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ABSTRACT

In adversarial machine learning, new defenses against attacks on deep learning systems are rou-

tinely broken soon after their release by more powerful attacks. In this context, forensic tools can

offer a valuable complement to existing defenses, by tracing back a successful attack to its root

cause, and offering a path forward for mitigation to prevent similar attacks in the future.

In this paper, we describe our efforts in developing a forensic traceback tool for poison attacks

on deep neural networks. We propose a novel iterative clustering and pruning solution that trims

“innocent” training samples, until all that remains is the set of poisoned data responsible for the

attack. Our method clusters training samples based on their impact on model parameters, then

uses an efficient data unlearning method to prune innocent clusters. We empirically demonstrate

the efficacy of our system on three types of dirty-label (backdoor) poison attacks and three types

of clean-label poison attacks, across domains of computer vision and malware classification. Our

system achieves over 98.4% precision and 96.8% recall across all attacks. We also show that our

system is robust against four anti-forensics measures specifically designed to attack it.
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CHAPTER 1

INTRODUCTION

For external facing systems in real world settings, few if any security measures can offer full pro-

tection against all attacks. In practice, digital forensics and incident response (DFIR) provide a

complementary security tool that focuses on using post-attack evidence to trace back a successful

attack to its root cause. For packet routing on the wide-area Internet, for example, forensic IP trace-

back tools can identify the true source of a Denial of Service (DoS) attack. Not only can forensic

tools help operators identify (and hopefully patch) vulnerabilities responsible for successful at-

tacks, but strong forensics can provide a strong deterrent against future attackers by threatening

them with post-attack identification.

Such an approach would be particularly attractive in the context of attacks against deep learn-

ing systems, where new defenses are routinely broken soon after their release by more powerful

attacks [80, 65, 11, 3, 12]. Consider for example “poisoning attacks,” a threat that arises from the

reliance of ML trainers and operators on external data sources, either purchasing data from or out-

sourcing data collection to third parties [55]. An attacker can inject manipulated training data into

the training data pipeline, thus causing the resulting model to produce targeted misclassification on

specific inputs. Recent advances in poisoning attacks have made them more powerful [1, 48], more

realistic [65, 80, 83], and more stealthy [45, 4]. In a recent survey, industrial practitioners ranked

data poisoning attacks as the most worrisome threat to industry machine learning systems [42].

For data poisoning attacks, effective forensics would add a valuable complement to existing

defenses, by helping to identify which training samples led to the misclassification behavior used

in the attack. We call this the “poison traceback problem.” Starting with evidence of the attack (an

input sample that triggers the misclassification), a forensic tool would seek to identify a particular

subset of training data responsible for corrupting the model with the observed misclassification

behavior. Combined with metadata or logs that track the provenance of training data, this enables

practitioners to identify either the source of the poison data, or a vulnerability in the data pipeline
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where the poison data was inserted. Either result leads to direct mitigation steps (e.g. removing

an unreliable data vendor or securing a breached server on the training data pipeline) that would

patch the pipeline and improve robustness to similar attacks in the future.

Several factors make the poison traceback problem quite challenging in practice. First, today’s

deep learning models employ large complex architectures that do not easily lend themselves to ex-

plainability. Specific behaviors do not localize themselves to specific neurons as once speculated.

Second, the effects of poisoning attacks generally require training on a group of poisoned data,

and a subset of the poisoned training data is unlikely to produce the same behavior. Thus a brute

force search for the subset of poisoned training data would involve testing an exponential number

of sample combinations from a large training corpus. Finally, a poison traceback tool produces

evidence that can lead to the identification of parties responsible for an attack. Thus these tools

must have very high precision, since false positives could lead to false accusations and negative

consequences.

In this paper, we introduce the poison traceback problem, and propose the first solution that

accurately identifies poisoned training data responsible for an observed attack. Our solution utilizes

an iterative clustering and pruning algorithm. At each step, it groups training samples into clusters

based on their impact on model parameters, then identifies benign clusters using an efficient data

unlearning algorithm. As benign clusters are pruned away, the algorithm converges on a minimal

set of training samples responsible for inducing the observed misclassification behavior. In detailed

experiments covering a variety of tasks/datasets and attacks, our approach produces highly accurate

(high precision and recall) identification of poison data for both dirty-label and clean-label poison

attacks.

This paper makes the following contributions to the forensics of poison attacks:

• We define forensics in the context of data poisoning attacks and design a forensics system that

effectively traces back misclassification events to poison training data responsible.

• We empirically demonstrate the effectiveness of our system on three types of dirty-label poison
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attacks and three types of clean-label poison attacks, across two domains of computer vision and

malware classification. Our system achieves over 98.4% precision and 96.8% recall on identifying

poison training data,

• We test our system against 4 alternative forensic designs adapted from prior defenses, and show

our system consistently succeeds on attacks where alternatives fall short.

• We consider potential anti-forensics techniques that can be used to evade our system. We test our

system and show that it is robust against 6 adaptive attacks specifically designed to overcome this

forensic system.

To the best of our knowledge, this is the first work to explore a forensics approach to address

data poisoning attacks on deep learning systems. This is a significant departure from existing works

that focus entirely on attack prevention. Given our initial results, we believe poison traceback is a

promising direction worthy of further exploration.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this section, we present the background and related work on data poisoning and digital forensics.

2.0.1 Data Poisoning

In data poisoning attacks, the attacker gains access to the training data pipeline of the victim ML

system, e.g., via a malicious data provider, and injects a set of poison data into the training dataset.

The poison data causes the victim’s model to have certain vulnerabilities, i.e., misclassifying cer-

tain inputs targeted by the attacker.

Data Poisoning Attacks. We can divide existing poison attacks into two categories based

on their attack assumptions: dirty-label attacks where attacker can modify both the data and their

semantic labels, and clean-label attacks where attacker can only modify the data. Dirty-labels

attacks [29, 48, 80], often called as backdoor attacks, seek to inject a trigger into the victim model.

A trigger is a unique input signal (e.g., a yellow sticker on an image, a trigger word in a sentence)

that once present can lead the victim model to misclassify any inputs to a target label selected by

the attacker (e.g., the presence of yellow sticker leads the model to classify stop signs as speed

limits [29]).

Clean-label attacks further divide into clean-label backdoor attacks and clean-label triggerless

attacks. Clean-label backdoor attacks [65, 76, 61] are similar to dirty-label backdoor attacks except

that attacker cannot modify the label of the poison data. Clean-label triggerless attack aims to mis-

classify a single unmodified test data. Shafahi et al. [66] proposed the first clean-label triggerless

attack where an attacker injects poison data to disrupt the feature region of the targeted data. Sev-

eral proposals [1, 87] significantly improve the performance of clean-label attacks by positioning

poison data on a convex polytope around the target data. These clean-label attacks only perform

well when the victim model’s feature space is known, i.e., assuming the victim uses transfer learn-

ing and the attacker has white-box access to the pretrained model’s parameters. A recent attack,

4



a) Model training

Poison data Benign data 

b) Inference time

Model Misclassification Event

c) Post-attack forensic analysis
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Figure 2.1: The general scenario for our trackback system. a) the attacker poisoned the training
data to inject vulnerability into the model; b) at run-time, the attacker submits an attack input
to cause a misclassification event; c) our traceback system inspects the misclassification event to
identify its root cause.

WitchBrew [26], targets the from-scratch training scenario leveraging gradient alignment of poison

and target data.

Data Poisoning Defenses. A large body of research seeks to defend against poison attacks.

Robust training defenses modify the training of neural networks to be resilient against data poison-

ing. Existing robust training defenses leverage ensemble training [36], kNN majority voting [35],

adversarial training [27], random smoothing [78], and data augmentation [7]. Other defenses try to

diagnose and patch an already poisoned model. Neural Cleanse [79] assumes backdoor triggers are

small input signals and reverse engineers the injected backdoor trigger. Fine-Pruning and STRIP

assume neurons related to poison are not activated by benign data, and thus remove unused neu-

rons [47, 24]. SPECTRE [31] assumes a Gaussian distribution of benign feature representations,

and filters out anomalous inference queries.

Still, defending against poison attacks remains a challenging problem, mainly because the

injected vulnerability is hidden and has not been activated at defense time. Thus, existing defenses

examine the training data or various behaviors of the model to identify anomalous signals that

might be malicious. While existing defenses have shown promising signs by preventing many

poison attacks, stronger and adaptive attackers are able to bypass existing defenses [80, 83, 65, 4,

63].
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2.0.2 Background on Digital Forensics

First introduced in the 1970s, digital forensics has been a major and growing area of cybersecurity.

Digital forensics seeks to trace the source of a cyberattack that has already happened leveraging

traces that the attacker left in the victim system.

“Attack incidents” trigger the forensic analysis, i.e., when the system administrator discovers

a cyberattack after some catastrophic events have happened (e.g., web servers overloaded with

dummy requests, machine takeover, or sensitive data appearing in the dark web). Then, a foren-

sics system is assigned to investigate the source of the attack. Forensic analysis often starts with

evidence collection from the logs of the victim system. Then the system connects these pieces of

evidence using their casual links to form a causal graph, and identifies the root cause of the attack

by tracing through the casual graph starting from the attack incident.

Benefits of Forensics. Successful forensics can lead to prosecution of the perpetrator, stopping

the attack from the source, and offering insights to build more secure systems. Forensics can even

break the arms race between attackers and defenders, since an attacker faces a much higher cost of

iterating with a forensics system, i.e., the attacker is held accountable as long as the forensics sys-

tem succeeds once. Consequently, the risk of being caught acts as a strong deterrent to discourage

any attackers from launching the attack in the first place.

Forensics vs. Defenses. Forensics is a complementary approach to defenses (or security through

prevention). While there is a significant amount of prior works focusing on defenses against adver-

sarial attacks, history (in both machine learning security and multiple other security areas) shows

that no defense is perfect in practice, and attackers will find ways to circumvent even strong de-

fenses. Forensics addresses the incident response of successful attacks by tracing back to the root

causes. Modern security systems leverage both defenses and forensics to achieve maximum secu-

rity.

The same dynamic holds true in the context of poison attacks on neural networks. For example,

a defense against backdoors that identifies poison training data can be circumvented by an attacker
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who breaches the server after the defense has been applied, but prior to model training.

Existing Digital Forensics Research. Forensics has been widely studied in security community

to solve a wide variety of security problems, e.g., tracing the source IP of DDoS attacks [62, 17, 72],

origins of intrusion [39, 84], and the cause of advance persistent threats (APTs) [82, 85, 23].

Existing research addresses many technical challenges of forensics. [6, 38, 21, 43] seek to secure

the integrity of traces left by the attacker against potential tampering. [81, 44, 50, 19] reduce the

large storage overhead of logging while preserving enough information. [85, 51, 39] address the

dependency-explosion problem where a forensics system cannot narrow down the true cause of the

attack. Another line of research focuses on post-forensics, i.e., after the root cause is identified.

The post-forensics system can prosecute the attacker in court by generating causal proof [25, 20]

and fingerprint the attack to prevent similar attacks in the future [54, 37, 58].
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CHAPTER 3

TRACEBACK ON DATA POISONING ATTACKS

In this paper, we consider the task of applying forensics to uncover the presence of data poisoning

attacks on deep neural network (DNN) models. Given a misclassification event at test time, we

seek to identify the set of poisoned training data that resulted in the misclassification.

Example Scenario. Figure 2.1 illustrates the general scenario for post-attack forensic anal-

ysis. One or more attackers find a way to access the training data pipeline1, and inject poison

training data to introduce a specific vulnerability into the DNN model (Figure 2.1(a)). Once the

corrupted model is deployed, the attacker submits a carefully crafted input that exploits the vulner-

ability to produce a misclassified result. When the administrator discovers this misclassification

event (possibly after downstream events), they want to identify the root cause or entity responsible

(Figure 2.1(b)). Information is sent to the traceback system, including the input that caused the

misclassification, the DNN model, and its training data. The traceback system then identifies the

poison training data responsible for the misclassification event (Figure 2.1(c)).

Here, we define our threat model, identify key goals and challenges of a forensic traceback

system for poisoning attacks, and highlight our key intuition for our solution. We describe the

details of our traceback system in §4.

Terminology. We use the following terminology:

• Data poisoning attack: the injection of poisoned training data that embeds vulnerability into the

victim model.

• Misclassification event: an input (xa) that the model misclassified, and the corresponding mis-

classified label (ya).

3.0.1 Threat Model

We first describe our threat model and assumptions of the attacker and the traceback system.

1. The training data pipeline often includes multiple layers of data collectors, labelers, and brokers.
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Data Poisoning Attacker. We adopt common assumptions made by existing work on poisoning

attacks and defenses. We assume the attacker:

• can modify any portion of their controlled training data;

• can poison at most half of the entire training dataset;

• has no access to other parts of the model training pipeline, including the final model parameters

of the trained model2;

• is aware of the existence of a potential traceback system and can adopt anti-forensics techniques

to evade traceback (more details in §7);

• at inference time, submits an attack input that utilizes the injected vulnerability to cause model

misclassification.

Traceback System. We assume the traceback system is deployed by the model owner or a

trusted third party, and thus has full access to the following resources:

• the DNN model (its parameters and architecture), the model training pipeline and the training

data;

• information on the misclassification event, i.e., the exact attack input xa and misclassification

output ya.

We do not assume the traceback system has any access to information on other attacks (beyond

the current misclassification event), and make no assumption about types or parameters of the

poisoning attacks. Note that the traceback system has full access to the training dataset, unlike

assumptions made by some existing defenses, which prevent poison attacks without leveraging the

full training dataset [79].

We note that in practice, a misclassification event may also arise from low model accuracy or

from an evasion attack. Either can cause misclassification without poisoning/modifying training

data. In §8, we discuss how our forensic tool can also be used to determine if a misclassification

2. There exists a few parameter-space poison attack [33, 70] and we consider them outside of our threat model
since these attacks require additional access to the victim’s training pipeline.
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was caused by a poisoning attack. A comprehensive study of robust recognition of non-poison

misclassification events is beyond the scope of this paper. In the rest of the paper, we only limit

ourselves to data poisoning attacks.

3.0.2 Design Requirements and Challenges

To identify what/who is responsible for the misclassification event, a practical DNN traceback

system should meet the following requirements:

• High precision – In forensics, false positives can lead to false accusations, and thus must be

minimized. Under our problem context, this means that for any misclassification event caused by

a specific poisoning attack A, traceback should identify only those poisoned training data injected

to implement A but not others.

• High recall – Recall measures the percentage of poison training data responsible for the misclas-

sification event that are identified by the traceback system. Achieving a high recall rate is crucial

for identifying all the attack parties, especially when multiple parties worked together to inject

poison data in order to train a vulnerability into the model.

• Generalizability – An effective traceback system should address a wide range of poisoning at-

tacks against DNN models, without requiring knowledge of the attack type or parameters (e.g.,

the amount of poison training data).

We further note two non-goals of our system. The first is attack scope. The goal of the trace-

back system is to respond to a specific, observed attack. In a scenario where one or more attackers

have performed multiple, independent poisoning attacks on the same model, the traceback system

focuses on identifying the poison data that caused the observed misclassification event. The sec-

ond is on computational latency. Unlike real-time attack detection tools, forensic traceback is a

post-attack operation and does not face strict latency requirements. This is a common assumption

for digital forensics [14, 28].

Potential Solutions and Key Challenges. Traditional digital forensics traces the root cause
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of an attack by building causal graphs using causal links among system events [85, 51, 39]. In

our problem context, DNN model training allows each individual training sample to potentially

contribute to the final model parameters, and by extension, the misclassification result. This is

commonly known in forensics as the dependency explosion problem, and combined with the large

size of training data (e.g., millions of training samples) makes conventional causal graph analysis

intractable.

The key challenge facing any DNN forensic system is how to efficiently connect a (mis)classification

result to specific samples in the training data. For non-DNN, linear ML models, existing works

use the well-known influence function [40] to estimate the contribution of each training data point

towards a classification result, leveraging the first-order Taylor’s approximation. However, recent

work [5] showed that when applied to DNNs, the influence function produces poor performance

and requires costly computation of second-order derivatives. We confirmed these observations ex-

perimentally. Using the influence function to traceback BadNet poisoning attacks on a CIFAR10

model (details in §5.1) achieved less than 69% precision and recall. When testing it on models

trained on the larger ImageNet, our influence function computation timed out after running 15

days on 4 NVidia TitanX GPUs.

Another alternative is to adapt existing poison defenses into forensic tools for use after an attack

has been detected. While adapting defense techniques as forensics is itself slightly paradoxical

(waterproof defenses would obviate the very need for forensics), we can nonetheless test to see if

such techniques can be effective after an attack. Later in §6.1, we adapt four defenses (Spectral

Signature, Neural Cleanse, Deep K-NN, and L2-Norm) into potential forensic tools, and compare

them with our traceback system. Some of the adapted systems have success against simple attacks,

but all of them fail on stronger poison attacks.

Poisoning as a group effect. In current work on poisoning attacks, attack success relies on a

critical mass of poison samples in the training set [29, 65, 69]. While a sufficiently large set of

poison training data can shape model behavior and inject vulnerabilities, the contribution of each
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individual data sample is less and much harder to quantify. This explains the poor performance of

the influence function when applied to smaller models such as CIFAR10 (see above). It motivates

us to design a solution to search for groups of poison training data, not single samples.

3.0.3 Design Intuition

Instead of designing the traceback system to explicitly target individual training data samples, our

intuition is to inspect training data in groups, and map the traceback problem to a set searching

problem.

Set searching by iterative clustering and pruning. We propose to search for sets of train-

ing samples responsible for an observed misclassification event, by iteratively pruning groups of

training data we can identify as innocent to the attack. Starting with the full training data set, we

progressively identify and prune clusters of innocent training samples until only those responsible

for the misclassification event are left. In each iteration, we only need to identify clusters of train-

ing data that do not contain any poison training data required to make the misclassification event

successful. As such, our traceback design only needs a “binary” measure of event responsibility,

which is much easier to compute than the actual contribution of any training data samples to the

attack.

A binary measure of event responsibility. We propose a binary measure of event responsibility,

which connects a misclassification event with the model training data. Here our hypothesis is that

since data poisoning attacks focus on making the model learn new behavior that is different from

those offered by the benign (or innocent) data, the attack confidence level should not degrade if

some portion of the innocent data is not used for model training. In this work, we propose to

use this condition to determine whether a cluster of training data contains only innocent data not

responsible for the misclassification.

We formally define this condition as follows. Let the model’s full training dataset D be divided

into two distinct subsets: D1 and D \D1. Let F be the DNN model trained on D and F− be the

12



model trained on D \D1. Let (xa, ya) represent the misclassification event. We use ℓ(F(xa), ya)

and ℓ(F−(xa), ya) to indirectly compare the confidence level of (xa, ya) on the two DNN models,

where ℓ(.) is the cross-entropy loss function. Specifically, if removing D1 from the model training

data does not decrease the attack confidence level, i.e.,

ℓ(F(xa), ya) ≤ ℓ(F−(xa), ya), (3.1)

then D1 is less responsible for the misclassification event (xa, ya) than D \ D1. This is in the

sense that D \ D1 has a ratio of benign to poison data that is more skewed towards poison than

D, allowing us to use this measure of event responsibility to iteratively determine the subset of

poison data. We note that in practice, we are able to use clustering to find splits such that D1 does

not contain any poison data. Our proposed measure only examines the attack confidence level, and

does not consider the model’s normal classification accuracy.

The proposed binary measure of event responsibility (Eq. 3.1) is supported by our theoretical

analysis on how removing a portion of the training data affects attack performance. For brevity,

we present the analysis in Appendix A.0.1.
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CHAPTER 4

DETAILED POISON TRACEBACK DESIGN

This section presents the detailed design of our traceback system. We start from a high-level

overview, followed by the detailed description of the two key components (clustering and pruning),

which run iteratively to identify the set of poison training data responsible for the misclassification

event.

4.0.1 High-level Overview

In a nutshell, our traceback system implements an iterative clustering and pruning process, which

progressively identifies sets of innocent training data that are not responsible for the observed

misclassification event. This ends when only the poison data responsible for the misclassification

event is left and thus identified. Doing so requires two key operations: clustering and pruning.

(1) Clustering unmarked training data. The clustering component divides the unmarked

training data into clusters, based on how they affect the model parameters (details in §4.0.2). Here

the goal is to progressively separate innocent data from poison data, so that we can identify, mark

and prune an innocent cluster (using the pruning component).

(2) Identifying and pruning innocent clusters. This pruning component examines the un-

marked data clusters, applies the binary metric defined by Eq. (3.1) to identify an innocent cluster,

if any, that is not responsible for the misclassification event. The identified cluster is marked and

thus excluded from the next clustering operation, i.e., pruned out. We note that pruning does not

affect the computation of Eq. (3.1), where D is always the original full training dataset and D1 is

a cluster to be examined. The detailed pruning design is in §4.0.3.

An illustrative example. Figure 4.1 shows an example traceback process that completes in two

iterations, visualized in a simplified 2D projection of the training data. The traceback starts from

the full set of training data as unmarked, including both innocent (blue) and poison (red) data. In

each iteration, the left figure shows the collection of unmarked training data to be clustered and
14



the resulting cluster boundary that divides them into two clusters; the right figure shows the result

of pruning where the innocent cluster is removed. At the end of iteration 2, only the set of poison

data responsible for the attack is left as unmarked. Upon detecting that the unmarked data cannot

be further divided or pruned, the process ends and the unmarked data are declared as the training

data responsible for the misclassification event.

x
1

x
2

Cluster Boundary
Poison data 
Benign data 

x
1

x
2

x
1

x
2

x
1

x
2

Clustering Pruning

Iteration 1

Iteration 2

Figure 4.1: An illustration of our poison traceback process that completes in two iterations, visu-
alized on a simplified 2D space representing the training data.

4.0.2 Clustering Unmarked Training Data

We now describe the detailed clustering design, which seeks to progressively separate benign and

poison training data into different clusters. The key challenge here is that while innocent and

poison data are different by design (in order to inject different behaviors into the model), it is

highly challenging to accurately characterize and measure such differences. This is also why it has

been hard to design defense mechanisms that can effectively identify and remove poison training

data.

15



Instead, our clustering design first maps these training data into a new space, focusing on “am-

plifying” the separation between innocent and poison data rather than identifying them. Operating

on this new space, each clustering operation will produce two clusters, ideally one containing only

innocent data and the other containing a mixture of innocent and poison data. Given these two

clusters, our pruning component (§4.0.3) will replay the misclassification event to identify the in-

nocent cluster. In the next iteration, we will run clustering only on the mixed cluster to “extract”

more innocent data. After a few iterations, the innocent and poison data become fully separated.

Therefore, our clustering design includes 1) data mapping to “amplify” the distance between

innocent and poison data, and 2) a high performance clustering method to generate the clusters,

which we discuss below.

Data mapping. We map the data by estimating how a training sample x affects the final model

parameters. This is measured by the change of model parameters when x is absent from the training

dataset, i.e., comparing the final model parameters when trained on D and D\x, where D is the full

training dataset. Unlearning benign or poison data results in different effect on model parameters.

Unlearning of poison samples shifts the model closer to an optimal location in parameter space,

where poisoning is ineffective, while unlearning benign samples shifts the model towards its initial

randomly initialized state, since if all benign samples are effectively unlearned, the model will

have no predictive power. A naive implementation would retrain the model on D \ x, leading

to unnecessary computational overhead and stochasticity from training. Instead, inspired by the

concept of unlearning, we propose estimating the parameter change using a gradient computation.

The gradient of the parameters with respect to a given data point with a specified loss function is

a well-known method to characterize its impact on the model [40]. Intuitively, data with similar

gradients will have a similar impact on the model. Thus, our data mapping for training data point

x is:

∇θ ℓ(F(x), NULL) (4.1)
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where F is the original model (trained on D), θ is the parameter set of F’s classification layer,

ℓ is the cross-entropy loss, and NULL is a new “no knowledge learned” label to represent the

effect of not learning from x. We implement NULL as an equal probability output, which has

been used by existing works to label out-of-distribution (OOD) samples [77].

We note that our data mapping method is one of the many ways to represent data for analysis

in poison setting. Other mapping methods exist in the literature [15, 10]. We leave a systematic

study of the optimaility of data mappings and designing better performing mapping to future work.

Clustering heuristics. To handle large training data sets, we use Mini-Batch K-means [64], a

scalable variant of the K-means clustering algorithm. As the name suggests, it first runs K-means

on multiple smaller batches of the dataset and then aggregates their results. This allows us to

distribute the computation across multiple servers, achieving orders of magnitude speedup without

degrading the clustering quality [64]. As discussed earlier, we configure the clustering system to

produce two clusters per iteration.

4.0.3 Pruning the Innocent Cluster

Given the two clusters, the pruning component will identify which of the two clusters is less re-

sponsible, if any, for the misclassification event (xa, ya). This is done by using (xa, ya) to evaluate

each cluster’s responsibility to the event – if a cluster meets the condition in Eq. (3.1), it is marked

as innocent and excluded in the next clustering iteration. In practice, we find that the less respon-

sible cluster always contains only benign data, due to the clear separation induced by our mapping

in §4.0.2, resulting in rapid identification of the poison data.

The design challenge facing this component is how to efficiently evaluate the condition defined

by Eq. (3.1), especially ℓ(F−(xa), ya). Given a cluster (D1), F− refers to the DNN model trained

on D \D1. One can certainly compute ℓ(F−(xa), ya) by training F− from scratch, which is often

expensive in practice. Again, inspired by the concept of ‘unlearning’, we propose producing F−

by unlearning D1 from the original model F .
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Existing unlearning for provable privacy protection. Unlearning has been explored in the

context of privacy (e.g., [8, 30, 53]) where a person protected by privacy laws can request their

data be removed from a trained ML model. Thus, existing unlearning methods focus on achieving

a strong, provable privacy guarantee at the cost of high computation complexity. Furthermore,

their performance degrades rapidly as the number of data points to be unlearned increases [8, 30],

making them unsuitable for our traceback system.

Proposed: functional unlearning for traceback. Instead, we propose approximating F−

by functionally unlearning a cluster D1 from the original model F . Specifically, we fine-tune F

to minimize the cross-entropy loss between D1 and the NULL label (i.e., no knowledge learned)

discussed in §4.0.2 while maintaining a low cross-entropy loss on the rest of the training data

(D \D1) like the original model. This fine-tuning operation is guided by

min
θ

 ∑
(x,y)∈D1

ℓ(F(x), NULL) +
∑

(x,y)∈D\D1

ℓ(F(x), y)

 (4.2)

where (x, y) ∈ D \D1 represents the training data instance (input x and its label y). We solve

the above optimization using stochastic gradient descent (SGD) with the same hyperparameters

as the original model training, and use the fine-tuned version of F as F−. We then compute

ℓ(F−(xa), ya) using the misclassification event (xa, ya) and verify the condition defined by Eq.

(3.1).
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CHAPTER 5

OVERVIEW OF EVALUATION

Using a variety of tasks/datasets, we evaluate our traceback system against 6 different poison

attacks (3 dirty-label and 3 clean-label attacks) and 4 anti-forensic countermeasures. We outline

these experiments and a preview of our findings.

I. Traceback of dirty-label poison attacks (§5.1). Using 4 image classification datasets, we

test against 3 state-of-the-art dirty-label attacks, including an attack without any known effective

defense. Our traceback system achieves ≥ 98.9% precision and ≥ 97.1% recall in identifying

poison data.

II. Traceback of clean-label poison attack (§6). For both image classification and malware

classification datasets, we test against 3 state-of-the-art clean-label attacks, including an attack

without any known effective defense. Our traceback system achieves ≥ 98.4% precision and

≥ 96.8% recall.

III. Robustness against anti-forensic countermeasures (§7). We consider 4 potential coun-

termeasures that a resourceful attacker can deploy to bypass the traceback. Results show that our

system is robust against all four. Across all the experiments, the most effective countermeasure

reduces the traceback precision and recall by less than 4%.

5.1 Evaluation on Dirty-label Attacks

Our evaluation of the traceback system starts from testing it against dirty-label poisoning attacks.

We consider three state-of-the-art dirty-label attacks: BadNet [29], Trojan [48], and Physical Back-

door [80]. We follow the original papers to implement these attacks and vary their attack param-

eters to produce a rich collection of poisoning attacks and their misclassification events. Overall,

our results show that the proposed traceback system can accurately identify the root cause of dirty-

label attacks (≥ 98.9% precision and ≥ 97.1% recall) while maintaining a reasonable traceback

time per attack.
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Dataset Dimensionality # Classes # Training Data Architecture
CIFAR10 [41] 32× 32 10 50, 000 WideResNet-28 [86]
ImageNet [18] 299× 299 1, 000 1, 281, 167 Inception ResNet [73]
VGGFace [56] 224× 224 2, 622 2, 622, 000 VGG-16 [71]
Wenger Face [80] 224× 224 10 762 ResNet-50 [32]
EMBER Malware [2] 2351 2 600, 000 EmberNN [65]

Table 5.1: Datasets & DNN architectures for our evaluation.

Attack Type Attack Name Dataset Traceback Performance
Precision Recall Runtime (mins)

Dirty-label
(§5.1)

BadNet CIFAR10 99.5± 0.0% 98.9± 0.0% 11.2± 0.4
BadNet ImageNet 99.1± 0.0% 99.1± 0.0% 142.5± 4.1
Trojan VGGFace 99.8± 0.0% 99.9± 0.0% 208.9± 9.2

Physical Backdoor Wenger Face 99.5± 0.1% 97.1± 0.2% 2.1± 0.0

Clean-label
(§6)

BP CIFAR10 98.4± 0.1% 96.8± 0.2% 19.2± 1.2
BP ImageNet 99.3± 0.0% 97.4± 0.1% 202.0± 7.1

WitchBrew CIFAR10 99.7± 0.0% 96.8± 0.1% 21.4± 2.1
WitchBrew ImageNet 99.1± 0.1% 97.9± 0.1% 194.3± 5.9

Malware Backdoor Ember Malware 99.2± 0.0% 98.2± 0.1% 57.7± 3.0

Table 5.2: Precision, recall, and runtime of the traceback system for each of the four dirty-label
poisoning attack tasks and the five clean-label poisoning attack tasks (averaged over 1000 runs
per attack task).

5.1.1 Experiment Setup

We first summarize the configuration of the attacks and our traceback system, and discuss the

evaluation metrics.

Attack Setup. Using 4 image classification datasets listed in Table 5.1, we implement the

above mentioned three attacks (Table A.4 in Appendix). Their attack success rate and normal

classification accuracy match those reported by the original papers. We briefly summarize them

below. Further details on the DNN models, datasets, and attacks can be found in Appendix A.0.2.

• BadNet (CIFAR10, ImageNet): The BadNet [29] attack builds poison training data by adding

a pre-selected backdoor trigger to benign inputs and labeling them with the target label. We

run BadNets on image classification tasks trained on CIFAR10 and ImageNet, respectively. The

default attack configuration is identical to [29]: 10% injection rate (i.e., 10% of the training data

is poison data) and a ‘yellow square’ as the trigger.

• Trojan (VGGFace): The Trojan [48] attack improves upon BadNet by using an optimized

trigger to increase attack success. Like the original paper [48], we implement this attack on a face

recognition model trained on VGGFace. The default attack configuration uses 10% injection rate

and a 59× 59 pixel trigger.
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• Physical Backdoor (WengerFace): Wenger et al. [80] recently proposed a physical backdoor

attack against facial recognition models, using everyday physical objects such as eyeglasses and

headbands as the trigger. They collected a custom dataset of face images (hereby referred to as

WengerFace) of users wearing these accessories. We use the same dataset1 to implement the

attack. Following the original paper, we implement the attack with the default configuration of

10% injection rate and a pair of eyeglasses as the trigger (since it offers the highest success rate

among the triggers tested). Note that this backdoor attack is able to bypass 4 state-of-the-art

defenses [79, 75, 15, 24]. To the best of our knowledge, there is no known effective defense

against this attack.

In the rest of the paper, we often use attack-dataset (e.g., BadNet-CIFAR10) to succinctly identify

each attack task. Given an attack configuration (i.e., attack-dataset, injection rate, trigger), we gen-

erate 1000 successful attack instances (xa, ya) as the misclassification events to test our traceback

system. Specifically, we randomly choose 10 target labels to implement 10 versions of the given

poisoning attack. Then for each attack version, we randomly select 100 successful attack instances

as the misclassification events, producing a total of 10× 100 = 1000 events.

Traceback Setup. Configuring the traceback system is simple as it does not assume prior

knowledge of the attacks. The majority of computation comes from the data projection used by the

clustering component, i.e., computing eq. (4.1) for each training sample. For large models (like

those trained on ImageNet), we speed up the computation of Eq. (4.1) by randomly selecting ρ%

of the model weights in the final classification layer. We empirically find that reducing ρ from 10

to 1 does not lead to visible changes to the traceback accuracy (see Table A.1 in the Appendix),

and thus set ρ = 1.

Evaluation Metrics. We evaluate the proposed traceback system using three metrics: 1) preci-

sion of identifying poison training data, 2) recall of identifying poison training data, and 3) runtime

latency of a successful traceback. We report the average and standard deviation values over 1000

1. We contacted the authors of [80] to obtain the dataset and the required user consent and authorization to use this
dataset for our study.

21



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.2  0  0.2  0.4  0.6  0.8  1

D
im

e
n
s
io

n
 2

Dimension 1 

Benign Training Data
Poison Training Data

(a) BadNet-CIFAR10

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1

D
im

e
n
s
io

n
 2

Dimension 1 

Benign Training Data
Poison Training Data

(b) Trojan-VGGFace

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0.2  0.4  0.6  0.8  1  1.2  1.4

D
im

e
n
s
io

n
 2

Dimension 1 

Benign Training Data
Poison Training Data

(c) Physical-Wenger

Figure 5.1: A simplified, 2-D PCA visualization of the projected training data, where poison and
benign data are well-separated.

misclassification events per attack configuration.

5.1.2 Traceback Performance

Precision and Recall. We first report the precision and recall of our traceback system, when

tested against dirty-label attacks under the default attack configuration (i.e., those used by the orig-

inal papers). The top section of Table 5.2 shows the traceback precision and recall for each attack-

dataset. Across all these experiments, our system consistently achieves a high precision (99.1 −

99.8%) and a high recall (97.1− 99.9%).

An interesting observation is that the recall for Physical Backdoor is lower (97.1%) than the

other attacks (> 98.9%). That is, our traceback detects less portion of the poison training data

samples used by Physical Backdoor compared to the other attacks. We wonder whether this is

because those data samples contributed very little to the injected vulnerability, especially since

real photos of physical objects often lead to less precise triggers than those injected digitally. We

validate this hypothesis by removing the exact set of poison data missed by our traceback and re-

launching the poison attack, and the attack success rate drops by only 0.08% on average. But when

removing a random set of poison training data of the same size, the attack success rate drops by

1.02% on average. This confirms our hypothesis.

Detailed Analysis of Clustering. To obtain a deeper understanding of the traceback per-

formance, we perform a detailed analysis of the clustering component. Intuitively, clustering is

most effective if the data projection makes the benign and poison data well-separated from each
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other. Along this line, our analysis starts from visualizing the project result of the model training

data (benign and poison), for three poisoning attacks (BadNet-CIFAR10, Trojan-VGGFace, and

Physical-Wenger). Figure 5.1 shows the simplified 2D version generated using 2-dimensional

Principal Component Analysis (PCA) [57] on the projected data. In this visualization, the benign

and poison data appear to be well-separated.

Next, we study the L2 distance among the projected training data, focusing on measuring the

normalized L2 distance between each poison data sample to the centroid of all the benign data (i.e.,

the benign centroid), and the centroid of all the poison data (i.e., the poison centroid). Table A.6

lists the average results for four attacks. We calculate the normalized L2 distances to allow a fair

comparison across attacks.

Results in Table A.6 confirm that the poison and benign data are reasonably separated. The poi-

son data in Physical-Wenger are more spread out while those in Trojan-VGGFace are densely

packed. These observations align with those of Figure 5.1). Overall, our proposed data projection

achieves sufficient separation between the benign and poison data, allowing the subsequent clus-

tering and pruning operation to quickly identify all the benign data. Across all four attacks, the

traceback takes no more than 4 clustering/pruning iterations to complete.

Detailed Analysis of Pruning. Our pruning operation is based on the condition defined by eq.

(3.1) that compares the cross-entropy loss of the misclassification event on the original model F

and the new model F− after removing a cluster D1 from the training dataset. Using BadNet-

CIFAR10 as an example, Table 5.3 lists the mean and standard deviation of ℓ(F(xa), ya) for the

original model, ℓ(F−(xa), ya) when removing an “innocent” cluster, and ℓ(F−(xa), ya) when re-

moving a poison cluster. The latter two display distinct difference when compared to the first term

(ℓ(F(xa), ya)), confirming that our proposed binary condition offers a clear signal to accurately

identify innocent clusters not responsible for the misclassification.
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ℓ(F(xa), ya)
ℓ(F−(xa), ya) when removing

an innocent cluster a poison cluster
0.09± 0.02 0.02± 0.00 6.91± 0.6

Table 5.3: The cross-entropy loss of the misclassification event on the original and modified mod-
els, for BadNet-CIFAR10.

5.1.3 Traceback Overhead

Finally, we report in Table 5.2 (the last column) the runtime of traceback against different attack

tasks. We run a prototype of our traceback system on a machine with one Nvidia Titan X GPU

and 12 Intel Xeon CPUs. The computation time linearly increases with the dimension of the data

projection and the number of training data samples. For models with a large training dataset,

the bulk of the traceback computation comes from the clustering of training data, which takes

up 83% of the computation time for Trojan-VGGFace, the most computational expensive task.

On the other hand, simple data parallelism enabled by the use of mini-batch K-mean clustering

can significantly speed up the runtime. For example, parallelizing using 5 machines reduces the

runtime for Trojan-VGGFace to 49.5± 3.2 minutes, a 4.1x speed up.

24



CHAPTER 6

EVALUATION ON CLEAN-LABEL ATTACKS

We now evaluate our traceback system against clean-label poisoning attacks, and contrast its per-

formance to that on dirty-label attacks. Compared to dirty-label attacks, clean-label attacks follow

a different attack methodology, use fewer poison training samples, and these samples appear less

separated from the benign data even after data projection. These factors make the clustering and

pruning process more challenging. Nevertheless, our traceback system still achieves good per-

formance across all attack tasks (≥ 98.4% precision and ≥ 96.8% recall). In the following, we

present the experiment setup of the five clean-label attacks used by our evaluation, and how our

traceback system responds to these attacks.

6.0.1 Experiment Setup

Attack Setup. We consider two state-of-the-art triggerless clean-label attacks on image classifi-

cation, and a backdoor-based clean-label attack on malware classification (Table A.5 in Appendix).

Our implementation of these attacks match the original papers in both attack success rate and be-

nign classification rate. Further implementation details are in Appendix A.0.2.

• Bullseye Polytope (BP) (CIFAR10 & ImageNet): The BP attack [1] aims to make the model

classify a single attack sample xa to a target class ya at test time without modifying the sample

(hence, triggerless). This is done by adding imperceptible perturbations to the poison training

data so their representations in the feature space form a fixed-radius polytope around the chosen

attack sample xa. The classifier then associates the region around the attack sample with the label

of the poison data, which is the desired target label ya. This leads to misclassification of xa to ya

at test time.

It is known that BP only works well when the attacker has access to a pretrained feature extractor

used by the victim model, i.e., it is effective in the transfer learning setting. We follow this

setup and use a feature extractor pretrained on the benign data as the victim. We use the attack
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parameters of the BP-5x attack (the strongest variant) from the original paper and test the attack

on CIFAR10 and ImageNet.

• Witches’ Brew (CIFAR10 & ImageNet): Witches’ Brew [26] is a clean-label triggerless attack

that. It works by adding imperceptible perturbations to the poison data to align its gradient with

that of the attack sample. This makes the model misclassify the attack sample to the target class

of the poison data. We test the attack on CIFAR10 and ImageNet datasets.

• Malware Backdoor (Ember Malware): This is a clean-label, backdoor attack on malware clas-

sifiers [65]. The attacker uses influence functions to find 128 most important features defining

‘goodware’ and uses these as a trigger. These features are then modified for poison malware

samples, with the target class being ‘goodware’. The authors of [65] found all three of the state-

of-the-art defenses [15, 46, 75] are ineffective against this attack. Like the original paper, we use

the publicly-available Ember malware classification dataset. Since attackers are mostly interested

in disguising malware as ‘goodware’, we only use ‘goodware’ as the target label of the attack.

Traceback System Setup & Evaluation Metrics. We use the same system setup and evaluation

metrics as §5.1.

6.0.2 Traceback Performance

The bottom section of Table 5.2 shows that our traceback system achieves > 98.4% precision and

> 96.8% recall when going against the five clean-label poisoning attacks. In the following, we

discuss these results in detail by contrasting the trackback performance on clean-label attacks to

that on dirty-label attacks (discussed in § 5.1.2).

Lower traceback recall due to ineffective poison data. First, we see that the traceback pre-

cision remains high even as compared to dirty-label attacks, but the recall is consistently lower

and the runtime is higher. In particular, Table 5.2 shows that the lowest traceback recall happens

on the two triggerless attacks, BP and Witches’ Brew. We hypothesize that it is because these

two attacks failed to move the representations of some poison training data to the desired location
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in the feature space. These “ineffective” poison training data made very little contribution to the

misclassification event, and are hard to detect during traceback.

We test and validate this hypothesis by gradually increasing the attack perturbation budget (to

increase the effectiveness of the poison training data) and observing the attack success rate. The

budget for the BP and WitchBrew attacks determines the magnitude of perturbation the attacker

can add to each poison data point (the default budget is set to Linf = 0.03). A higher perturbation

budget allows the attacker to position the poison training data “closer” to their desired locations,

making these data more “effective” and leading to a stronger attack success rate. Table A.3 con-

firms that the attack success rate increases with the perturbation budget. We also list the traceback

precision and recall. While precision remains high, the recall also increases from 94.9% to 99.4%

as we increase the budget, confirming our hypothesis that the presence of ineffective poison sam-

ples is the reason for a lower recall value.

Less distinct clusters lead to more pruning iterations. We also study the performance of

clustering and pruning on the five clean-label attacks. Like Figure 5.1 for dirty-label attacks, we

visualize the projected training data using 2-D PAC for clean-label attacks. The visualization for

BP-CIFAR10 is shown in Figure A.1. Compared to the wide separation seen on the dirty-label

poison data (Figure 5.1), the BP poison data appear much less separated from the benign training

data. In fact, they reside in the gap between different benign clusters. This is not surprising,

because clean-label attacks work by moving the representation of the poison data close to that of

benign data in the target class, so these poison data are inherently closer to the benign data.

We also analyze the pruning operation when tracing back clean-label attacks. Table 6.1 shows

the cross-entropy loss caused by training data removal, which is used to determine whether a

cluster is benign or not. Again, we observe a clear pattern that separates benign clusters from

poison (or mixed) clusters, i.e., ℓ(F−(xa), ya) for removing an innocent cluster is smaller than

ℓ(F(xa), and ℓ(F−(xa), ya) for removing a poison cluster is significantly larger. As such, pruning

can effectively identify benign clusters.
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ℓ(F(xa), ya)
ℓ(F−(xa), ya) when removing

an innocent cluster a poison cluster
0.61± 0.07 0.39± 0.04 8.81± 0.81

Table 6.1: The cross-entropy loss of the misclassification event on the original and modified mod-
els, for BP-CIFAR10.

Attack-Dataset Traceback Method
Spectral Signature Neural Cleanse Ours

BadNet-CIFAR10 95.3% / 92.4% 98.7% / 96.6% 99.5% / 98.9%
BadNet-ImageNet 96.0% / 93.7% 91.1% / 97.2% 99.1% / 99.1%
Trojan-VGGFace 93.1% / 89.8% 94.8% / 97.4% 99.8% / 99.9%
Physical-Wenger 43.2% / 67.4% 0% / 0% 99.5% / 97.1%
Malware Backdoor 2.1% / 15.1% 0% / 0% 99.2% / 98.2%

Table 6.2: Comparing our traceback system against forensic tools adapted from existing backdoor
defenses. We present the results as “Precision / Recall”.

Despite the reduced separation, our traceback system can still accurately identify the benign

(and thus poison) data clusters while using more clustering/pruning iterations. For example, an

average of 10.7 iterations are needed for BP-CIFAR10 compared to 3.2 iterations for the dirty-

label attack on the same model (BadNet-CIFAR10).

6.1 Comparing against Adapted Defenses

While forensics tools are solving a different problem as defenses, it is reasonable to ask, can

existing defenses be adapted to become tools in forensic analysis. Here, we adapt four state-of-the-

art poison defenses (two backdoor and two triggerless defenses) to perform post-attack traceback

analysis. We compare our system against adapted backdoor defenses (Spectral Signature [75] and

Neural Cleanse [79]) in Table 6.2, and our system against triggerless defenses (Deep K-NN and

L2-Norm Outliers [59]) in Table 6.3.

Spectral Signature. Spectral signature [75] extracts signatures for backdoor training data using

the spectrum of the covariance of the feature representation. Spectral signature identifies the ma-

licious training samples post-training (before attack). We adapt spectral signature simply by using

it to identify the malicious training data post-attack.

Table 6.2 shows that spectral signature performs well on BadNet and Trojan attacks, but per-

forms quite poorly when tracing back attacks for physical backdoors and malware backdoors. The
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Attack-Dataset Traceback Method
Deep K-NN L2-Norm Ours

BP-CIFAR10 36.1% / 74.3% 34.5% / 78.0% 98.4% / 96.8%
BP-ImageNet 57.9% / 79.6% 53.4% / 72.4% 99.3% / 97.4%
WitchBrew-CIFAR10 49.3% / 53.9% 52.1% / 42.8% 99.7% / 96.8%
WitchBrew-ImageNet 53.5% / 47.2% 51.3% / 44.3% 99.1% / 97.9%

Table 6.3: Comparing our traceback system against forensic tools adapted from existing clean-
label defenses. We present the results as “Precision / Recall”.
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Figure 6.1: An illustration of four countermeasures where attacker can manipulate the data layout
in data projection space in order to disrupt traceback.

poor performance against Malware Backdoors is consistent with the malware paper itself [65],

where the authors showed that spectral signature defense is ineffective against their proposed mal-

ware attack.

Neural Cleanse (NC). NC [79] recovers backdoor triggers in a poisoned model by reverse-

engineering the backdoor trigger. For traceback, we apply NC and search for the recovered trigger

in the training dataset to identify poison data. Since NC does not recover the exact input trigger,

we perform the matching in neuron activation space, i.e., flagging the training data if its neuron

activation is close to that of the recovered trigger. We use cosine similarity to measure the activation

distance and use a small set of benign data to calculate a cutoff threshold.

In our tests, NC performs well on BadNet and Trojan backdoors, where it successfully recovers

backdoor triggers. Against physical and malware backdoor attack, however, NC fails to identify

any triggers, and thus traceback fails.

Deep K-NN and L2-Norm Outliers. Both defenses are proposed by [59], where clean-label

poison data are detected using anomaly detection in the feature space. In our tests, both defenses

perform poorly on all four clean-label attack tasks (Table 6.3), achieving similar performance as

random guessing. This result is also consistent with results from the BP and WitchBrew attack

papers, where they show existing defenses are not effective [1, 26].
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CHAPTER 7

ANTI-FORENSIC COUNTERMEASURES

As with other security mechanisms, we expect attackers with knowledge of our system to deploy

adaptive countermeasures. In this section, we explore potential anti-forensics techniques and eval-

uate them for their impact on our system.

Our experiments make the strongest possible assumption about the attacker: that they know

full details of the target model’s training pipeline, including read access to all training data, model

architecture, and training hyperparameters. They also know details of the traceback system, in-

cluding the function to calculate the data projection. We assume that attacker can add additional

perturbations to its poison data in order to evade traceback, and we assume a generous perturbation

budget of Linf = 0.1 (attacker can change each input value by 10%). For trigger-based attacks,

we further allow the attacker to arbitrarily change the location and value of the triggers.

We consider five different countermeasures, each leveraging in different ways the attacker’s

ability to inject manipulated training data into the data pipeline. The countermeasures are shown

in Figure 6.1, and include: a) disguising poison data as benign, b) injecting perturbed benign

data, c) bifurcating poison data, and d) multiple overlapping poison attacks. We evaluate the

countermeasures on a total of 7 attacks, all of our attacks except for physical backdoors (cannot

easily modify physical triggers) and malware backdoors (fixed triggers based on heuristic). We

also test the scenarios where attacker increases the attack’s cost in order to evade traceback.

Disguising Poison as Benign. The first countermeasure tries to confuse the clustering algorithm,

by perturbing the poison data and pushing it closer to benign data in the data projection space

(Figure 6.1b). If the clustering heuristic groups poison data into different benign clusters, it will

terminate the pruning and either reduce recall or confuse the system into identifying it as a non-

poison misclassification.

We test the case where an attacker minimizes the distance between each poison data and a

benign data point closest to it in the data projection space, while optimizing for the original attack
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L2 Distance Attack
Success Rate Precision Recall

434.5± 8.2 99.5± 0.0% 99.5± 0.0% 98.9± 0.0%
290.4± 8.9 89.5± 0.6% 98.4± 0.1% 98.1± 0.1%
184.8± 5.7 64.3± 1.7% 96.9± 0.3% 97.2± 0.1%
110.3± 3.1 28.3± 3.2% 95.9± 0.3% 96.7± 0.2%
59.0± 1.9 0.0± 0.0% N/A N/A
31.4± 1.2 0.0± 0.0% N/A N/A

Table 7.1: For disguising Trojan-VGGFace, attack success rate drops as the L2 distance between
poison and benign projections decreases, while traceback precision and recall drop slightly.

L2 Distance Attack
Success Rate Precision Recall

28.2± 0.9 86.1± 1.4% 98.4± 0.1% 96.8± 0.2%
25.4± 1.3 59.4± 3.4% 97.2± 0.2% 95.0± 0.3%
19.0± 1.2 19.7± 2.0% 96.1± 0.2% 94.8± 0.3%
12.8± 0.8 8.7± 0.4% 95.9± 0.1% 95.1± 0.3%
9.4± 0.5 0.0± 0.0% N/A N/A
4.4± 0.3 0.0± 0.0% N/A N/A

Table 7.2: For disguising BP-CIFAR10, attack success rate decreases as L2 distance between
poison and benign projections decreases, while traceback precision and recall drop slightly.

objectives, using a λ parameter to balance the two objectives. The attacker leverages a bi-level

optimization [34] to optimize the attack objective, since the modifications of poison data also

change the result model and thus, the projection calculation.

Results are consistent across all 7 attack tasks. For brevity, we show detailed results for Trojan-

VGGFace (Table 7.1) and BP-CIFAR10 (Table 7.2). As the L2 distances between poison and

benign data decrease, it becomes harder for the model to learn the attack, and attack success rate

drops to zero. Impact on traceback is minimal: precision and recall drop less than 3.6% across all

tasks.

Targeted Contamination Attack (TaCT). Another method to disguise poison data is the TaCT

attack [74]. TaCT is designed to obscures the difference between poison and benign representations

in order to evade existing defenses. TaCT leverages source-specific backdoors, triggers only work

when applied to specific images. The authors found that TaCT causes poison and benign data to

be inseparable in neuron representation space.

We test our traceback system against TaCT. We find that while poison and benign data are

inseparable in neuron representation space, we can still separate them in our data projection space.

We believe the separation is likely because our data projections measure each data’s impact on
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model parameters, which better characterize training data than neurons activation values in poison

settings. We test TaCT attack on all 4 backdoor attack tasks from §5.1. Overall, TaCT attack is

ineffective against our traceback system, reducing precision and recall by less than 4% across the

five backdoor attacks.

Injecting Perturbed Benign Data. Next, we consider the countermeasure where the attacker

seeks to confuse the clustering algorithm by injecting benign data whose projection fills in the

space between benign and poison data. We refer to this additional set of modified data as “helper

data”. We note that the helper data do not directly contribute to the success of the misclassification

event.

As shown in Figure 6.1(c), an attacker positions helper data between poison and benign data to

mislead the clustering heuristic. The attacker first identifies the last set of benign data pruned out

by the traceback system. Using the clustering algorithm, the attacker separates the benign cluster

into two clusters, and the poison data into two groups based on proximity to each benign cluster’s

centroid. The attacker optimizes helper data to uniformly position them in between each benign

cluster and its closeby poison cluster. The attacker uses a similar bi-level optimization (§7) to

optimize the attack objective.

We apply this countermeasure on the 7 attack tasks. For brevity, we show detailed results

for Trojan-VGGFace in Table 7.3. As the number of helper data samples increases to 10000

(25% of training data), attack success rate reduces gradually to zero, while traceback precision

drops to 94.1% and recall remains the high (> 98.7%). Table 7.4 shows results for BP-CIFAR10,

where the attack success rate drops much faster when injecting merely 25 helper data. The faster

drop in attack success is likely due to the fewer clean-label poison samples and their proximity to

benign data. When Trojan and BP attacks reach zero attack success rate (15000 and 20 helper data

respectively), our traceback can still separate poison data with > 91.4% precision and recall.

Bifurcating Poison Data. Next, we explore techniques to separate poison data into multiple

(two) separate distributions both of which contribute to the attack incident while residing in differ-
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Number of
Helper Data

Attack
Success Rate Precision Recall

0 99.8± 0.0% 99.8± 0.0% 99.9± 0.0%
1000 64.3± 3.8% 96.3± 0.2% 99.1± 0.0%

10000 21.0± 3.9% 94.1± 0.3% 98.7± 0.0%
15000 0.0± 0.0% N/A N/A

Table 7.3: For adding helper data to Trojan-VGGFace, the attack success rate decreases as the
number of helper data increases, while the precision and recall of the traceback system drop
slightly.

Number of
Helper Data

Attack
Success Rate Precision Recall

0 86.1± 1.4% 98.4± 0.1% 96.8± 0.2%
5 35.5± 3.4% 96.6± 0.3% 96.6± 0.1%

10 13.1± 1.1% 94.3± 0.5% 96.6± 0.2%
20 0.0± 0.0% N/A N/A

Table 7.4: For adding helper data to BP-CIFAR10, the attack success rate decreases as the number
of helper data increases, while the recall of the traceback system remains the same and precision
drops slightly.

ent parts of data projection space, in order to evade clustering (Figure 6.1(d)). The attacker first

identifies the two strongest clusters in the poison data, then maximize the distance between the

cluster centroids to separate them. We follow the same bi-level optimization process to optimize

the poison data and use a λ term to balance the objective of cluster distance and the original attack

objective.

We apply this countermeasure to all 7 attack tasks. For BP attacks and WitchBrew attacks,

attack success drops quickly because the two triggerless attacks rely on clever positioning of the

poison data (e.g., a fixed radius polytope around target data). For BP and Witches’ Brew, this

countermeasure has no impact on traceback performance (> 97.0% precision and recall). For

trigger-based attacks, we show results on Trojan-VGGFace in Table 7.5. We found that as we

increase λ to push for better separation between the two clusters, the centroid distances fail to

increase beyond a certain value. We believe the failure to separate poison data is because these

poison samples have the same attack objective and trigger, and naturally cluster together in the

data projection space. Overall, the traceback system achieves ≤ 96.7% precision and recall across

all 7 attack tasks.

Multiple Overlapping Poison Attacks. Finally, an attacker can try to combine two dirty-label
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L2 Distance Attack
Success Rate Precision Recall

2.2± 0.2 99.8± 0.0% 99.8± 0.0% 99.9± 0.0%
17.9± 2.7 98.3± 0.2% 98.2± 0.0% 97.9± 0.1%
25.3± 4.1 97.1± 3.7% 97.3± 0.2% 96.9± 0.2%
23.6± 5.8 97.4± 0.0% 97.5± 0.1% 97.3± 0.1%
24.0± 6.1 98.1± 0.0% 97.6± 0.2% 97.0± 0.2%

Table 7.5: For separate one Trojan attack into two, the attack success rate decreases as the L2
distance between centroids decreases, while the precision of the traceback system remains the
same and recall drops slightly.

attacks in one misclassification event, by training two different triggers with the same misclassifi-

cation label into the model, then including both triggers into a single attack input. This attack does

not work for triggerless attacks, since each attack has its own specific target data.

Our experiments show this countermeasure is ineffective against our traceback system. We

achieve > 98.4% precision and recall across all attack tasks. While the two poison attacks leverage

different triggers, they have the same objective of misclassifying any inputs to the same target label,

and our data projection directly correlates to the objective of each training data. Thus poison data

from two separate attacks appear in the same region in projection space, enabling us to cluster

them together as part of the same attack.

Higher Cost Attacks. So far, we have focused on attacks with a similar cost, i.e., same number

of poison data. Now, we explore the impact of attacks with higher cost on our traceback system. We

allow an adaptive attacker to poison an increasing number of poison data and test our traceback

effectiveness against these higher cost attacks. We found that increasing injection rate has an

surprisingly low impact on our traceback system. As attacker increases injection rate to 50%,

our traceback system maintains > 95% precision and > 92% recall, across all 5 countermeasures

discussed in this section and all 9 attack tasks.

We believe the weak impact of increasing injection rate is because our traceback system views

poison as a group effect (§3.0.3), and poison data with the same attack objective are clustered

together regardless of the number of poison data. As a result, increasing injection rate has limited

effectiveness against our traceback system.

34



CHAPTER 8

DISCUSSION: IDENTIFYING NON-POISON EVENTS

Our work addresses the question of post-attack analysis for poison attacks on neural networks. In

practice, however, a system administrator must first identify if a misclassification event was caused

by a poisoning attack, or from an evasion attack or benign misclassification. The former are test-

time attacks that leverage existing vulnerabilities in trained models to cause misclassification with

perturbed data, while the latter simply arise since models do not classify perfectly.

Attack Identification. We note that our system can double as a tool for the first step towards

attack identification. Given a model and a misclassification event (misclassified input and output),

one iteration of our forensic system would be able to identify if the attack was a poison attack or

caused by other means. Once we separate training data into clusters, and apply the same unlearning

techniques, we can observe if removal of either subset of training data will alter misclassification

behavior.

Intuitively, both evasion by adversarial perturbation and benign misclassification rely on specifics

of the model’s loss landscape. In either case, removal or “unlearning” of any significant portion of

training data will change the loss landscape and should alter the misclassification behavior. In our

system, we would observe that unlearning either of the clusters would alter the misclassification

event. So if the first iteration fails to prune away either cluster, then we consider the misclassifica-

tion event as non-poison and end traceback.

Limitation. Our attack identification system can be vulnerable to “false flag” attack [60] where

an attacker carefully crafts a misclassification event that triggers our traceback system to blame

an innocent data provider. This is a threat that the deployer of traceback system needs to keep in

mind when perform any forms of prosecution based on traceback results. In practice, a system

like ours must be understood in context: the assignment of blame to any parties involved will

only be possible with the availability of an effective data provenance tool, and there should be a

human-in-the-loop confirmation before any lasting decisions are made.
35



Further, any attacker trying to carry out an inference time attack that also has a false flag

component will have to solve a more challenging optimization problem needing access to the

training data. The exploration of techniques to do this effectively is beyond the scope of this paper

but is an interesting direction for future work.

Empirical Results. We test four representative evasion attacks, including two white-box eva-

sion attacks (PGD [52], CW [13]) and two black-box evasion attacks (Boundary [9] and HSJA [16])

against all 5 of our evaluation datasets. We follow the default attack parameters [68] (Appendix A.2).

We test 100 evasion attack samples for each attack and classification task pair. For benign misclas-

sification, we randomly select 100 misclassified benign test data as the misclassification events for

each task. For all these misclassification events, our forensic tool correctly determined that they

were not caused by data poisoning attacks, i.e., our tool produced no false positives.

Future Work

We believe the study of post-attack forensic techniques remains an open area with numerous open

questions. First, while our method is effective in our tests, more effort is needed to understand

its robustness when extended to additional types of attacks and application domains. Second, in

order to assign responsibility to a provider for the poisoned data, the model administrator must be

confident that metadata associated with training data is accurate and tamper-resistant. The study

of data provenance [22, 49] in this context remains an open problem.
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APPENDIX A

APPENDIX

A.0.1 Theoretical Analysis of Training Data

Removal

As discussed in §3.0.3, our binary measure of event responsibility is inspired by a theoretical

analysis on how removing a portion of the training data affects the poisoning attack performance.

We now present this theoretical analysis in detail.

To examine the impact of removing a subset of training data (D1) on the poisoning attack,

we seek to analytically quantify its impact on the model loss over the true distribution of the

poison test data, which indicates the contribution of D1 to successful misclassification at test time.

Furthermore, our analysis considers the general case where D1 may contain both benign and poison

training data, i.e., D1 is drawn from a mixed distribution. We note that while our theoretical

analysis is driven by the expected value of the loss over the distribution of the poison test data,

in practice the traceback system can only measure the impact on a single misclassification event

(usually just one data sample). Yet this is empirically sufficient to label and prune clusters (as

shown by our experimental results in §5.1 and 6). Finally, since our clustering is able to find

clusters that only contain benign data, the pruning component used by our traceback focuses on

picking this cluster (D1). This is a special case under our theorems, which show that clusters can

be differentiated even if they are mixed.

Definitions: Let the full training data D be drawn from a distribution D comprised of the benign

distribution Db and the poison distribution Dp in the ratio α, i.e., D = αDb + (1 − α)Dp. Let

F denote the original model trained on D, using the loss function ℓ. To measure the impact of

removing a group of data D1 from the training dataset, we consider a new model F− trained on

D \D1, effectively drawn from a distribution D− = α−Db + (1 − α−)Dp. Finally, the expected

loss over the true distribution for a classifier F is LD(F)= E(x,y)∼D [ℓ(F(x), y)].
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Key Results: If removing D1 from the model training process either reduces or maintains

the loss of the resulting classifier on the poison test data, e.g., LDp
(F) ≥ LDp

(F−), this action

has skewed the ratio towards poison data in the training dataset, implying that D \ D1 is more

responsible for the success of poison attacks at test time.

Next, we prove this result in two cases: i) learning from the entire distribution and ii) learning

from the empirical distribution. We note that the former is not possible in practice but is useful

pedagogically.

Theorem 1. [Learning from true distribution] Consider classifiers F∗ and F−∗ that are trained

directly from the true distributions D and D−, respectively. We can show that if

LDp
(F∗) ≥ LDp

(F−∗ ), (A.1)

then α− ≤ α.

Proof. By definition,

F∗ = argmin
F

LD(F)

= argmin
F

αLDb
(F) + (1− α)LDp

(F)

and

F−∗ = argmin
F

LD−(F)

= argmin
F

α−LDb
(F) + (1− α−)LDp

(F).

The first implies that

45



∀F, αLDb
(F∗) + (1− α)LDp

(F∗)

≤ αLDb
(F) + (1− α)LDp

(F) (A.2)

⇒ αLDb
(F∗) + (1− α)LDp

(F∗)

≤ αLDb
(F−∗ ) + (1− α)LDp

(F−∗ ), (A.3)

and the second

∀F, α−LDb
(F−∗ ) + (1− α−)LDp

(F−∗ )

≤ α−LDb
(F) + (1− α−)LDp

(F) (A.4)

⇒ α−LDb
(F−∗ ) + (1− α−)LDp

(F−∗ )

≤ α−LDb
(F∗) + (1− α−)LDp

(F∗). (A.5)

We multiply Eq. A.3 by α− and Eq. A.5 by α, which gives us

αα−LDb
(F−∗ ) + α(1− α−)LDp

(F−∗ )− α(1− α−)LDp
(F∗)

≤αα−LDb
(F−∗ ) + α−(1− α)LDp

(F−∗ )− α−(1− α)LDp
(F∗)

⇒ (α− α−)(LDp
(F∗)− LDp

(F−∗ )) ≥ 0 (A.6)

From Eq. A.6, it is clear that if LDp
(F∗) ≥ LDp

(F−∗ ), α ≥ α−, proving our claim.

Our proof did not make any assumptions about the convexity of the loss function or the type

of learning algorithm used. This is due to the assumption that we are able to find classifiers that

minimize the loss on the true distribution. This assumption does not hold in practice, and we

typically use gradient descent algorithms over sampled data for training [67]. The next theorem

deals with this case, but makes the additional assumptions that the set of possible classifiers is

convex and that the loss function is convex, Lipschitz and bounded. The learning algorithm used

is Stochastic Gradient Descent (SGD).
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Theorem 2. [Learning from empirical distribution] Consider datasets D and D2 defined as above

such that D2 ⊂ D. The corresponding models F and F− are defined over a B-bounded convex

set and trained using SGD over a convex, ρ-Lipschitz loss function ℓ. D is drawn from D =

αDb + (1− α)Dp, and D2 from D′ = α−Db + (1− α−)Dp. Then, we can show that if

LDp
(F)− LDp

(F−) ≥ −(αϵ− + α−ϵ)
α− α−

(A.7)

then α− < α.

Proof. In the learning setting of interest, we have, from Corollary 14.12 in Shalev-Shwartz and

Ben-David [67],

LD(F) ≤ LD(F∗) + ϵ, (A.8)

where ϵ ≥ B2ρ2

|D| . Similarly, for learning from D−, we have

LD−(F−) ≤ LD−(F−∗ ) + ϵ−, (A.9)

where ϵ− ≥ B2ρ2

|D−| .

Now we can i) substitute F− in the right hand side of Eq. A.2 and F in the right hand side of

Eq. A.4, ii) use Eqs. A.8 and and iii) perform the appropriate scaling and rearrangement to get

(α− α−)(LDp
(F)− LDp

(F−)) ≥ −(αϵ− + α−ϵ). (A.10)

If the condition from Eq. A.7 is true, then we have α > α−.

We can then determine that D1 was less responsible than the remaining data D \ D1 if the

difference of losses satisfies the condition from Theorem 2. In other words, this implies that the

remaining data D \D1 is more skewed towards the poison distribution Dp, guiding our search for
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the set of poisoned data. The implication of the theorem above is that set searching is viable since

for any identified set, its relative impact on the attack incident can be quantitatively determined.

We note that the case when the removed set of data D1 contains only benign data is a special case

in the theorem above.

A.0.2 Further experimental details

Evaluation Dataset. We discuss in details of training datasets we used for the evaluation.

• Image Recognition (CIFAR10) - The task is to recognize 10 different objects. The dataset contains

50,000 training images and 10,000 testing images [41]. The model is an Wide Residual Neural

Network (RNN) with 50 residual blocks and 1 dense layer [86]. We use this task because of its

prevalence in general image classification and security literature.

• Image Recognition (ImageNet) - The task is to recognize 1000 different objects. The dataset

contains 1,281,167 training images [18]. We include this task because it has been used as a

general benchmark for computer vision and the large number of training data poses a challenge

for our traceback system.

• Face Recognition (VGGFace) – This task is to recognize faces of 2, 622 different people drawn

from the Internet. We include this task because it simulates a more complex facial recognition-

based security screening scenario. Tracing back poison attack in this setting is important. Fur-

thermore, the large set of labels and training data in this task allows us to explore the scalability

of our system.

• Malware Detection (EMBER Malware) – Ember is a representative public dataset of malware

and goodware samples. The dataset consists of 2,351-dimensional feature vectors extracted from

Portable Executable (PE) files for the Microsoft Windows OS. We include the dataset to test

traceback performance on malware detection.
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Percentage of
Weights Kept Precision Recall

0.1% 98.9± 0.0% 98.0± 0.0%
1% 99.1± 0.0% 97.9± 0.1%
5% 99.2± 0.0% 97.9± 0.1%

Table A.1: Precision and recall of traceback system remain the same as the precentage of weights
kept for clustering increases for ImageNet-BadNet.

Attack Method Attack Configuration
PGD ϵ = 0.05, step size = 9, max iterations = 1000, learning rate = 0.05
CW ϵ = 0.05, # of iteration = 100, epsilon of each iteration = 0.005

Boundary ϵ = 0.05, num iterations = 10000, δ = 0.1
HSJA ϵ = 0.05, num iterations = 10000, γ = 1.0

Table A.2: Detailed information on evasion attacks.

Perturbation
Budget (L inf )

Attack
Success Rate Precision Recall

0.01 29.2% 99.4% 94.9%
0.03 86.1% 98.4% 96.8%
0.05 93.7% 99.2% 99.2%
0.09 97.6% 99.1% 99.4%

Table A.3: For BP-CIFAR10, both attack success rate and traceback recall increase with the attack
perturbation budget, because the poison training data becomes more effective.

Attack Name Dataset Injection
Rate

Benign
Classification Accuracy

BadNet CIFAR10 10% 92.9± 0.3%
BadNet ImageNet 10% 78.9± 1.7%
Trojan VGGFace 10% 76.1± 0.8%
Physical Backdoor Wenger Face 10% 99.9± 0.0%

Table A.4: The default setup of dirty-label poisoning attacks.

Attack Name Dataset Injection
Rate

Benign
Classification Accuracy

BP CIFAR10 0.01% 93.0± 0.2%
BP ImageNet 0.01% 79.1± 0.9%
WitchBrew CIFAR10 1% 92.2± 0.3%
WitchBrew ImageNet 1% 79.3± 0.7%
Malware Backdoor EMBER Malware 1% 99.2± 0.1%

Table A.5: The default setup of the five clean-label poisoning attacks used in our evaluation.

Attack-Dataset Avg L2 distance of poison data to Avg # of
iterationsbenign centroid poison centroid

BadNet-CIFAR10 0.65 0.19 3.2
BadNet-ImageNet 0.76 0.24 3.4
Trojan-VGGFace 0.69 0.09 3.1
Physical-Wenger 0.62 0.39 4.0

Table A.6: The average L2 distance between individual poison data and the benign (poison) cen-
troid, and the number of pruning iterations needed to complete the traceback.
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Figure A.1: 2-D PCA visualization of the projection of training data (sampled from BP-CIFAR10).
Orange circles are innocent data and red crosses are poison data.
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