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ABSTRACT

Traditional techniques for discovering novel drugs are too slow for 21st challenges, from

precision oncology to emerging global pandemics. The COVID-19 Pandemic demonstrated

the unequivocal need for rapidly deployable drug discovery capabilities as a matter of na-

tional biopreparedness and biosecurity. The challenge is, though, that drug discovery is an

immense and complex interdisciplinary field drawing from cheminformatics, bioinformatics,

biophysics, machine learning, and high-performance computing among others. To accelerate

the screening process of new molecules, researchers are applying developments from artificial

intelligence (AI) to the problem; however, the direct application of traditional AI methods

overlooks the essential complexities of drug discovery, ranging from protein-conformation

flexibility to unique statistical properties of virtual ligand screening. This dissertation

presents a unique approach to AI for drug discovery based on tightly integrating insights

from biochemistry and biophysics, driving a more accurate and more interpretable drug

discovery system, all while leveraging the same accelerating advances from AI. These cross-

cutting contributions from AI and HPC workflows illustrate orders of magnitude speedup

for computational virtual drug screening, novel workflow designs for high-fidelity screening

pipelines which are more accurate than traditional docking, new sampling strategies for ex-

ploring novel chemotypes, and complementary workflow analysis techniques which directly

links actionable and interpretable goals (such as the design of drugs) with quantitative cost

functions. These methodological developments are realized in a case study discovering and

validating a novel SARS-CoV-2 3CL-Main Protease inhibitor with a Ki of 2.9 µM (95% CI

2.2, 4.0).
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CHAPTER 1

INTRODUCTION

As of August 2022, the COVID-19 pandemic—caused by the SARS-CoV-2 virus—has killed

over 6.4 million people worldwide and infected over 8% of the global population (Organization

[19]). Within just a few months during the spring and summer of 2022, Monkey Pox—a

disease caused by the monkeypox virus from the same genus as variola virus, Orthopoxvirus—

has already spread globally with over 30,000 cases identified. Even moving beyond the

landscape of salient global pandemics, in 2019, it is estimated that between 4 and 6 million

people died from disease caused by antimicrobial resistant (AMR) bacteria (Murray et al.

[2022]). Beyond pathogens, cancer is a leading killer with over 10 million deaths global. All

of these diseases can be solved through small-molecule therapies, in theory.

Yet, the scientific community has only explored a tiny fraction of small molecules. The

enumeration and exploration chemicals is no new question: in 1875, Caley published a short

note on his enumeration of alkanes utilizing a tree structure (Cayley [1875]). Though Caley’s

enumeration ended up having a few errors, it is a very early account of treating chemical

space as a structured mathematical object (Rains and Sloane [1999]). The design space of

small molecule—chemical space—is vast and estimated to consist of about 1060 molecules

(Bohacek et al. [1996]). Recent research has highlighted that moving beyond the standard

chemotypes found in chemsimistry and biology textbooks and lab stocks is extremely fruitful

for finding highly potent and selective inhibitors (Jia et al. [2019], Lyu et al. [2022, 2019]).

This motivates an immediate need for efficient and automated exploration for synthesis and

assay development for various applications, including drug discovery and materials design.

Computational enumeration of chemical space is a long-studied problem since the early ages

of computing (Cernak [2018]). The current state of the art projects have enumerated around

2 billion drug-like compounds, and GDB has around 166 billion compounds of up to 17 atoms

of C, N, O, S, and halogens (Patel et al. [2020], Ruddigkeit et al. [2012]).
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Given this unimaginably dense design space, the question is how to identify drugs which

can, with the help of other medical countermeasures and social controls, prevent disease,

be personalised to reduce side-effects and increase efficacy, and be readily available cheaply,

in real-time, and globally distributed? No pharmaceutical company may share all of these

goals, but there are academic endeavours which have shown promise both in the scientific

and social axis of this vision. During the COVID-19 pandemic, two academic group have

identified small-molecular inhibitors such as the National Virtual Biotechnology Laboratory

and the COVID Moonshot Project (Clyde et al. [2021b], Achdout et al. [2020]). Both groups

were able to identify lead compounds within 9 months of the beginning of the pandemic.

Although the transition from drug lead to downstream toxicity, animal model, and human

studies is a challenging and more difficult road (a open area for improvement—no doubt),

this feat should invite further perspective and analysis on how this was possible?

These two groups, of which I was entrenched in both, pursued approaches to drug dis-

covery unlike those found in tightly sealed corporate research and development offices. They

focused on leveraging a large and interdisciplinary community of scientists from private,

public, and academic laboratories (Clyde [2022a]). They pursued computational techniques

capable of leveraging the United States Department of Energy supercomputing infrastruc-

ture (Buchanan and Streiffer [2020], Bhati et al. [2021]) and, globally, the extra cycles of

personal computers forming an decentralized “exascale” supercomputer (Zimmerman et al.

[2021]). Lastly, they were both founded on the ideal of fully open and global science. Com-

putational drug discovery has great potential for democratizing an industry facing many

societal pressures.

In this dissertation, I will focus on the technical developments to accelerate and expand

these drug discovery programs, particularly in AI and high-performance computing (HPC).

In the following chapters, I will outline new approaches to scaling and applying these methods

as part of a broader goal. I envision these systems as part of a basic biosecurity surveillance
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program capable of monitoring the environment, identifying threats, and queuing wet-lab

automated testing so that when epidemiology officials declare a disease spreading uncontrol-

lable, a treatment already is known and ready.

Artificial intelligence (AI) is a form of computational problem solving that a aims to

(1) mimic some human notion of intelligence (whether it be the ability to naturally use

language or identify objects in the world) and (2) scale these capabilities to process vast

data outside the window reasonable by a single person. Recently, advances in deep learning

have revitalized AI’s research program through breakthroughs in natural language processing

(Brown et al. [2020]), game-playing (Silver et al. [2016]), protein-folding (Cramer [2021]),

code-generation (Chen et al. [2021]), and image-classification (He et al. [2016], Chai et al.

[2021]). Although none of these models represent paradigmatic solutions to the problem1,

these models are, at a minimum, surprisingly adept and capable at convincing one that they

are nearing solutions. In particular engineering domains, scientific modeling is increasingly

merging with the technical and structural ideas presented in AI papers broadly encapsulating

the idea of “AI for science” (Stevens et al. [2020]). If modeling offers little scientific insight

from a theoretical perspective, what then can we make of AI for science (AI4S)?

One can raise the question that the science in the ideas percolating around AI4S might be

a different kind of science. This dissertation is by no means an attempt to characterize the

present status of computational scientific research nor fortune-tell its future; however, it is

certainly a case study in AI4S. I will offer at moments a perspective on the broader ambition

on how one can connect semantic meaning such as that sought in traditional science with

the often overly-used quip that deep learning is a black box.2 There are theoretical and

1. A paradigmatic solution would most likely come with some theory fitting the present ideas around
what it means to solve a scientific challenge. None of these models present any theoretical breakthroughs
within the terms of the problems they attempt to solve. Furthermore, many of these models require great
set up, specification, and are limited in scope within those problem areas.

2. See forthcoming article “Why You Were Told Deep Learning is a Black Box: On Expertise and Politics
in Scientific Practice”.
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practical assumptions carried with computational tools, and, similarly, the computational

frame—a kind of bias required to force a scientific problem through the structure of a AI

problem—does impact, affect, and alter the science (Anderson [2008]). This co-production

of the sciences and its theory alongside AI4S, its algorithmic assumptions, and the tools will

be directly discussed at various moments (in particular in Chapter 9) (Jasanoff [2004]).

Given the interdisciplinary required for approaching computational drug discovery, the

first two chapters of this dissertation outline background information for computer science

minded researchers to understand the intricacies for drug discovery. Chapter 2 provides

an interdisciplinary overview of the biology and biophysical background for drug discovery.

While the chapter mainly aimed to review concepts such as different models of induced-fit

protein-ligand binding and free-energy perturbation methods, it aims to concisely connect

a computationally-minded reader into the various theoretical levers biophysics and biology

have to offer.

Chapter 3 presents an overview of virtual ligand screening (VLS) as a computational

challenge. Recent advances in computational screening techniques are outlined, including

an overview of the different paradigms of drug discovery such as ligand and structure based

drug discovery. Chapter 3 presents a contribution to ligand based drug design for precision

oncology while the rest of this dissertation is devoted to structure-based drug design.

Chapter 4 outlines the different workflow designs for AI in HPC drug discovery work-

flows with a focus applying AI to structure based drug design. It begins with the simple

idea of using surrogate models to replace slow and less-accurate code from traditional VLS

workflows. This small building block is connected with different design ideas ranging from

generative modeling to database searches.

Chapter 5 demonstrates precisely how chemical structures are can be used in deep neural

network (DNN) based surrogate models. The challenge for training surrogate models is

that the standard statistical assumptions stable neural network training relies on are not
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applicable for the highly-skewed distributions in drug discovery. This chapter showcases

different techniques that can be applied to neural network training for improving the accuracy

of speed up and illustrates various trade-offs of different chemical featurization techniques.

Chapter 6 showcases how increasingly accurate and more costly computational simula-

tion techniques can be combined with surrogate models to achieve more accurate screening

workflows without increasing the overall computational cost.

Chapter 7 removes the assumption that virtual screening problems maintain no structure

over the screening space by arguing that chemical space can be thought of as a multi-

hypergraph partitioned by basic theoretical tools from cheminformatics such as Bemis-

Murcko scaffold decomposition and electrostatics.

Chapter 8 presents new workflow evaluation metrics which couple business decisions

such as spending for purchasing compounds directly with model performance and high-

performance computing measures. Together, this presents a complete model of exactly how

a model’s performance is coupled to throughput and hit-identification as well as how com-

putational characteristics of an HPC platform will scale those metrics.

Finally, chapter 9 summarizes various opportunities for future work such as utilizing

advances in large-language models for improving the transferability of disparate data sets,

improving the calibration and uncertain quantification, connecting active learning and au-

tomatic laboratories with drug discovery workflows, and finally generative drug design tech-

niques.
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CHAPTER 2

DRUG DISCOVERY: INTRODUCTION

Summary:

This chapter will outline drug discovery with a focus on the biological components. The first

section will overview the basics of disease caused by pathogens and cancer demonstrating the

need for small molecules. The second section will address the biochemistry such as proteins,

their flexibility, binding pockets, and the induced-fit model of drug binding. The third

section will characterize drug discovery efforts such as the basics of screening, dose response

curves, and quantitative structure activity studies (Kneller et al. [2021]). The last section

will highlight computational efforts besides virtual screening such as ligand-based search,

large scale simulation (Dommer et al. [2021], Casalino et al. [2021]), and cheminformatics

featurization (Babuji et al. [2020]).
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CHAPTER 3

VIRTUAL SCREENING: BACKGROUND AND HISTORY

Summary:

This chapter will focus directly on the topic of the remaining dissertation: virtual screening.

The first section will cover some basics of computational screening broadly (not just for

drugs). The second section will cover the history of virtual drug screening and the predom-

inant ideologies (structure-based drug design and ligand-based drug design). This section

will also feature some of my work in ligand-based drug design in particular for personalized

cancer therapy. This will only be a minor example as this dissertation is focused on structure

based drug design (Xia et al. [2022], Partin et al. [2021], Clyde et al. [2020c,a]). The third

section will focus on protein-ligand docking and the computational details of it (such as

binding site identification, conformer generation, scoring function, available tools, and their

computational performance characteristics).
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CHAPTER 4

AI AND VIRTUAL SCREENING HPC WORKFLOWS

Summary:

This chapter will focus on how AI can be introduced into the basic VLS pipeline introduced

in the previous chapter through the concept of surrogate models. This will include details

on modeling as a data science problem protein-ligand docking, the kinds of workflows that

are possible with this application of AI, and basic presentation of the various models used

(drug descriptors, graph models, RNNs, smiles, images, etc.). This chapter will be primarily

an extension of my book chapter on AI for high-throughput drug screening (Clyde [2022b])

and my chapter on large language models for science AI4S workflows (forthcoming).
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CHAPTER 5

SURROGATE MODELS FOR ACCELERATED DOCKING

Summary:

This chapter will focus on my particular modeling efforts in building surrogate models for

docking. This chapter will focus on the performance characteristics of docking with a fo-

cus on the COVID-19 inhibitor discovery (Clyde et al. [2021a], Wu et al. [2021]). I will

outline the datasets required, the models developed, the scale of their deployment, scaling

characteristics, and error characteristics.
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CHAPTER 6

TIERED-WORKFLOWS

Summary:

This chapter will address my work with tiered-workflows—where cheap but inaccurate sur-

rogates are used to screen compounds, sending a smaller subset to a more expensive but

also more accurate kernel (such as simulation). The pipeline I will discuss is called IMPEC-

CABLE Saadi et al. [2021], Bhati et al. [2021], Clyde et al. [2019]. The first section will

introduce the idea, the second section will outline the theoretical considerations (extending

the mathematics from Woo et al. [2021], the third section will outline the results of the

pipeline with some of the COVID-19 molecules, and finally the last section will discuss the

performance charateristics.
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CHAPTER 7

SAMPLING STRATEGIES FOR CHEMICAL SPACE

This chapter will address the bootstrapping and sampling problem: how do you select what

subset of molecules to get an initial dataset for modeling building on? Even if you have a

model built, how do you sample chemical space given you cannot access the whole thing?

This chapter will present the idea of using a hypergraph along different chemical-theoretic

axes such as scaffolds and pharmacophores. This chapter will comment on the use of LLMs

for storing this graph and accessing it on the fly ( Clyde et al. [2021c]).
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CHAPTER 8

ANALYSIS OF VIRTUAL SCREENING MODELS

Summary:

This chapter will overview how to analyze virtual screening models. The first section will

be historical regarding the different sets of metrics used in the virtual screening community

and their incongruence with those used in the deep learning community. The second section

will introduce the idea of regression enrichment surfaces (Clyde et al. [2020b]). The third

section will relate to this computational scaling (Lee et al. [2021], Ma et al. [2018]).
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CHAPTER 9

CONCLUSION AND OPPORTUNITIES

Summary

In this chapter I will conclude with summarizing the developments in the previous chap-

ters. I will also comment more broadly on different strategies that one can use beyond the

HPC/AI workflows outlined in this chapter such as generative modeling and coupling it with

simulations (RLMM). The third section will offer some forward looking ideas about how the

next order of magnitude speeds up can be sought. The final section will conclude with ideas

around automated discovery and autonomous laboratories.
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