an application using H in the Random Oracle
Model, analysis assumes H to be a truly random function.

To prove security of an application using H in the Auxiliary-Input Random
Oracle Model, analysis assumes H to be a truly random function and 2-stage
adversaries A = (A0,A1) such that:

1. A0 gets computationally unbounded access to H and outputs a bounded size
information about H, say of S-bits, and called advice.

2. A1 takes the advice output by A0 and the challenge as input and gets to make
a bounded number of queries, say T to H to solve the challenge.

Definition 9. To prove security of an application using H in the Bit-Fixing Ran-
dom Oracle Model, analysis assumes H to be a truly random function and 2-stage
adversaries A = (A0,A1) such that:

1. A0 fixes some bounded number of bits of H, say P bits, to obtain say H ′

2. A1 takes the challenge as input and gets to make a bounded number of queries,
say T queries, to H ′ to solve the challenge for H ′.

Definition 10. A streaming adversary is characterized by two parameters m, q
such that the adversary gets to make q queries and receives the responses in a stream,
i.e., the adversary cannot access the response to a particular query unless it stores
that in its memory, which is bounded to m-bits.

Definition 11. Block ciphers are all functions E : {0, 1}k × {0, 1}n → {0, 1}n
such that for every K ∈ {0, 1}k, EK := E(K, ·) is a permutation on {0, 1}n. For a
block cipher E, we write E−1 to denote the inverse cipher, i.e. for every K ∈ {0, 1}k,
E−1

K (·) is inverse permutation of EK(·).

Definition 12. For a block cipher E : {0, 1}k×{0, 1}n → {0, 1}n, we define Double
Encryption with E as a function in {0, 1}2k × {0, 1}n → {0, 1}n that on inputs
K̂1||K̂2, x returns EK̂2

(EK̂1
(x)).

6

Abbreviations

PRP Pseudo Random Permutation
PRF Pseudo Random Function
RO Random Oracle
AI-RO Auxiliary Input Random Oracle
BF-RO Bit Fixing Random Oracle
CR Collision Resistance
MCR Multi-way Collision Resistance
MD Merkle Damg̊ard
DE Double Encryption

7

Thesis Outline

Chapter 1 gives an introduction to the works presented in the thesis. Chapter 2
gives a summary of the related work for the following chapters. Chapters 3 and 4
give an overview of the works already published in conferences ([1], [2]).

Chapter 3 talks about our results for 2-block collisions for MD based hash functions
in the AI-RO model. Chapter 4 talks about our follow-up results for any B-block
collisions, again for MD based hash functions in the AI-RO model.

Chapters 5 and 6 present new unpublished works. First of the two is a work in
progress. Chapter 5 talks about m-way collisions for MD based hash functions in
the AI-RO model and our results so far.

Chapter 6 is a proposed work contributing towards the second part of this study.
The chapter focuses on analyzing double encryption scheme as a PRP.

8

Chapter 1

Introduction

1.1 Part 1

The works presented in this thesis consider the security of random-oracle-based
hash functions against preprocessing adversaries which have a bounded amount of
arbitrary auxiliary information on the random oracle to help them. Attacks in this
model were first considered by Hellman [3], who gave a heuristic time-space tradeoff
for inverting cryptographic functions. We would like to understand the power of
these attacks in the context of finding collisions in hash functions, and in particular,
salted hash functions based on the widely used Merkle-Damg̊ard paradigm (MD).

Finding short collisions. In the works, we focus on understanding the best
attacks for finding short collisions, as motivated by real-world applications. Con-
cretely, across two works we put forth and study the following conjecture:

STB conjecture: The best attack with time T and space S for finding
collisions of length B in salted MD hash functions built from hash func-
tions with n-bit outputs achieves success probability Θ((STB+T 2)/2n).

The birthday attack achieves O(T 2/2n), and we will describe an attack from [1]
that achieves Ω(STB/2n). Short of proving circuit lower bounds, we cannot hope
to rule out better attacks, except in idealized models, where we treat the underlying
hash function as a random oracle.

The AI-RO model. We use the auxiliary-input random oracle (AI-RO) model
introduced by Unruh [4], which was originally motivated by dealing with the non-
uniformity of adversaries that is necessary for some applications of the random-oracle
model [5]. In the AI-RO model, two parameters S, T are fixed, and adversaries are
divided into two stages (A1,A2): The first has unbounded access to a random func-
tion h, and computes an auxiliary input (or advice string) for A2, σ of length S bits.
Then the second stage accepts σ as input, and gets T queries to an oracle comput-
ing h, and attempts to accomplish some goal involving the function h. We typically
think of the adversaries as information-theoretic and ignore runtime. Adversaries in
the AI-RO correspond roughly to circuits of size O(S + T).

Salted-collision resistance of MD hash functions at the AI-RO model was first
studied by Coretti, Dodis, Guo and Steinberger (CDGS) [6]. They proved the STB

9

conjecture in the setting B = T , showing an attack with success probability ST 2/2n

and proving its optimality.
Collision-resistance in the AI-RO. We consider salted collision resistance

following Dodis, Guo and Katz [7], in order to rule out trivial attacks where the
adversary hardwires a collision on h. Assume, as we shall for the rest of the paper,
that the function has the form h : [N]×[M]→ [N], where [N] = [2n] and [M] = [2m],
which we identify with n and m respectively. In salted collision-resistance in the AI-
RO model, the second stage adversary gets in addition as input a random “salt”
a ∈ [N] and must find α ̸= α′ ∈ [M] such that h(a, α) = h(a, α′). The prior work
obtained a bound of O(S/N + T 2/N) on the success probability of any adversary,
which is optimal (their result actually covers a wider parameter range and different
forms of h that are not relevant for our results here). These results were interestingly
proven via compression arguments [8], [9], where it is shown that an adversary that
is successful too often can be used to compress uniformly random strings, which is
impossible (cf. [10] for other applications of encoding arguments in computer science
and combinatorics).

In order to better model in-use hash functions, the afore-mentioned work of
Coretti, Dodis, Guo and Steinberger examined the salted-collision resistance of an
MD hash function built from h in the AI-RO model [6]. Here, the first stage ad-
versary works as before, but the second adversary only needs to find a collision in
the iterated MD function built from h, starting at a random salt; We give precise
definitions in the next section. That work showed that finding these collisions is sub-
stantially easier, giving an attack and matching lower bound of O(ST 2/N). This
was surprising in a sense, as it shows there exists an S = T ≈ 260 attack against a
hash function with 180-bit output, well below the birthday attack with T ≈ 290.

A closer look at this attack reveals that the collisions it finds are very long
(on the order of T blocks), so in our example the colliding messages each consist
of 260 blocks. While technically violating collision-resistance, this adversary is not
damaging in any widely-used application we are aware of, as the colliding messages
are several petabytes long. Addressing whether or not this attack, or the lower
bound, can be improved to find shorter collisions is the starting point for our work.

The results of [6] did not use compression. Instead they applied a tightening of
the remarkable and powerful bit-fixing (or presampling) method of Unruh [4], which
we briefly recall here. In the bit-fixing random oracle (BF-RO) model, the adversary
no longer receives an advice string. Instead the first stage adversary can fix, a priori,
some bits P of the table of h. Then the rest of h is sampled, and the second stage
attempts to find a salted collision as before. Building on Unruh’s results, Coretti et
al. showed (very roughly) that a bound of O((T +P)T/N) on the advantage of any
adversary in the BF-RO implies a bound of O(ST 2/N) in the AI-RO. Moreover, the
BF-RO bound was very easily proved, resulting in a simple and short proof.

1.1.1 Chapter 3[1]

Motivated by real-world hash functions like SHA-256, where N = 2n = 2256, M =
2512, we are interested in parameter settings with B ≪ T , such as S = 270, T = 295

10

and B = 218, which corresponds to computing a 256-bit digest of a 16MB message
using SHA-256. Here, (ignoring constants) the CDG bound is meaningless, since
ST 2/N > 1, whereas the corresponding attack achieves constant advantage when
T = B ≈ 293, collisions which are several yottabytes (= 1024 bytes) long.

The starting point of this work is the observation that Hellman’s attack (or
an easy modification of the attack in [6]) can find length-B collisions with success
probability roughly STB/N . We make this formal in Section 3.2.

While the attack was easy to modify for short collisions, proving that it is optimal
is an entirely different matter with significant technical challenges. In order to
explain them, we recall the approach of [6] used to prove the O(ST 2/N) bound for
salted MD. They used a technical approach (with tighter parameters) first developed
by Unruh [4], which connects the AI-RO model to the bit-fixing random oracle (BF-
RO) model (we defer the definition to the next section). Their work transfers lower
bounds in the BF-RO model to lower bounds in the AI-RO model.

We show that the BF-to-AI template inherently cannot give a lower bound for
finding short collisions, because finding short collisions in the BF-RO model is rela-
tively easy. That is, the lower bound of the form we would need for BF-RO model
simply does not hold. In the notation introduced above, we would need to show
that no adversary finding length-2 collisions can do better than O((P + T)/N) ad-
vantage, but we give a simple attack in BF-RO model that finds length-2 collisions
with advantage Ω(PT/N). Thus another approach is required.

Our lower bound technique. Given that the BF-to-AI technique cannot dis-
tinguish between short and long collision finding, we must find another approach.
There are two options from the literature: The previously-mentioned compression
arguments, and another lesser-known but elegant method of Impagliazzo using con-
centration inequalities.

Compression arguments which were previously observed [6] to be difficult (or
“intractable”) to apply to the setting of salted MD collision finding despite working
in the original non-MD setting [7]. Given that compression was already difficult in
this setting, it does not seem promising to extend it to the harder problem of short
collisions.

To address these difficulties, we introduce a new technique that first applies a
variant of the “constructive” Chernoff bound of Impagliazzo and Kabanets [11] to
prove time-space tradeoff lower bounds.

The concentration-based approach to time-space tradeoff lower bounds was, to
our knowledge, first introduced by Impagliazzo in an unpublished work, and then
later elucidated in an appendix [12] (there an older work of Zimand [13] is also
credited). The high-level idea is to first prove that any adversary (with no advice)
can succeed on any fixed U ∈ [N] of Ω(S) of inputs with probability εΩ(S). (In some
sense bounding every sufficiently large “moment of the adversary”). The argument
continues by applying a concentration bound to the random variable that counts
the number of winning inputs for this adversary, showing that it wins on a O(ε)-
fraction of inputs except with probability 2−Ω(S). In a final elegant step, one shows
that every advice string is likely to be bad via a union bound over all possible 2S

advice strings, to get a final bound of ε.

11

The technique of Impagliazzo gives a direct and simple proof for the optimal
bound on inverting a random permutation. There are two issues in applying it
to short MD collisions however. First, as we formally show later, it provable fails
for salted MD hashing. The issue is that the adversary may simply succeed with
probability greater than εS on some subsets U , so the first step cannot be carried
out.

We salvage the technique by showing it is sufficient to bound the adversary’s
average advantage for random subsets U rather than all subsets. In the language of
probability, we use a concentration bound that only needs average of the moments
to be bounded by εΩ(S), rather than all of the moments; see Theorem 2.

So far we have been able to reduce the problem of proving a lower bound in
AI-RO model to the problem of bounding the probability that an adversary with no
advice can succeed on every element of a random subset of inputs. For the problems
we considered, even this appeared to be complicated. To tame the complexity of
these bounds, we apply compression arguments; Note that we are only proving the
simpler bound needed for the Impagliazzo technique, but using compression, when
previously compression was used for the problem directly. Our variation has the
interesting twist that we can not only compress the random function (as other work
did), but also the random subset U on which the adversary is being run. This turns
out to vastly simplify such arguments.

Applications of our technique. We first apply our technique to reprove the
O(ST 2/N) bound for (non-short) collision finding against salted MD hash functions.
We then turn to the question of short collisions. Proving a general bound (perhaps
O(STB/N)) for finding length-B collisions appears to be very difficult, so we start
by examining the first new case of B = 2.

We show that there are qualitative gaps between finding length 1 collisions,
length 2 collisions, and arbitrary-length collisions. Specifically, while for length 1
collisions we have ε = O((S + T 2)/N), we show that length 2 collisions are easier
when S > T , as the optimal bound is O((ST + T 2)/N). For arbitrary-length colli-
sions there is another gap, where the optimal bound is O(ST 2/N). Our bound for
length 2 collisions uses our new compression approach used above.

It appears that we could, in principle, obtain similar bounds for other small
length bounds like 3 and 4, but these proofs appear to be too long and complex for
us to write down; Going to arbitrary length bounds seems to be out of reach, but
there is no inherent obstruction in applying our technique to the general case with
new ideas.

Bound for a restricted class of attacks. Given the difficulty of proving the
general case, we instead consider ruling out the class of attacks that gives optimal
attacks in the known cases. Roughly speaking, these attacks use auxiliary informa-
tion consisting of S collisions at well-chosen points in the function graph. In the
online phase, the attack repeatedly tries to “walk” to these points by taking one
“randomizing” step followed by several steps with zero-blocks.

For this class of attacks, we show that the best choice of collision points will
result in ε = O(STB/N). This result requires carefully analyzing the size of large,
low-depth trees in random functional graphs, a result that may be of independent

12

interest.

1.1.2 Chapter 4 [2]

Following up on the previous work that combined with known results for B = 1 and
B = T , demonstrated qualitative jumps in the optimal attacks for finding length 1,
length 2, and unbounded-length collisions, very recently, Ghoshal and Komargodski
[14] confirmed STB conjecture for all constant B. However, for other choices of B,
there is still a significant gap between the best-known attack [1] and known security
upper bound Õ(S4TB2/N + T 2/N) by [14] or Õ(ST 2/N) by [6]. That motivates us
to study the following question in [2]:

Can we further bridge the gap between the security upper and lower bounds, and
prove STB conjecture for more choices of parameters?

Since prior techniques are limited or laborious even for B = 2, we start by asking:

Can we prove STB conjecture for B = 2 in a simpler way?

Looking ahead, we answer both questions affirmatively.
Our main contribution is the following theorem.

Theorem 1 (Informal). For any 2 < B < T , the advantage of the best adversary
with S-bit advice and T queries for finding B-block collisions in Merkle-Damg̊ard
hash functions in the auxiliary-input random oracle model, is

Õ
(
(STB/N) ·max{1, ST 2/N}+ T 2/N

)
.

Our bound confirms the STB conjecture for any 2 < B < T for the range of S, T
such that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (otherwise, finding a
collision is trivial by the birthday attack), Our bound is at most Õ(S2TB/N+T 2/N),
which is optimal up to a factor of S.

Comparing to the Õ(STB2(log2 S)B−2/N + T 2/N) bound by [14], our bound
works for any 2 < B < T , while their bound becomes vacuous when B > logN .
However, for B ≤ logN , unlike our bound, their bound could be tight even when
ST 2 > N . In particular, their bound confirms STB conjecture for B = O(1).

Our bound strictly improves the Õ(S4TB2/N + T 2/N) bound by [14], and
the Õ(S2T/N) bound by [6] for any 2 < B < T and non-trivial choices of S, T
(specifically, when STB attack succeeds with at most a constant probability, i.e.,
STB = O(N)). The two bounds by [14] only beat [6] for B ≪

√
T .

A comparison of all the relevant results is summarized in 4.1. Overall, our
results subsume all previous upper bounds except for the range of S, T,B such that
B ≤ logN and ST 2 > N .

Our techniques In this section, we describe our techniques, how to use them
to prove our main results, and what makes our techniques different from prior ap-
proaches used in [1], [6], [14].

13

Best
known
attacks

Security bounds Ref. Proof tech-
niques

B = 1 S
N

+ T 2

N
S
N

+ T 2

N
[7] Compression

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 25[1] Multi-

instance
problems

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 23[2] Multi-

instance
games

2 < B < T STB
N

+ T 2

N
STB2(log2 S)B−2

N
+ T 2

N
[14] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
S4TB2

N
+ T 2

N
[14] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
STB
N
·max{1, ST 2

N
}+ T 2

N
Theorem 22[2] Multi-

instance
games

Unbounded ST 2

N
ST 2

N
[6] Presampling

Table 1.1: Asymptotic security bounds on the security of finding B-block-long col-
lisions in Merkle-Damg̊ard Hash Functions constructed from a random function
H : [N] × [M] 7→ [N] against (S, T)-algorithms. For simplicity, logarithmic terms
and constant factors are omitted.

Existing reduction to sequential multi-instance games. Our initial inspira-
tion is the recent framework of Chung, Guo, Liu, Qian [15] for establishing tight
time-space tradeoffs in the quantum random oracle model. Generally speaking, they
reduce proving the security of a problem with S-bit advice to proving the security
of multiple random instances of the problem, presented one at a time, without ad-
vice. Specifically, they observe that1, if any adversary (with no advice) can solve S
instances of the problem “sequentially” with success probability at most δS, then
any adversary with S-bit advice can solve one instance of the problem with success
probability at most 2δ.

1The framework of Chung, Guo, Liu, Qian [15] reduces to analyzing sequential multi-instance
security for S + logN + 1 instances instead of S-instances. We slightly improve their parameters
and obtain a considerably cleaner version in Theorem 24.

14

This idea of reducing the security of a problem with advice to the security of
a multi-instance problem without advice was first introduced by Impagliazzo and
Kabanets in [11]. The idea was also used by later works [1], [14]. The difference
between [11] and the later works, including this work, is that we reduce to a “se-
quential” multi-instance game as opposed to a “parallel” multi-instance problem.
More concretely, in the parallel multi-instance problem, the adversary is presented
with all the randomly chosen instances of the challenge problems to solve once at
the start. Whereas in the multi-instance game, the adversary gets a new randomly
chosen instance of challenge problem one at a time and only after solving all the
previous challenges.

Chung et al. [15] recently demonstrated a separation between “sequential” multi-
instance games and “parallel” multi-instance problems in the context of function
inversion in the quantum setting2. Guo, Li, Liu and Zhang [16] pointed out a
connection between “sequential” multi-instance game and the presampling technique
(first introduced by Unruh [4], and further optimized by Coretti et al. [6]) ——
the main technique used by Coretti et al. [6] for proving the O(ST 2/N) bound.
Roughly speaking, all results relying on presampling technique can be reproved using
“sequential” multi-instance games. That suggested that “sequential” multi-instance
games have the potential to prove stronger results. Therefore we are motivated to
adapt and take full advantage of “sequential” multi-instance games in the context
of collision finding.

To better illustrate the connection between “sequential” multi-instance games
and the presampling technique, we show how to recover the O(ST 2/N) bound by
Coretti et al. [6]. Recall that presampling technique by Coretti et al. [6] generically
reduces security proofs of unpredictability applications (including collision finding)
in the AI-ROM to a much simpler P -bit-fixing random-oracle model (BF-ROM),
where the attacker can arbitrarily fix the values of the random oracle on some
P := O(ST) coordinates, but then the remaining coordinates are chosen at random.
Coretti et al. [6] showed that the security of finding collisions in Merkle-Damg̊ard
Hash Functions in the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage of
any adversary (with no advice) winning a new game, conditioning on winning all
previous (up to at most S) ones, by O(ST 2/N). The adversary wins all games with
advantage O(ST 2/N)S, which implies the desired security against S-bit advice. The
key point is that the adversary (with no advice) made at most ST queries in previous
games. Therefore, conditioning on any possible events of earlier games, from the
view of the adversary, the random oracle is essentially a (convex combination of) bit-
fixing random oracles (BF-ROM) [6], where at most ST -positions are known, and
the rest remains independent and random. Hence, it suffices to prove the security
of a single game in BF-ROM by O(ST 2/N), which has been shown by Coretti et
al. [6] as a necessary step to use the presampling technique.

2In particular, they showed that “sequentially” inverting S random images (with T quantum
queries per round to a given random function f : [N]→ [N]) admits security O(ST/N + T 2/N)S ,
and the corresponding “parallel” multi-instance problems admits an attack with advantage
Ω(ST 2/N)S .

15

Barriers of the above idea. Akshima et al. [1] pointed out a barrier to using
the vanilla presampling technique towards proving B = 2. In particular, one can
only hope to achieve Ω(ST 2/N) in the BF-ROM even for B = 2. Recall that, to
prove the sequential multi-instance security, it is sufficient to bound the advantage
of any adversary that finds a 2-block collision for a fresh salt a, conditioned on it
finds 2-block collisions for all the previous random challenge salts a1, · · · , aS.

We will call these ST queries made during the first S rounds as offline queries.
Among the T queries made for a, we will call the queries that were not made during
the first S rounds as online queries. Throughout the discussion, we will focus on the
case that the new salt a has never been queried before in offline queries, because the
other case happens with probability at most ST/N (so won’t affect our conclusion).
As a result, all queries starting with the challenge salt a have to be online queries.

It is clear that the adversary learns about the function not only using the online
queries but also from the offline queries. The information this algorithm can take
advantage of from the offline queries varies by a lot. The followings are two extreme
cases:

1. The offline queries consist of exactly one single query for each of ST distinct
salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second
case, as long as an adversary can find a pre-image (starting with the challenge salt
a) of any of these ST/2 salts, it finds a 2-block collision (4.1). Since there are T
online queries, the algorithm achieves advantage at least ST 2/(2N) in the second
case.

a

...

Figure 1.1: Nodes indicate salts in [N]. An arrow connected two salts means there is
a query on the starting salt and a message in [M] such that the output is the other
salt. An online query hits an existing collision. Solid lines denote offline queries.
The dotted line denotes the online query that forms a 2-block collision.

The vanilla presampling approach works for worst-case offline queries. Given the
above example, the best security bound one can hope to achieve in the BF-ROM
for B = 2 is Ω(ST 2/N).

3We do not prove it rigorously here. Instead, we focus on the more interesting case – offline
queries do provide advantages.

16

Our main technical novelty. Our main insight is that, unlike the presampling
technique in which offline queries can be arbitrary, the worst offline queries are not
typical and can be tolerated by refining the technique. In the above example, the
chance that offline queries form ST/2 pairs of collisions is quite unlikely. We define
the following “high knowledge gaining” event E1:

E1: By making ST queries, there are more than S distinct salts with 1-block
collision.

The name “high knowledge gaining” suggests that whenever this event happens, the
online algorithm can behave significantly better than average (following the attack
in 4.1). If this event E1 does not happen, the probability that an online algorithm
finds a query hitting an existing offline collision is bounded by O((S/N) · T); it is
much better compared to the worst case – which is O(ST 2/N). Remember that we
have not shown how to prove that E1 happens with a tiny probability. We will not
do that in this section since this is not our main technical novelty.

We then show two more “high knowledge gaining” events, which are all the events
we consider. Conditioned on none of them happens, no online algorithms can find
2-block collisions with advantage better than O(ST/N + T 2/N). The second event
E2 is defined as:

E2: By making ST queries, there are more than S2 pairs of queries forming
collisions.

In 1.2a, we denote a multi-collision by a claw. E2 says that many pair-wise collisions
are found among all the offline queries. E1 only cares about collisions starting with
the same salt, whereas E2 counts every pair of collisions (even starting with distinct
salts). If there are many pairs of collisions, as long as an online adversary can hit
two queries that form a collision, it finds a 2-block collision. The probability that
an online algorithm having two queries hitting one particular existing collision is at
most O(T 2/N2); if E2 does not happen, by union bound, the advantage of this type
of attack is bounded by O(S2 · (T 2/N2)), again smaller than O(ST/N).

a

...

(a) E2

a

...

(b) E3

Figure 1.2: Other two “high knowledge gaining” events and their corresponding
attacks.

The final event E3 is very similar to E1:

E3: By making ST queries, there are more than S distinct salts with self-loops.

17

If an online algorithm hits an offline self-loop, it forms a 2-block collision. Following
the same reasoning as E1, if E3 does not happen, the probability that an online
algorithm finds a query hitting an existing self-loop is bounded by O((S/N) · T).

By identifying the “high knowledge gaining” events and managing to show that
they are all unlikely (which is intuitive but non-trivial to prove), we obtain a con-
siderably simpler proof for the B = 2 result from [1] using our approach in 4.2 for
illustration. More precisely, with all these “high knowledge gaining” events, we show
that4: (1). these events happen with probability at most O(N−S), even conditioned
on the adversary winning all the previous rounds;(2). when none of them happens,
an online algorithm making T queries can find a 2-block collision with advantage
O(ST/N+T 2/N): such a 2-block collision will consist of either hybrid queries (both
online and offline queries) or solely online queries; but for both cases, the probability
is small.

It is an upside of our technique that it modularises and separates the bad events,
making the overall proof more straightforward and intuitive. Following the same
structure, we then extend our proof to larger B by identifying a few events, and
obtaining our main result.

Applying our new techniques to larger B. As for B = 2, we present results
for the sequential multi-instance model and use the reduction to prove results in
the auxiliary input model. We simplify the sequential multi-instance model into
the offline phase and online phase as in the B = 2 result and again use our insight
that worst offline queries are unlikely and better bounds than O(ST 2/N) can be
achieved using a more refined analysis. However, unlike for B = 2 analysis, our
larger B analysis is not as straightforward and requires some creative case analysis
in terms of collision types.

We call offline queries that share an image under H with other offline query/
queries as marked queries. We define the following “high knowledge gaining” event:

E: By making ST queries, there are more than κ marked queries where κ =
S ·max{1, ST 2/N}.

We can show that this event happens with probability at most O(N−S), even
conditioned on the adversary finding B-length collisions in all the previous rounds.
When event E does not happen, there are two possibilities: 1) The B-length colli-
sions found ‘use’ at least one of these (at most) κ marked queries 2) The B-length
collisions found ‘use’ none of those κ marked queries. For case (1), we will show
that some online query should hit one of (at most) κ · B offline queries en route to
one of κ queries within B steps to succeed, and this happens with probability at
most O(κTB/N). For case (2), note that it implies at least one of the two ‘colliding’
queries among the B-length collisions is a ‘new’ online query. Then, using this fact
along with the structural knowledge of the type of B-length collision, we can show

4This is not a formal argument but captures the intuition behind our technique. For the formal
proofs, please refer to 4.2.

18

a

· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Figure 1.3: Dotted lines denote online queries. Solid lines denote offline queries.
Dash-dotted lines can be either offline or online queries. Red lines denote ‘colliding’
queries.

a
· · ·

· · ·

≤ B-length

Figure 1.4: The B-length collision uses some marked query. The solid red line
denotes the first marked query along the B-length collisions. The dotted blue line
denote the closest online query to the red line along the B-length collisions.

that probability of finding any of these types of B-length collisions is bounded by
O(STB/N + T 2/N).

Here, we focus on one type of B-length collisions to reiterate our strategy with
more details. Refer to Section 4.3 for the complete proof. Consider the type of
B-length collision depicted in Figure 1.3a on input salt a.

First, as we have discussed at the beginning of the section, note that the proba-
bility that the input salt a has been queried in the offline queries is at most ST/N
(as a is randomly and independently sampled). So, it suffices to focus on the case
that a has not being queried during offline queries depicted in Figure 1.3b. For this
case, there should exist some queries (including the queries on a) along with the
outputted B-length collisions that are online queries (i.e., made for the first time
during the online phase).

In addition, we can also condition on event E not happening as we can show that
the probability of event E is at most O(N−S), even conditioned on the adversary
winning all the previous rounds. Now observe that the queries in any found this
type of B-length collisions would satisfy one of the two following possibilities:

1. The B-length collision uses some marked query.

2. None of the offline queries used by B-length collision is a marked query.

We first analyze B-length collisions with queries satisfying (1) above. Refer to
Figure 1.4 for a pictorial depiction of such collisions. Conditioned on event E not
happening, there will be at most κ marked queries. Consider the first such query

19

a
· · ·

· · ·
(a)

a

· · ·

· · ·
(b)

Figure 1.5: The B-length collision uses no marked queries. The solid red line (if any)
denotes the colliding query made in the offline phase. The dotted blue lines denote
the two closest online queries to the colliding queries along the B-length collisions
(they can also be colliding queries themselves).

along the B-length collisions. There is a unique ‘chain’ consisting of at most B offline
queries connecting some online query to this marked query. Thus, the probability
of finding B-length collisions satisfying (1) conditioned on event E is at most the
probability of some online query whose output is one of (the salts of) these κB
offline queries, which is at most O(κTB/N).

Note that when queries in the B-length collision satisfy (2) above, it implies at
least one of the ‘colliding queries’ (two queries denoted by red arrows in Figure 1.3b)
is made for the first time in the online phase.

The probability of both the colliding queries happening for the first time in the
online phase (see Figure 1.5b) is bounded by O(T 2/N).

In the case exactly one of the colliding queries happens in the offline phase, there
are at most ST possibilities for this offline colliding query. There is a unique ‘chain’
of at most B offline queries from some online query to this query and the output of
another online query should be the output of this query (see Figure 1.5a). Thus, the
probability of finding such B-length collisions is bounded by O(STB ·T/N ·T/N) =
O(STB/N + T 2/N).

For other types of B-length collisions, we can analyze each type in a similar
way. Instead of analyzing each type of B-length collisions, we further abstract out
5 conditions such that any type of B-length collisions must satisfy one of them.
By considering one more “high knowledge gaining” event, and upper bounding the
probability for every condition, we show that the probability of finding B-length
collisions is bounded by O(κTB/N + T 2/N). Please see Section 4.3 for the details.
It is worth noting that the S2T 2/N term in κ cannot be further improved, because
it is expected to have Ω(S2T 2/N) marked queries among ST random oracle queries.
Thus, it seems unlikely to obtain a better bound by just improving event E and its
analysis.

A detailed comparison with prior techniques. The similarity between [1],
[14] and us is that we all adopt the idea of reducing the problem of interest to a
multi-instance variant, in which an adversary has to solve multiple copies of the
given problem.

20

Both [1] and [14] directly analyze the probability of solving all instances using
the compression paradigm, which typically requires a non-trivial case analysis of
the more complicated multi-instance problem. These case analyses may be quite
laborious and detached from the single-instance problem (thus may not give many
insights for the single-instance problem).

Our approach differs significantly from [1] and [14] in two places. First, we
focus on analyzing a simple variant of the single-instance problem (corresponding
to a single round of the sequential multi-instance game conditioning on winning
previous games), which is sufficient to establish desired results in multi-instance
security. This variant is more similar to the original problem, and may be easier
to analyze than the multi-instance problems. The first step (reducing to a variant
of the single-instance problem) is somewhat used and captured in the presampling
technique (via a different route [6]). We do think this step is more modular than [1]
and [14], but don’t consider this as our main technical novelty.

The second place, also our main technical novelty, is that we further introduce
“knowledge gaining events” for analyzing the variant of the single-instance problem.
These events can be isolated and analyzed on their own, and precisely highlight the
correlation in finding collisions given “typical” presampled random oracles. Before
this work, all the presampling techniques for time-space tradeoffs considered worst-
case presampled random oracles. The worst-case presampling may make the existing
analyses sub-optimal. Our approach analyzes the “average-case” presampling ran-
dom oracles and shows that those “worst-case” ones can never happen except with a
tiny probability. To our best knowledge, this is the first work that takes advantage
of “average-case” presampling and achieves tight bounds.

Overall, we consider our proofs more modular, because we utilize sequential
games to focus on variants of the single-instance game (rather than directly com-
pressing multi-instance games used by [1] and [14]). We further introduce “knowl-
edge gaining events” to take advantage of “average-case” presampling (rather than
working with worst-case ones used by [6]).

1.2 Part 2

Diffie and Hellman suggested key extension to increase security guarantees of the
systems, without raising compatibility issues, as the computational capabilities of
the attackers improve over time. Diffie and Hellman suggested using Cascade en-
cryption to perform key extension for the popular block cipher constructions like
DES.

Given possible keys k1, k2, k3, ..., kt for a block cipher , Cascade encryption, as
the name suggests, performs encryption as follows: kt ◦ · · · ◦k3 ◦k2◦k1 . The smallest
cascade possible is k2◦k1 which requires 2 keys and is referred to as double encryption.
However, it was quickly concluded that double encryption does not asymptotically
increase security over single encryption. In order to increase security off the DES
block cipher, which was famously deployed with key length too short (56 bits) to
provide meaningful security against modern adversaries, without dealing with the
difficulty of redeploying with replacement block ciphers, Triple-DES X9.52, which

21

runs DES three times under some keying strategy, has become the standard in some
domains.

This conclusion about double encryption was based on an attack strategy called
meet-in-the-middle attack, proposed by Diffie and Hellman. The attack roughly
works as follows: adversary queries the double encrypting oracle on some plaintext,
say X, to obtain ciphertext, say Z. Next, adversary queries on the set of all possible
keys with X and −1 on the set of all possible keys with Z. Then adversary looks
for a collision between the responses from and −1. The keys corresponding to the
colliding responses are potential keys used in double encryption.

An adversary performing meet-in-the-middle attack on double encryption with 2
keys, each of size k-bits, can recover the keys with constant probability after making
2 · 2k = O(2k) queries which is an order of 2k better than a brute-force attack. For
an adversary making q queries to each of and succeeds in recovering the correct
keys with probability O(q2/22k) which is better than brute force by a factor of O(q).

However, one caveat of the meet-in-the-middle attack, that has not received much
attention, is that it requires O(2k · n) space to succeed with constant probability,
where k is the key size and n is the block size of the underlying block cipher in bits.
To mount meet-in-the-middle attack on DES, which has key size of 56 bits, over 261

bits ∼ 250 petabytes of space is required. Not every attacker can afford to have this
much memory.

Understandably, memory is a valuable and limited resource, sometimes even
more than time, and thus should be accounted for in the abilities of the adversary
while analyzing their advantage against any primitive. Security bounds ignoring
memory as a parameter may be too pessimistic and their employment to decide
optimal security parameter maybe an overkill of resources, in terms of computation
cycles and bits of randomness used.

Oorschot and Wiener studied algorithms with time-memory trade-offs for attack-
ing double encryption adaptively. They gave an attack for a more general problem
of collision search which can be applied for cryptanalysis of double encryption. The
collision search problem is as follows: given a function f : [N] → [N] and C, the
adversary needs to find C pairs of distinct inputs that collide under f usingm-bits of
bounded memory and making at most q queries to f . Their attack achieves the best
known trade-off of mq2 = Õ(C2N). The algorithm can be interpreted to achieve
the advantage of mq2/23k for key-recovery in double encryption, which is faster for
q > 2k and currently the best known.

This trade-off is optimal for m ≈ C trivially. However, for C >> m, it is hard
to prove the optimality of the bound. Proving optimality for C >> m is relevant
for cryptanalysis of double encryption.

Dinur in proved that the bound is optimal in the Post Filtering Model. It is
worth to note that this does not prove that a better trade-off for recovering keys in
Double encryption with adaptive queries is impossible. It just says that no attack
that reduces the problem to collision search can do any better than the attack given
by Oorschot and Wiener.

Overall, recovering keys for Double encryption with bounded time and memory
using adaptive queries is a well-studied problem. The motivation for this work comes

22

from the lack of similar treatment given to what we refer to as the semi-adaptive
setting. This work investigates the role that adaptivity plays in the gap between
these algorithms. Both are known-plaintext attacks, but MITM is non-adaptive
while the better tradeoffs use adaptive queries (akin to cycle finding techniques).
We show that this is in some sense inherent: For a large class of non-adaptive
attacks against double encryption (that includes MITM), we prove in the ideal-
cipher model (ICM) that mq/22k is the optimal advantage. This work studies the
security of double encryption under this setting, and questions the need for triple
encryption where the potential adversaries do not have hundreds of petabytes of
data space at their disposal.

23

Chapter 2

Related Work

2.1 Part 1

Hellman [3] was the first to study pre-processing attacks for inverting functions,
which was followed up by the famous work Fiat and Naor[17]. Recently, several
works [7], [18] set out to understand the power of such attacks for finding collisions.
All of them have studied this question in the auxiliary-input random oracle (AI-
RO) model proposed by Unruh [4], for dealing with non-uniform and preprocessing
attackers.

Dodis, Guo, and Katz [7] studied the collision resistance of a salted random
function (which also corresponds to the B = 1 case for Merkle-Damg̊ard). They
prove an Õ(S/N + T 2/N) security upper bound (with respect to a random salt).
This bound shows the naive attack which precomputes collisions for S distinct salts
as the advice (the Õ(T 2/N) term is tight due to birthday attack) to be optimal.

Coretti, Dodis, Guo and Steinberger [6] further studied collision finding for salted
Merkle-Damg̊ard hash functions (corresponds to arbitrary B). Interestingly, unlike
the B = 1 case, they show an attack achieving advantage Ω̃(ST 2/N), improving the
birthday attack by a factor of S. They also prove this attack is optimal.

We mention that time-space lower bounds of attacks (or non-uniform security)
against other fundamental cryptographic primitives, such as one-way functions,
pseudorandom random generators, discrete log, have been investigated in various
idealized models [6], [7], [18]–[23].

Motivated by analyzing post-quantum non-uniform security, several recent works [15],
[16] studied the same question in the quantum setting, in which the adversary is
given S-(qu)bit of advice and T quantum oracle queries. However, Unlike the clas-
sical setting, no matching bounds are known, even for B = 2 and B = T . The
Ω(ST 3/N) security bound by Guo et al., suggests that the optimal attack may
speed up the trivial quantum collision finding by a factor of S. However, the best
known attack achieves O(ST 2/N + T 3/N) for every 2 ≤ B ≤ T .

24

2.2 Part 2

Relevant to the second part of this study are works that have studied streaming
adversaries. Some of the most noteworthy recent works have revisited the switch-
ing lemma, results on popular symmetric encryption designs and authenticated en-
cryption designs and many other results by considering the role of the adversary’s
memory capability. Memory had traditionally been considered by cryptanalysts,
as a large-memory algorithm may be infeasible to implement even if its runtime is
within reach. However, from the direction of proving impossibility results, memory
was not considered until recently, when it was pointed out [24], [25] that compu-
tational reductions in cryptography could be made “memory tight” and sometimes
yield a wider range of effective bounds. In particular, when a problem becomes
harder for small-memory algorithms (such as LPN), a memory-tight reduction may
be important. On the other hand, some problems (like finding a collision in a
generic hash function) are solved optimally with small memory and do not bene-
fit from memory-tightness. Subsequent work [26]–[30] has explored possibility and
impossibility results on memory tightness. Further work [31], [32] extended the
consideration of memory to information-theoretic steps as well.

Jaegar and Tessaro in [32] were the first to study the switching lemma with bounded
memory. They realized that giving time-memory lower bounds for adversaries that
can repeat queries would be difficult. This is because such an adversary can make
use of Pollard-rho type memoryless algorithms to find collisions. Hence, they focused
on adversaries that cannot repeat queries. The authors, however, found proving an
unconditional bound out of reach. Their proof relied on a combinatorial conjecture
on hypergraphs being true to give a conditional loose upper boundon the advantage.
Dinur [33] succeeded in proving a bound which has a matching attack up to log
factors, by giving a reduction from the Disjointness problem in the communication
model to streaming and using the existing results from communication complexity.
Another recent work [34] improved the result from [32].

Tessaro and Thiruvengadam [31] showed equivalence between Double Encryption
and a special case of Element distinctness, which is list disjointness, and used that
to give a conjectured time-space lower bound on Double Encryption. This bound
was later proved unconditionally in a restricted model, namely the post filtering
model, by Dinur [35]. It must be noted that our aim is to study Double Encryption
for a restricted class of adversary, namely the non-adaptive and non-repeating in
the streaming model. Follow-up works [26], [27], [31], [32], [36] have studied more
primitives, namely authenticated encryption and symmetric encryption.

25

Chapter 3

Short Collisions

We study collision-finding against Merkle-Damg̊ard hashing in the random-oracle
model by adversaries with an arbitrary S-bit auxiliary advice input about the ran-
dom oracle and T queries. Recent work showed that such adversaries can find
collisions (with respect to a random IV) with advantage Ω(ST 2/2n), where n is the
output length, beating the birthday bound by a factor of S. These attacks were
shown to be optimal.

We observe that the collisions produced are very long, on the order of T blocks,
which would limit their practical relevance. We prove several results related to im-
proving these attacks to find short collisions. We first exhibit a simple attack for
finding B-block-long collisions achieving advantage Ω̃(STB/2n). We then study if
this attack is optimal. We show that the prior technique based on the bit-fixing
model (used for the ST 2/2n bound) provably cannot reach this bound, and towards
a general result we prove there are qualitative jumps in the optimal attacks for
finding length 1, length 2, and unbounded-length collisions. Namely, the optimal
attacks achieve (up to logarithmic factors) order of (S + T)/2n, ST/2n and ST 2/2n

advantage. We also give an upper bound on the advantage of a restricted class of
short-collision finding attacks via a new analysis on the growth of trees in random
functional graphs that may be of independent interest.

STB conjecture: The best attack with time T and space S for finding
collisions of length B in salted MD hash functions built from hash func-
tions with n-bit outputs achieves success probability Θ((STB+T 2)/2n).

Our results in a nutshell. We study the STB conjecture in the AI-RO model,
studying both upper bounds (better attacks) and lower bounds (ruling out better
attacks). Our contributions are as follows:

• Upper bounds. We present an attack that achieves success probabilityO(STB/2n).
The attack exploits the existence of expanding depth-B trees of size O(B) in
random functional graphs defined by h.

26

• Limitations of prior lower bounds. We show that the CDGS [6] techniques
cannot rule out attacks with success probability ST 2/N , even for B = 2.
In particular, the crux of the CDGS technique is a O(ST/N) bound in an
intermediate idealized model (that translates to an AI-RO bound with a mul-
tiplicative loss of T), and we provide a matching attack with B = 2 in this
intermediate model.

• A lower bound for B = 2. We present new techniques to prove the STB
conjecture for B = 2 in the AI-RO model. That is, the optimal attack achieves
success probability Θ((ST + T 2)/N) for B = 2. This is the main technical
contribution of this work. Interestingly, this means that for B = 2, if the space
S ≤ T , then there is no better attack than the birthday attack!

• Bounding low-depth trees. We rule out the existence of expanding depth-B
trees of size Õ(B2) in random functional graphs, which shows that simple ex-
tensions of our attack cannot achieve success probability better than STB/N .

3.1 Notations and Definitions

Notation. For non-negative integers N, k we write [N] for {1, 2, . . . , N} and
(
[N]
k

)
for collection of subsets of [N] of size k. When X is a set, we write X+ for tuples of
1 or more elements of X. Random variables will be written in bold, and we write

x
$← X to indicate that x is a uniform random variable on X.

Merkle-Damg̊ard (MD) hashing. We consider an abstraction of plain MD
hashing, where a variable length hash function is constructed from a fixed-length
compression function that is modeled as a random oracle. For integers N,M and
a function h : [N] × [M] → [N], Merkle-Damg̊ard hashing is defined MDh : [N] ×
[M]+ → [N] recursively by MDh(a, α) = h(a, α) for α ∈ [M], and

MDh(a, (α1, . . . , αB)) = h(MDh(a, (α1, . . . , αB−1)), αB)

for α1, . . . , αB ∈ [M]. We refer to elements of [M] as blocks.

3.1.1 Collision Resistance Definitions

We recall definitions for collision resistance against preprocessing and against bit-
fixing.

Auxiliary-input security. We formalize auxiliary input security [4] for salted
MD hashing as follows.

Definition 13. For a pair of algorithms A = (A1,A2), a function h : [N]× [M]→
[N], and a ∈ [N] we define game AI-CRh,a(A) in Figure 3.1. We define the auxiliary-
input collision-resistance advantage of A against Merkle-Damg̊ard as

Advai-cr
MD (A) = Pr[AI-CRh,a(A) = 1],

27

Game AI-CRh,a(A)
σ ← A1(h)
α, α′ ← Ah

2(σ, a)
If α ̸= α′ and MDh(a, α) = MDh(a, α

′)
Then Return 1

Else Return 0

Game BF-CRh,a(B,L)
α, α′ ← BhL(a)
If α ̸= α′ and MDhL(a, α) = MDhL(a, α

′)
Then Return 1

Else Return 0

Figure 3.1: Games AI-CRh,a(A) and BF-CRh,a(B,L).

where h
$← Func([N]× [M], [N]), a

$← [N] are independent.
We say A = (A1,A2) is an (S, T)-AI adversary if A1 outputs S bits and A2

issues T queries to its oracle (for any inputs and oracles). We define the (S, T)-
auxiliary-input collision resistance of Merkle-Damg̊ard, denoted Advai-cr

MD (S, T), as
the maximum of Advai-cr

MD (A) taken over all (S, T)-AI adversaries A.
We note that in our formalization, the games in the figures are not randomized,

but just defined for any h and a. In the definition we use the games to define random
variables by applying the game as a function to random variables h and a. This
has the advantage of being explicit about sample spaces when applying compression
arguments.

We also consider bounded-length collisions as follows.

Definition 14. We say a pair of algorithms A = (A1,A2) is an (S, T,B)-AI ad-
versary if A1 outputs S bits, A2 issues T queries to its oracle, and the outputs of
A2 each consist of B or fewer blocks.

We define the (S, T,B)-auxiliary-input collision resistance of MD, denoted Advai-cr
MD (S, T,B),

as the maximum of Advai-cr
MD (A) taken over all (S, T,B)-AI adversaries A.

Bit-fixing security. We recall the bit-fixing model of Unruh [4]. When f : X →
Y is a function on some domain and range, and L is an independent list (xi, yi)

|L|
i=1

where xi ∈ X and yi ∈ Y for all i ∈ 1, . . . , |L| and all the xi are distinct, we define
fL as follows:

fL(x) =

{
yi if ∃(xi, yi) ∈ L such that x = xi

f(x) otherwise.

In other words, L is a list of input/output pairs, and fL is just f , but with outputs
overwritten by the tuples in L.
Definition 15. Let h : [N] × [M] → [N], and a ∈ [N]. For an adversary B and a
list L of input/output pairs for h we define BF-CRh,a(B,L) in Figure 3.1. We define
the bit-fixing collision-resistance advantage of (B,L) against Merkle-Damg̊ard as

Advbf-cr
MD (B,L) = Pr[BF-CRh,a(B,L) = 1],

where h
$← Func([N]× [M], [N]), a

$← [N] are independent.
We say (B,L) is an (P, T)-BF adversary if L has at most P entries and B

issues T queries to its oracle (for any inputs and oracles). We define the (P, T)-
bit-fixing collision resistance of MD, denoted Advbf-cr

MD (P, T), as the maximum of
Advbf-cr

MD (B,L) taken over all (P, T)-BF adversaries (B,L).

28

As with AI security, we also consider bounded-length collision resistance against
BF adversaries.

Definition 16. We say (B,L) is an (P, T,B)-BF adversary if L has at most P
entries, B issues T queries to its oracle (for any inputs and oracles). and the
outputs of B each consist of B or fewer blocks.

We define the (P, T,B)-bit-fixing collision resistance of MD, denoted Advbf-cr
MD (P, T,B),

as the maximum of Advbf-cr
MD (B,L) taken over all (P, T,B)-BF adversaries (B,L).

A “constructive” Chernoff bound. We will use the following variant of the
Chernoff-type bound proved by Impagliazzo and Kabanets [11]. It essentially says
that if the uth moments of a sum are bounded average, then we can conclude the
sum is tightly concentrated, up to some dependence on u.

Theorem 2. Let 0 < δ < 1 and let X1, · · · ,XN be 0/1 random variables, X =
X1 + · · ·XN , and let U be an independent random subset of [N] of size u. Assume

Pr[
∧
i∈U

Xi] ≤ δu.

Then
Pr[X ≥ max{6δN, u}] ≤ 2−u.

In their original version, instead of a random set U it was required that the first
inequality hold for all sets U of size u (so all uth moments must be bounded). It
is easy to show that our weaker condition is still sufficient, and the proof of this
version is almost identical and given in Supplementary material (Section ??) only
for completeness. As we show in Section ??, the first inequality, in fact, does not
hold true for every fixed set U of size u. Also, this weakening is crucial for our
application with compression arguments.

We will also apply the following standard multiplicative Chernoff bound in Sec-
tion 3.6.

Theorem 3. Let 0 < δ < 1 and letX1, · · · ,XN be independent 0/1 random variables
and put X = X1 + · · ·XN . Then

Pr[X ≥ (1 + δ) · E[X]] ≤ exp

(
−δ2 · E[X]

2 + δ

)
.

3.2 Bounded-Length Auxiliary-Input Attack

Coretti et al. in [37] gave an Ω(ST 2) bound attack where adversary gets S-bit advice
and T oracle queries to find (unbounded length) collisions against MDh. It is easy
to adapt the attack to B-bounded length collision finding attack for adversary with
S-bit advice and T oracle queries with advantage Ω(STB). We describe this attack
and its analysis.

29

Theorem 4. For any positive integers S, T,B such that B ≤ T < N/4, STB ≤ N/2
and M ≥ N ,

Advai-cr
MD (S, T,B) ≥ STB − 96S

48N logN

Proof. We construct an (S, T,B)-AI adversary A = (A1,A2) with the required
advantage for the case M = N . This attack easily extends to the case where
M > N , since given h : [N]× [M]→ [N], we can run the attack on for the function
h′ : [N]× [N]→ [N] that coincides with h on all its inputs.

Below we write h0(·) = h(·, 0). The adversary A = (A1,A2) works as follows:

• A1(h): For i = 1, . . . , S/(3⌈logN⌉), do the following:

1. Pick ai
$← [N].

2. Compute yi ← hB′
0 (ai), where B′ = ⌊B/2⌋ − 1.

3. If there exist α, α′ ∈ [M] such that α ̸= α′ and h(yi, α) = h(yi, α
′), then

set (αi, α
′
i) = (α, α′). If not, then set (αi, α

′
i) = (⊥,⊥).

Output the triples (yi, αi, α
′
i) for i = 1, . . . , S/3⌈logN⌉.

• Ah
2(σ, a): If a = yi for some i, return (αi, α

′
i). Otherwise, for j = 1, . . . , ⌊T/B⌋

do the following:

1. Compute â0 = h(a, j).

2. For k = 1, . . . , B − 1:

(a) If âk−1 = yi for some i, return j||0k−1||αi and j||0k−1||α′
i.

(b) If âk−1 = âj for some j < k − 1, return j||0j and j||0k−1.

(c) Compute âk = h0(âk−1).

If no collision is found, output ⊥ to indicate failure.

Next, we analyze the advantage of A. This proof is very similar to the proof of
Lemma 5 in [37], but we include it for completeness.

We first bound the probability that A1 ever fails to find a collision in step 3 (i.e.
that some (αi, α

′
i) is set to (⊥,⊥)) by

S

3 logN

N !

NN
≤ S

3 logN
· e−(N−1)/2 ≤ 2S

N logN
.

The attack succeeds if â ∈ G during an iteration with k ≤ B/2, because after that
there will be enough steps left to reach the end of the chain. Let R be the event
that â repeats at some point during the algorithm. Let Ft be the event that â ∈ G

30

for the first time on the (t+1)th iteration of the next loop in A2 (1 ≤ t ≤ T). Then
for any A ⊆ [N],

Pr[Ft|¬R,G = A] =
|A|

N − t+ 1

t∏
i=1

(
1− |A|

N − i+ 1

)

≥ |A|
N

(
1− 2|A|

N

)t

≥ |A|
N

(
1− 2t|A|

N

)
≥ |A|

2N
.

The Ft are disjoint, so the probability that Ft occurs for some t within B/2 steps of
a start point, conditioned on not-R and G = A, is at least

T |A|
4N

.

Putting this together we have

Advai-cr
MD (A) ≥ E

[
T |G|
4N

]
− Pr[R] + Pr[R]− 2S

N⌈logN⌉
.

Finally we bound E[|G|] ≥ SB/12 logN in exactly the same manner as[37].

3.3 Length 2 Collisions are Relatively Easy in the BF Model

Unruh in [4] proved a remarkable general relationship between the AI-RO and BF-
RO models that was sharpened by Coretti et al. [37]. We recall their theorem now,
and then show that this method, when applied to salted MD hashing, is insensitive
to the length of collisions found and hence cannot give the improved bound we seek
in the AI-RO model. We note that the second part of this theorem was not stated
there, but follows exactly from their proof.

Theorem 5. For any positive integers S, T, P and γ > 0 such that P ≥ (S +
log γ−1)T ,

Advai-cr
MD (S, T) ≤ 2Advbf-cr

MD (P, T) + γ.

Moreover, for any positive integer B,

Advai-cr
MD (S, T,B) ≤ 2Advbf-cr

MD (P, T,B) + γ.

The following is a simple extension of an attack of [6], which shows that finding
even just length-2 collisions in the BF model is much easier than finding length-1,
and in fact as easy as finding general length collisions.

31

Theorem 6. For all positive integers P, T such that PT ≤ 2N , there exists a
(P, T, 2)-BF adversary (B,L) such that

Advbf-cr
MD (B,L) =

(
1− 1

e

)
PT

2N
.

Proof. We construct a (P, T, 2)-BF adversary (B,L) to prove the theorem. We
assume P is even for simplicity of notation. To define the list L, let α, α′ ∈
[M], a1, . . . , aP/2, y ∈ [N] be some arbitrary points, and let L consist of the P entries

((a1, α), y), ((a1, α
′), y), . . . ((aP/2, α), y), ((aP/2, α

′), y).

Adversary B does the following on input a and oracle hL: Let α1, · · · , αT ∈ [M]
be arbitrary distinct points. For j = 1, . . . , T , query (a, αj) to the oracle hL. If
the output is an element of {a1, . . . , aP/2}, then output colliding messages αj∥α and
αj∥α′.

We lower bound Advbf-cr
MD (B,L). Let E be the event that the output of some

query made by B is in the set {a1, . . . , aP/2}. Clearly, when E happens, our adversary
wins the game. Thus

Advbf-cr
MD (B,L) ≥ 1− Pr[¬E] ≥ 1−

(
1− P

2N

)T

≥ 1− e−PT/2N ≥
(
1− 1

e

)
PT

2N

where the last inequality holds because 0 ≤ PT
2N
≤ 1.

This adversary shows that applying Theorem 5 can at best giveAdvai-cr
MD (S, T, 2) =

O(ST 2/N), which we show to be suboptimal in Section 4.2, where using compression
techniques we prove a bound of Õ (ST/N).

3.4 Unbounded Length Collision AI Bound

In this section we give a different proof of the O(ST 2) bound of Coretti et al.[37],
formalized as follows.

Theorem 7. For any positive integers S, T ,

Advai-cr
MD (S, T) ≤ 192e(S + logN)T 2 + 1

N
.

Following Impagliazzo [11], we proceed by analyzing an adversary without aux-
illiary input “locally.”

Definition 17. For a pair of algorithms A = (A1,A2) and positive integer u we
define

Advu-ai-cr
MD (A) = Pr[∀a ∈ U : AI-CRh,a(A) = 1],

where h
$← Func([N]× [M], [N]), and U

$←
(
[N]
u

)
are independent.

32

Lemma 8. For any positive integers S, T, u, and σ̂ ∈ {0, 1}S, let A = (A1,A2)
be an adversary where A1 always outputs σ̂, and A2 issues T queries to its oracle.
Then

Advu-ai-cr
MD (A) ≤

(
32euT 2

N

)u

.

This lemma is proved below. We first prove the theorem using the lemma.

Proof of Theorem 7. Let A = (A1,A2) be an (S, T)-AI adversary. We need to
bound Advai-cr

MD (A) as in the theorem. Call h easy for adversary A if

Pr[AI-CRh,a(A) = 1] ≥ 192e(S + logN)T 2

N
.

We will first show that h is unlikely to be easy for A, no matter how A1 computes
its S advice bits. Below, for each σ̂ ∈ {0, 1}S let Aσ̂ be A, except with A1 replaced
by an algorithm that always outputs σ̂.

Fix some σ̂ ∈ {0, 1}S. For each a ∈ [N] let Xa be an indicator random variable
for the event that AI-CRh,a(Aσ̂) = 1. By Lemma 8 we have Pr[

∧
a∈U Xa] ≤ δu for

any u and δ = 32euT 2/N . Then by Theorem 2 with u = S + logN , we have

Pr[h is easy for Aσ̂] = Pr[
N∑
a=1

Xa ≥ 192euT 2] ≤ 2−(S+logN).

Let E be the event that there exists σ̂ ∈ {0, 1}S such that h is easy for Aσ̂. By a
union bound over σ̂ ∈ {0, 1}S,

Pr[E] ≤ 2S2−(S+logN) = 1/N.

Finally we have

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤ 192e(S + logN)T 2

N
+

1

N
.

The last inequality holds because for each h /∈ E,

Pr[AI-CRh,a(A) = 1] ≤ max
σ̂∈{0,1}S

Pr[AI-CRh,a(Aσ̂) = 1] ≤ 192e(S + logN)T 2

N
.

Since this holds for any (S, T)-AI adversary A, we obtain the lemma.

3.4.1 Proof of Lemma 8

Colliding chains. We start with some useful definitions and a simplifying lemma.

33

Definition 18. Let h : [N]×[M]→ [N]. A list of elements (x0, α0), . . . , (xℓ, αℓ) from
[N]× [M] is called an MD-chain (for h) when h(xi, αi) = xi+1 for i = 0, . . . , ℓ− 1.
We say two chains (x0, α0), . . . (xℓ, αℓ) and (x′

0, α
′
0), . . . (x

′
ℓ′ , α

′
ℓ′) collide (for h) if

h(xℓ, αℓ) = h(x′
ℓ′ , α

′
ℓ′).

We will treat chains as strings (over [N]× [M]) and speak of prefixes and suffixes
with their usual meaning.

Lemma 9. Let C,C ′ be distinct non-empty colliding chains for h. Then C,C ′

contain prefixes C̃, C̃ ′ respectively, C̃ = (x0, α0), . . . (xℓ, αℓ) and C̃ ′ = (x′
0, α

′
0), . . .

(x′
ℓ′ , α

′
ℓ′) where either (xℓ, αℓ) ̸= (x′

ℓ′ , α
′
ℓ′) or one of C̃, C̃ ′ is a strict suffix of the

other.

Proof. Induction on the maximum length of C,C ′. For length 1 this is obvious. For
the inductive step, suppose neither is a strict suffix of the other, and that the final
entries are equal. Then we can remove the final entries from both chains to get two
non-empty shorter chains and apply the inductive hypothesis.

Proof of Lemma 8. We prove the lemma by compression. Let U
$←
(
[N]
u

)
and

h
$← Func([N]× [M], [N]) be independent. Let A = (A1,A2) be (S, T)-AI adversary

where A1 always outputs some fixed string σ̂. Observe that if, for all a ∈ U, A2

never queries a point of h with input salt a′ ∈ U, a ̸= a′ among the T queries it
makes for input a, and also that the chains produced for each a are disjoint from
the chains for a′, then it is relatively simple to carry out a compression argument,
by storing two pointers [T] to compress an entry in [N] (which would translate to a
bound (T 2/N)u). But of course A might “cross up” queries for the different salts. If
we tried to prove a version of the lemma for all U ⊂

(
[N]
u

)
(as was done in the original

context of the appendix in [12]) rather than a random U, then the adversary could
be specialized for the set U ; In section ?? we give an attack that finds collisions
of B = 2 for a fixed subset with greater probability than the upper bound on the
advantage of attacking a random subset of same size.

Also, when we choose U at random, a fixed A can’t be specialized for the set,
and the “crossed up” queries between salts are unlikely. Formally, if A queries a salt
a′ ∈ U while attacking a ∈ U, we take advantage of this by compressing an entry
of the random set U when a crossed-up query occurs. Very roughly, this requires
a pointer in [T] and saves a factor N/S (because we are omitting one entry from
an (unordered) set of size about S). The net compression is then about ST/N
per crossed-up query. The details are a bit more complicated, as this compression
actually experiences a smooth trade-off as more such queries are compressed and the
set shrinks. We handle the case when the chains for a ̸= a′ intersect via a simpler
strategy that also results in ST/N factors.

Once the crossed-up queries are handled, the proof effectively reduces to the
simpler case without crossed-up queries.

Proof. For the rest of the proof we fix some A = (A1,A2), where A1 always outputs
some fixed σ̂. Let

G = {(U, h) | ∀a ∈ U : AI-CRh,a(A) = 1} ⊆
(
[N]

u

)
×H.

34

Let
ε = Advu-ai-cr

MD (A).

So |G| = ε
(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying
2L(

N
u

)
NMN

≤
(
32euT 2

N

)u

.

Pigeonhole then immediately gives the bound on ε.
For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined

below, of
(F,UFresh,Pred,Cases,Coll, h̃),

where the first output F is an integer between 1 and u, UFresh is a subset of U of
size F , Pred is a set of pointers, Cases is a list of elements in {1a, 1b, 2}, and Coll is
a list of pairs of pointers, and the last output h̃ is h but rearranged and with some
entries deleted. We now define these outputs in order.

Fresh salts and prediction queries. Fix some (U, h) ∈ G, and let U =
{a1, . . . , au}, where the ai are in lexicographic order. Let Qrs(ai) ∈ ([N] × [M])T

denote the queries A2 makes to its oracle when run on input (σ̂, ai). Let us abuse
notation by writing ai /∈ Qrs(aj) to mean that ai is not the first component of any
entry in Qrs(aj) (in other words, the salt ai is not queried when A2 runs on aj).

We define UFresh ⊆ U inductively by

ai ∈ UFresh ⇐⇒ ∀1 ≤ j < i : aj ∈ UFresh =⇒ ai /∈ Qrs(aj).

The set UFresh trivially contains a1. For i > 1, ai ∈ UFresh if no prior salt in UFresh

causes A2 to query ai. Conversely, for any ai ∈ U \ UFresh, there is a prior salt
aj ∈ UFresh such that ai ∈ Qrs(aj).

Let us denote the size of UFresh by F , and let us write UFresh = {a′1, . . . , a′F}
where the a′j are in lexicographic order. From now on we will only need to deal with
the queries issued when the adversary is run on fresh salts. Let Qj = Qrs(a′j) for
j = 1, . . . , F and

QFresh = Q1∥ · · · ∥QF ∈ ([N]× [M])FT .

Going forward, we will sometimes use indices from [FT] to point to queries in QFresh

and sometimes indices from [T] to point to queries in Qj for some j.
For each a ∈ U \ UFresh, there exists a minimum ta ∈ [FT] such that QFresh[ta] is

a query with input salt a. We define Pred ⊆ [FT], the prediction queries, to be

Pred = {ta | a ∈ U \ UFresh} ⊆ [FT].

We have |Pred| = u− F .

New and old queries. Call an index r ∈ [FT] new if QFresh[r] does not appear
earlier in QFresh (more precisely, if s < r implies QFresh[s] ̸= QFresh[r]). For j ∈ [F] we

35

will speak of an index t ∈ [T] being new in Qj, technically meaning that (j−1)T+t ∈
[FT] is new. Since we assume that the queries in Qj are distinct, Qj[t] being new
is equivalent to Qj[t] not appearing in Q1∥ · · · ∥Qj−1. When a query is not new, we
say it is old.

Claim 10. Let QFresh = Q1∥ · · · ∥QF ∈ ([N]× [M])FT be defined as above. Then for
each j, at least one of the following cases holds:

1. (a) There exists sj ∈ [T] such that sj is new in Qj and h(Qj[sj]) = a′j ,

(b) There exists s′j < sj ∈ [T] such that sj and s′j are new in Qj and
h(Qj[sj]) = h(Qj[s

′
j])

2. There exists sj ∈ [T] and s′j ∈ [FT] such that sj is new in Qj, s
′
j points to

query in Q1|| . . . ||Qj−1, and h(Qj[sj]) equals the input salt of QFresh[s
′
j].

These cases are depicted in Figure 3.2.

Qj

sj

Q1

···
Q2

···

Qj−1

(i) Case 1(a)

Qj

(sj,s
′
j)

···

Q1

Q2

···

Qj−1

(ii) Case 1(b)

Qj

Q1

····
···
·
·······

Qj−1

···

···

(sj,s
′
j)

(iii) Case 2
Figure 3.2: Cases from claim 10. Box denotes an index. White box denotes query
at the index is new.

Proof of claim. For each j, Qj contains a pair of colliding chains that both start
from a′j. Either some query in the chains is old, or else all the queries in both chains
are new.

Suppose first that some query is old, and focus on the chain containing the old
query. Since a′j is fresh, this old query cannot be the first query of the chain. Thus,
starting from the beginning of this chain, we eventually reach a query that is new
but the next query is old. Because these queries form a chain, this new query will
output the old query’s input salt. So we take sj to point to this new query in Qj,
and s′j to point to the earlier query in Q1∥ · · · ∥Qj−1, and Case 2 of the claim holds.

Now suppose that all queries in the chains are new. By Lemma 9, we can assume
without loss of generality that either the last queries of the chains are distinct, or
that one chain is a strict suffix of the other. If the chains have distinct final queries,
then we can take sj, s

′
j to point to these distinct (new) queries in Qj and Case 1b

of the claim holds. If one chain is a strict suffix of the other, then the longer chain
must contain a (new) query that outputs a′j, since both chains start with salt a′j.
Then Case 1a of the claim holds.

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred as defined
above. It then computes QFresh, and Qj for each j = 1, . . . , F . It initializes: (1) Array

36

Cases and Coll, each of size F , the latter of which will hold entries from domains
depending on cases, (2) h̃ to be the table of h, but sorted to contain the responses
for QFresh, followed by the rest of the table in lexicographic order.

For j = 1, . . . , F , f examines Qj and determines which of the cases in the claim
occurs. It sets Cases[j] ∈ {1a, 1b, 2} and performs one of the following:

Case 1a: Set Coll[j] ← sj ∈ [T] and delete the entry corresponding to Qj[sj] from
h̃.

Case 1b: Set Coll[j] ← (sj, s
′
j) ∈ [T] × [T] and delete the entry corresponding to

query Qj[sj] from h̃.

Case 2: Set Coll[j] ← (sj, s
′
j) ∈ [T] × [FT] and delete the entry corresponding to

query Qj[sj] from h̃.

This completes the description of f . After this process, h̃ consists of the responses to
the queries of A2 when it is run on the salts in UFresh, except for the deleted queries,
followed by the remaining outputs of h in lexicographic order. Since at least one
case always holds by the claim, and we delete exactly one new query from each Qj,
we have h̃ ∈ [N]MN−F .

Analysis of f . We first argue that the output length of f is not too long, and
later that is it injective. Let the number of salts in UFresh having compression type
1a, 1b and 2 be δ1, δ

′
1 and δ2, respectively. Then F = δ1 + δ′1 + δ2. We set the

output length L to the maximum of the following expression, over 1 ≤ F ≤ u, and
δ1 + δ′1 + δ2 = F , rounded to the next integer:

log

(
u · 22F

(
N

F

)(
FT

u− F

)
T δ1T 2δ′1(FT 2)δ2NMN−F

)
.

This formula is explained by considering the outputs of f in turn:

• F and UFresh account for log u+ log
(
N
F

)
bits together,

• Pred needs log
(

FT
u−F

)
bits,

• Cases is an array of size F , storing a ternary value in each entry, and thus less
than 2F bits total,

• Coll stores δ1 log T + δ′1 log T
2 + δ2 logFT 2 bits,

• h̃ stores (MN − F) logN bits.

We have

2L(
N
u

)
NMN

≤ max
F=δ1+δ′1+δ2

u · 22F ·
(
N
F

)(
FT
u−F

)(
N
u

) ·
(
T δ1 · (T 2)δ

′
1 · (FT 2)δ2

NF

)
.

37

We bound the middle term by(
N
F

)(
FT
u−F

)(
N
u

) ≤
(
eN

F

)F(
u

N

)u(
eFT

u− F

)u−F

=

(
eu

F

)F(
euFT

N(u− F)

)u−F

≤
(
e2u/F

)F(
e2u/(u−F)FT

N

)u−F

≤ (4e)u
(
FT

N

)u−F

.

Assuming f is injective, by pigeonhole we have 2L ≥ ε
(
N
u

)
NMN . Plugging this in

and using F ≤ u ≤ 2u, we obtain

ε ≤ max
F=δ1+δ′1+δ2

(32e)u
(
FT

N

)u−F (
T

N

)δ1 (T 2

N

)δ′1
(
FT 2

N

)δ2

≤
(
32euT 2

N

)u

.

It remains to show that f is injective, i.e. that (U, h) is determined by f(U, h) =
(F,UFresh,Pred,Cases,Coll, h̃). The inversion algorithm works as follows:

1. Decode the binary input by reading off F from the first log u bits. The size
of UFresh, Pred, and Cases are determiend by F . Then Coll can be parsed out
using Cases, and finally h̃ can be parsed out easily.

2. Initialize h and QFresh to be empty tables.

3. For each a′j ∈ UFresh (in lexicographic order) the j-th entry of Cases indicates
the type of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j.

Respond to queries using the entries of h̃ in order (except if the query is a
repeat) and populating the entires of h and QFresh until except when one of
the following happens:

(a) For Cases[j] = 1a, when Qj[sj] is queried, respond to the query with a′j.

(b) For Cases[j] = 1b, when Qj[sj] is queried, respond with h(Qj[s
′
j]) (using

the partial table for h).

(c) For Cases[j] = 2, when Qj[sj] is queried, respond with the input salt of
query QFresh[s

′
j].

After responding, continue running A2 on a′j and populating the tables.

4. After running A2 on all of the salts in UFresh, populate the rest of h using the
remaining entries of h̃ in order.

5. Finally, examine the queries QFresh, and form U by adding the salts pointed
to by the indices of Pred to UFresh. (More formally, output U = UFresh ∪
{input salt of QFresh[t] : t ∈ Pred}.)

We first argue inversion replies to the queries issued by A2 on a′j correctly, for each

a′j ∈ UFresh. For queries that are not deleted from h̃, these are simply copied from h̃.
By construction and Claim 10, the queries that were deleted will be copied correctly.
Finally, once QFresh is correctly computed, we have that U is correctly recovered.

38

3.5 Length 2 Collision AI Bound

We next prove an upper bound on the advantage of an adversary producing collisions
of length at most 2.

Theorem 11. For any positive integers S, T ,

Advai-cr
MD (S, T, 2) ≤ 6 · (29e3)max

{(
(S + logN)T

N

)
,

(
T 2

N

)}
+

1

N
.

We prove this theorem in exactly the same fashion to Theorem 7, where an
adversary is analyzed without auxiliary input “locally,” as in the lemma below. We
present it again for the sake of completeness.

Lemma 12. For any positive integers S, T, u, and σ̂ ∈ {0, 1}S, let A = (A1,A2) be
an adversary where A1 always outputs σ̂, and A2 issues T queries to its oracle and
always outputs collision of length at most 2. Then

Advu-ai-cr
MD (A) ≤ (29e3)umax

{(
uT

N

)u

,

(
T 2

N

)u}
.

Proof for theorem 11. Let A = (A1,A2) be an (S, T, 2)-AI adversary. We need to
bound Advai-cr

MD (A) as in the theorem. Call h easy for adversary A if

Pr[AI-CRh,a(A) = 1] ≥ 6(29e3)max{(S + logN)T, T 2}
N

.

We will first show that h is unlikely to be easy for A, no matter how A1 computes
its S advice bits. Below, for each σ̂ ∈ {0, 1}S let Aσ̂ be A, except with A1 replaced
by an algorithm that always outputs σ̂.

Fix some σ̂ ∈ {0, 1}S. For each a ∈ [N] let Xa be an indicator random variable
for the event that AI-CRh,a(Aσ̂) = 1. By Lemma 12 we have Pr[

∧
a∈U Xa] ≤ δu for

any u and δ = (29e3)max
{(

uT
N

)
,
(

T 2

N

)}
. Then by Lemma 2 with u = S + logN ,

we have

Pr[h is easy for Aσ̂] = Pr[
N∑
a=1

Xa ≥ 6(29e3)max{(S + logN)T, T 2}] ≤ 2−(S+logN).

Let E be the event that there exists σ̂ ∈ {0, 1}S such that h is easy for Aσ̂. By a
union bound over σ̂ ∈ {0, 1}S,

Pr[E] ≤ 2S2−(S+logN) = 1/N.

Finally we have

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤ 6 · (29e3)max{(S + logN)T, T 2}
N

+
1

N
.

39

The last inequality holds because for each h /∈ E,

Pr[AI-CRh,a(A) = 1] ≤ max
σ̂∈{0,1}S

Pr[AI-CRh,a(Aσ̂) = 1]

≤ 6 · (29e3)max{(S + logN)T, T 2}
N

.

Since this holds for any (S, T, 2)-AI adversary A, we obtain the lemma.

3.5.1 Proof for Lemma 12

Intuition. At a high level this proof is similar to that of Lemma 8. The primary
difference is that we must avoid the ST 2 factors that come from chains hitting old
edges. This turns out to be quite subtle, as the adversary may have generated some
structures involving collisions in early queries and later hit them. But if we try to
compress these structures preemptively, we find they are not profitable (i.e. the
required pointers are bigger than the savings). In our proof, however, this strategy
is actually a gambit: We make some losing moves up front, and then later are able
to compress multiple edges and eventually profit. Looking forward, this happens for
either version of Case 4 in Figure 3.4, where the early edges are blue. There it is not
profitable to compress the second blue edge on its own, but later get a super-profit
by compressing one or two black edges, resulting in a net compression.

We now proceed with the formal compression proof. Let U
$←
(
[N]
u

)
and h

$←
Func([N]× [M], [N]) be independent. Let A = (A1,A2) be an adversary as specified
in the lemma. Let

G = {(U, h) | ∀a ∈ U : AI-CRh,a(A) = 1} ⊆
(
[N]

u

)
×H.

and ε = Advu-ai-cr
MD (A), so |G| = ε

(
N
u

)
NMN . We define an injection

f : G → {0, 1}L

with L satisfying
|{0, 1}L|(
N
u

)
NMN

≤ (29e3)u
(
max {T 2, uT}

N

)u

.

Pigeonhole then immediately gives the bound on ε.
For (U, h) ∈ G, f(U, h) outputs an L-bit encoding, where L will be determined

below, of
(F,UFresh,Pred,Cases,Coll, Loops,Bulbs,Diamonds, h̃),

which we define below. The first, second and third outputs F , UFresh and Pred are
computed exactly as in the proof of Lemma 8, and in particular UFresh ⊆ U and
Pred ⊆ [FT], |Pred| = u− F , where |UFresh| = F .

In order to describe the remaining outputs of f , we need some definitions. Write
UFresh = {a′1, · · · , a′F} and let QFresh and Qj be defined exactly as in the proof of
Lemma 8. Without loss of generality, for each j ∈ [F], we assume that an adversary

40

(i) (ii) (iii) (iv) (v) (vi)

Figure 3.3: Types of queries used to obtain colliding chains for B = 2. Bold arrows
indicate that the query is necessarily new.

*

(i) Case 1(a)

*

(ii) Case 2

*

(iii) Case 3(a)

*
*

*

*

*

*

(iv) Case 3(b)

*
*

(v) Case 4(a)

*

**

(vi) Case4(b)

Figure 3.4: Cases in Claim 13. Red dotted arrow represents a reused old query.
Blue dashed arrow represents an unused-old query. ‘*’ marks the queries that will
be compressed by f .

makes distinct queries in Qj. In other words, for each fresh salt a′j, Qrs(a
′
j) contains

distinct queries.

Used queries. For j = 1, . . . , F Qj contains a pair of colliding chains of length
at most 2, and that when the adversary outputs its collision, the chains are formed
from amongst at most 4 entries of Qj. Note that in some cases one entry of Qj could
appear multiple times in the colliding chains (for instance, if there is a self loop,
or both chains start with the same edge). By examining the colliding chains, we
can always find a subset of queries corresponding to one of the case in Figure 3.3.
This subset will be strict sometimes (for instance, in case (iii), the adversary may
have opted to add the same query to the end of both chains, or even to add another
pair of colliding queries; In these cases we only consider the queries shown in the
diagram). We define used queries in Qj, denoted Usedj, to be the subset of [T] that
are indices of the queries corresponding to the appropriate case in the Figure. We
have that 1 ≤ |Usedj| ≤ 4.

New, reused, and unused-old queries. For any j ∈ [F], a query in Qj is said
to be new if it does not appear in Q1|| · · · ||Qj−1. If query is not new, it is said to
be old. If a query in Qj is old, and that query appears amongst the queries pointed
to by Usedk for some k < j (i.e. the query equals Qk[s] for some s ∈ Usedk), then
we say the query is reused and otherwise it is unused-old.

Claim 13. Let QFresh, Qj, and Usedj be j = 1, . . . , F be defined as above. Then for
each j, at least one of the following cases (which are depicted in Figure 3.4) holds:

1. [Usedj contains only new queries.]

41

(a) There exists sj ∈ [T] such that Qj[sj] is new and h(Qj[sj]) = a′j ,

(b) There exists s1j ̸= s2j ∈ [T] such that Qj[s
1
j] and Qj[s

2
j] are new, and

h(Qj[s
1
j]) = h(Qj[s

2
j])

2. [Usedj contains at least one reused query.] There exists sj ∈ [T] and
tj ∈ [F] such that Qj[sj] is new and h(Qj[sj]) equals input salt of some query
in Qtj pointed to by Usedtj .

3. [Usedj contains exactly 1 unused old query.]

(a) There exists sj ∈ [T] and uj ∈ [FT] such that Qj[sj] is new, uj is new (in
its respective Qk, k < j) and h(Qj[sj]) and h(QFresh[uj]) both equal input
salt of query QFresh[uj],

(b) There exists s1j ̸= s2j ∈ [T] and uj ∈ [FT] such that Qj[s
1
j],Qj[s

2
j] are new,

and h(Qj[s
1
j]) equals input salt of QFresh[uj], and h(Qj[s

2
j]) = h(QFresh[uj]).

4. [Usedj contains exactly 2 unused old queries.]

(a) There exists sj ∈ [T] and u1
j < u2

j ∈ [FT] such that Qj[sj] is new, u2
j

is new (in its respective Qk, k < j)1, the input salt of queries, the input
salt of queries QFresh[u

1
j] and QFresh[u

2
j] are equal, h(Qj[sj]) equals their

common input salt, and h(QFresh[u
2
j]) = h(QFresh[u

1
j]),

(b) There exists s1j ̸= s1j ∈ [T], u1
j < u2

j ∈ [FT] such that Qj[s
1
j],Qj[s

2
j] are

new, u2
j is new (in its respective Qk, k < j), h(Qj[s

1
j]) equals the input

salt of query QFresh[u
1
j], h(Qj[s

2
j]) equals the input salt of query QFresh[u

2
j],

and h(QFresh[u
2
j]) = h(QFresh[u

1
j]).

Proof of claim. Fix j ∈ [F] and consider Usedj. The queries in Qj corresponding to
Usedj fall into one of the cases in Figure 3.3. Since a′j is fresh, the queries with input
salt a′j must be new (otherwise a′j would be predicted). Thus the bold edges in the
figure must be new queries. The other queries can be new, reused or unused-old.

Suppose all of the queries of Qj in Usedj are new. For cases (ii)–(vi) in Fig. 3.3
there are 2 distinct queries that have the same output, so we take s1j , s

2
j to point to

these queries in Qj and case 1(b) holds. In the remaining case (i), the output of the
query is a′j, so we take sj to point at the relevant query in Qj and case 1(a) of the
claim holds.

From now on we assume that not all queries are new. Next, suppose an edge in
Usedj is reused, say appearing in the used queries for Qk, k < j. Since a′j is fresh,
the reused query cannot be the first query in the chain, so it is the second edge of
one of the chains. As these queries form a chain, the output of the new query will
be the input of the reused query. So we take tj = k (i.e. to point to the kth-salt a′k
in UFresh from which the query is being reused), and sj ∈ [T] to point to the new
query in Qj that outputs the input salt of some query in Usedk, and thus case 2 of
the claim holds.

1Query at u1
j is not compressed, so it does not matter whether it is new or not.

42

We have dealt with the case where the old query is a reused query. What remains
is if the old query is unused-old. There are either 1 or 2 unused-old queries and we
handle these separately.

Suppose there exists exactly one query in the colliding chains that is unused-old.
Again this query has to be the last edge of the chain. Since the chain has length 2,
we are in case (ii) or (iv)-(vi) of Figure 3.3. In case (ii), we have that case 3(a) of
the claim holds as we can take uj ∈ [FT] to point to the loop. Otherwise we can
find queries pointed to by sj, s

′
j in Qj and uj ∈ [FT] such that case 3(b) holds.

Finally suppose are exactly two unused-old queries in the colliding chains. Then
we must be in case (iv) or (vi) of Figure 3.3. By inspection we can find the required
pointers, and either case 4(a) or (b) holds.

Definition of f . On input (U, h), f(U, h) first computes UFresh and Pred (and
F) as before. It then computes QFresh, and Qj and Usedj for each j = 1, . . . , F . It
initializes: (1) Array Cases and Coll, each of size F , which will hold entries from
domains depending on cases, (2) A list Loops which will hold elements of [FT]
(i.e. “large pointers”) (3) A set Bulbs which will hold elements of [FT] (i.e. “large
pointers”) (4) A list Diamonds which will hold elements of [FT] × [FT], (i.e. pairs
of “large pointers”) (5) h̃ to be the table of h, but sorted to contain the responses
for QFresh, followed by the rest of the table in lexicographic order.

The computation of f next populates the sets Loops,Bulbs, and Diamonds. Specif-
ically, for j = 1, . . . , F , it checks which case holds; If case 3a, 4a, or 4b holds, then
it does the following:

Case 3a: Add uj to Loops and delete the entry corresponding to QFresh[uj] from h̃,

Case 4a: Add u1
j and u2

j to Bulbs, and delete the entry corresponding to QFresh[u
2
j]

from h̃,

Case 4b: Add the pair (u1
j , u

2
j) to Diamonds and delete the entry corresponding to

QFresh[u
2
j] from h̃.

There is a subtlety in Case 4a: It may be that two bulbs are hanging off of the
same vertex, when the adversary produces two Case-(iv) (from Figure 3.3) collisions
with the same intermediate node. In this case our algorithm will put the second
collision into Case 2 and not 4a, even though strictly speaking there was no reused
edge - only a reused node (which Case 2 allows). This ensures that the queries in
Bulbs will be partitioned into pairs with the same input salts, which our inversion
algorithm will leverage.

We have now defined all of the outputs of f except for Cases, Coll and h̃, which
we define now. For j = 1, . . . , F , f examines Qj and determines which of the cases
above occurs for Usedj. It sets Cases[j] ∈ {1a, 1b, 2, 3a, 3b, 4a, 4b} and performs one
of the following (see Figure 3.5):

Case 1a: Set Coll[j] ← sj ∈ [T] and delete the entry corresponding to Qj[sj] from
h̃.

43

Case 1b: Set Coll[j] ← (s1j , s
2
j) ∈ [T] × [T] and delete the entry corresponding to

query Qj[s
2
j] from h̃.

Case 2: Compute vj ∈ [4] to point to which of the (at most) four used queries in
Qtj is reused, and then set Coll[j]← (sj, tj, vj) ∈ [T]× [F]× [4] and delete the

entry corresponding to Qj[sj] from h̃.

Case 3b: Set Coll[j]← (s1j , s
2
j , uj) and delete entries corresponding to queries Qj[s

1
j]

and Qj[s
2
j] from h̃.

Case 4a: Compute vj, index of u1
j in Bulbs. Set Coll[j] ← (sj, vj) ∈ [T] × [|Bulbs|]

and delete the entry corresponding to query Qj[sj] from h̃.

Case 4b: Set Coll[j]← (s1j , s
2
j) ∈ [T]× [T], and delete the entries corresponding to

queries Qj[s
1
j] and Qj[s

2
j] from h̃.

Thus, h̃ consists of the query responses for A2 when run on the salts in UFresh, except
for the queries indicated to be deleted by compressor, followed by the remaining
outputs of h in lexicographic order. This completes the description of f .

Analysis of f . We first argue the output length of f is not too long, and later
that it is injective. Let the number of salts in UFresh having compression type 1(a)
and 1(b) be δ1 and δ′1 respectively, compression type 2 be δ2, compression type 3(b)
to be δ3 and compression type 4(a) be δ4 = |Bulbs|/2. Let |Bulbs| = nb, |Loops| = nℓ

and |Diamonds| = nd. Then F = δ1 + δ′1 + δ2 + nℓ + δ3 + δ4 + nd.

Claim 14. The number of entries deleted from h̃ by f is equal to δ1+ δ′1+ δ2+nℓ+
2δ3 +

nb

2
+ δ4 + 3nd.

Proof. Observe that f does the following:

• deletes 1 entry from h̃ for each index added to Loops. So, nℓ entries deleted
from h̃ when f populates Loops.

• deletes 1 entry from h̃ for each pair of indices added to Bulbs. So, nb/2 entries
deleted from h̃ when f populates Bulbs.

• deletes 1 entry from h̃ for each pair of indices added to Diamonds. So, nd

entries deleted from h̃ when f populates Diamonds.

• for every fresh salt of type 1a, 1b, 2 and 4a one entry corresponding to a new
query among the queries of the salt is deleted from h̃. Thus, δ1, δ

′
1, δ2 and δ4

entries will be deleted by f from h̃ due to fresh salts belonging to Case 1a, 1b,
2 and 4a, respectively.

• for every salt of type 3b and 4b, entries corresponding to two queries that are
new in Qrs of salt are deleted from h̃, thus 2δ3 and 2nd entries are deleted by f
from h̃ for fresh salts undergoing compression of type 3b and 4b, respectively.

44

Qj

(sj)

Q1

···
Q2

···

Qj−1

(i) Type 1-a

Qj

(s1j ,s
2
j)

···

Q1

Q2

···

Qj−1

(ii) Type 1-b

Qj

(sj, tj,

Qtj

vj = 2)

Q1

···

···

Qj−1

···

···

(iii) Type 2

Qj

Q1

····
···
·
·······

Qj−1

···

···

· · · uj · · ·

List Loops

sj

(iv) Type 3-a

Qj

(s1j , s
2
j ,

Q1

····
···
·
·······

Qj−1

···

···

uj)

(v) Type 3-b

···

···

···

Q1

······

Qj−1

Qj

· · ·

queries with
equal input salt

· · · · · · Set Bulbs
(sj, vj)

(vi) Type 4-a

···

···

···

Q1

······

Qj−1

Qj

· · · · · ·(u1
j ,u

2
j)

List Diamonds

(s1j , s
2
j)

(vii) Type 4-b

Figure 3.5: Compression of different cases for B = 2 by f . Boxes denote an index.
Boxes with blue stripes denote used queries in Qj. White box denotes query at the
index is new (and gets compressed).

This totals to δ1+ δ′1+ δ2+nℓ+2δ3+
nb

2
+ δ4+3nd entries being deleted. Therefore,

to prove the claim, we need to show that f deletes the entry of any query exactly
once from h̃. To this end, we proceed in 3 steps as follows:

Claim 15. Any query belongs to at most one of Loops, Bulbs or Diamonds.

Proof. We prove the above claim by contradiction. Lets assume there exists a query
q that belongs in both Loops and Bulbs. Without loss of generality, we can assume
that the query’s first occurrence is at index i ∈ [FT], it is added in Loops for some
fresh salt a′j of type 3a and added to Bulbs for some fresh salt a′k of type 4a such that
j, k ∈ [F] and j < k. However, as index i is added to Loops, query q becomes a used

45

query in Qj. When q is used in Qk, it will be a reused query and hence a′k should be
of type 2 instead of type 4a and q would not be added to Bulbs, contradicting our
assumption.

We can similarly show that no query can simultaneously be in Loops and Diamonds
or Bulbs and Diamonds, thus proving the claim.

For every j ∈ [F] and for any value of Cases[j], f deletes an entry corresponding
to a new query in Qj from h̃ while populating Cases[j] and Coll[j]. Lets assume there
exists j, k ∈ [F] such that j < k and f deletes some query q while populating Cases
and Coll for both a′j and a′k. Then q should be a new query both in queries of a′j
and queries of a′k for it to be deleted. However, this is not possible by the definition
of new queries.

Claim 16. If f adds a query to one of Loops, Bulbs and Diamonds, then it never
deletes its entry from h̃ while populating Cases and Coll.

Proof. Lets assume otherwise that f adds some query q to Loops for some salt a′j of

type 3a and for some k ∈ [F], it deletes the entry corresponding to q from h̃ while
populating Cases[k] and Coll[k]. This means, q should be a used query in both Qj

and Qk. However, it can be a new query in at most one of Qj and Qk and has to be
an old query in the queries of the other salt depending on whether j < k or j > k.
Thus, q would be a reused query in one of Qj or Qk. If j < k, then q is a reused
query among the used queries of a′k. This means a′k would be of type 2 (as it is
not a new query and not the first query in the chain). This means, q would not
be deleted while processing Cases[k] and Coll[k]. This contradicts our assumption.
When j > k, then q would be a reused query among the queries for a′j and then
a′j should not be of type 3a, again contradicting our assumption. Similarly, we can
prove when a′j is of type 4a or 4b. This proves the above claim.

We set the output length of L via the following equation, where the maximum
is taken over 1 ≤ F ≤ u and the δi, δ

′
1, nℓ, nb, nd summing to F :

2L =max

(
N

u

)
NMN · u · 23F ·

(
N
F

)(
FT
u−F

)(
N
u

) ·
(
T

N

)δ1

·
(
T 2

N

)δ′1

·
(
4FT

N

)δ2

·
(
FT

N

)nℓ

·
(
FT · T 2

N2

)δ3

·
(
FT
nb

)
(T · nb)

δ4

Nnb/2+δ4
·
(
(FT)2T 2

N3

)nd

Then using Stirling’s approximation, we bound
(NF)(

FT
u−F)

(Nu)
≤ (4e)u

(
FT
N

)u−F
exactly

46

as before. Next, using nb/2 = δ4 ≤ F and T 2 ≤ N we simplify,(
FT
nb

)
· (T · nb)

δ4

Nnb/2+δ4
≤
(

eFT

nb ·N

)nb

· (T · nb)
nb/2 =

(
2e2F 2T 2 · T · nb

2n2
bN

2

)nb/2

≤
(
e222F/nbFT 2 · T

2N2

)nb/2

≤ (2e2)F
(
FT

N

)nb/2
(
T 2

N

)nb/2

≤ (2e2)u
(
FT

N

)δ4

·
(
T 2

N

)nb/2

Thus, putting everything together and simplifying using F ≤ u ≤ 2u, and assuming
f is injective, we obtain:

2L(
N
u

)
NMN

≤ 24u · (4e)u · (2e2)u ·
(
FT

N

)u−F

·
(
T 2

N

)δ1+δ′1

·
(
4FT

N

)δ2

·

(
FT

N

)nℓ

·
(
FT · T 2

N2

)δ3

·
(
FT

N

)δ4

·
(
T 2

N

)nb/2

·
(
(FT)2T 2

N3

)nd

≤ (29e3)u ·
(
uT

N

)u−F+δ2+nℓ+δ3+δ4+2nd

·
(
T 2

N

)δ1+δ′1+δ3+nb/2+nd

≤ (29e3)u ·max

{(
T 2

N

)u

,

(
uT

N

)u}
Next, we need to prove the assumption that f is injective. In other words,

it needs to be shown that given f(U, h) = (F,UFresh,Pred,Cases,Coll, Loops,Bulbs,
Diamonds, h̃), (U, h) can be uniquely determined. The inversion algorithm works as
follows:

1. Parse the inputs, starting with F , as with the previous proof.

2. Initialize h and QFresh to be empty tables and array U = UFresh.

3. For each a′j ∈ UFresh (in lexicographic order), the j-th entry of Cases indicates
the type of tuple of pointers stored in the j-th entry of Coll. Run A2 on a′j
and respond to queries using the entries of h̃ in order (except if the query is
a repeat) and populating the entries of h and QFresh except when one of the
following happens:

(a) For Cases[j] = 1a, when Qj[sj] is queried, respond to the query with a′j.
If Cases[j] = 1b continue until it reaches query at index s2j in Qj. To
respond to this query, return the output of the query Qj[s

1
j].

(b) For Cases[j] = 2, when Qj[sj] is queried, return the input salt of query
Qtj [Usedtj [vj]].

(c) For Cases[j] = 3b, if query pointed by s1j in Qj is made, return the input
salt of the query pointed by uj. If query pointed by s2j in Qj is made,
return the output of the query pointed by uj.

47

(d) For Cases[j] = 4a, when Qj[sj] is queried, return the input salt of the
query at index vj in the set Bulbs.

(e) For Cases[j] = 4b, when Qj[s
1
j] or Qj[s

2
j] is queried, return the input salt

of first and second query in the first unused element of list Diamonds,
respectively.

(f) The query is in Loops, then respond to the query with the input salt of
the query.

(g) The query is in Bulbs and there is a prior query with the same input salt
in Bulbs, then respond to the query with the output of this prior query.

(h) The second query of an element in Diamonds, then respond to the query
with the output of the first query of the same element in Diamonds.

After responding, continue running A2 on a′j and populating the tables.

4. After running A2 on all of the salts in UFresh, populate the rest of h using the
remaining entries of h̃ in order.

5. Finally, examine the queries QFresh, and form U by adding the salts of queries
in QFresh indexed by the elements of Pred to UFresh.

We first argue inversion replies to the queries issued by A2 on a′j correctly, for each

a′j ∈ UFresh. For queries that are not deleted from h̃, these are simply copied from h̃.
By construction, the queries that were deleted will be copied correctly. Finally, once
QFresh and Q are correctly computed, we have that U is correctly recovered.

3.6 Impossibility of Improving Zero-Walk AI Attacks

The attack in Section 3.2 and the attack of Corretti et al. follow the same template:
The first unbounded phase can find collisions for some salts a1, . . . , as, and then the
second phase tries to “walk” to these salts by querying a fixed message repeatedly.
The bounded-length version needs to restart the walk to obey the length bound.

A obvious improvement to these attacks would be to examine the functional
graph2 for the function h0(·) := h(·, 0) and select a1, . . . , as that are especially likely
to be reached by the random walking stage. It is tempting to conjecture such an
attack is optimal for the bounded case, as it was for the unbounded case, and we
are not aware of a better attack.

In this section we formalize the approach in these attacks and show that these
“zero walk” attacks cannot do much better than the basic attack in Section 3.2.
Concretely, we will show that these attacks can do no better (up to logarithmic
factors) than O(STB/N) advantage. The bound of known attacks and our bound
matches up to logarithmic factors.

At the heart of this bound is a delicate concentration inequality for the size of
bounded-depth trees in random functional graphs, which may be of independent

2That is, the graph on vertex set [N] with edges directed from a to f(a).

48

interest: Essentially, we show that with high probability, in the functional graph
for a random f : [N] → [N], all of the directed depth-D trees will have at most
Õ(D2) nodes. Typical results in this area (cf. EC:FlaOdl89) only give asymptotic
expectations.

Below we formalize the notion of zero-walk adversaries and then state and prove
our bound.

Definition 19. An (S, T,B)-AI adversary A = (A1, A2) is said to be a zero-walk
adversary if it has the following form:

1. The first stage A1 always produces a bit-encoded output of the form σ =
{(a1, α1, α

′
1), . . . , (as, αs, α

′
s)} where s = S/⌈(logN + 2 logM)⌉, ai ∈ [N],

αi, α
′
i ∈ [M].

2. The second stage A2, on input a and σ = {(a1, α1, α
′
1), . . . , (as, αs, α

′
s)} and

given oracle h, does the following:

If a ∈ {a1, . . . , as}, say a = ak, then output αk and α′
k.

Else: For i in 1, . . . , ⌊T/B⌋:

(a) Choose α̂i
$← [M]. Query c0 ← h(a, α̂i).

(b) For j in 1, . . . , B − 1:

If cj−1 ∈ {a1, . . . , as}, say cj = ak, then output α̂i∥0j−1∥αk and α̂i∥0j−1∥
α′
k.

Else: Query cj ← h(cj−1, 0).

Theorem 17. For any positive integers S, T,B such that B ≤ T , SB ≥ T and any
zero-walk (S, T,B)-AI adversary A,

Advai-cr
MD (A) = O

(
STB ln(NB)

N

)
.

This theorem follows easily from Lemma 18 which we state now, but the proof of
that lemma is technical. For a function f ∈ Func([N], [N]), an element a ∈ [N], and
non-negative integer g, we define f−g(a) =

⋃g
i=0{a′ ∈ [N] : f i(a′) = a}, where we

define f 0 to be the identity function. Note that f−g(a) includes all of the elements
that iterate to a in g or fewer steps, so we have in particular that a ∈ f−g(a) for
any g ≥ 0. We say that an element a ∈ [N] is (r, B′)-rich for f if |f−B′

(a)| ≥ r.

Lemma 18. Let f
$← Func([N], [N]). Define r = ⌈1000(B′)2 ln(NB′)⌉+ 1 and let ε

be the probability that there exists a ∈ [N] that is (r, B′)-rich for f . Then

ε < 1/N.

We remark that lemma is much easier to prove if we settle for a weaker result
with r proportional to Ω̃(B′3).

49

Proof of Theorem 17. Let C be a constant to be fixed later. Let A be zero-walk
adversary, and write h0(·) for h(0, ·). Let E be the event that there exist a1, . . . , as
such that

⋃s
i=1 h

−(B−2)
0 (ai) has size at least CSB2 ln(NB). Then

Pr[AI-CRh,a(A) = 1] ≤ Pr[AI-CRh,a(A) = 1|¬E] + Pr[E]

≤

 ∑
i∈[⌊T/B⌋]

CSB2 ln(NB)

N

+
1

N
= O

(
STB ln(NB)

N

)
.

The first probability bound holds because for a fixed h, we have that A wins only
if one of its T chosen c0 values lies in

⋃s
i=0 h

−(B−2)
0 (ai), which has size at most

CSB2 ln(NB) when E does not hold; We simply apply a union bound over the
⌊T/B⌋ choices of c0. The second probability bound is by Lemma 18, with B′ = B−2
and the constant C set appropriately.

3.6.1 Proof of Lemma 18

Proof. In this section we dispense with writing random variables in bold.
Let f ∈ Func([N], [N]) be uniformly random, and fix a ∈ [N]. Define generations

Gj (random variables), j = 0, . . . , B′, by G0 = {a} and for j > 0

Gj = f−1(Gj−1) \ (
⋃
l<j

Gl).

Thus, Gj consists of elements a′ ∈ [N] such that f j(a′) = a but for all l < j,
f l(a′) ̸= a. Define the jth population as Pj = |Gj|. Then a being (r, B′)-rich is

equivalent to
B′∑
j=0

Pj ≥ r.

We are going to analyze the probability that any individual Pj is exceptionally
large, but this is complicated by the fact that they will typically grow to a reasonable
size.

We define Pj to be:

“small” if Pj < 100B′ ln(NB′),

“big” if Pj ≥ 100B′ ln(NB′),

“really big” if Pj ≥ 200B′ ln(NB′),

“huge” if Pj ≥ 1000B′ ln(NB′).

We will show that with probability at least 1 − 1/N , there are no huge values Pj.
Then Theorem 17 follows by summing Pj over j = 0, . . . , B′.

Claim 19. For any subsets g0, . . . , gj ⊆ [N] such that Pr[G0 = g0, . . . , Gj = gj] ̸= 0,
the distribution of Pj+1, conditioned on G0 = g0, . . . , Gj = gj, is stochastically
dominated by a binomial sum of nj+1 = N −

∑j
i=0 |gi| i.i.d. 0/1 random variables

with expectation pj+1 · nj+1 ≤ |gj|.

50

Proof of claim. Condition on some g0, . . . , gj. We know that none of the elements
of these previous generations can appear in Gj+1, so for any a′ ̸∈

⋃j
i=0 gi, the con-

ditional distribution of f(a′) is uniform over [N] \
⋃j−1

i′=0 gi′ . Moreover, for these a′,
f(a′) is independent of any other value of f(a′′) under our conditioning. Thus

Pr[a′ ∈ Gj+1|G0 = g0, . . . , Gj = gj] = pj+1 where pj+1 =
|gj|

N −
∑j−1

i′=0 |gi′|
.

The random variable Pj+1, conditioned upon g0, . . . , gj, is equal to the sum over a′

of indicator random variables for the event a′ ∈ Gj+1, which gives the claim.

We first bound the probability that either there is ever a jump from small directly
to really big (or huge). Once that possibility has been dealt with, the only other way
a huge generation can come about is if there is a consecutive series of generations
that are all big or really big that immediately precede a huge generation. This plan
is formalized in the next two claims.

Claim 20. The probability that there exists j = 0, . . . , B′ − 1 such that Pj is small
and Pj+1 is really big is at most N−30.

Proof of claim. Fix some j and condition on any g0, . . . , gj that occur with non-
zero probability and assume |gj| < 100B′ ln(NB′). Then by the first claim Pj+1

is stochastically dominated by a binomial random variable X with expectation at
most 100B′ ln(NB′). By the multiplicative Chernoff bound we have that X ≤
200B′ ln(NB′) except with probability

exp

(
−1 · 100B′ ln(NB′)

2 + 1

)
< (NB′)−33B′

Since this holds conditioned on any g0, . . . , gj, it holds without the conditioning.
Finally taking a union bound over j = 0, . . . , B′ − 1 gives the claim (with a lot of
slack to spare).

Obtaining a cubic bound. A variant of the previous claim is already enough to
prove the aforementioned weaker version of the lemma, where r is cubic in B′. We
sketch how now. Instead of focusing on a jump from small to really big, we simply
bound the probability that, say, Pj ≥ 100jB′ ln(NB′). Conditioned on the previous
generations not violating this bound, a simple application of Chernoff shows that Pj

is very unlikely to violate this bound. Taking a union bound, we can show that for
all j, Pj < 100jB′ ln(NB′) with high probability. Finally summing these bounds up
to j = B′ gives the cubic bound.

We now return to obtaining the tighter quadratic bound. This will depend on
the next claim.

Claim 21. The probability that for some ℓ′ and ℓ, Pℓ′ is big but not really big,
Pℓ′ , . . . , Pℓ−1 are big or really big, and Pℓ is huge, is at most N−4.2.

51

The proof of this claim is much longer and more delicate. We observe that the
proof of the lemma will be complete using these two claims and a union bound over
a ∈ [N]; The key is that both claims sum to a bound below N−2.

Proof of claim. Define random variables δj by

Pj = (1 + δj)Pj−1.

We have δj ≥ −1. If we condition on some (g0, . . . , gj), we have the expected value
of δj ≤ 0 by the first claim. Moreover, we have for any 0 < δ < 1

Pr[δj+1 ≥ δ | g0, . . . , gj] = Pr[Pj+1 ≥ |gj|(1 + δ) | g0, . . . , gj].

By the first claim and the multiplicative Chernoff bound,

Pr[δj+1 ≥ δ | g0, . . . , gj] ≤ exp

(
−δ2 · 100B′ ln(NB′)

3

)
< (NB′)−33δ2B′

. (3.1)

On the other hand, if Pℓ is huge and Pℓ′ is not really big, we have Pℓ ≥ 5Pℓ′ . In
terms of the δj this means

∏ℓ
j=ℓ′+1(1 + δj) ≥ 5. By 1 + x ≤ ex, if this inequality

holds then
∑ℓ

j=ℓ′+1 δj ≥ 1.6. We let Q =
∑ℓ

j=ℓ′+1 δj and now aim to bound Pr[Q ≥
1.6] ≤ N−4.2, which is small enough to allow us to take a final union bound over all
a ∈ [N].

To streamline what follows, we actually consider random variables

δ′j :=

{
δj if Pj−1 is big,

−N100 otherwise
.

Note that δ′j ≤ δj and for the event {Q ≥ 1.6} ∩ {Pl′ , . . . , Pl big} to hold it is
necessary and sufficient that Q′ :=

∑
l′<j≤l

δ′j > 1.6.

Bounding this probability is a delicate operation as the summands of Q′ are only
quasi-independent, and yet we still want to apply a Chernoff bound to this sum. Our
plan is to apply a version of the “exponential method” usually used for Chernoff-like
bounds. Namely, let u(x) = x3, so by Markov’s inequality

Pr[Q′ ≥ 1.6] ≤ Pr[u(Q′) ≥ N4.5] ≤ E[u(Q′)]

N4.5
=

E
[∏ℓ

j=ℓ′+1 N
3δ′j

]
N4.5

. (3.2)

Thus we need to bound this expectation. We will do this by showing, for any of the
relevant j, and any g0, . . . , gj−1, that E[N δ′j |g0, . . . , gj−1] is not too large. Since this

conditioning is arbitrary, we will get that the expectation of the product of N δ′j is
bounded by the product of the bounds.

We now bound E[N δ′j |g0, . . . , gj−1]. If the condition puts gj−1 as small, then

δ′j = −N100 and we easily have E[N δ′j |g0, . . . , gj−1] < 21/B
′
.

52

Next suppose the condition puts gj−1 as big. Recall that for any non-negative

random variable X, E[X] =
∫∞
0

P [X ≥ x]. Apply this to X = N3δ′j and splitting
the sum, we have

E[N3δ′j |g0, . . . , gj−1] ≤ Pr[δ′j ≤ 0.2/B′] ·N0.2/B′
+

∫ ≤N3

N0.2/B′
Pr[N3δ′j ≥ c] dc (3.3)

+

∫
c>N3

Pr[N3δ′j ≥ c] dc ≤ N0.2/B′
+ I1 + I2,

using I1, I2 to denote the two integrals above.
The probability appearing in I1 is Pr[δ

′
j ≥ δ] where δ := ln c

3 lnN
, a value in

(
0.06
B′ , 1

)
.

By Eq. (3.1),

Pr[δ′j ≥ δ] ≤ (NB′)−33δ2·B′ ≤ (NB′)−33(0.06/B′)δ·B′
< (NB′)−1.8δ

= exp

(
−1.8 ln(NB′) ln(c)

3 lnN

)
≤ c−0.6 ln(NB′).

Then,

I1 ≤
∫
N0.2/B′≤c≤N3

c−0.6 ln(NB′) dc <
N−0.12 ln(NB′)/B′+0.2/B′

0.6 ln(NB′)− 1

Bounding I2 is similar. Applying Chernoff with δ = ln c
3 lnN

≥ 1, we have

Pr[δ′j ≥ δ] ≤ (NB′)−33δ2B′/(1+δ) ≤ (NB′)−15B′δ ≤ exp

(
−15B′ ln(NB′) ln(c)

3 lnN

)
≤ c−5B′

,

and then

I2 ≤
∫
c>N3

c−5B′
dc < N−B′

.

Combining our three terms in (3.3), and the easy case where Pj−1 was small, we
have under any conditioning that

E[N3δ′j |g0, . . . , gj−1] ≤ N .3/B′

since the first of the three segments in the split integral dominates. We can now
apply this bound and get

E[u(Q′)] ≤ (N .3/B′
)ℓ−ℓ′ ≤ N .3

since ℓ−ℓ′ ≤ B′. By (3.2) this proves Pr[Q′ ≥ 1.6] < N .3−4.5 = N−4.2 and establishes
the third claim.

53

Chapter 4

Bounded Length Collisions

We revisit the problem of finding B-block-long collisions in Merkle-Damg̊ard Hash
Functions in the auxiliary-input random oracle model, in which an attacker gets a
piece of S-bit advice about the random oracle and makes T oracle queries.

Akshima, Cash, Drucker andWee (CRYPTO 2020), based on the work of Coretti,
Dodis, Guo and Steinberger (EUROCRYPT 2018), showed a simple attack for 2 ≤
B ≤ T (with respect to a random salt). The attack achieves advantage Ω̃(STB/2n+
T 2/2n) where n is the output length of the random oracle. They conjectured that this
attack is optimal. However, this so-called STB conjecture was only proved for B ≈ T
and B = 2. Very recently, Ghoshal and Komargodski (CRYPTO 22) confirmed STB

conjecture for all constant values of B, and provided an Õ(S4TB2/2n+T 2/2n) bound
for all choices of B.

In this work, we prove an Õ((STB/2n) · max{1, ST 2/2n} + T 2/2n) bound for
every 2 < B < T . Our bound confirms the STB conjecture for ST 2 ≤ 2n, and is
optimal up to a factor of S for ST 2 > 2n (note as T 2 is always at most 2n, otherwise
finding a collision is trivial by the birthday attack). Our result subsumes all previous

upper bounds for all ranges of parameters except for B = Õ(1) and ST 2 > 2n.
We obtain our results by adopting and refining the technique of Chung, Guo,

Liu, and Qian (FOCS 2020). Our approach yields more modular proofs and sheds
light on how to bypass the limitations of prior techniques. Along the way, we obtain
a considerably simpler and illuminating proof for B = 2, recovering the main result
of Akshima, Cash, Drucker and Wee.

4.0.1 Our results

Our main contribution is the following theorem.

Theorem 22 (Informal). For any 2 < B < T , the advantage of the best adversary
with S-bit advice and T queries for finding B-block collisions in Merkle-Damg̊ard
hash functions in the auxiliary-input random oracle model, is

Õ
(
(STB/N) ·max{1, ST 2/N}+ T 2/N

)
.

Our bound confirms the STB conjecture for any 2 < B < T for the range of S, T
such that ST 2 ≤ N . For the other range of S, T , as T 2 ≤ N (otherwise, finding a

54

collision is trivial by the birthday attack), Our bound is at most Õ(S2TB/N+T 2/N),
which is optimal up to a factor of S.

Comparing to the Õ(STB2(log2 S)B−2/N + T 2/N) bound by [14], our bound
works for any 2 < B < T , while their bound becomes vacuous when B > logN .
However, for B ≤ logN , unlike our bound, their bound could be tight even when
ST 2 > N . In particular, their bound confirms STB conjecture for B = O(1).

Our bound strictly improves the Õ(S4TB2/N + T 2/N) bound by [14], and

the Õ(S2T/N) bound by [6] for any 2 < B < T and non-trivial choices of S, T
(specifically, when STB attack succeeds with at most a constant probability, i.e.,
STB = O(N)). The two bounds by [14] only beat [6] for B ≪

√
T .

As an additional contribution, we give a considerably simpler proof for proving
the tight bound for B = 2, recovering the main result of [1].

Theorem 23 (Informal). The advantage of the best adversary with S-bit advice
and T queries for finding 2-block collisions in Merkle-Damg̊ard hash functions in
the auxiliary-input random oracle model, is Õ (ST/N + T 2/N).

A comparison of our results with the prior works is summarized in 4.1. Overall,
our results subsume all previous upper bounds except for the range of S, T,B such
that B ≤ logN and ST 2 > N .

4.0.2 Our techniques

In this section, we describe our techniques, how to use them to prove our main
results, and what makes our techniques different from prior approaches used in [1],
[6], [14].

Existing reduction to sequential multi-instance games. Our initial inspira-
tion is the recent framework of Chung, Guo, Liu, Qian [15] for establishing tight
time-space tradeoffs in the quantum random oracle model. Generally speaking, they
reduce proving the security of a problem with S-bit advice to proving the security
of multiple random instances of the problem, presented one at a time, without ad-
vice. Specifically, they observe that1, if any adversary (with no advice) can solve S
instances of the problem “sequentially” with success probability at most δS, then
any adversary with S-bit advice can solve one instance of the problem with success
probability at most 2δ.

This idea of reducing the security of a problem with advice to the security of
a multi-instance problem without advice was first introduced by Impagliazzo and
Kabanets in [11]. The idea was also used by later works [1], [14]. The difference
between [11] and the later works, including this work, is that we reduce to a “se-
quential” multi-instance game as opposed to a “parallel” multi-instance problem.
More concretely, in the parallel multi-instance problem, the adversary is presented
with all the randomly chosen instances of the challenge problems to solve once at

1The framework of Chung, Guo, Liu, Qian [15] reduces to analyzing sequential multi-instance
security for S + logN + 1 instances instead of S-instances. We slightly improve their parameters
and obtain a considerably cleaner version in Theorem 24.

55

Best at-
tacks

Security bounds Ref. Proof tech-
niques

B = 1 S
N

+ T 2

N
S
N

+ T 2

N
[7] Compression

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
[1] Multi-

instance
problems

B = 2 ST
N

+ T 2

N
ST
N

+ T 2

N
Theorem 23 Multi-

instance
games

2 < B < T STB
N

+ T 2

N
STB2(log2 S)B−2

N
+ T 2

N
[14] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
S4TB2

N
+ T 2

N
[14] Multi-

instance
problems

2 < B < T STB
N

+ T 2

N
STB
N
·max{1, ST 2

N
}+ T 2

N
Theorem 22 Multi-

instance
games

Unbounded ST 2

N
ST 2

N
[6] Presampling

Table 4.1: Asymptotic security bounds on the security of finding B-block-long col-
lisions in Merkle-Damg̊ard Hash Functions constructed from a random function
H : [N] × [M] 7→ [N] against (S, T)-algorithms. For simplicity, logarithmic terms
and constant factors are omitted.

the start. Whereas in the multi-instance game, the adversary gets a new randomly
chosen instance of challenge problem one at a time and only after solving all the
previous challenges.

Chung et al. [15] recently demonstrated a separation between “sequential” multi-
instance games and “parallel” multi-instance problems in the context of function
inversion in the quantum setting2. Guo, Li, Liu and Zhang [16] pointed out a
connection between “sequential” multi-instance game and the presampling technique

2In particular, they showed that “sequentially” inverting S random images (with T quantum
queries per round to a given random function f : [N]→ [N]) admits security O(ST/N + T 2/N)S ,
and the corresponding “parallel” multi-instance problems admits an attack with advantage
Ω(ST 2/N)S .

56

(first introduced by Unruh [4], and further optimized by Coretti et al. [6]) ——
the main technique used by Coretti et al. [6] for proving the O(ST 2/N) bound.
Roughly speaking, all results relying on presampling technique can be reproved using
“sequential” multi-instance games. That suggested that “sequential” multi-instance
games have the potential to prove stronger results. Therefore we are motivated to
adapt and take full advantage of “sequential” multi-instance games in the context
of collision finding.

To better illustrate the connection between “sequential” multi-instance games
and the presampling technique, we show how to recover the O(ST 2/N) bound by
Coretti et al. [6]. Recall that presampling technique by Coretti et al. [6] generically
reduces security proofs of unpredictability applications (including collision finding)
in the AI-ROM to a much simpler P -bit-fixing random-oracle model (BF-ROM),
where the attacker can arbitrarily fix the values of the random oracle on some
P := O(ST) coordinates, but then the remaining coordinates are chosen at random.
Coretti et al. [6] showed that the security of finding collisions in Merkle-Damg̊ard
Hash Functions in the BF-ROM is O(ST/N).

Using “sequential” multi-instance games, it suffices to bound the advantage of
any adversary (with no advice) winning a new game, conditioning on winning all
previous (up to at most S) ones, by O(ST 2/N). The adversary wins all games with
advantage O(ST 2/N)S, which implies the desired security against S-bit advice. The
key point is that the adversary (with no advice) made at most ST queries in previous
games. Therefore, conditioning on any possible events of earlier games, from the
view of the adversary, the random oracle is essentially a (convex combination of) bit-
fixing random oracles (BF-ROM) [6], where at most ST -positions are known, and
the rest remains independent and random. Hence, it suffices to prove the security
of a single game in BF-ROM by O(ST 2/N), which has been shown by Coretti et
al. [6] as a necessary step to use the presampling technique.

Barriers of the above idea. Akshima et al. [1] pointed out a barrier to using
the vanilla presampling technique towards proving B = 2. In particular, one can
only hope to achieve Ω(ST 2/N) in the BF-ROM even for B = 2. Recall that, to
prove the sequential multi-instance security, it is sufficient to bound the advantage
of any adversary that finds a 2-block collision for a fresh salt a, conditioned on it
finds 2-block collisions for all the previous random challenge salts a1, · · · , aS.

We will call these ST queries made during the first S rounds as offline queries.
Among the T queries made for a, we will call the queries that were not made during
the first S rounds as online queries. Throughout the discussion, we will focus on the
case that the new salt a has never been queried before in offline queries, because the
other case happens with probability at most ST/N (so won’t affect our conclusion).
As a result, all queries starting with the challenge salt a have to be online queries.

It is clear that the adversary learns about the function not only using the online
queries but also from the offline queries. The information this algorithm can take
advantage of from the offline queries varies by a lot. The followings are two extreme
cases:

57

1. The offline queries consist of exactly one single query for each of ST distinct
salts.

2. The offline queries consist of one collision for each of ST/2 distinct salts

For the first case, the offline queries can barely help3. Whereas, in the second
case, as long as an adversary can find a pre-image (starting with the challenge salt
a) of any of these ST/2 salts, it finds a 2-block collision (Refer fig. 4.1). Since there
are T online queries, the algorithm achieves advantage at least ST 2/(2N) in the
second case.

a

...

Figure 4.1: Nodes indicate salts in [N]. An arrow connected two salts means there is
a query on the starting salt and a message in [M] such that the output is the other
salt. An online query hits an existing collision. Solid lines denote offline queries.
The dotted line denotes the online query that forms a 2-block collision.

The vanilla presampling approach works for worst-case offline queries. Given the
above example, the best security bound one can hope to achieve in the BF-ROM
for B = 2 is Ω(ST 2/N).

A detailed comparison with prior techniques. The similarity between [1],
[14] and us is that we all adopt the idea of reducing the problem of interest to a
multi-instance variant, in which an adversary has to solve multiple copies of the
given problem.

Both [1] and [14] directly analyze the probability of solving all instances using
the compression paradigm, which typically requires a non-trivial case analysis of
the more complicated multi-instance problem. These case analyses may be quite
laborious and detached from the single-instance problem (thus may not give many
insights for the single-instance problem).

Our approach differs significantly from [1] and [14] in two places. First, we
focus on analyzing a simple variant of the single-instance problem (corresponding
to a single round of the sequential multi-instance game conditioning on winning
previous games), which is sufficient to establish desired results in multi-instance
security. This variant is more similar to the original problem, and may be easier
to analyze than the multi-instance problems. The first step (reducing to a variant
of the single-instance problem) is somewhat used and captured in the presampling

3We do not prove it rigorously here. Instead, we focus on the more interesting case – offline
queries do provide advantages.

58

technique (via a different route [6]). We do think this step is more modular than [1]
and [14], but don’t consider this as our main technical novelty.

The second place, also our main technical novelty, is that we further introduce
“knowledge gaining events” for analyzing the variant of the single-instance problem.
These events can be isolated and analyzed on their own, and precisely highlight the
correlation in finding collisions given “typical” presampled random oracles. Before
this work, all the presampling techniques for time-space tradeoffs considered worst-
case presampled random oracles. The worst-case presampling may make the existing
analyses sub-optimal. Our approach analyzes the “average-case” presampling ran-
dom oracles and shows that those “worst-case” ones can never happen except with a
tiny probability. To our best knowledge, this is the first work that takes advantage
of “average-case” presampling and achieves tight bounds.

Overall, we consider our proofs more modular, because we utilize sequential
games to focus on variants of the single-instance game (rather than directly com-
pressing multi-instance games used by [1] and [14]). We further introduce “knowl-
edge gaining events” to take advantage of “average-case” presampling (rather than
working with worst-case ones used by [6]).

4.1 Notations and Definitions

Notation. For non-negative integers N, k, we write [N] for {1, 2, · · · , N} and
(
[N]
k

)
for the collection of all size-k subsets of [N]. For a finite set X, we write X+ for the
set of tuples of 1 or more elements of X. Random variables will be written in bold,
and we write x←$ X to indicate that x is a uniform random variable in X.

Chernoff Bound. Suppose X1, · · · ,Xt are independent binary random variables.
Let X denote their sum and µ = E[X]. For any δ ≥ 0,

Pr[X ≥ (1 + δ)µ] ≤ exp

(
− δ2µ

2 + δ

)
.

Random Oracle bellare1993random. In random oracle model, we model a
hash function as a random function H that is sampled uniformly at random from
all functions at the beginning. H is publicly accessible to every entity.

A useful property about random oracle model is that, instead of sampling H
uniformly at random, one can assume H is initialized as a function that always
outputs ⊥; which indicates the response has not been sampled. Whenever an input
x is queried and H(x) has not been sampled (i.e. H(x) = ⊥), the random oracle
samples y uniformly from the range and H(x) := y.

Definition 20 (Lazy Sampling and Databases). We refer to the table of sampled
queries (for those H(x) ̸= ⊥) on H and their responses as the database or the
partially sampled random oracle.

The set of offline queries is the set of distinct queries made in the offline stage.
The set of online queries is the set of distinct queries made in the online stage
and had not been made in the offline stage.

59

While dealing with algorithms with both offline and online stages, the table of only
the offline queries on H and their responses is referred to as the offline database.

Note that the outputs of the offline and online queries are independent and
uniformly distributed.

4.1.1 Merkle-Dam̊gard Hash Functions (MD)

A hash function usually is required to function over inputs with different lengths.
Many practical hash functions are based on the Merkle-Damg̊ard construction (MD).
It takes a hash function with fixed length input to a new hash function with arbitrary
input lengths.

We treat the underlying hash function as a random oracle H : [N]× [M]→ [N].
We call a message m is a B-block message if m can be written as m = (m1, · · · ,mB)
where each mi ∈ [M]. The function MDH(a,m) evaluates on a salt a ∈ [N] and a
message m as the follows:

MDH(a,m) = MDℓ
H(a, (m1, · · · ,mℓ)) =

{
H(MDℓ−1

H (a, (m1, · · · ,mℓ−1)),mℓ) ℓ > 1

H(a,m1) ℓ = 1

It applies the fixed-length hash function H on the salt a and the first block m1 to
get a new salt a2; it then applies H again on a2 and m2 until finally it outputs a
single string in [N].

4.1.2 Collision-Resistance against Auxiliary Input (AI).

We start by defining the security game of collision-resistance against auxiliary in-
put adversaries. The adversary is unbounded in the preprocessing stage and leave
nothing but a piece of bounded-length advice for the online stage.

Definition 21 ((S, T)-AI algorithm). A pair of algorithms A = (A1,A2) is an
(S, T)-AI adversary for MD if

• AH
1 is unbounded (making unbounded number of oracle queries to H) and

outputs S bits of advice σ;

• AH
2 takes σ and a salt a ∈ [N], issues T queries to H and outputs m1,m2.

We are ready to define the security game of collision-resistance against an (S, T)-
AI adversary.

Definition 22 (Auxiliary-Input Collision-Resistance). We define the following game
B-AICR for a fixed random oracle H and a salt a ∈ [N] in fig:AICRB, where B is a
function of N (the range size of the random oracle). The game outputs 1 (indicating
that the adversary wins) if and only if A outputs a pair of MD collision with at most
B(N) blocks.

For an (S, T)-AI adversary A = (A1,A2), we define the advantage of A as
its winning probability in the B-AICRH,a with uniformly random H ← {f : [N] ×

60

Game B-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than B(N) blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 4.2: B-AICRH,a(A)

Game 2-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than 2 blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 4.3: 2-AICRH,a(A)

Game B-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than B(N) blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 4.4: B-AICRH,a(A)

Game 2-AICRH,a(A)
σ ← AH

1

m1,m2 ← AH
2 (σ, a)

If m1 or m2 consists of more than 2 blocks
Then Return 0

If m1 ̸= m2 and MDH(a,m1) = MDH(a,m2)
Then Return 1

Else Return 0

Figure 4.5: 2-AICRH,a(A)

61

[M]→ [N]} and random a← [N]. We define the (S, T,B)-auxiliary-input collision-
resistance of Merkle-Damg̊ard, denoted by AdvAI-CR

B-MD (S, T), as the maximum of ad-

vantage taken over all (S, T)-AI adversaries A.
For convenience, we similarly define AdvAI-CR

2-MD (S, T) as the maximum of advan-

tage of winning the game 2-AICR (see fig:AICRTWO) taken over all (S, T)-AI ad-
versaries A.

Multi-Instance Collision-Resistance (MI). We then define the sequential multi-
instance collision-resistance of Merkle-Damg̊ard. As shown by [15], the AI-security
is closely related to the (sequential) MI-security. Note that in the MI security, an
adversary does not take any advice but tries to solve independent instances sequen-
tially.

Definition 23 (Multi-Instance Collision-Resistance). Fixing functions B and S,
and a random oracle H, we define the following game B-MICRS in fig:MICRB. In
this game, A will receive S freshly independent and uniform salts and it needs to
find a MD collision with respect to each salt ai of at most B blocks, in a sequential
order. In other words, A will never see the next challenge salt until it solves the
current one.

Game B-MICRS
H,a(A)

For i ∈ {1, 2, · · · , S}:
Sample ai ← [N]
m1,m2 ← AH(ai)
If m1 or m2 consists of more than B blocks,
or MDH(ai,m1) ̸= MDH(ai,m2)

Return 0
Return 1

Figure 4.6: Games B-MICRS
H,a(A).

In this security game, A is a statefulalgorithm that maintains its internal state
between each stage. We usually consider an (S, T)-MI adversary A which makes at
most T queries in each of these S stages. We similarly define 2-MICR by setting
B = 2 in B-MICR.

For an (S, T)-MI adversary A, we define the advantage of A as its winning
probability in the B-MICRS

H,a with uniformly random H and a← [N].
We define the (S, T,B)-multi-instance collision-resistance of Merkle-Damg̊ard,

denoted by AdvMI-CR
B-MD (S, T), as the maximum of advantage taken over all (S, T)-MI

adversaries A.
For convenience, we similarly define AdvMI-CR

2-MD (S, T) as the maximum of advan-

tage of winning the game 2-MICRS
H,a (for random H, a) taken over all (S, T)-MI

adversaries A.

The following theorem will be useful for proving the AI collision-resistance of
Merkle-Damg̊ard. It says a lower bound for the MI collision-resistance implies

62

a lower bound for the AI security. Therefore, in the rest of the paper, we will
focus on the MI collision-resistance of Merkle-Damg̊ard with different lengths B.
The theorem is based on the idea of Theorem 4.1 in [15], which implies that if
AdvMI-CR

B-MD (S + logN + 1, T) ≤ δS+logN+1, then AdvAI-CR
B-MD (S, T) ≤ 4δ. We slightly

improve their parameter, and obtain a considerably cleaner statement.

Theorem 24. For any S, T,B and 0 ≤ δ ≤ 1, if AdvMI-CR
B-MD (S, T) ≤ δS, then

AdvAI-CR
B-MD (S, T) ≤ 2δ.

Proof of thm:mitoai We prove by contradiction. Assume there is an (S, T)-AI ad-
versary A = (A1,A2) such that

Pr
H,a

[B-AICRH,a(A) = 1] > 2δ,

Consider the following (S, T)-MI adversary B:

1. B samples a uniformly random σ of S bits.

2. For each stage i ∈ [S]:

• B receives ai from the challenger.

• B runs AH
2 (σ, ai) to obtain and output m1,m2.

We will show that PrH,a1,...,aS

[
B-MICRS

H(B) = 1
]
> δS. For every fixed choice of H,

we define
δH := Pr

a
[B-AICRH,a(A) = 1] .

Observe that EH [δH] = PrH,a [B-AICRH,a(A) = 1] > 2δ. For every fixed choice of
H, conditioning on that B guesses the output of AH

1 correctly, then B perfectly
simulates A. Therefore,

Pr
a1,...,aS

[B-MICRH(B) = 1] ≥ Pr
a1,...,aS

[B-MICRH(B) = 1|σ = AH
1]·Pr[σ = AH

1] = δSH/2
S .

By averaging over the randomness of H,

Pr
H,a1,...,aS

[B-MICRH,a(B) = 1] ≥ EH [δ
S
H]/2

S ≥ E[δH]
S/2S > δS ,

where the second inequality is by Jensen’s inequality, and the last inequality is by
EH [δH] > 2δ.

4.2 Auxiliary Input Collision Resistance for B = 2 Merkle-
Damg̊ard

In this section we prove the following theorem, which recovers Theorem 7 in [1].

Theorem 25. For any S, T and N ≥ 64,

AdvAI-CR
2-MD (S, T) ≤ (200 log2N) · ST + T 2

N
.

63

By thm:mitoai, itsufficestoprovethefollowinglemma.

Lemma 26. For any S, T and N ≥ 64, AdvMI-CR
2-MD (S, T) ≤ 100(ST+T 2) log2 N

N
.

The purpose of this section is to show the simplicity of our new framework. The
proof will also serve as a stepping stone for a better understanding of our proof for
larger B cases.

Proof of lemma:micrtwo Let H be a random oracle in the game 2-MICRS and A
be an arbitrary (S, T)-MI adversary. We show that its advantage of succeeding in
2-MICRS is at most (100(ST+T 2) log2N/N)S. In this proof, we will also assume the
random oracle H is lazily sampled by the challenger, which is equivalent to being
sampled at the very beginning.

Let Xi be the indicator variable that A wins the i-th stage on a uniformly
random salt ai. The advantage of A can be then written as Pr[X1 ∧ · · · ∧XS]. We
additionally define the indicator variable X<i = X1 ∧ · · · ∧Xi−1, meaning whether
A wins the first (i− 1) stages of the sequential game. Then

Pr[X1 ∧ . . . ∧XS] =
S∏

i=1

Pr[Xi|X<i]. (4.1)

We will bound Pr[X<i+1] < (δS)
i for each i ∈ {1, · · · , S} by induction, where

δS = 100 · (ST+T 2) log2 N
N

.
If Pr[X<i] is already bounded by (δS)

i, then it trivially holds for Pr[X<i+1].
Otherwise, we assume Pr[X<i] ≥ (δS)

i.

We want to bound Pr[Xi|X<i] ≤ δS for any arbitrary i ∈ [S]. In the following
proof, we will carefully deal with the conditioning on X<i, since A learns about the
function H not only using the T queries in the i-th stage, but also from these (i−1)T
queries in the early stages. We will call all the queries made in the previous (i− 1)
stages as “offline” queries and those made in the i-th stage as “online” queries. We
also recall the definition for “databases” in def:database.

As mention in the introduction, one bad example is that the previous (i − 1)T
queries consist of (i − 1)T/2 distinct salts, each has a pair of 1-block collision. An
online adversary can use T queries to hit any of these salts and form a 2-block
collision with probability roughly iT 2/N . Below, we will show that this event (and
other events that give non-trivial advantage to the online adversary) happens with
very small probability.

Defining Knowledge-Gaining Events. To bound the knowledge that A learns
in the previous stages, we define the following events: all events are defined for the
lazily sampled random oracle right after the first (i − 1) stages. We are going to
show that these events are the “only events” that A can learn take advantage of the
previous queries but they happen with very small probability.

• Let Ei
1 be the event that 1-block collisions can be found for at least 10i logN

distinct salts within (i− 1)T queries.

64

...

(i) Ei
1

...

(ii) Ei
2

...

(iii)
Ei

3
Figure 4.7: All events Ei

1,E
i
2,E

3
i . Nodes indicate salts in [N]. An arrow connected

two salts means there is a query on the starting salt and a message in [M], and the
output is the other salt.

Formally, in the database, there exist 10i logN salts: for each such salt a,
there exists m ̸= m′ ∈ [N] satisfying H(a,m) = H(a,m′). See fig:B2event1.

• Let Ei
2 be the event that at least 10i2 log3N pairs of block collisions can be

found within (i− 1)T queries.

Formally, in the database, there exist 10i2 log3N pairs of inputs (a,m) ̸=
(a′,m′) satisfying H(a,m) = H(a′,m′). We emphasize that we do not ask a
pair of collision to start with distinct salts. See fig:B2event2.

• Let Ei
3 be the event that self loops can be found for at least 10i logN distinct

salts within (i− 1)T queries.

Formally, in the database, there exist 10i logN distinct salts: for each such
salt a, there exists some m ∈ [N] satisfying H(a,m) = a. See fig:B2event3.

Then

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] + Pr[Ei

1 ∨ Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
.

Here we use the fact that Pr[A|B] ≤ Pr[A]/Pr[B] for Pr[B] > 0.
Next, we will show that assuming none of Ei

1,E
i
2,E

i
3 happens, an adversary can

not take too much advantage of the information from the previous stages. We show
that its advantage Pr[Xi|X<i∧Ei

1∧Ei
2∧Ei

3] is bounded by 98 · (ST +T 2) log2N/N .
Secondly, any of these event happens with very small probability. We can safely
“assume” these events never happen. In total, the conditional probability is at most
100 · (ST + T 2) log2N/N = δS.

Claim 27. For any i ∈ [S] and T 2 ≤ N/2, Pr[Ei
1] ≤ N−10i.

Claim 28. For any i ∈ [S], iT + T 2 < N/2 and N ≥ 64, Pr[Ei
2] ≤ 4N−2i.

Claim 29. For any i ∈ [S], N ≥ 4 and T ≤ N/2, Pr[Ei
3] ≤ N−4i.

65

The proofs for these lemma are deferred to the end of this section (sec:boundeventsb2).Fornow, readersmayskiptheproofsforalltheseclaims.Theproofsfortheselemmaareinthefullversionofthepaper.Readersmayskiptheproofsforalltheseclaims.Theproofsarenotnecessaryforunderstandingtherestoftheproof.

Recall that we assume Pr[X<i] ≥ (δS)
i, otherwise Pr[X1∧ . . .∧Xi] ≤ (δS)

i holds
trivially for the first i stages. Therefore,

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

Pr[Ei
1]

Pr[X<i]
+

Pr[Ei
2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]
(4.2)

≤ Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] +

1

N
, (4.3)

where the last inequality comes from the fact that 1/Pr[X<i] ≤ N i but (Pr[Ei
1] +

Pr[Ei
2] + Pr[Ei

3]) ≤ 6N−2i.

Bounding the Last Term. Finally, we are going to bound Pr[Xi|X<i∧Ei
1∧Ei

2∧
Ei

3]. In order to do that, we define another event G as the event that the input salt
ai has been queried among the queries in the previous (i − 1) iterations; i.e., for
some m ∈ [N], (ai,m) is in the lazily sampled hash function. Then it holds that:

Pr
[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3

]
≤Pr

[
G
∣∣∣X<i ∧ Ei

1 ∧ Ei
2 ∧ Ei

3

]
+ Pr

[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
≤(i− 1)T

N
+ Pr

[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
.

Now all that remains to bound is Pr
[
Xi

∣∣∣X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3 ∧G

]
, which re-

quires collision type-wise analysis. By enumeration, there are total 6 types of 2-block
collisions (fig:B2alltype).

A dashed line origins from ai. It indicates that the query should be made online,
conditioned on G. Other queries can be either made online or offline in the previous
iterations. The label 168, 169, 170 and 171 will be used later for a better presentation
of our proof. By enumerating each solid edge being an online query or a offline query,
we show that it is sufficient to consider the cases in Claim 30.

ai

(168)

(i) Type 1

ai
(168)

(169)

(ii) Type 2

ai
(168)

(169)

(iii) Type 3

ai
(168)(169)

(170)

(iv) Type 4

ai
(168)

(169) (170)

(v) Type 5

ai
(168)

(169)

(170)

(171)

(vi) Type 6
Figure 4.8: All types of 2-block collisions.

66

Claim 30. For any i ∈ [S], to find a 2-block collision on ai conditioned on G, the
queries should satisfy at least one of the following conditions:

1. There exists an online query (i.e., a query among the T queries in the i-
th iteration after receiving the challenge input ai), denoted (a,m) such that
H(a,m) = a.

In other words, a self loop is found among the online queries. This covers the
case when (168) edge in type 1 collisions and the (169) edge in type 2 collisions
are online queries. See fig:B2type1.

2. There exists two online queries, denoted (a,m) and (a′,m′), such that (a,m) ̸=
(a′,m′) and H(a,m) = H(a′,m′).

A collision is found among the online queries. This covers the case when the
(168) and (169) edges in Type 3 collisions, the (169) and (170) edges in Type 4
collisions, the (168) and (170) edges in Type 5 collisions, the (170) and (171)
edges in Type 6 collisions are online queries. See fig:B2type2.

3. There exists an online query, denoted by (a,m), and one offline query, denoted
by (a′,m′), such that a ̸= a′, H(a,m) = a′ and H(a′,m′) = a′.

This denotes an online query hits an existing self loop. This covers the case
when the (168) edge in type 2 collisions is an online query. See fig:B2type3.

4. There exists an online query, denoted by (a,m), and two offline queries, de-
noted by (a′,m′) and (a′,m′′), such that a ̸= a′, H(a,m) = a′ and H(a′,m′) =
H(a′,m′′).

This denotes an online query hits an existing collision (starting with the same
salt a′). This covers the case when (168) edge in type 4 collisions is an online
query. See fig:B2type4.

5. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline
query, denoted by (a′,m′′) such that a ̸= a′, H(a,m) = a′ and H(a′,m′) =
H(a′,m′′).

This covers the case when the (168) and (169) edges in type 4 collisions are
online queries. See fig:B2type5.

6. There exists two online queries, denoted by (a,m) and (a′,m′), and an offline
query, denoted by (a′′,m′′) such that H(a,m) = a′ and H(a′,m′) = H(a′′,m′′).

This denotes two online queries hit two ends of an existing queries. This covers
the case when the (168) and (169) edges in type 5 collisions, the (168) and
(171) edges in type 6 collisions are online queries. See fig:B2type6.

7. There exists two online queries, denoted by (a,m) and (a,m′), and two offline
queries, denoted by (b, y), (b′, y′) such that b ̸= b′, H(a,m) = b,H(a,m′) = b′

and H(b, y) = H(b′, y′).

This covers the case when the (168) and (169) edges in type 6 collisions are
online queries. See fig:B2type7.

67

a
m

(i) Case 1

a

a′

m

m′

a = a′

m

m′

(ii) Case 2

m
m′

a a′

(iii) Case 3

m

m′

m′′

a a′

(iv) Case 4

m

m′

m′′

a a′

(v) Case 5

m′

m m′′

a

a′′

a′

m′

m m′′

a = a′

a′′

(vi) Case 6

m y′

m′ ya
b

b′

(vii) Case 7
Figure 4.9: All possible types of collisions. A dotted line denotes an online query.
A solid line denotes a offline query.

Proof for Claim 30. We only prove for type 6 collisions. Other five cases are easier
and similar.

When both (170) and (171) are offline queries, it is Case 7. If only one of the
two edges is offline, it is Case 6. If they are all online queries, we can reduce it to
Case 2.

Finally, we show that for each case in Claim 30, the advantage is bounded by
(98(ST + T 2) log2N)/N .

Case 1. By making T new queries, each query (a,m) has 1/N chance to satisfy
H(a,m) = a. Therefore, the probability is bounded by T/N .

Case 2. The probability of finding a collision among these T new queries is smaller
than T 2/N , by birthday bound.

Case 3. Recall Ei
3: there are at most 10i logN salts that has a self loop in the

offline queries. By making T new queries, each query (a,m) has (10i logN)/N
chance to hit any of these salts. Therefore, the probability is bounded by
(10iT logN)/N .

Case 4. Recall Ei
1: there are at most 10i logN salts that has a collision starting

from it in the offline queries. By making T new queries, each query (a,m) has
(10i logN)/N chance to hit any of these salts. Therefore, the probability is
bounded by (10iT logN)/N .

Case 5. and Case 6. The proofs are identical. Fixing any offline query (a′′,m′′),
by making T queries, the chance of hitting both ends is T 2/N2. This is because
we can enumerate which are the first queries that hit the starting salt a′′ and
the end H(a′′,m′′). Each case happens w.p. at most 1/N2.

Since there are total (i − 1)T offline queries, by union bound, the advantage
is at most (i− 1)T · T 3/N2 ≤ iT

N
· T 2

N
for both cases.

68

Case 7. Recall Ei
2: there are at most 10i2 log3N pair-wise collisions. For every

such collision that start with different salts, the probability of hitting both
salts within T queries is T 2/N2. This is due to the same counting argument
in the analysis of Case 5 and Case 6.

By union bound, the advantage is at most (10i2T 2 log3N)/N2.

We have shown all the cases in Claim 30. Therefore,

Pr[Xi|X<i ∧ Ei
1 ∧ Ei

2 ∧ Ei
3] ≤

98(iT + T 2) log2N

N
.

Combining with eq:misproductandeq : miscondition, weconcludelemma : micrtwo :Pr[X1∧
. . . ∧XS] ≤ (δS)

S.

4.2.1 Bounding Ei
1,E

i
2,E

i
3

Without loss of generality, we assume the algorithm does not make duplicate queries
since it can record every query it makes. We also assume an algorithm makes iT
queries instead of (i− 1)T queries, for the convenience of presentation.

We first show Claim 29 for Ei
3, which is the easiest one.

Proof of Claim 29. Let Bj be the indicator random variable, denote that the j-th
query gives a self loop. Since each output of the random oracle is freshly sampled,
it is clearly to see that {Bj} are independent. For every j ∈ [iT], E[Bj] = 1/N . By
Chernoff bound (see Preliminary), setting δ = (9N logN)/T, µ = iT/N ,

Pr [B1 +B2 + · · ·+BiT ≥ 10i logN] ≤ exp(−δ2µ/(2 + δ)) ≤ exp(−4i logN).

Then we show Claim 27 for Ei
1.

Proof for Claim 27. Let aj be the j-th distinct salt where an algorithm finds a
collision on. If the algorithm only finds collisions for fewer than j salts, aj is defined
as ⊥. Then the probability of finding collisions for at least t = 10i logN salts is
Pr [∀j ∈ [t], aj ̸= ⊥].

Let Zj be the number of queries that are already made towards salt aj; if aj = ⊥,
we define Zj = 0. We know that Z1 + · · ·+Zt ≤ iT , since aj are pairwise different.

For every z1, · · · , zt > 0 and z1+ · · ·+ zt ≤ iT , the following probability denotes
the event that collisions are found for at least t salts, and for the j-th collision, it
happens at the zj-th queries for the salt aj:

Pr [∀j ∈ [t], aj ̸= ⊥ ∧ Zj = zj] ≤
t∏

i=j

zj
N
≤
(
iT

tN

)t

. (4.4)

The first inequality is due to the fact that for every j ∈ [t], the image of the zj-th
query should match the one of the images among the first zj−1 queries made towards

69

aj. For each j ∈ [t], the probability is at most (zj−1)/N . The last inequality follows
from the fact z1 + · · ·+ zt ≤ iT .

By union bound, we have:

Pr [∀j ∈ [t], aj ̸= ⊥] ≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

Pr [∀j ∈ [t], aj ̸= ⊥ ∧ Zj = zj]

≤
∑

z1,··· ,zt>0
z1+···+zt≤iT

(
iT

tN

)t

.

The last inequality follows eq:boundeachqueryassign.
Because

∑
z1,··· ,zt>0

z1+···+zt≤iT
1 ≤

(
2iT
t

)
, assuming T 2 < N/2, the above probability is

then bounded by(
2iT

t

)(
iT

tN

)t

≤
(

2ei2T 2

100i2 log2N ·N

)10i logN

< 2−10i logN .

Finally, we prove Claim 28 for Ei
2.

Proof for Claim 28. We first notice that adaptive queries will not be more useful
than non-adaptive queries. This is simply because when every query is a new query
(never queried before), its image is uniform at random (assuming the random oracle
is lazily sampled). Thus, let Yj be the random variable for the image of the j-th
query, j ∈ [iT]. We know that: (1). Yj is a uniform random variable in [N]; (2).
{Yj} are independent.

To prove the claim, it is equivalent to show:

Pr

[∑
j<k

1Yj=Yk
≥ 10i2 log3N

]
≤ 2 exp(−2i logN).

For every image w ∈ [N], let Zw denote the number of images among all queries
that are equal to w. Then we have

∑
j<k 1Yj=Yk

=
∑

w∈[N]

(
Zw

2

)
. This is because

if there are Zw queries that have image w, every pair of the queries will contribute
one to the sum

∑
j<k 1Yj=Yk

. For the sake of convenience, we say a pair of collision
belong to a claw of size ℓ if their image w satisfies that Zw = ℓ, similar to def:claw.

We define the following 3 events:

• Event Fi
1: at least 2i2 log3N pairs of collisions belong to claws of size in

[2, logN).

• Event Fi
2: at least 2i2 log2N pairs of collisions belong to claws of size in

[logN, i logN).

• Event Fi
3: at least 2i

2 log2N pairs of collisions belong to claws of size at least
i logN .

70

Note that the only event we have a log3N factor in the number of pairs of collisions
is Fi

1.

Claim 31.
Pr[Ei

2] ≤ Pr[Fi
1] + Pr[Fi

2] + Pr[Fi
3].

Proof. For the event Ei
2 to occur, at least one of the events F

i
1,F

i
2,F

i
3 has to happen.

Therefore,
Pr[Ei

2] ≤ Pr[Ei
2 ∩ Fi

1] + Pr[Ei
2 ∩ Fi

2] + Pr[Ei
2 ∩ Fi

3].

It implies the claim as for any j ∈ {1, 2, 3}, Pr[Ei
2 ∩ Fi

j] ≤ Pr[Fi
j].

Thus, in order to bound Pr[Ei
2], it is sufficient to bound the probability of events

Pr[Fi
1],Pr[F

i
2],Pr[F

i
3].

Fi
1. We then apply counting arguments for bounding all the probabilities. If

2i2 log3N pairs of collisions have to be obtained from claws of size at most logN , it
implies that at least t = 2i2 logN such claws have to be found. Therefore,

Pr[Fi
1] ≤ Pr[finding t claws of size ≤ logN in iT queries]

≤
(
iT
t

)
·
(
iT
t

)
· (t!)

N t
<

(
T 2

N

)t

.

The counting argument works in the following way: we enumerate which pairs
of Yj,Yk will collide, and they pairwise collide with probability 1/N t. When T 2 ≤
N/2, it is at most N−2i.

Fi
3. Before bounding the probability of event Fi

2, we will bound the probability of
event Fi

3 first.

Pr[Fi
3] ≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1

≤
(eiT
i logN

)i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N i

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting
argument, we enumerate which i logN queries have the same image and they collide
with probability N i logN−1. This is at most 2−2i logN = N−2i when T ≤

√
N and

logN ≥ 2e.

71

Fi
2. Finally, we look at event Fi

2. Assume for some k ∈ [logN, i logN) there exists
j claws of size exact k such that they make 2i2 log2N pairs of collisions. Then

j ·
(
k

2

)
≥ 2i2 log2N ⇒ j ≥ 2i2 log2N(

k
2

) ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k

claws each of size k
in iT queries is[(

iT
k

)
Nk−1

]2i logN/k

≤

(eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,

where the last inequality holds using k ≥ logN ≥ 2e.
Then following union bound, the probability that there exists some k ∈ [logN, i logN)

such that 2i logN
k

claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (4.5)

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the
number of pairs of collisions found for k ∈ [logN, i logN) is

i logN∑
k=logN

Sk ·
(
k

2

)
=

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

ℓ

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

ℓ

)
+

i logN∑
k=logN

Sk ·

(
k∑

ℓ=logN

ℓ

)

≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)
,

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of

size (ℓ+ x) for x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by

2i logN/ℓ with probability at least 1− 2
(
iT
N

)2i logN
, by eq:existenoughclaw.

Then, with probability at least 1− 2
(
iT
N

)2i logN
, the number of pairs of collisions

found from claws of size k ∈ [logN, i logN) in iT queries is

≤ log2N

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

ℓ ·

(
i logN∑
k=ℓ

Sk

)

≤ log2N · 2i logN
logN

+

i logN∑
ℓ=logN

ℓ · 2i logN
ℓ

≤ 2i log2N + 2i2 log2N ≤ 4i2 log2N.

Thus assuming iT < N/2,

Pr[Fi
3] ≤ 2

(
iT

N

)2i logN

< 2N−2i.

Putting together the above results we obtain Pr[Ei
2] < 4N−2i.

72

4.3 Auxiliary Input Collision Resistance for B Merkle-Damg̊ard

In this section we prove the following theorem.

Theorem 32. For any functions S, T,B, and N ≥ 64

AdvAI-CR
B-MD (S, T) ≤ (34 log2N) · STB

N
·max

{
1,

ST 2

N

}
+ 2 · T

2

N
.

Lemma 33. For any functions S, T,B, and N ≥ 64,

AdvMI-CR
B-MD (S, T) ≤

(
17κTB log2N + T 2

N

)S

where κ = S ·max{1, ST 2/N}.

As for the case of B = 2, we prove an upper bound on the advantage of B-block
collision finding adversary in the MI-CR model, which implies an upper bound in
the AI-CR model via thm:mitoai.

Proof of thm:micrb We prove this lemma in similar fashion as lemma:micrtwo.LetHbearandomoracle(whichislazilysampled)inthegameB-MICRS

and A be any (S, T)-MI adversary.
We analogously define Xi to be the indicator variable that A finds at most B-

length collisions on uniformly random salt ai given as input in the i-th stage of the
game. We also define X<i = X1 ∧ · · · ∧Xi−1. So, the advantage of A is

Pr[X1 ∧ . . . ∧XS] =
S∏

i=1

Pr[Xi|X<i].

As in the proof for B = 2 case, we will inductively bound Pr[X<i+1] for each
i ∈ [S]. Here we will bound Pr[X<i+1] to ((17κiTB log2N + T 2)/N)i where κi = i ·
max{1, iT 2/N}. Recall that we will analogously assume Pr[X<i] ≥ ((17κiTB log2N+
T 2)/N)i. Otherwise Pr[X<i+1] ≤ ((17κiTB log2N + T 2)/N)i holds trivially.

In order to prove the lemma, it suffices to upper bound Pr[Xi|X<i] by 17κiTB log2N/N+
T 2/N for any arbitrary i ∈ [S]. That is because Pr[X<i+1] = Pr[Xi|X<i] · Pr[X<i]
where Pr[X<i] ≤ ((17κiTB log2N + T 2)/N)i−1 by the inductive hypothesis. In the
proof, we will handle the conditioning on X<i in a similar fashion to our proof for
B = 2 case.
First we state some useful definitions.

Definition 24. A list of elements (a1,m1), . . . , (aℓ,mℓ) in [N] × [M] are said to
form a chain for H when for every j ∈ [ℓ− 1], H(aj,mj) = aj+1.
A chain (a1,m1), . . . , (aℓ,mℓ) for H is called a cycle when H(aℓ,mℓ) = a1. The
length of a cycle is the number of elements in it, ℓ here.

Definition 25. Two distinct chains (a1,m1), . . . , (aℓ,mℓ) and (a′1,m
′
1), . . . , (a

′
ℓ′ ,m

′
ℓ′)

are called colliding chains for H if H(aℓ,mℓ) = H(a′ℓ′ ,m
′
ℓ′).

73

Definition 26. For any a ∈ [N], a set of elements (a1,m1), . . . , (aℓ,mℓ) in [N]×[M]
are said to form a claw at a under H if ℓ > 1, a1, . . . , aℓ are distinct and H(a1,m1) =
. . . = H(aℓ,mℓ) = a. We refer to a1, . . . , aℓ as the pre-images of a.

Next, we define events to illustrate the bound on ‘useful’ information gained by
A from the prior iterations in the B-MICR game. Each of these events are defined
over responses from the random oracle in the first (i− 1) iterations.

• Let Y be the set of salts with more than one pre-image on it in the offline
database. Then we define Ei

2 to be the event that
∑

a∈Y (# pre-images on

a) ≥ 16κi log
2N after (i− 1)T queries where κi = max

{
i, i

2T 2

N

}
.

• Let Ei
3 be the event that there exists at least i logN ‘special’ cycles of length

in [B − 1] among the (i− 1)T offline queries. A cycle (a1,m1), . . . , (aℓ,mℓ) is
called ‘special’ if the number of pre-images on ai is exactly 1 for every i ∈ [ℓ].

Next, we can write

Pr[Xi|X<i] = Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] + Pr[Ei
2 ∨ Ei

3|X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
Pr[Ei

2]

Pr[X<i]
+

Pr[Ei
3]

Pr[X<i]

≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] +
1

N

where the last inequality holds via Claim 34, Claim 35 (which are stated next) and
our assumption that Pr[X<i] ≥ ((17κiTB log2N + T 2)/N)i.

Claim 34. For any i ∈ [S], iT + T 2 < N/2, 2i logN + 1 ≤ N/2 and N ≥ 64,
Pr[Ei

2] ≤ 5
N2i .

Claim 35. For any i ∈ [S], Pr[Ei
3] ≤

(
T
N

)i logN
.

We will prove Claim 34 and 35 later. As before, we will prove Claim 34 and 35 in
the full version of the paper. Readers may safely skip the proofs and assume these
“knowledge-gaining events” happen with exponentially small probability.

Next, we want to study Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3]. We define G to be the event that
input salt ai has been queried among the previous (i − 1) iterations or that input
salt ai is the output of some query among the previous (i−1) iterations. So, we can

rewrite Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] as follows:

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
≤ Pr[Xi|X<i ∧ Ei

2 ∧ Ei
3 ∧G] +

2(i− 1)T

N
.

74

Note that ai is chosen uniformly and independently and as queries in the previous
iterations could be made on at most (i− 1)T distinct salts and can output at most
(i− 1)T distinct salts in the previous (i− 1) iterations, it is easy to bound

Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
≤ 2(i− 1)T

N
.

Finally, we analyze Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G].

Claim 36. For any any i ∈ [S],

Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] ≤ 16κiTB log2N + T 2

N
.

Proof of claim 36 requires different analysis for different types of colliding chains
which we show in subsection 4.3.1. Before we move onto that subsection, we first
show how we obtain the lemma by putting together all the claims.

Pr[Xi|X<i] ≤ Pr[Xi|X<i ∧ Ei
2 ∧ Ei

3 ∧G] + Pr
[
G
∣∣∣X<i ∧ Ei

2 ∧ Ei
3

]
+ Pr[Ei

2 ∨ Ei
3|X<i]

≤ 16κiTB log2N + T 2

N
+

2(i− 1)T

N
+

1

N

≤ 17κiTB log2N

N
+

T 2

N

where the last inequality holds from that κi = max{i, i2T 2/N} and N ≥ 4.

4.3.1 Proof of Claim 36

To this end, we state the following claim.

Claim 37. For any i ∈ [S], to find a B-length collision on ai, the queries in the
database should satisfy at least one of the following conditions given there exists no
query in the offline database that takes ai as input or outputs ai:

1. There exists an online query (i.e., a query among at most T queries that were
made for the first time in the i-th iteration after receiving the challenge input
ai), denoted (a,m) such that H(a,m) = ai.

2. There exists two distinct online queries, denoted (a,m) and (a′,m′) such that
H(a,m) = H(a′,m′).

This includes both of the following possibilities: the online queries are such (1)
a = a′ (and thus m and m′ will be distinct); (2) a ̸= a′.

75

(i) (ii)

· · ·

(iii)

· · ·
· · ·

· · ·
(iv)

· · ·

· · ·
(v)

Figure 4.10: All types of colliding chains

(i) (ii)

· · ·

(iii)

· · ·
· · ·

· · ·
(iv)

· · ·

· · ·
(v)

Figure 4.11: All types of colliding chains

3. There exists an online query, denoted (a,m), a chain (recall definition 24) of
offline queries1, denoted (b1,m1), . . . , (bℓ,mℓ) for some 0 < ℓ < B , and an of-
fline query (b,m′) ̸= (bℓ,mℓ) such that H(a,m) = b1, H(b,m′) = H(bℓ,mℓ) and
the number of pre-images for every salt in {b2, . . . , bℓ} in the offline database
is exactly 1.

4. There exists two online queries, denoted (a,m) and (a′,m′), and a chain
of offline queries, denoted (b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that
H(a,m) = b1, H(a′,m′) = H(bℓ,mℓ) and the number of pre-images on every
salt in {b2, . . . , bℓ} in the offline database is exactly 1.

5. There exists an online query, denoted (a,m), and a cycle in the offline database,
denoted (b1,m1), . . . , (bℓ,mℓ) for some ℓ < B, such that H(a,m) = b1 and the
number of pre-images on every salt in {b1, b2, . . . , bℓ} in the offline database is
exactly 1.

Proof for Claim 37. Fig. 4.11 enumerates all the possible types of colliding chains.
Depending on where the queries in the chains are first made for each of the types,

1The set of Offline queries is the set of distinct queries made in the previous (i−1) iterations.
So there are at most (i − 1)T of these queries and their outputs are independent and uniformly
distributed. The set of Online queries is the set of distinct queries made in the i-th iteration after
receiving the challenge input ai that had not been made in any of the previous (i− 1) iterations.
Note that the outputs of online queries are also independent and uniformly distributed.

76

a

m

ai

(i)

a

a′

m

m′

a = a′

m

m′

(ii)

a b1 b2 bℓ

b

m1 · · ·
mℓm

m′

(iii)

a b1 b2 bℓ

a′

m1 · · ·
mℓm

m′

(iv)

m1

b1

b2

m2

mℓ bℓ

m
a

(v)
Figure 4.12: Pictorial depiction of Conditions 1-5. A dotted line denotes an online
query. A solid line denotes an offline query.

a

m

ai

(i)

a

a′

m

m′

a = a′

m

m′

(ii)

a b1 b2 bℓ

b

m1 · · ·
mℓm

m′

(iii)

a b1 b2 bℓ

a′

m1 · · ·
mℓm

m′

(iv)

m1

b1
b2

m2

mℓ bℓ

m
a

(v)
Figure 4.13: Pictorial depiction of Conditions 1-5. A dotted line denotes an online
query. A solid line denotes an offline query.

we show that the list of conditions in the claim is complete. (Refer to fig. 4.13 for
a visual representation of the conditions in the claim.)

We know that all the queries with output ai or of the form (ai, ·) in the colliding
chains are online queries. This implies if the colliding chains are of the types in fig.
4.11i or 4.11ii, the queries in the database will satisfy condition 1.

For the remaining types of colliding chains (ref fig. 4.11iii,4.11iv,4.11v), one of
the following 3 cases can happen:

1. Both the ‘colliding’ queries are online In this case, the queries in the
database will satisfy condition 2.

2. Both the ‘colliding’ queries are offline In this case, the queries in the
database will satisfy condition 3. Note that bℓ can be thought of as the ear-
liest query among the chains that has more than one pre-image in the offline
database.

3. One of the ‘colliding’ queries is offline and online each For the colliding

77

· · ·
a

(i)

· · ·
a

(ii)
Figure 4.14: A dotted line denotes an online query. A solid line denotes an offline
query.

· · ·

(i)

· · ·

(ii)
Figure 4.15: A dotted line denotes an online query. A solid line denotes an offline
query.

chains of types in fig. 4.11iv and 4.11v), the queries in the database will
satisfy condition 4. For the colliding chains of type in 4.11iii, there are two
possibilities as shown in Fig. 4.15. For the possibility in fig. 4.15i, the queries
in the database satisfy condition 4. On the other hand, for the possibility in
fig. 4.15ii, the queries in the database satisfy condition 5.

Claim 38. For j ∈ [5], let ϵj be the advantage in achieving condition j from claim

37 when Ei
2, E

i
3 and G hold. Then for any i ∈ [S], the results summarized in Table

4.2 on the upper bounds of ϵj hold.

We prove the bounds stated in Claim 38 next.

Condition 1. Recall that online queries are ‘new’ queries, as in they are made for
the first time among the T queries in the i-th iteration after receiving ai. Thus, the
output of online queries is independent of output from offline queries and has 1/N
chance to be ai under H via lazy sampling. By taking a union bound over at most
T online queries, we can bound the probability to T/N .

Condition 2. By birthday bound, it holds that the probability of finding ’colliding’
queries among T online queries is at most T 2/N .

Condition 3. Given Ei
2 implies that there can be at most 16κi log

2N queries in
the offline database that are part of some claw. As per the definition of condition
4, there will be a unique chain of length < B in the offline database ending in each
of these at most 16κi log

2N queries, such that an online query hits the start of this
chain. The probability of hitting one of these at most B · 16κi log

2N salts within T
queries is at most 16κiTB log2N/N .

Condition 4. As per the definition of condition 5, there can be at most iT such
chains of length < B in the offline database, such that an online query hits the start

78

of this chain and another online hits the end of this chain. The probability of hitting
both the salts within at most T queries is bounded by T 2/N2. By union bound the
advantage is at most iT 3/N2.

Condition 5. Given Ei
3 implies there are at most i logN ’special’ cycles in the

offline database, each with at most B queries in it. So, there are at most iB logN
queries in these cycles and the probability of hitting one of the starting salts of these
queries within T online queries is bounded by iB logN · T/N .

From Claim 38 it holds that the advantage of achieving any of the conditions in
Claim 37 given Ei

2, E
i
3 and G is bounded by (16κiTB log2N + T 2)/N . Note that

for i ≤ S, when ST 2 < N implies iT 2 < N . Hence κi = i if κS = S.
Finally to complete this proof, we prove our Claim 34 and 35 next.

4.3.2 Proof of Claim 34

We first note that proof of claim 34 is similar to the proof of claim 28 in essence. We
again use that adaptive queries will not be more useful than non-adaptive queries
because output of every new query (never queried before) is uniform at random
(assuming the random oracle is lazily sampled).

For every a ∈ [N], let Za denote the number of pre-images of a. Then proving
Claim 34 is equivalent to showing

Pr

 ∑
a∈[N];Za ̸=1

Za ≥ max{16i log2N, 16i2T 2 log2N/N}

 ≤ 2 exp (−2i logN).

We will separate the salts into 3 buckets depending on the number of their
pre-images (in the offline database) and analyze the sum of number of pre-images
separately for each bucket. Let’s define the buckets:

• Bucket1 := {a|Za ∈ [2, logN)}

• Bucket2 := {a|Za ∈ [logN, i logN)}

• Bucket3 := {a|Za ≥ i logN}

So for
∑

a∈[N];Za ̸=1 Za to exceed max{16i log2N, 16i2T 2 log2N/N}, the sum of

number of pre-images of salts in at least one of the buckets has to exceed max{4i log2N, 4i2T 2 log2N/N}.
We show that this happens with exponentially small chance.

In order to do that we define the following 3 events:

• Event F1:
∑

a∈Bucket1 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F2:
∑

a∈Bucket2 Za ≥ 4i log2N ·max{1, iT 2/N}.

• Event F3:
∑

a∈Bucket3 Za ≥ 2i logN ·max{1, iT 2/N}.

In order to prove the claim, it is sufficient to bound the probability of events
F1,F2,F3.

We begin with the easiest to analyze events, which is F3.

79

Bounding Pr[F3]

For F3, we can actually obtain the following stronger statement:

Pr

[∑
a∈Bucket3

Za ≥ 2i logN

]
≤ 2 exp (−2i logN).

That is because

Pr

[∑
a∈Bucket3

Za ≥ 2i logN

]
≤ Pr[finding 1 claw of size i logN in iT queries]

=

(
iT

i logN

)
N i logN−1

≤
(eiT
i logN

)i logN

N i logN
·N

≤
(
T

N

)i logN

·
(

1

N

)
·N ≤

(
T

N

)i logN

,

where the second last inequality is obtained using logN ≥ 2. In the counting
argument, we enumerate which i logN queries have the same image and they collide

with probability N i logN−1.
(
T
N

)i logN
is at most 2−2i logN = N−2i when T ≤

√
N and

logN ≥ 2e.

Bounding Pr[F2]

Next, we prove bound for Pr[F2]. Again we can show the following stronger state-
ment:

Pr

[∑
a∈Bucket2

Za ≥ 4i log2N

]
≤ 2 exp (−2i logN).

Assume for some k ∈ [logN, i logN) there exists j claws of size exact k such
that the sum of the number of their pre-images is 2i logN . Then

j · k ≥ 2i logN ⇒ j ≥ 2i logN

k
.

For any k ∈ [logN, i logN) the probability of finding 2i logN
k

claws each of size k
in iT queries is[(

iT
k

)
Nk−1

]2i logN/k

≤

(eiT
k

N

)k

·N

2i logN/k

≤ 2

(
iT

2N

)2i logN

,

where the last inequality holds using k ≥ logN ≥ 2e.
Then taking a union bound, the probability that there exists some k ∈ [logN, i logN)

such that 2i logN
k

claws each of size k can be found in iT queries is at most

2i logN ·
(

iT

2N

)2i logN

≤ 2

(
iT

N

)2i logN

, (4.6)

80

using x ≤ 2x for all x.

Let Sk denote the number of claws of size k found in iT queries. Then the sum
of number of pre-images of salts in Bucket2 is

i logN∑
k=logN

Sk · k =

i logN∑
k=logN

Sk ·

(
k∑

ℓ=1

1

)
=

i logN∑
k=logN

Sk ·

(
logN∑
ℓ=1

1

)
+

i logN∑
k=logN

Sk ·

(
k∑

ℓ=logN

1

)

≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)
,

where
∑i logN

k=ℓ Sk is the number of claws of size at least ℓ. Note that any claw of

size (ℓ+ x) for x ≥ 0 contains a claw of size ℓ. Thus,
∑i logN

k=ℓ Sk can be bounded by

2i logN/ℓ with probability at least 1− 2
(
iT
N

)2i logN
, by eq:claw.

Then, with probability at least 1−2
(
iT
N

)2i logN
, the sum of number of pre-images

of salts in Bucket2 in iT queries is

≤ logN

i logN∑
k=logN

Sk +

i logN∑
ℓ=logN

(
i logN∑
k=ℓ

Sk

)

≤ logN · 2i logN
logN

+

i logN∑
ℓ=logN

2i logN

ℓ
≤ 2i logN + 2i log2N ≤ 4i log2N

where the second-to-last inequality holds from the fact that the upper bound on the
m-th harmonic series is log(m+ 1) and 2i logN + 1 ≤ N/2.

Again using the assumption iT < N/2,[∑
a∈Bucket2

Za ≥ 4i log2N

]
≤ 2

(
iT

N

)2i logN

< 2N−2i.

Bounding Pr[F1]

Finally we analyze the event F1.
For analyzing F1, first let’s consider the case when iT 2 ≥ N , i.e., we have to

prove

Pr

[∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N

]
≤ 2 exp (−2i logN).

Note that there have to be at least 4i2T 2 logN/N salts in Bucket1 to make∑
a∈Bucket1 Za ≥ 4i2T 2 log2N/N . This means there should be at least 4i2T 2 logN/N

claws of size 2. Then,

81

Pr

[∑
a∈Bucket1

Za ≥ 4i2T 2 log2N/N

]
≤Pr[finding 4i2T 2 logN/N distinct claws of size 2 in iT queries]

≤

(
iT

4i2T 2 logN/N

)
·
(

iT
4i2T 2 logN/N

)
· (4i2T 2 logN/N)!

N4i2T 2 logN/N

≤

(
e2i2T 2

4i2T 2·logN
N

·N

)4i2T 2 logN/N

≤
(

e2

4 logN

)4i logN

where the last inequality holds because iT 2 ≥ N .
Next, consider the case when iT 2 < N . So we have to show

Pr

[∑
a∈Bucket1

Za ≥ 4i log2N

]
≤ 2 exp (−2i logN).

Proceeding in a similar fashion as above,

Pr

[∑
a∈Bucket1

Za ≥ 4i log2N

]
≤ Pr[finding 4i logN distinct claws of size 2 in iT queries]

≤
(

iT
4i logN

)
·
(

iT
4i logN

)
· (4i logN)!

N4i logN

≤
(

e2i2T 2

4i · logN ·N

)4i logN

≤
(

e2

4 logN

)4i logN

where the last inequality holds using iT 2 < N .

4.3.3 Proof of Claim 35

We prove the claim via compression. To that end, we use the following lemma from
[19].

Lemma 39 ([19], restated in [7]). For any pair of encoding and decoding algo-
rithms, (E ,Dec), where E : {0, 1}x → {0, 1}y and Dec : {0, 1}y → {0, 1}x such that
Dec(E(z)) = z with probability at least ϵ where z ←$ {0, 1}x, then y is at least
x− log 1/ϵ.

82

Before we present the encoding algorithm, recall the definition of ‘special’ cycles.
They are cycles where the input salt of each query has exactly one pre-image. This
implies that no salt is part of more than 1 of the i logN ‘special’ cycles by definition.
Thus, for each cycle there is a unique and distinct query, denoted (b,m), that is made
after all the other queries in the cycle. Moreover, the input salt of this query, b, has
a unique pre-image (among the offline queries), which itself has a unique pre-image
and so on until H(b,m) is the unique pre-image of another salt in the cycle. Our
encoding compresses the output of the last query made on each of the i logN cycles.

We give a formal description of our encoding algorithm next.

• Store the i logN queries that are the last queries made in their respec-
tive ‘special’ cycle in an unordered set, say W . This would require
log
(

iT
i logN

)
bits.

• Delete the output of the queries, each logN bits long, in the unordered
set W from the database (table of sampled queries on H).

The decoding algorithm is trivial. For every query (b,m) in the set W , it follows
the chain backward using the uniqueness of pre-image, until it reaches some query
whose input salt, denote b′, has no pre-image and set H(b,m) = b′. For completeness
we give a formal description of the decoding algorithm, which is as follows:

For every query in W , say (a,m):

• Set temp= a

• While true:

– If there is no query with output temp: break.

– Find the query in the table with output temp. Say the query is
(a′,m′).

– Set temp= a′.

• Output H(a,m) =temp.

Let ϵ = Pr[Ei
3]. Then,

log

(
1

ϵ

)
+ log

(
iT

i logN

)
≥ i logN · logN

⇒ log

(
1

ϵ

)
+ i logN · log

(
eiT

i logN

)
≥ i logN · logN

⇒ ϵ ≤
(
T

N

)i logN

.

83

Condition j 1 2 3 4 5

ϵj
T
N

T 2

N
16κiTB log2 N

N
iT
N
· T 2

N
iTB logN

N

Table 4.2: Summary of upper bounds on ϵj for j ∈ [5] where κi := max{i, i2T 2/N}.

84

Chapter 5

Multi-Collisions

We study multi-collisions in MD hash functions in the AI-RO model. Formally, by
multi-collisions we mean the adversary has to find m distinct messages, for some
parameter m, that have the same output under a given cryptographic hash function.
We focus on MD based hash functions.

Say the MD hash function uses a one-way compression function h in [N]×[M]→ [N],
then an m-way multi-collision is m distinct messages in [M]+ that have the same
output under MDh and a given salt a ∈ [N]. We consider the following question.

How efficiently can an adversary in AI-RO model running in time T and
computing an S-bit advice, find m-way multi-collisions in MD based hash
functions?

We further study bounded length multi-collisions in MD hash functions in the AI-
RO model. An m-way B-length multi-collision is m distinct messages in [M]≤B

that have the same output under MDh and a given salt a ∈ [N]. We consider the
following question.

How efficiently can an adversary in AI-RO model running in time T and
computing an S-bit advice, find m-way B-length multi-collisions in MD
based hash functions?

Some of the existing digital signature constructions reduce their security to multi-
collision resistance which motivates this study. Multi-collision resistance is consid-
ered a better assumption than collision resistance as finding multi-collisions is harder
(than finding collisions) in the RO model and thus should be easier to achieve. We
want to know if this the case in AI-ROM too. Our study in the AI-RO model shows
otherwise for unbounded length and B-length multi-collisions for sufficiently large
B.

85

5.1 Definitions

We start by defining m-way multi-collision resistance game for MD against auxiliary
input adversaries. Such an adversary works in two stages: (1) In the Offline/pre-
processing stage, the adversary is unbounded but outputs a bounded length string,
which we will refer to as advice. (2) In the online stage, the adversary takes the
advice and makes a bounded number of queries.

Definition 27 ((S, T, m)-AI adversary). A pair of algorithms A = (A1,A2) is an
(S, T,m)-AI adversary against MDh if

• Ah
1 is unbounded (making unbounded number of oracle queries to h) and out-

puts S bits of advice σ;

• Ah
2 takes σ and a salt a ∈ [N], issues T queries to h and outputs msg1, . . . ,msgm

where h is a function in [N]× [M]→ [N].

The m-way multi-collision resistance security game, namely m-AICR, is defined next.

Definition 28. For a fixed random function h in [N] × [M] → [N] and a random
salt a ∈ [N], the game m-AICR is defined in fig. 5.1.

Game m-AICRh,a(A)
σ ← Ah

1

msg1, . . . ,msgm ← Ah
2(σ, a)

If msgi ̸= msgj and MDh(a,msgi) = MDh(a,msgj) ∀i ̸= j ∈ [m]

Then Return 1
Else Return 0

Figure 5.1: Security game m-AICRh,a(A)

For an (S, T,m)-AI adversary A = (A1,A2), the advantage of A, denoted as
Advm-AICR(A), is defined as the probability of m-AICRh,a(A) returning 1. We define
the (S, T,m)-AI multi-collision resistance, denoted by Advm-AICR(S, T,m), as the
maximum advantage taken over all (S, T,m)-AI adversaries.

Definition 29. For a fixed random function h in [N] × [M] → [N] and a random
salt a ∈ [N], the game m-AICRB is defined in fig. 5.2.

For an (S, T,m)-AI adversary A = (A1,A2), the advantage of A in the game
m-AICRB, denoted as Advm-AICR

B (A), is defined as the probability of m-AICRB
h,a(A)

returning 1. We define the (S, T,m)-AI B-length multi-collision resistance, denoted
by Advm-AICR

B (S, T,m), as the maximum advantage taken over all (S, T,m)-AI ad-
versaries.

86

Game m-AICRB
h,a(A)

σ ← Ah
1

msg1, . . . ,msgm ← Ah
2(σ, a)

If any of msg1, . . . ,msgm have more than B blocks
Then Return 0

If msgi ̸= msgj and MDh(a,msgi) = MDh(a,msgj) ∀i ̸= j ∈ [m]

Then Return 1
Else Return 0

Figure 5.2: Security game m-AICRB
h,a(A)

5.2 Results

Theorem 40. For any S, T,m and N ,

Advm-AICR(S, T,m) = θ̃

(
ST 2

N

)
.

Theorem 41. For any S, T,m,N and B = 1,

Advm-AICR
B (S, T,m) = θ̃

(
S

mN
+

(T/m)m

Nm−1

)
.

Theorem 42. For any S, T,m,N and B = 2 such that T ≤ S and m ≤ ST ,

Advm-AICR
B (S, T,m) = θ̃

(
ST

mN

)
.

Theorem 43. For any S, T,m,B,N and M such that T ≤ SB

Advm-AICR
B (S, T,m) = Ω̃

(
ST

m1/(B−1)N

)
.

and

Advm-AICR
B (S, T,m) = Ω̃

(
STB

N

)
when B ≥ 2 logm.

Theorem 44. For any S, T,m,N and M such that T ≤ SB,

Advm-AICR
B (S, T,m) = Õ

(
max

{
1,

ST 2

N

}
· STB

N

)
.

5.3 Proof of Theorem 40

5.3.1 Lower Bound

We will first present an attack achieving the bound in the theorem. We assume
M > N and thus collisions exist for every salt in [N] under h. We also assume
m ≤ N . Then our (S, T,m)- AI adversary A = (A1,A2) is as follows:

87

. . .

u blocks

z11

z21

zv1

z12

z22

zv2

z1u

z2u

zvu

Figure 5.3: u-length chain of v-way collisions

1. In Offline stage, A1 picks s = S/(3 logm · logM) random salts, denoted
{a1, . . . , as} and zero-walks for T/2 times on each of them to obtain, say
{a′1, . . . , a′s} set of salts. Then for each of the salt a′i in this set, A1 finds
a logm-length chain of 2-ways collisions (refer fig. 5.3 for a pictorial depiction
u-length chain of v-way collisions) and store these along with a′i as advice.

2. In Online stage, A2 takes the advice output by A1 and random salt a and zero
walks up to T times. If output of any of these queries is some a′ ∈ {a′1, . . . , a′s},
then A2 succeeds in outputting an m-way collision.

Then,

Advm-AICR(A) = Ω̃

(
ST 2

N

)
.

5.3.2 Upper Bound

We will give a reduction from AICR to this end. Say there exists an (S, T,m)-
AI adversary A = (A1,A2) that finds an m-way multi-collision with advantage
ω̃(ST 2/N), then we present an (S, T, 2)-AI adversary A′ = (A′

1,A′
2) that finds a

collision with the same advantage. From [6], we know that is impossible. Hence,
showing that there exists no (S, T,m)-AI adversary with advantage ω̃(ST 2/N) in
the m-AICR game.

Adversary A′ is as follows:

A′
1:

• Run A1 and answer the queries of A1 using it’s own oracle

• Return output of A1

A′
2:

• Forward the input salt to A2 and answer the queries of A2 using it’s own
oracle.

• Say the output of A2 is msg1, . . . ,msgm, return msg1,msg2.

88

5.4 Proof of Theorem 41

5.4.1 Lower Bound

The following trivial attack:

1. In pre-computation phase, stores m-way collisions for Ω̃(S/m) salts as part of
the advice.

2. In online phase, if the challenge salt is among the salts whosem-way collision is
contained in the advice, adversary returns the corresponding m-way collision.
Else the adversary tries to find m-way collision using it’s queries to the h.

achieves Ω̃
(

S
mN

+ (T/M)m

Nm−1

)
advantage.

5.4.2 Upper Bound

We will follow the approach of global compression from the work of [7] to prove the
security bound in theorem.

It is worth noting that the approach of reducing the problem to multi-instance m-
way collision finding game from our work in [ACDW20] and work of [CGLQ20] does
not seem to give a tight security bound. It is unclear whether this is due to lack
of sophistication in our analysis or an indication of a gap between pre-computation
and Multi-instance game models.

We present our proof next.

Fix an (S, T,m)-AI adversary A = (A1,A2) having advantage ϵ. Let σ denote the
S-bit advice output by A1 and let G be the set of salts in [N] on which A2 succeeds
in finding m-way collision when given σ and makes T queries to h.

We want to show that the set G cannot be large for any (S, T,m)-AI adversary. In
other words, it is impossible for any (S, T,m)-AI adversary to succeed in finding
m-way collisions on ‘too’ many salts, irrespective of what information is contained
in the S-bit advice σ. The idea is to give an encoding algorithm that uses such an
adversary that succeeds on a ‘lot’ of salts to compress h, which should be impossible
as h is a random function.

Note that since A2 finds m-way collisions on each of the salts in G, for every a ∈ G
there should exist m queries of the type (a, ∗) ∈ [N] × [M] such that outputs of
all the m queries are same under h. Our encoding algorithm uses this repetition in
outputs to compress as follows:

1. Store the advice σ (requires S-bits)

2. Store the size of the set G (in other words, the number of elements in G),
denoted |G| (requires logN bits)

89

3. Store the set G (requires log
(
N
|G|

)
bits)

4. Store the unordered set of |G|·m queries corresponding to the m-way collisions
for each salt in G. Let’s denote this set by X . Note that X is a subset of the
|G| · T queries made by A2 using the assumption that A2 has to query it’s
outputs. Thus, storing X requires log

(|G|T
|G|m

)
bits.

5. Delete the outputs of G|(m− 1) queries in X from table of h. (Note that the
table for h is stored as follows: table contains output of h on the queries made
by A2 on the set G followed by the output of h on the remaining entries of
queries in [N]× [M] in lexicographic order.) This saves |G|(m− 1) · logN bits.

Via the compression argument of De et al. [19], the following holds:

S + logN + log

(
N

|G|

)
+ log

(
|G|T
|G|m

)
+NM logN − |G|(m− 1) · logN ≥ NM logN

⇒S + logN + |G| log
(
N

|G|

)
+ |G|m log

(
|G|T
|G|m

)
≥ |G|(m− 1) logN

⇒S + logN ≥ |G| log
(

Nm−1|G|
N(T/m)m

)
We take expectation on both sides of the above equation and use convexity of the
function x log x along with E[|G|] = ϵN as follows:

E[S + logN] ≥ E
[
|G| log

(
Nm−1|G|
N(T/m)m

)]
⇒ S + logN ≥ E[|G|] log

(
Nm−1E[|G|]
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵN
N(T/m)m

)
≥ ϵN · log

(
Nm−1 · ϵ
(T/m)m

)
Consider the following two cases:

1. If
Nm−1ϵ

(T/m)m
≤ 2m

This simply implies

ϵ ≤ (2T/m)m

Nm−1

2. Otherwise
Nm−1ϵ

(T/m)m
> 2m

which implies

S + logN ≥ ϵN log 2m ⇒ ϵ ≤ S + logN

mN

90

m-way

(i) Type 1

m-way

(ii) Type 2

m-sized
claw

(iii) Type 3

m/x-wayx-way

(iv) Type 4

··
·

··
·

··
·

··
·

δ1-way γ1-way

(v) Type 5
Figure 5.4: All types of 2-block m-way colliding chains

This completes the proof for the security bound.

5.5 Proof of Theorem 42

5.5.1 Security bound

Following the approach of several prior works [IK10, ACDW20, CGLQ20, GK22,
AGL22], we will use reduction of security in the auxiliary input RO model to the se-
curity in the Multi-instance game and then bound the security in the Multi-instance
game to prove the theorem. It is worth-noting that unlike all these prior works
(except [IK10]), for us it would suffice to analyze the parallel version of the Multi-
instance game. Also our analysis is slightly different from that of all the other prior
works.
To put it simply, we will define the parallel version of Multi-instance game for each
type of m-way collision and analyze each of them separately. To this end, we first
identify all the types of 2-blockm-way collisions. See fig. 5.4 for a pictorial depiction
of the types. It is worth noting that in our analysis we assume m = ω(logc n) for a
constant c. And that is because for m = O(logc n), the theorem holds trivially from
the reduction presented in section 5.3.2 and the result of [ACDW20].

Let’s fix an (S, T,m)-AI adversary A. Let Et be the event that A wins game
m-AICR2 by outputting m-way collision of type t in fig. []. Then

Advm-AICR
2 (A) ≤

6∑
t=1

Pr[m-AICR2
h,a(A) = 1 ∧ Et]

91

Definition 30. For a fixed random function h in [N] × [M] → [N], fixed function
S, a random salt a ∈ [N] any t ∈ [6], the game m-MICRS,t is defined in fig. 5.5.

Game m-MICRS,t
h,a(A)

Sample {a1, . . . , aS} ←$

[(
N
S

)]
(msgi1, . . . ,msgim)Si=1 ← Ah({a1, . . . , aS})
If for any i ∈ [S] and any of msgi1, . . . ,msgim have more than 2 blocks

Then Return 0
If ∀i ∈ [S]: (msgi1, . . . ,msgim) is m-way collision of type t on ai

Then Return 1
Else Return 0

Figure 5.5: Security game m-MICRS,t
h,a(A)

For an (S, T,m)-MI adversary A, the advantage of A in the game m-MICRS,t,
denoted as Advm-MICR

t (A), is defined as the probability of m-MICRS,t
h,a(A) returning

1. We define the (S, T,m)-MI 2-length multi-instance multi-collision resistance,
denoted by Advm-MICR

t (S, T,m), as the maximum advantage taken over all (S, T,m)-
MI adversaries.

Lemma 45. For any S, T,N,m and t ∈ [6] such that m = ω(log2N) and m ≤ ST ,

Advm-MICR
t (S, T,m) =

(
Õ

(
ST

mN
+

(T/m)m

Nm−1

))S

.

Proof of theorem 42 follows from this lemma and [ai-mi reduction] as follows:

∀t ∈ [6] : Pr[m-AICR2
h,a(A) = 1 ∧ Et] ≤ Advm-MICR

t (S, T,m)

⇒ Advm-AICR
2 (A) ≤

6∑
t=1

Pr[m-AICR2
h,a(A) = 1 ∧ Et] ≤

6∑
t=1

Advm-MICR
t (S, T,m)

=

(
Õ

(
ST

mN
+

(T/m)m

Nm−1

))S

To complete the proof of theorem 42, we prove this lemma next.

Proof. Let’s fix a (S, T,m)-MI adversary A and let h be a random oracle. We denote
the input of random S-sized set of salts by {a1, . . . , aS}. Let Xt

i be the indicator
variable that A wins on salt ai, i.e., A finds m-way collision of type t on salt ai for
t ∈ [6].

Next we will show for each t ∈ [6], that Advm-MICR
t (S, T,m) =

(
Õ
(

ST
mN

+ (T/m)m

Nm−1

))S
.

Let’s begin with t = 1.

Advm-AICR
1 (S,T,m) = Pr[∀i ∈ [S] ∃1-block m-way collision for ai in ST queries]

≤
(
ST
Sm

)
NS(m−1)

≤
[
(eT/m)m

Nm−1

]S
.

92

Next, we analyze for t = 2. The analysis would be trivial and same as for t = 1 if
m-way collision for each salt used distinct queries. However, queries can be reused
among collisions for different salts. Refer to fig. [] for a visual depiction.

In the analysis, we consider the following cases:

1. x ≥ m
It would suffice to take into account the probability of x of the ST queries
having the same output, which is:(

ST
x

)
Nx−1

≤
(
eST

xN

)x

·N ≤
(
2eST

xN

)x

· 1
2x
·N ≤

(
2eST

mN

)x

where the last inequality uses that 1
2x
≤ 1

2m
≤ N as x ≥ m ≥ logN .

2. x < m
Then the probability of an m-way collision is:

≤
(
ST
m

)
Nm−1

≤
(
eST

mN

)m

·N ≤
(
2eST

mN

)m

· 1

2m
·N ≤

(
2eST

mN

)x

where the last inequality holds for m ≥ logN and 2eST/mN ≤ 1.

Now we give a proof via compression. Say the number of structures shown in fig. []
among ST queries be y with the in-degree of the input salt of the m-way collision
being δ1, . . . , δy respectively. Then it holds that

δ1 + · · ·+ δy ≥ S

The encoding algorithm will be as follows:

1. Store the subset of ST queries forming m-way collisions in an unordered fash-
ion. From the table of h, delete the entries corresponding to the queries in the
set except the first query. There will be y such m-sized sets.

2. For i ∈ [y]: if δi > m do the following

• Store δi

• Store the δi-sized set of queries that have the same output. From the table
of h, delete the entries corresponding to the queries in the set except the
first query.

Say ϵ is the advantage. Then via the compression argument, following holds:

log ϵ ≤ y log

(
ST

m

)
− y · (m− 1) logN +

∑
i∈[y]:δi>m

[
logS + log

(
ST

δi

)
− (δi − 1) logN

]

⇒ ϵ ≤
(
4eST

mN

)S

93

using δ1 + · · ·+ δy ≥ S and for any i such that δi > m > logN the following holds:

S ·
(
ST
δi

)
N δi−1

≤
(
eST

δiN

)δi

· S ·N ≤
(
4eST

xN

)δi

· 1
4x
· S ·N ≤

(
4eST

mN

)δi

.

Next, we analyze t = 3. Again analysis will be trivial if the collisions for each salt
used distinct queries. So, we will focus when that is not the case. Say there are
x ≥ m queries with the same output and y salts ‘use’ them to get m-way collision.
Again in the analysis, there are two cases:

1. y ≤ x
Again it suffices to take into account that the probability of x of the ST queries
having the same output is ‘small’ as follows:(

ST
x

)
Nx−1

≤
(
eST

xN

)x

·N ≤
(
2eST

xN

)x

· 1
2x
·N ≤

(
2eST

mN

)y

where the last inequality uses that y ≤ x (along with that 2eST ≤ mN) and
1
2x
≤ 1

2m
≤ N as x ≥ m ≥ logN .

2. y > x
Note that for this case, it should be that the there are x queries among ST
queries that have the same output and that each of the y salts need to at least
m-way ‘hit’ this x-sized claw. Let the in-degree of each node in the x-sized
claw be denoted by δ1, . . . , δx. Then we will show it suffices to compress only
for i ∈ [x] where δi ≥ m.

First, let’s consider the number of queries(or edges) from the y salts hitting
the claw. There should be at least y · m such queries(or edges). Then the
average in-degree of each node on the claw is ≥ (y ·m)/x ≥ m as y > x. This
implies that there exists nodes in the claw with in-degree ≥ m.

For simplicity and WLOG, let’s assume δ1 ≤ δ2 ≤ · · · ≤ δx. Let’s say for
some z < x, δ1, . . . , δz < m and δz+1, . . . , δx ≥ m. Then

δz+1 + · · ·+ δx ≥ y ·m− (δ1 + · · ·+ δz)

≥ y ·m− z ·m = m(y − z)

≥ m(y − x) ≥ y − x.

Then the probability of finding such a structure is:(
ST
x

)
Nx−1

·
x∏

i=z+1

[(
ST
δi

)
N δi−1

]
≤
(
eST

xN

)x

·N
x∏

i=z+1

[(
eST

δiN

)δi

·N

]

≤
(
2eST

mN

)x+δz+1+···+δx

≤
(
2eST

mN

)y

94

Say there are z structures as given in fig. []. We give a proof via compression.The
encoding algorithm will be as follows.
For each of the z structures:

1. Store x and the subset of ST queries forming x-sized claw in an unordered
fashion. From the table of h, delete the entries corresponding to the queries
in the set except the first query.

2. For i ∈ [x]: if δi > m do the following

• Store δi

• Store the δi-sized set of queries that have the same output. From the table
of h, delete the entries corresponding to the queries in the set except the
first query.

It is worth noting that as the size of each of the sets in the encoding algorithm above
is at most ST , storing their size requires at most logST bits. And since each of
these sets have a size of at least m ≥ logN we can use the following:(

2eST

mN

)δ

· ST ≤
(
4eST

mN

)δ

· 1
2δ
· ST ≤

(
4eST

mN

)δ

when δ ≥ logN . Thus, the advantage for t = 3 can be bounded to
(
4eST
mN

)S
.

Next, we analyze for t = 4. Refer to fig. [] for a visual depiction of this case.

We would like to clarify at this point that we cheated a bit before. Actually event
E4 would have logN sub-events and each of them gets their own reduction to MI
game and separate analysis but we clubbed them together for simplicity. Note that
having logN sub-events only adds a multiplicative factor of logN in the final bound
which is tolerable. We describe these sub-events next.

1. Sub-event E1
4 : x ≥ logN

It suffices to analyze this collision type in a similar fashion to collision-type
1. That is advantage of the adversary in MI game would be bounded by the
probability of finding logN -way collision on S distinct salts among ST queries,
which is (

ST
S logN

)
(N logN−1)S

≤
(

eT

logN ·N

)S logN

·NS ≤
(

1

N

)S

where the last inequality holds using logN ≥ 2, eT ≤ 2N and ST ≥ m.

2. (logN − 1) Sub-events, one for each x ∈ [2, logN):
For any x < logN ⇒ m/x > m/ logN
Then the probability of finding each 1-block (m/ logN)-way collision is(

ST
m/ logN

)
Nm/ logN−1

≤
(
eST logN

mN

)m/ logN

·N ≤
(
2eST logN

mN

)m/ logN

95

using 1
2m/ logN ·N ≤ 1 when m ≥ log2N .

Say there exists y such structures of 1-block (m/ logN)-way collision in ST
queries. If y ≥ S logN/m, then it suffices to only compress these structures
to get the desired bound. When y < S logN/m, it becomes necessary to take
into account the probability of different salts sharing a structure.

So, we analyze the case y < S logN/m more closely. It is important to note S
salts imply at least S ·x queries hitting one of these y structures. Then the av-
erage number of queries hitting a structure is at least S ·x · m

S logN
≥ m

logN
. This

implies there exists structures hit by more than m/ logN queries and these
can be compressed in a similar fashion as 1-block (m/ logN)-way collisions.

Let δi denote the number of queries hitting the ith structure. Then

δ1 + · · ·+ δy ≥ S · x

WLOG, we can assume δ1 ≤ · · · ≤ δy and let z < y be such that ∀i ∈ [z] :
δi < m/ logN and ∀i > z : δi ≥ m/ logN . Then

δz+1+· · ·+δy ≥ S·x−(δ1+· · ·+δz) ≥ S·x−z· m

logN
≥
(
S − m

logN

)
·x ≥ S− m

logN

We give a proof via compression.The encoding algorithm will be as follows.
For i ∈ [y]:

(a) Store the subset of ST queries forming ith structure in an unordered
fashion. From the table of h, delete the entries corresponding to the
queries in the set except the first query.

(b) If δi > m/ logN do the following

• Store δi

• Store the δi-sized set of queries that hit the ith structure in an un-
ordered fashion. From the table of h, delete the entries corresponding
to the queries in the set except the first query.

It is worth noting that as the size of each of the sets in the encoding algorithm
above is at most S, storing their size requires at most logS bits. And since
each of these sets have a size of at least logN we can use the following:(

2eST logN

mN

)δ

· S ≤
(
4eST logN

mN

)δ

· 1
2δ
· S ≤

(
4eST logN

mN

)δ

when δ denotes the size of the set. Thus, the advantage for t = 4 can be

bounded to
(
4eST logN

mN

)S
.

96

Finally, we analyze t = 5. To this end, we consider a structure with x branches,
where the ith branch is 1-block γi-way collision and all x branches have the same
output. Let y be the number of salts that use this structure in collisions. Let δi
denote the number of queries hitting the ith branch of the structure. Let δji denote
the number of queries from the jth of y salts hitting the ith branch of the structure.
Then δi =

∑y
j=1 δ

j
i .

We would like to state that we had cheated earlier when we stated E5 as a single
event and defined the MI game corresponding to it. Actually event E5 corresponds
to 2 sub-events, each of which we need to reduce to MI game and analyze on its own.
This affects the final bound only by a constant factor. We describe the sub-events
next.

1. ∀j ∈ [y],∃i ∈ [x] such that δji ≥ logN
Analysis for this collision type is similar to that for event E1

4 . That is advantage
of the adversary in MI game would be bounded by the probability of finding
logN -way collision on S distinct salts among ST queries, which is(

ST
S logN

)
(N logN−1)S

≤
(

eT

logN ·N

)S logN

·NS ≤
(

1

N

)S

≤
(

ST

mN

)S

where the second-to-last inequality holds using logN ≥ 2 and eT ≤ 2N and
the last inequality holds using ST ≥ m.

2. ∀i ∈ [x], j ∈ [y] : δji < logN

We inspect the second sub-event above. We need to analyze two cases:

1. y ≤ γ1 + · · ·+ γx
Given δji < logN for all i, j, we can bound δi =

∑y
j=1 δ

j
i ≤ y · logN for every

i. Using this together with the fact that

δ1 · γ1 + · · ·+ δx · γx ≥ y ·m

implies

γ1 + · · ·+ γx ≥
y ·m
y logN

=
m

logN

and as y ≤ γ1 + · · · + γx, it suffices to compress the structure. Encoding
algorithm should compress for each such structure as follows:

(a) Store the sum of size of the x branches, i.e., γ1+ · · ·+γx which is at most
ST and hence requires at most log(ST)-bits.

(b) Store the subset of ST queries forming the x branches in an unordered
fashion. From the table of h, delete the entries corresponding to the
queries in the set except the first query.

97

Via the compression argument, we obtain the probability of A finding such a
structure is at most

ST ·

((
ST
z

)
N z−1

)
≤
(
eST

zN

)z

· ST ·N ≤
(
4eST logN

mN

)y

where z = γ1 + · · · + γx ≥ m/ logN and the last inequality uses y ≤ z and
m ≥ log2N .

2. y > γ1 + · · ·+ γx
As in the previous case, it holds that

γ1 + · · ·+ γx ≥
m

logN

and we will compress the x branches. However, in this case that wouldn’t
suffice to get the desired bound and we will have to use that salts are sharing
the branches. Since more salts are using fewer branches, this would lead to
lots of collisions some of which can be compressed.

Let Z be the subset of x branches such that for every i ∈ Z the in-degree
of the ith branch, i.e., δi < m/ logN . We will compress the queries hitting
the rest of the branches in a manner similar to the previous case. What re-
mains to be shown is we can compress sets such that the sum of their sizes is
y − (γ1 + · · ·+ γx), which we do next.

δ1 · γ1 + · · ·+ δx · γx ≥ y ·m

⇒
∑

i∈[x]\Z

δi · γi ≥ y ·m−

(∑
i∈Z

δi · γi

)
≥ y ·m− m

logN
·

(∑
i∈Z

γi

)

≥ m ·

(
y −

∑
i∈Z

γi

)
Then using that γi ≤ m for every i ∈ [x], we get∑
i∈[x]\Z

δi ·m ≥
∑

i∈[x]\Z

δi · γi ≥ m ·

(
y −

∑
i∈Z

γi

)
⇒

∑
i∈[x]\Z

δi ≥

(
y −

∑
i∈Z

γi

)
.

5.6 Proof of Theorem 43

We present an attack that achieves the bound in the theorem. We assume M >
(m− 1)N +1 and thus m-way collisions exist for every salt in [N] under h. We also
assume m = O(N c) for some constant c. Then our proposed (S, T,m)-AI adversary
A = (A1,A2) is a trivial variation of our attack proposed in the proof of theorem
40 and is as follows:

98

1. In Offline stage, A1 picks s random salts, denoted {a1, . . . , as}. For salt ai
(any i ∈ [s]), A1 zero-walks for x := max{0, ⌊(B − logm)/2⌋} times to obtain
a′i and then finds y := min{log2m,B − 1}-length chain of m1/y-way collision.
A1 stores a′i and the corresponding chain as advice.

2. In Online stage, given advice from offline stage and random salt denoted a,
A2 runs for i ∈ [⌊T/(2x+ 1)⌋]:

• A2 queries h(a, i) {a′1, . . . , a′s}.
• A2 zero-walks up to 2 · x times

After any step above, if the output is in {a′1, . . . , a′s}, A2 can use the advice
to output m-way collision on a consisting of i concatenated with appropriate
number of 0s and the corresponding chain in the advice.

Analysis of the attack

Case 1: B ≤ logm

In this case, x = 0 and A2 stores (B − 1)-length chain of m1/(B−1)-way collision
for each randomly chosen salt. Thus, S-bit advice can contain the salt and the
corresponding chain for at least

s =
S

logm(m1/(B−1) logM + logN) + logN
= Ω̃

(
S

m1/(B−1)

)
salts.

This implies A2 can achieve an advantage of

Ω̃

(
ST

m1/(B−1)N

)
.

Case 2: logm < B < 2 logm
In this case, A1 zero-walks for ⌊(B − logm)/2⌋ times on each randomly chosen

salt and then finds a logm-length chain of 2-collisions on the output of zero-walking.
Thus, the S-bit advice can contain the salt and the corresponding chain for at least

s =
S

logm(2 · logM + logN) + logN
= Ω̃ (S)

salts.
This implies A2 can achieve an advantage of

Ω̃

(
ST

N

)
.

Case 3: B ≥ 2 · logm

99

In this case, A1 zero-walks for ⌊(B − logm)/2⌋ ≥ B/4 times on each randomly
chosen salt and then finds a logm-length chain of 2-collisions on the output of zero-
walking. Thus, the S-bit advice, as in the previous case, can contain the salt and
the corresponding chain for at least

s =
S

logm(2 · logM + logN) + logN
= Ω̃ (S)

salts.
This implies A2 can achieve an advantage of

Ω̃

(
STB

N

)
.

5.7 Proof of Theorem 44

The proof for the theorem follows from the reduction presented in section 5.3.2 and
the result from [2].

100

Chapter 6

Double Encryption

101

Bibliography

[1] Akshima, D. Cash, A. Drucker, and H. Wee, “Time-space tradeoffs and short
collisions in merkle-damg̊ard hash functions,” in Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I, D.
Micciancio and T. Ristenpart, Eds., ser. Lecture Notes in Computer Science,
vol. 12170, Springer, 2020, pp. 157–186. doi: 10.1007/978-3-030-56784-
2_6. [Online]. Available: https://doi.org/10.1007/978-3-030-56784-
2%5C_6.

[2] Akshima, S. Guo, and Q. Liu, Time-space lower bounds for finding collisions in
merkle-damg̊ard hash functions, Cryptology ePrint Archive, Paper 2022/885,
https://eprint.iacr.org/2022/885, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/885.

[3] M. Hellman, “A cryptanalytic time-memory trade-off,” IEEE Trans. Inf. Theor.,
vol. 26, no. 4, pp. 401–406, Jul. 1980.

[4] D. Unruh, “Random oracles and auxiliary input,” in Annual International
Cryptology Conference, Springer, 2007, pp. 205–223.

[5] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm for
designing efficient protocols,” in Proceedings of the 1st ACM Conference on
Computer and Communications Security, ser. CCS ’93, Fairfax, Virginia, USA:
Association for Computing Machinery, 1993, pp. 62–73, isbn: 0897916298.
doi: 10.1145/168588.168596. [Online]. Available: https://doi.org/10.
1145/168588.168596.

[6] S. Coretti, Y. Dodis, S. Guo, and J. Steinberger, “Random oracles and non-
uniformity,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Springer, 2018, pp. 227–258.

[7] Y. Dodis, S. Guo, and J. Katz, “Fixing cracks in the concrete: Random oracles
with auxiliary input, revisited,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Springer, 2017, pp. 473–
495.

[8] R. Gennaro and L. Trevisan, Lower bounds on the efficiency of generic cryp-
tographic constructions, Cryptology ePrint Archive, Paper 2000/017, https:
//eprint.iacr.org/2000/017, 2000. [Online]. Available: https://eprint.
iacr.org/2000/017.

102

https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-030-56784-2_6
https://doi.org/10.1007/978-3-030-56784-2%5C_6
https://doi.org/10.1007/978-3-030-56784-2%5C_6
https://eprint.iacr.org/2022/885
https://eprint.iacr.org/2022/885
https://eprint.iacr.org/2022/885
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/168588.168596
https://eprint.iacr.org/2000/017
https://eprint.iacr.org/2000/017
https://eprint.iacr.org/2000/017
https://eprint.iacr.org/2000/017

[9] R. Gennaro, Y. Gertner, J. Katz, and L. Trevisan, “Bounds on the efficiency
of generic cryptographic constructions,” SIAM journal on Computing, vol. 35,
no. 1, pp. 217–246, 2005.

[10] P. Morin, W. Mulzer, and T. Reddad, “Encoding arguments,” ACM Comput-
ing Surveys (CSUR), vol. 50, no. 3, pp. 1–36, 2017.

[11] R. Impagliazzo and V. Kabanets, “Constructive proofs of concentration bounds,”
in Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques, 13th International Workshop, APPROX 2010, and
14th International Workshop, RANDOM 2010, Barcelona, Spain, September
1-3, 2010. Proceedings, 2010, pp. 617–631.

[12] R. Impagliazzo, “Relativized separations of worst-case and average-case com-
plexities for np,” in Proceedings of the 2011 IEEE 26th Annual Conference
on Computational Complexity, ser. CCC ’11, IEEE Computer Society, 2011,
pp. 104–114, isbn: 978-0-7695-4411-3. doi: 10.1109/CCC.2011.34. [Online].
Available: https://doi.org/10.1109/CCC.2011.34.

[13] M. Zimand, “How to privatize random bits,” University of Rochester, Tech.
Rep., Apr. 1996.

[14] A. Ghoshal and I. Komargodski, On time-space tradeoffs for bounded-length
collisions in merkle-damg̊ard hashing, Cryptology ePrint Archive, Paper 2022/309,
https://eprint.iacr.org/2022/309, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/309.

[15] K.-M. Chung, S. Guo, Q. Liu, and L. Qian, “Tight quantum time-space trade-
offs for function inversion,” in 2020 IEEE 61st Annual Symposium on Foun-
dations of Computer Science (FOCS), IEEE, 2020, pp. 673–684.

[16] S. Guo, Q. Li, Q. Liu, and J. Zhang, “Unifying presampling via concentration
bounds,” in Theory of Cryptography Conference, Springer, 2021, pp. 177–208.

[17] A. Fiat and M. Naor, “Rigorous time/space tradeoffs for inverting functions,”
in Proceedings of the twenty-third annual ACM symposium on Theory of com-
puting, 1991, pp. 534–541.

[18] S. Coretti, Y. Dodis, and S. Guo, “Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models,” in Annual International Cryptology
Conference, Springer, 2018, pp. 693–721.

[19] A. De, L. Trevisan, and M. Tulsiani, “Time space tradeoffs for attacks against
one-way functions and prgs,” in Annual Cryptology Conference, Springer, 2010,
pp. 649–665.

[20] D. Chawin, I. Haitner, and N. Mazor, “Lower bounds on the time/memory
tradeoff of function inversion,” in Theory of Cryptography - 18th International
Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020, Proceed-
ings, Part III, 2020, pp. 305–334. doi: 10.1007/978-3-030-64381-2_11.
[Online]. Available: https://doi.org/10.1007/978-3-030-64381-2%5C_11.

103

https://doi.org/10.1109/CCC.2011.34
https://doi.org/10.1109/CCC.2011.34
https://eprint.iacr.org/2022/309
https://eprint.iacr.org/2022/309
https://eprint.iacr.org/2022/309
https://doi.org/10.1007/978-3-030-64381-2_11
https://doi.org/10.1007/978-3-030-64381-2%5C_11

[21] H. Corrigan-Gibbs and D. Kogan, “The discrete-logarithm problem with pre-
processing,” in Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Springer, 2018, pp. 415–447.

[22] ——, “The function-inversion problem: Barriers and opportunities,” in Theory
of Cryptography Conference, Springer, 2019, pp. 393–421.

[23] N. Gravin, S. Guo, T. C. Kwok, and P. Lu, “Concentration bounds for al-
most k -wise independence with applications to non-uniform security,” in Pro-
ceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA
2021, Virtual Conference, January 10 - 13, 2021, 2021, pp. 2404–2423. doi:
10.1137/1.9781611976465.143. [Online]. Available: https://doi.org/10.
1137/1.9781611976465.143.

[24] B. Auerbach, D. Cash, M. Fersch, and E. Kiltz, “Memory-tight reductions,”
in Annual International Cryptology Conference, Springer, 2017, pp. 101–132.

[25] Y. Wang, T. Matsuda, G. Hanaoka, and K. Tanaka, “Memory lower bounds of
reductions revisited,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2018, pp. 61–90.

[26] A. Ghoshal, J. Jaeger, and S. Tessaro, “The memory-tightness of authenticated
encryption,” in Annual International Cryptology Conference, Springer, 2020,
pp. 127–156.

[27] A. Ghoshal and S. Tessaro, “On the memory-tightness of hashed elgamal,” in
Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Springer, 2020, pp. 33–62.

[28] D. Diemert, K. Gellert, T. Jager, and L. Lyu, Digital signatures with memory-
tight security in the multi-challenge setting, Cryptology ePrint Archive, Report
2021/1220, https://eprint.iacr.org/2021/1220, 2021.

[29] R. Bhattacharyya, “Memory-tight reductions for practical key encapsulation
mechanisms,” 2020, pp. 249–278. doi: 10.1007/978-3-030-45374-9_9.

[30] A. Ghoshal, R. Ghosal, J. Jaeger, and S. Tessaro, Hiding in plain sight:
Memory-tight proofs via randomness programming, Cryptology ePrint Archive,
Report 2021/1409, https://eprint.iacr.org/2021/1409, 2021.

[31] S. Tessaro and A. Thiruvengadam, “Provable time-memory trade-offs: Sym-
metric cryptography against memory-bounded adversaries,” in Theory of Cryp-
tography Conference, Springer, 2018, pp. 3–32.

[32] J. Jaeger and S. Tessaro, “Tight time-memory trade-offs for symmetric encryp-
tion,” in Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, 2019, pp. 467–497.

[33] I. Dinur, “On the streaming indistinguishability of a random permutation and
a random function,” in Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Springer, 2020, pp. 433–460.

104

https://doi.org/10.1137/1.9781611976465.143
https://doi.org/10.1137/1.9781611976465.143
https://doi.org/10.1137/1.9781611976465.143
https://eprint.iacr.org/2021/1220
https://doi.org/10.1007/978-3-030-45374-9_9
https://eprint.iacr.org/2021/1409

[34] I. Shahaf, O. Ordentlich, and G. Segev, “An information-theoretic proof of the
streaming switching lemma for symmetric encryption,” in IEEE International
Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, June
21-26, 2020, IEEE, 2020, pp. 858–863.

[35] I. Dinur, “Tight time-space lower bounds for finding multiple collision pairs
and their applications,” in Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Springer, 2020, pp. 405–434.

[36] W. Dai, S. Tessaro, and X. Zhang, “Super-linear time-memory trade-offs for
symmetric encryption,” in Theory of Cryptography Conference, Springer, 2020,
pp. 335–365.

[37] S. Coretti, Y. Dodis, and S. Guo, “Non-uniform bounds in the random-permutation,
ideal-cipher, and generic-group models,” in Advances in Cryptology - CRYPTO
2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 19-23, 2018, Proceedings, Part I, H. Shacham and A. Boldyreva,
Eds., ser. Lecture Notes in Computer Science, vol. 10991, Springer, 2018,
pp. 693–721. doi: 10.1007/978-3-319-96884-1_23. [Online]. Available:
https://doi.org/10.1007/978-3-319-96884-1%5C_23.

105

https://doi.org/10.1007/978-3-319-96884-1_23
https://doi.org/10.1007/978-3-319-96884-1%5C_23

	ACKNOWLEDGEMENTS
	ABSTRACT
	TERMINOLOGY
	ABBREVIATIONS
	THESIS OUTLINE
	Introduction
	Part 1
	Chapter 3AkshimaCDW20
	Chapter 4 AGL22

	Part 2

	Related Work
	Part 1
	Part 2

	Short Collisions
	Notations and Definitions
	Collision Resistance Definitions

	Bounded-Length Auxiliary-Input Attack
	Length 2 Collisions are Relatively Easy in the BF Model
	Unbounded Length Collision AI Bound
	Proof of Lemma 8

	Length 2 Collision AI Bound
	Proof for Lemma 12

	Impossibility of Improving Zero-Walk AI Attacks
	Proof of Lemma 18

	Bounded Length Collisions
	Our results
	Our techniques

	Notations and Definitions
	Merkle-Damg̊ard Hash Functions (MD)
	Collision-Resistance against Auxiliary Input (AI).

	Auxiliary Input Collision Resistance for B=2 Merkle-Damgard
	Bounding all the events

	Auxiliary Input Collision Resistance for B Merkle-Damgard
	Proof of Claim 36
	Proof of Claim 34
	Proof of Claim 35

	Multi-Collisions
	Definitions
	Results
	Proof of Theorem 40
	Lower Bound
	Upper Bound

	Proof of Theorem 41
	Lower Bound
	Upper Bound

	Proof of Theorem 42
	Security bound

	Proof of Theorem 43
	Proof of Theorem 44

	Double Encryption
	Bibliography

