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ABSTRACT

The Internet of Things for homes (home IoT ) creates unique security challenges. Home

IoT devices often interact with multiple people under the same roof and are equipped with

various modalities. They do not only react to commands from the user, but also from the

environment, which increases the attack surface and changes the threat model. The highly

fragmented ecosystem of home IoT devices only makes things worse, making it harder to

find a solution that fits all devices.

Traditional security approaches fail in these challenges because they are designed for con-

ventional computing devices like computers or smartphones, which are mostly used by one

user with proper screens and keyboards. These characteristics make mechanisms like access

control and authentication much more manageable. On the other hand, traditional comput-

ing devices are general-purpose, making enforcing allowlists of network traffic impossible.

This is no longer the case for home IoT devices, and new strategies must be employed.

Responding to these emerging challenges in the home IoT, we create a road map about

how to make a home IoT system secure and usable on different levels. We are mainly

interested in devices’ interactions with the external world, such as users, the physical envi-

ronment, sensors, and remote servers. With such emphasis, we divide a home IoT system

into three parts: user & software, environment & hardware, and network. For the user &

software part, this thesis elicits requirements for access control systems that handle users

with complex relationships and constantly changing contexts. For environments & hardware,

this thesis creates a framework for context sensing, systematizing contexts and their required

sensors, along with their security, privacy, and usability characteristics. In the network part,

this thesis maps the design space of creating network allowlists that successfully generalize.
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CHAPTER 1

INTRODUCTION

The proliferation of home IoT devices in recent years has raised significant security and pri-

vacy concerns [1]. Unlike traditional computing devices, such as computers or smartphones,

home IoT devices often need to support multiple users with complex social relationships, as

well as to react to multiple modalities [2, 3]. Both requirements create a larger attack surface

than before. Moreover, many IoT devices are not designed for general-purpose computing.

Devices intended for specific, narrow purposes inherently have different properties. Even

for different home IoT devices made for the same purpose (e.g., different IoT thermostats),

different manufacturers create different network architectures, causing more fragmentation

in the home IoT ecosystem [4]. The widely existing variations in home IoT devices make

protecting the security of all home IoT devices in the wild a challenge [5, 6, 7].

Unfortunately, many security practices and mindsets fail to recognize differences between

home IoT devices and traditional general-purpose computing devices. Therefore, they fail

to account for these differences. Access control in smart homes, for example, retains the

admin-guests model that is typical on general-purpose computers even though the social

relationships between IoT users are much more complicated [8, 9, 10, 11, 12, 13, 14]. IoT

systems are also sensitive to environmental changes. Attackers can alter the system’s be-

haviors by changing the environment [15, 16, 17, 18, 19, 20]. Security and privacy research

for home IoT devices is often dedicated only to one type of devices [21, 22] or one particular

home IoT platform [23, 24].

This thesis revisits and inspects various aspects of home IoT systems from

a security and privacy perspective. The thesis rethinks old security mindsets

transferred naively from general-purpose computing devices, pinpointing how

they fail in the face of the unique challenges brought by home IoT. The thesis

subsequently propose more adaptive, secure, and privacy-respectful designs. The
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thesis emphasizes the interactions a home IoT device may have with the external world,

such as humans, environments, and remote servers. However, security and privacy concerns

caused by vulnerabilities from the system itself (e.g., exploitable firmware, insecure API

implementation) are out of the scope of this thesis because such threats are usually not

unique to home IoT systems and have been studied extensively [7].

As with any other system, home IoT systems consist of various connected components,

namely the following: software, hardware, and network. Different components enable distinct

interactions with various audiences. For instance, software enables interactions between

users and the system. Through software, a user can control devices, set up routines, or

grant/revoke others’ access to certain capabilities. Hardware, on the other hand, is the

communication channel between the environment and the system. Sensors, the devices that

detect changes in the environment, provide information to the system. Actuators, the devices

that execute commands, perform actions that may change the environment. Similarly, a

network connects the home IoT devices with each other and with remote servers, facilitating

all functionalities the devices can provide. A more detailed system model is defined and

illustrated in Chapter 3.

Each component in the home IoT system has its own goals. The audiences they are facing

also may impact the system in various ways. These differences eventually create unique sets

of challenges for each respective component, requiring diverse techniques to understand the

obstacles and varied perspectives.

For these components, this thesis makes the following contributions:

Users & Software: This thesis focuses on security and privacy. As such, access control is

a primary concern. The access control system is meant to manage the relationship between

human users and the devices that are under the system’s control. However, the complex

social relationships among the users in the same household necessitate highly contextual

access control policies, challenging the system to better understand the situation before
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making any decisions. Traditional access control systems for general-purpose computing

devices rarely face such challenges. Adopting traditional access control approaches without

thoughtful adaption leaves users with limited ways to express their intent to the system.

The lack of tangible interfaces on many home IoT devices makes things worse.

Therefore, we need to understand what access control system is desired or expected

by home IoT users. To achieve this, we studied the pitfalls of these fundamental security

mechanisms in the age of IoT, exploring their necessary characteristics and features through

a 425-participant online survey. We discovered the delicacy of different social relationship

among users, helping us understand how these relationships altered users’ default attitudes

toward access control policies regarding various capabilities that a home IoT system can offer.

We also curated a list of contexts that can affect users’ access control decisions, shedding

light on what an adaptive system should know to respect the constantly changing contexts

in a home [8].

Environment & Hardware: As mentioned previously, hardware in home IoT can be

categorized into sensors and actuators. To support the rich contexts we identified in the

previous study, sensors are indispensable. We thus next explore various desired contexts,

identifying assorted sensors that can actually sense them. The list of potentially suitable

sensors is long; the challenge becomes which one to adopt. There are many dimensions that

can affect this decision. For security, ensuring the correctness of sensor readings is crucial,

which by itself is a challenging problem. People also care about their privacy. Sensors that

are invasive (e.g., cameras) are less ideal for privacy. Some sensor implementations require

considerable efforts from users, making them less likely to be adopted. Moreover, these

dimensions may even conflict with each other, creating complex trade-offs. To tackle the

challenge, we developed a decision framework for sensor adoption in the context of access

control. We proposed a novel threat model that involves internal attackers and established

detailed criteria for security, privacy, and usability. We then consider each sensor’s charac-
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teristics in an adversarial setting and rate them based on the criteria we developed. The

framework thus helps future users navigate trade-offs based on their own needs [25].

Remote Servers & Network: Network threats have existed almost as long as the inter-

net itself. Corresponding network defenses like firewalls are well-established. However, the

distributed nature of the home IoT makes the deployment of such defenses more challenging.

Devices in the same home IoT system can be made by various vendors, who adopt different

infrastructures that can affect the way these devices communicate with remote servers. The

complexity of today’s Internet also makes various devices (instances) of the same product

behave differently, either due to load balancing adopted by the servers or the geo-location of

the local device. A set of rules that permits network activities thus can vary from device to

device, even if the devices are viewed as the same product in users’ eyes. Therefore, creating

generalizable allowlists is both desired and challenging.

Our work explores the design space of automatically creating generalizable allowlists for

various home IoT products. We automatically create allowlists that can work for all devices

of a product, instead of just one device, by using the IoT Inspector dataset, a large-scale

IoT traffic dataset collected from real homes [26]. Leveraging this large-scale dataset, we

discover that the network activities of different devices (of the same product) can greatly

vary due to load balancing, under-represented regional services, user-specific settings, and

more. These discoveries guide us to explore and map the design space needed to support

generalizable allowlists. For instance, we consider various host representations (e.g., IP,

hostname, domain), samples from different regions, sample sizes, and minimum bars for

admitting a new host into the allowlist. We then measure how different allowlists can affect

device functionality. Our discoveries on the general trends provide guidance on the desirable

design for allowlists, such as the usage of hostname patterns, region-specific allowlists, and

more. We also learned that certain infrastructures and careless host naming can lead to

the failure of allowlists. We also deployed these allowlist on real-world devices in our lab
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to understand their impact on functionality. Given the prevalence of load balancing in

today’s networks, we found that hostname-pattern-based allowlists help to maintain devices’

functionality, but still can fall short for video and music streaming devices. We also found

allowlists to be relatively stable over time, in contrast to many people’s belief.

Throughout this thesis, we create a road map that can secure home IoT devices from

various attackers in different parts of home IoT systems. A smart home owner could use our

context sensing framework to select a combination of home IoT sensors that not only fit their

needs, but also are robust against local attackers while preserving user privacy. Once the

selected home IoT devices and sensors are deployed, the owner can use allowlists to prevent

attacks launched by a remote attacker or a compromised device. Finally, for legitimate

users, a good access control system will assign default access based on their social roles in

the household, as suggested by our work.
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CHAPTER 2

RELATED WORK

2.1 Access Control in the Home IoT

Current research focuses on analyzing and fixing the security of platforms [27, 28, 29], pro-

tocols [30], and devices [31]. Fernandes et al. discuss how smart-home apps can be over-

privileged in terms of their access to devices and present attacks exploiting deficiencies in

apps’ access-control mechanisms [27]. Mitigations have involved rethinking permission grant-

ing [32, 33, 27].

Comparatively little work has focused on authorizing and authenticating humans to home

IoT devices.

Prior work has focused on the difficulties of access control in the home [34, 35, 36, 37],

rather than solutions. Furthermore, the consumer device landscape has changed rapidly in

the years since these initial studies.

Some older work has examined authentication [38] and access-control [39] for deployed

home IoT devices, finding such affordances highly ineffective. Recent studies [2, 40] have

sought to elicit users’ broad security and privacy concerns with IoT environments, par-

ticularly noting multi-user complexity as a key security challenge. This complexity stems

from the social ties in a home IoT setting. For instance, researchers have noted that room-

mates [12], guests [41], neighbors [13], and children [9, 42] are all important considerations

in multi-user environments. In Chapter 4, we build on this work, identifying desired access-

control rules for home IoT devices and bringing both relationships between home occupants

and devices’ individual capabilities to the forefront.

To take contextual factors into consideration, Schuster et al. proposed protocols for en-

forcing contextual (a.k.a. “situational”) access control [43]. They introduced Environmental

Situation Oracles (ESO) that answer queries about context. They did not, however, investi-
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gate physical sensing, which inspired our work in Chapter 5. In Chapter 5, we investigate the

trustworthiness and usability of the physical sensing that necessarily underpins their oracles.

To improve the robustness of sensing, Birnbach et al. proposed ensemble methods that

combine sensors to verify physical events in homes [44]. While they focused on techniques

for sensor fusion, we provide a framework to help designers choose a set of sensors with

complementary usability/privacy properties and abilities to resist attacks.

User-centered work focuses on the expression of policies, not enforcement. He et al.

mapped potentially desirable policies [8] and Zeng et al. studied the user interface for ex-

pressing policies in multi-user homes [11], but gaps remain. Current designs rely on the

integrity and availability of sensor data, which we show are not guaranteed. Privacy con-

cerns can also make people unwilling to deploy certain sensors in homes [45].

Prior research on IoT authentication has focused on protocols (e.g., Kerberos-like frame-

works [46, 47]) without considering the constraints of users. Feng et al. introduced VAuth,

voice-based authentication for voice assistants [48]. VAuth requires the use of wearable

hardware to establish an authentication channel, however.

Smartphones can be considered a predecessor to the IoT, yet the large literature [49,

50, 51, 52] on specifying which apps can access which resources translates only partially to

home IoT devices. Enck et al. discuss how apps could gain access to resources by requesting

permission from the user [51], while Felt et al. discuss how users may not always pay attention

to such prompts [49]. A common theme is that apps access phone resources, and a phone is a

single-user device not typically shared with others. On current versions of Android, one can

configure secondary accounts with restrictions on what apps may be used [53], yet having

separate accounts does not solve the multi-user challenges of home IoT devices.
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2.2 Privacy in the Home IoT

Prior research demonstrates gaps between users’ perceptions of their privacy in smart homes

and reality. Users have a limited understanding of privacy risks, and these opinions vary

by context [2, 54, 55, 40, 56]. Researchers have explored the design space of usable privacy

protection for the IoT [57], designed mechanisms for data transparency in homes [58, 59, 60],

and made personalized privacy mechanisms that predict an individual’s preference in a given

situation [61, 40]. Building on the usable privacy literature, we capture privacy concerns

about implementations of contextual access control, including sensing, data storage, and

retention.

There is a growing body of research on developing privacy-preserving measures in ubiqui-

tous sensing systems, such as obfuscation in audio sensing [62], cross-device tracking through

ultrasound [63], bystander privacy in wearable cameras [64, 65], and so on. However, the

public has no guarantee that the manufacturers of smart home devices will implement any

of these counter-measures. Non-technical users are also unlikely to deploy such measures by

themselves. Therefore, smart home designers should select a sensing method that minimizes

overprivileged and inadvertent data collection before deployment, which is the focus of this

thesis.

2.3 Systematization of Knowledge (SoK) in IoT

A few prior papers survey specific aspects of the IoT. Fernandes et al. highlighted that access

control and authentication are among the IoT’s new intellectual challenges [66]. Considering

software and networks, Alrawi et al. proposed methods for security evaluations of home

IoT devices [7]. While they comprehensively explore digital attacks, we instead focus on

physical attacks on sensors. Yan et al. examined analog sensor security, formalizing sensor

circuits’ security properties [67]. Their attackers are highly technical, whereas we focus on
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the non-technical adversaries that are common inside homes. On the network level, Yu et al.

argued that context-aware enforcement is essential in the IoT [6]. Zhang et al. [5] compared

academic and industry perspectives on IoT security. Their “environment mistrust” category

can include physical attacks on sensing. They focus on technical attacks, such as signal

jamming and voice synthesis. We expand their threat model to explore physical attacks on

sensors by non-experts.

2.4 Generating IoT Network Policies

Chapter 6 aims in part to understand how allowlists generalize across devices for various

home IoT products. Creating an allowlist is merely a step in the exploration, which is

different from all the prior work that set out for IoT network policy generation. There

are two types of network policies: blocklists and allowlists. Blocklists have received more

attention and are more widely used. In a different domain, many ad blockers use a blocklist

strategy, gathering policies through community effort [68]. Prior research on IoT network

blocklists takes a more advanced approach, creating broadly applicable blocklists by blocking

observed hostnames one at a time on a real IoT device [69]. Because blocklists do not have

to be complete to maintain device functionality, blocklists can be deployed immediately.

Creating generalizable allowlists is a different story. Although several studies proposed

creating allowlists based on observing a single device [70, 71, 72, 73], our analysis shows that

due to load balancing and other network-specific settings, these allowlists will not generalize.

Rather than focusing on a single device, we used the IoT Inspector dataset, the largest home

IoT traffic dataset, to understand whether an allowlist can transfer to other devices. Our

work also contrasts with proposals like Cisco’s Manufacturer Usage Descriptions (MUD) [74],

which asks IoT manufacturers to specify Internet hosts with which their IoT device should

communicate. Specifically, our method requires no additional work from IoT vendors.

Thomasset et al. proposed SERENIoT, which uses blockchains to create and maintain
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allowlists from multiple devices [75]. While SERENIoT also creates allowlists through a

data-driven approach, storing the data on a blockchain, it does not study the process of

generalizing this traffic data, nor evaluate how policies generalize across devices. It is also

unclear how the tool performs outside the lab, where variations like load balancing make con-

sensus hard to reach. In contrast, we evaluate allowlist designs through both a retrospective

simulation on thousands of devices and a lab study.

Prior work has also created network policies based on application behaviors like heart-

beats and firmware checks [76]. However, doing so requires knowledge about application

data features, which are not always collected for privacy reasons. Our method also contrasts

with systems like Bro [77] that focus on analyzing network flows at high speeds, forcing the

user to decide what policies to implement.

2.5 Data-Driven Approaches for Anomaly Detection

To evaluate allowlist generalization in Chapter 6, we use the IoT Inspector dataset [26]. Our

use of a large-scale, real-world dataset also differs from prior work. Many existing approaches

use supervised machine learning techniques to detect anomalous flows [78, 79, 80, 81, 82, 83,

84, 6, 85], but they typically rely on training and evaluation data from dozens of devices in

a lab environment. For example, Dong et al. [86] trained neural networks to fingerprint IoT

traffic based on 10 IoT devices in the lab. Similarly, Mandalari et al. [69] identified blockable

IoT-contacted hostnames based on an in-lab study of 31 devices. It is unclear whether these

techniques would apply to a larger IoT traffic dataset. Some commercial products [87, 88]

claim to generate rules using proprietary methods and data, but do not detail their approach.

In addition to the scale, our novelty also lies in the realism of the dataset. The dataset

was collected from 5,439 volunteers from around the world [26], reflecting devices deployed

under real-world conditions. Much existing work, such as from DeMarinis et al. [89] and even

the MUD specification [74], assumes that IoT devices have predictable patterns in network
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traffic. Also, prior work, including from Dong et al. [86] and Mandalari et al. [69], is based

on static snapshots of IoT device behaviors in the lab, missing dynamic changes from new

interactions and firmware updates.

IoT devices’ potentially variable and complex behaviors call for techniques that dynam-

ically build firewall-style rules. Other dynamic techniques include HANZO, which identifies

devices and classifies network traffic from the home gateway [90]. Like much existing work,

HANZO was evaluated in a lab setting, and its capability to generalize to the complex be-

haviors of real-world devices was not studied. HanGuard instead constructs network policies

based on the traffic between IoT devices and mobile apps [91]. Our method does not require

analysis of companion mobile apps.

2.6 Alternate Approaches to Network Security

Other work tries to protect compromised IoT devices using very different approaches to

network security. For example, Martin et al. protect IoT devices on private networks from

external attacks by scrambling port forwarding on the gateway [92]. Acar et al. propose

securing HTTP servers on IoT devices to prevent the lateral movement of malware [93]. To

reduce the attack surface, Goutam et al. divide IoT devices into controllable (e.g., lights)

and non-controllable (e.g., hubs) devices, forcing the former to communicate only with the

latter [94]. We instead examine communication between home IoT devices and Internet

hosts.
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CHAPTER 3

MODELING HOME IOT INTERACTIONS AND THREATS

In this chapter, we introduce our system model for a home IoT environment, with a focus

on the interactions that may occur. Based on the defined model, we further illustrate the

potential threats that can be introduced to the model.

Home IoT systems are inherently complex. The variety of control the system provides

to its users is unseen before. To turn on a light in a home IoT system, for example, one

can flip a physical switch, tap a button on their smartphone, ask the voice assistant to do

it for them, or program the system so that the light turns on whenever the system detects

someone is in the room.

Although the goal of adding more modalities to home IoT is to make people’s lives

easier, integrating everything without careful design can cause more problems than benefits,

introducing security, privacy, and usability issues. By adding sensors to the system and allow

them to provoke actions, attackers can now take advantage of the system via both network

and sensing channels, compromising or deceiving the system for their own benefits [95, 19, 96,

97, 25]. Users also struggle to configure the system in a way that matches their expectations,

either due to a misunderstanding about the system design or the system’s inability.

Comprehensively understanding the potential security, privacy, and usability pitfalls in

the interactions thus requires defining a home IoT system model. With a home IoT system

model, we can identify the possible interactions that can be a point of access.

The home IoT system model we use in this thesis includes three main parts: software,

hardware, and network, as showcasing in Figure 3.1. Each interacts with different stakehold-

ers in a home IoT environment, triggering various security, privacy, and usability concerns

and requiring distinct analysis and defense.

In the following parts, we detail the definition of our system model and its interactions

with possible stakeholders, specifying the problems the system faces for each part.
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Software – Access Control

Hardware – Sensors, Actuators

Network

A Home IoT System

Users

Temperature Brightness Sound

……

Remote
Servers

Figure 3.1: The home IoT stack model used in this thesis. It emphasize the interactions a
home IoT may have with the external world, namely users, surroundings, and remote servers.

3.1 General System Setting

Although our system model includes three major parts, all parts share the same system

model. In this section, we present the home IoT system model that we use throughout

the thesis, specifying fundamental definitions of various stakeholders and the interactions

methods they leverage.

Users Anyone with legitimate access to the system would be considered as a valid user,

regardless of their residence in the house hold. Family members, visitors, and domestic

workers can all be valid users in our system model.

Home IoT Devices Home IoT devices are Internet-connected devices. Our system model

consists of two types of home IoT devices: actuators that execute commands (e.g., lights),

and sensors that measure their surroundings (e.g., motion sensors). Once connected to

the Internet, actuators can be controlled either locally (e.g., through physical buttons, or

smartphones under the same network) or remotely (e.g., through commands sent from the

Internet). Sensors usually cannot be explicitly controlled, but they can collect data from
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the environment and report the data either to a local hub or a remote server, informing the

system about the changes of the physical attributes in the surroundings.

Interaction Modalities Interactions modalities describe how the user interacts with home

IoT devices. We assume a domestic setting where occupants control home IoT devices

through six different modalities, which includes smartphones apps, manual interaction, phys-

ical tokens, voice assistants, gestures, and automations. For example, a maintenance worker

may unlock the front door using a smartphone app, while a child might turn off their lights

by speaking to a voice assistant.

1. Smartphone Apps: Smartphone apps are by far the most common controlling method for

home IoT. The smartphone app can be a home IoT device’s companion app. It can also be

some general management app that controls all the devices in one’s home.

2. Manual Interaction: A user can interact with devices manually, often by flipping switches

or pressing buttons. Additional sensing is required to identify the user in such scenarios. A

contextual access-control framework can inform a smart device whether to permit access.

3. Physical tokens: Similar to using keys to unlock traditional doors, some home IoT device

may also use some physical object as one way to recognize the user. It can be a token

specifically made for authentication purpose. It can also be some daily used object with

communication methods built in, such as smartphones. One example could be Apple Home-

pod’s handoff feature [98]. Users can let a Homepod play songs from their phones by simply

putting the smartphone nearby. Because users already authenticate to their phone, current

IoT systems can rely on the possession of a phone as a proxy for identity.

4. Voice: Voice assistants let users control devices by speaking. Currently, they perform no

authentication [17] or use speaker recognition that is easy to fool [99, 100].

5. Gestures: Currently uncommon in homes, gestures could be detected using ultrasonic or

radio waves to recognize and authenticate movements as a source of input.

6. Automation: Smart home automation can link changes in context or other triggers to
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actions. They can be set with apps [32] or end-user programming [101]. Absent access

control, automations may create loopholes [102, 23]. Imagine the automation: “If the lights

turn off then play a movie.” If a child may not play movies, yet may turn off lights, a

crafty child could start a movie by turning off a light. While focused on contextual access

control, our framework can also apply to automations triggered by a sensed context [101],

such as when a room is warm [103, 23]. An attacker who tricks a sensor can cause chained

automations toward a malicious goal [102, 29].

Network Settings We assume that all the home IoT devices connected to a router to

access the Internet. The router has the ability to interfere with the network behaviors of

connected devices and is completely under users’ control. There may be local communi-

cations between devices through WiFi, Bluetooth, Zigbee, etc. However, this thesis focus

more on the interactions that happens between the system with external parties (e.g., remote

servers) rather than the internal interactions.

3.2 User & Software

In Chapter 4, we discuss about how software (access control specifically) should be designed

for home IoT users in depth.

Using software (e.g., smartphone apps) is still the primary way users interact with the

home IoT system. Aligning the software design and users’ expectations is crucial but of-

ten ignored. Neglecting users’ expectations can lead to frustrations and misunderstandings,

causing usability and security issues. In Chapter 4, we study users’ expectations and per-

ceptions about access control in a home IoT environment, identifying factors not covered by

today’s home IoT system and the design we should apply in the future.

In this thesis, software includes any software that controls the home IoT devices’ behav-

iors, such as access control, authentication, home automation apps, etc. However, since the
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focus of this thesis is about security and privacy and authentication is naturally covered by

access control, we will focus on access control in the following parts.

We assume a central access control system that can grant or revoke anyone’s access to

any home IoT devices. Devices are managed through a hub that facilitates communication

between devices, enforces policies, and often allows for the creation of end-user programs or

the use of apps.

Users are the primary audience of the software, as defined in Section 3.1. To better

understand the unique challenges presented in a home setting, we categorize different users

based on their relationships with the owner (i.e., the user that sets access control policies),

such as spouse, children at different age, visiting family members, domestic workers, etc.

3.3 Environment & Hardware

Chapter 5 focuses on creating a framework for a contextual access control system. It heavily

relies on the interactions between the environmental changes and the hardware used to detect

these changes and act upon them.

A contextual systems means that the system can take different actions based on various

contexts. For a contextual access control system, it means distinct access control policies

can be activated based on the detected contexts, even for the same user.

Contexts describe a particular state of the physical world. In a smart home, contexts

describe situations, states of actuators, presence of specific people, and more. Examples

include a security camera being activated, the temperature staying within some range, or a

specific person sitting in the kitchen. Contextual access control relies on sensors to recon-

struct these situations, which we call context sensing. Once the context is sensed, contextual

access control can then enforces policies through actuators by responding or not responding

to a users’ access request to a particular capability.
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3.4 Remote Servers & Network

In Chapter 6, we detail the possible threats from the network and discuss how much security

guarantee that a security mechanism like an allowlist can provide without hurting the devices’

functionality. The chapter heavily relies on our assumptions of a home IoT user’s network

settings.

As defined in Section 3.1, the network part of our system model only includes one single

local network, to which every device connects. The users have complete control over what

these devices can send to or receive from the Internet. However, we do not assume the

users would perform any deep package inspection on the traffic, given that most traffic is

encrypted.

The remote servers include any servers that a device may contact during usage, including

both first-party and third-party servers, regardless of whether they are essential or not.
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CHAPTER 4

RETHINKING ACCESS CONTROL FOR THE HOME IOT

Recent years have seen a proliferation of Internet of Things (IoT) devices intended for

consumers’ homes, including Samsung SmartThings [104], the Amazon Echo voice assis-

tant [105], the Nest Thermostat [106], Belkin’s Wemo devices [107], and Philips Hue lights [108].

To date, IoT security and privacy research has focused on such devices’ insecure software-

engineering practices [31, 109, 27], improper information flows [109, 23, 29], and the inherent

difficulties of patching networked devices [5, 6].

Surprisingly little attention has been paid to access-control-policy specification (express-

ing which particular users, in which contexts, are permitted to access a resource) or authen-

tication (verifying that users are who they claim to be) in the home IoT. This state of affairs

is troubling because the characteristics that make the IoT distinct from prior computing do-

mains necessitate a rethinking of access control and authentication. Traditional devices like

computers, phones, tablets, and smart watches are generally used by only a single person.

Therefore, once a user authenticates to their own device, minimal further access control is

needed. These devices have screens and keyboards, so the process of authentication often

involves passwords, PINs, fingerprint biometrics, or similar approaches [110].

Home IoT devices are fundamentally different. First, numerous users interact with a

single home IoT device, such as a household’s shared voice assistant or Internet-connected

door lock. Widely deployed techniques for specifying access-control policies and authenti-

cating users fall short when multiple users share a device [2]. Complicating matters, users

in a household often have complex social relationships with each other, changing the threat

model. For example, mischievous children [9], parents curious about what their teenagers are

doing [10], and abusive romantic partners [111] are all localized threats amplified in home

IoT environments.

Furthermore, few IoT devices have screens or keyboards [3], so users cannot just type a
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password. While users could possibly use their phone as a central authentication mechanism,

this would lose IoT devices’ hands-free convenience, while näıve solutions like speaking a

password to a voice assistant are often insecure.

Real-world examples of the shortcomings of current access-control-policy specification and

authentication for home IoT devices have begun to appear. A Burger King TV commercial

triggered Google Home voice assistants to read Wikipedia pages about the Whopper [17],

while the cartoon South Park mischievously triggered Amazon Echo voice assistants to fill

viewers’ Amazon shopping carts with risqué items [16]. While these examples were relatively

harmless, one could imagine a rogue child remotely controlling the devices in a sibling’s room

to annoy them, a curious babysitter with temporary access to a home perusing a device’s

history of interactions, or an enterprising burglar asking a voice assistant through a cracked

window to unlock the front door [15].

In this chapter, we take a first step toward rethinking the specification of access-control

policies and authentication for the home IoT. We structure our investigation around four re-

search questions, which we examine in a 425-participant user study. These research questions

are motivated by our observation that many home IoT devices combine varied functionality

in a single device. For example, a home hub or a voice assistant can perform tasks ranging

from turning on the lights to controlling the door locks. Current access control and authenti-

cation is often based on a device-centric model where access is granted or denied per device.

We move to a capability-centric model, where we define a capability as a particular action

(e. g., ordering an item online) that can be performed on a particular device (e. g., a voice

assistant). Intuition suggests that different capabilities have different sensitivities, leading

to our first research question:

RQ1: Do desired access-control policies differ among capabilities of single home IoT

devices? (Section 4.4.2 and 4.4.3).

We investigated this question by having each study participant specify their desired access-
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control policy for one of 22 home IoT capabilities we identified. For household members of six

different relationships (e. g., spouse, child, babysitter), the participant specified when that

person should be allowed to use that capability. Our findings validated our intuition that

policies about capabilities, rather than devices, better capture users’ preferences. Different

capabilities for voice assistants and doors particularly elicited strikingly different policies.

While the ability to specify granularly who should be able to use which capabilities is

necessary to capture users’ policies, it incurs a steep usability cost. To minimize this burden

through default policies, we asked:

RQ2: For which pairs of relationships (e. g., child) and capabilities (e. g., turn on lights)

are desired access-control policies consistent across participants? These can be default set-

tings (Section 4.4.4).

In our study, nearly all participants always wanted their spouses to be able to use capabilities

other than log deletion at all times. Participants also wanted others to be able to control

the lights and thermostat while at home. As intimated by the prior policy, the context in

which a particular individual would use a capability may also matter. Children might be

permitted to control lights, but perhaps not to turn the lights on and off hundreds of times

in succession as children are wont to do. Nor should children be permitted to operate most

household devices when they are away from home, particularly devices in siblings’ rooms. A

babysitter unlocking the door from inside the house has far fewer security implications than

the babysitter setting a persistent rule to unlock the front door whenever anyone rings the

doorbell.

RQ3: On what contextual factors (e. g., location) do access-control policies depend?

(Section 4.4.5).

In addition to a user’s location, we found that participants wanted to specify access-control

policies based on a user’s age, the location of a device, and other factors. Almost none of

these contextual factors are supported by current devices. Finally, to identify promising
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directions for designing authentication mechanisms in the home IoT, we asked:

RQ4: What types of authentication methods balance convenience and security, holding

the potential to successfully balance the consequences of falsely allowing and denying access?

(Section 4.4.6).

Analyzing consequences participants noted for falsely allowing or denying access to capa-

bilities, we identify a spectrum of methods that seem promising for authenticating users

(Section 4.5), thereby enabling enforcement of users’ desired access-control policies for the

home IoT.

4.1 Background

In this section, we scope our threat model and review current devices’ support for access

control and authentication.

4.1.1 Threat Model

The two major classes of adversaries in the smart home are external third parties and those

who have legitimate physical access to the home. The former class includes those who exploit

software vulnerabilities in platforms [27], devices [31] (e. g., with Mirai), or protocols [30]

intending to cause physical, financial, or privacy-related damage. The latter class includes

household members with legitimate digital or physical access to the home, such as temporary

workers or children [9]. These insider threats have received far less research attention, but

are the focus of this chapter. Insiders might be motivated to subvert a smart-home system’s

access controls for reasons ranging from curiosity to willful disobedience (e.g., a child at-

tempting to take actions forbidden by their parents), or to attempt to correct imbalances

created by the introduction of devices whose surveillance implications grant asymmetric

power to certain members of a household (e. g., a parent tracking a teenager [10]).
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4.1.2 Affordances of Current Devices

Current home IoT devices have relatively limited affordances for access control and authen-

tication. Taking a five-year-old survey of the home IoT landscape as a starting point [39], we

surveyed current devices’ affordances; Figure 4.1 shows representative samples. To control

many current devices, people use smartphone apps that must be paired with devices. These

apps offer various access-control settings. For example, the Nest Thermostat supports a

binary model where additional users either have full or no access to all of the thermostat’s

capabilities. The August Smart Lock offers a similar model with guest and owner levels.

Withings wireless scales let users create separate accounts and thus isolate their weight mea-

surements from other users. On Apple HomeKit, one can invite additional users, restricting

them to: (a) full control, (b) view-only control, (c) local or remote control.

Some devices offer slightly richer access-control-policy specification. The Kwikset Kevo

Smart Lock allows access-control rules to be time-based; an owner can grant access to a sec-

ondary user for a limited amount of time. We find in our user study that time is a desirable

contextual factor, but one of only many. We focus on capabilities, rather than devices. While

most current devices do not allow for access-control policies that distinguish by capability,

Samsung SmartThings lets users restrict third-party apps from accessing certain capabili-

ties [112]. We find that restricting users, not just apps, access to a particular capability is

necessary.

From this analysis, we found current mechanisms to be rudimentary and lack the neces-

sary vocabulary for specifying access-control rules in complex, multi-user environments. We

aim to establish a richer vocabulary.

Current authentication methods for the home IoT appear transplanted from smartphone

and desktop paradigms. Passwords are widely used in conjunction with smartphones. For

example, SmartThings has an app through which a user can control devices. A user first

authenticates to this app using a password. Voice-based authentication is currently very
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(a) Nest Learning Ther-
mostat

(b) August Smart Lock (c) Apple HomeKit (d) Kwikset Kevo Smart
Lock

Figure 4.1: Current access-control-specification interfaces: The Nest Thermostat (a) only
allows “all-or-nothing” specification, while the August Smart Lock (b) only offers coarse-
grained access control via predefined Guest and Owner groups. In contrast, Apple’s Home-
Kit (c) differentiates between view and edit access level, as well as local and remote access.
The Kwikset Kevo Smart Lock (d) provides time-based access control, but not other factors.

rudimentary and is not used for security, but for personalization. For instance, Google Home

uses speaker recognition for customizing reminders, but not for security-related tasks [113].

4.2 Pre-Study

As a first step in exploring access control based on capabilities and relationships in the

home IoT, we conducted a pre-study to identify capabilities and relationships that elicit

representative or important user concerns. To ground our investigation of capabilities of the

home IoT in devices consumers would likely encounter, we created a list of home IoT devices

from consumer recommendations in CNET, PCMag, and Tom’s Guide [114]. We grouped

devices by their core functionality into categories including smart-home hubs, door locks, and

voice assistants.

For each category of device, we collected the capabilities offered by currently marketed

devices in that category. We added likely future capabilities, as well as the ability to write
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end-user programs [23, 29]. We showed each pre-study participant all capabilities identified

for a single given class of device. The participant answered questions about the positive and

negative consequences of using that capability, and they also identified additional capabilities

they expected the device to have. We used this process to identify a comprehensive, yet

diverse, set of capabilities that range from those that elicit substantial concerns to those

that elicit none.

To identify a small set of relationships to investigate in the main study, we also showed

participants a table of 24 relationships (e. g., teenage child, home health aide) and asked them

to group these relationships into five ordered levels of desired access to smart-home devices.

We chose this list of 24 relationships based on existing users and groups in discretionary

access control (DAC) systems and common social relationships in households.

We conducted the pre-study with 31 participants on Amazon’s Mechanical Turk. Par-

ticipants identified potential concerns for a number of capabilities, in addition to identifying

capabilities (e. g., turning on lights) that aroused few concerns. We used these results to gen-

erate a list of capabilities, grouping similar functionalities across devices into categories like

viewing the current state of a device. We selected the 22 capabilities whose pre-study results

showed a spectrum of opinions and concerns while maintaining a feature-set representative

of smart homes.

To narrow our initial list of 24 relationships to a tractable number, we examined how

pre-study participants assigned each relationship to one of the five ordered categories of

desired access to household devices. We chose the six relationships that span the full range

of desired access and for which participants were most consistent in their assignments to a

category.
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4.3 Main Study

To elicit desired access-control policies for the home IoT, our main study was an online

survey-based user study. We recruited participants on Mechanical Turk, limiting the study

to workers age 18+ who live in the United States and have an approval rating of at least

95%.

4.3.1 Protocol

Each participant was presented with a single capability (e.g., “see which lights in the home

are on or off”) randomly chosen from among the 22 identified in the pre-study.

We then presented the participant with one of six relationships: spouse; teenage child;

child in elementary school; visiting family member; babysitter; neighbor. We first asked

whether such a person should be permitted to control that capability “always,” “never,” or

“sometimes, depending on specific factors.” These answers were the first step in identifying

participants’ desired access-control policies. For the first two options, we required a short

free-text justification. To better understand the importance of an authentication method

correctly identifying the person in question and the system correctly enforcing the access-

control policy, we asked participants who answered “always” or “never” to state how much of

an inconvenience it would be if the system incorrectly denied or allowed (respectively) that

particular user access to that capability. Participants chose from “not an inconvenience,”

“minor inconvenience,” or “major inconvenience,” with a brief free-text justification.

If the participant chose “sometimes,” we required additional explanations to further

delineate their desired access-control policy. They first explained in free-text when that

person should be allowed to use that capability, followed by when they should not be allowed

to do so. On a five-point scale from “not important” to “extremely important,” we asked

how important it was for them to have (or not have) access to that capability.

We repeated these questions for the other five relationships in random order. Thus, each

25



participant responded for all six relationships about a single capability.

Afterwards, we asked more general questions about specifying access-control policies for

that capability. In particular, we presented eight contextual factors in randomized order,

asking whether that factor should influence whether or not anyone should be permitted to

use that capability. The possible responses were “yes,” “no,” and “not applicable,” followed

by a free-response justification. We asked about the following factors: the time of day; the

location of the person relative to the device (e.g., in the same room); the age of the person;

who else is currently at home; the cost of performing that action (e.g., cost of electricity or

other monetary costs); the current state of the device; the location of the device in the home;

the person’s recent usage of the device. Further, we asked participants to list any additional

factors that might affect their decision for that capability.

We concluded with questions about demographics, as well as the characteristics of the

participant’s physical house and members of their household. We also asked about their

ownership and prior use of Internet-connected devices. We compensated participants $ 3.50

for the study, which took approximately 20 minutes and was IRB-approved.

4.3.2 Analysis

Participants’ responses about their access-control preferences included both qualitative free-

text responses and multiple-choice responses. Two independent researchers coded the quali-

tative data. The first researcher performed open coding to develop a code book capturing the

main themes, while the second coder independently used that same code book. To quantita-

tively compare multiple-choice responses across groups, we used the chi-squared test when all

cell values were at least 5, and Fisher’s Exact Test (FET) otherwise. For all tests, α = .05,

and we adjusted for multiple testing within each family of tests using Holm correction.
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4.3.3 Limitations

The ecological validity and generalizability of our study are limited due to our convenience

sample on Mechanical Turk. Most of our questions are based on hypothetical situations

in which participants imagine the relationships and capabilities we proposed to them and

self-report how they expect to react. Furthermore, while some participants were active users

of home IoT devices, others were not, making the scenarios fully hypothetical for some

participants. We chose to accept this limitation and include recruits regardless of prior

experience with home IoT devices to avoid biasing the sample toward early adopters, who

tend to be more affluent and tech-savvy.

4.4 Results

In the following sections we present our findings. We begin by providing an overview of

our participants (Section 4.4.1). Next, we present how desired access-control policies differ

across capabilities (RQ1, Section 4.4.2) and the degree to which desired policies differ across

relationships (RQ1, Section 4.4.3). After that, we show for which pairs of relationships

and capabilities the desired access-control policies are consistent across participants. We use

these pairs to derive default policies (RQ2, Section 4.4.4). Next, we evaluate which contextual

factors (e. g., age, location, usage) influence the “sometimes” cases the most, thus explaining

users’ reasoning for not always allowing access to a capability (RQ3, Section 4.4.5). Finally,

we analyze the consequences of false authorization and show the impact of falsely allowing

/ denying access to a certain capability on a per-relationship level (RQ4, Section 4.4.6).

4.4.1 Participants

A total of 426 individuals participated in the study, and 425 of them were qualified as effec-

tive responses. One response was excluded from our data because their free-text responses
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Figure 4.2: Participants’ desired access-control policies. We introduced participants to a
list of relationships (e.g., neighbor) and asked them to choose whether someone of that
relationship should be permitted to “always,” “sometimes,” or “never” control a capability
(e.g., adjust the camera angle) in their smart home.

were unrelated to our questions. Our sample was nearly gender-balanced; 46% of partic-

ipants identified as female, and 54% as male. The median age range was 25-34 years old

(47%). Most participants (85%) were between 25 and 54 years old. Some participants

(19%) reported majoring, earning a degree, or holding a job in computer science or a related

field.

The majority of our participants (67%) live in a single-family home, while 25% live in

an apartment. Nearly half of the participants own (49%) the place where they live, while

47% rent. Furthermore, we asked how many people (including the participant) live in the

same household. Around 20% of participants reported living in a single-person household,

27% in a two-person, 23% in a three-person, and 17% in a four-person household.
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4.4.2 Capabilities (RQ1)

Current access-control implementation in a smart home system is largely device-based. How-

ever, our data motivates a more fine-grained, flexible access-control mechanism. In the

following parts, we discuss our main findings, which are visualized in Figure 4.2.

A) Capability Differences Within a Single Device

We observed that participants’ attitudes toward various capabilities differ within a single

device. For example, voice assistants can be used to play music and order things online.

However, participants were much more willing to let others play music (32.5% of participants

choose never averaged across the six relationships, σ = 0.33, median = 23.7%) than order

things online (59.7% choose never on average, σ = 0.40, median = 71.1%) (FET, p < .05

for the teenager, child, and visiting family member relationships).

Another example of differing opinions across capabilities within a single device include delet-

ing an IoT lock’s activity logs and answering the door, viewing the current state of the lock,

and setting rules for the lock. Across relationships, participants were permissive about ca-

pabilities like answering the door (25.6% chose “never” averaged across all relationships

other than children, σ = 0.33, median = 16, 7%). Because children would likely not have

a smartphone, we did not ask about them performing this action and we exclude them

from this analysis. In contrast, 76.8% of participants said they would never allow others to

delete activity logs (σ = 0.28, median = 92.1%). These differences are significant (FET,

all p < 0.05 comparing within teenagers, visiting family, and babysitters). Even for a very

trust-based relationship like a spouse, some participants still chose never. When asked why,

one participant wrote: “No one should be able to delete the security logs.”

Even if individuals with relationships like neighbor or babysitter do not live in the same

house, permissions are sometimes given when the owner of the house is not around. One

typical response for when a capability should be accessible to neighbors is “Perhaps when

I’m on vacation and I ask them to watch my home.”
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B) Context-Dependent Capabilities

We identified “Answering the Doorbell” to be a highly context-dependent capability. 40%

of participants across relationships (σ = 0.33, median = 38.9%) selected sometimes for this

capability. At the same time, an average of 25.6% of participants across relationships chose

never (σ = 0.33, median = 16.7%).

Whether the homeowner is present is a key factor impacting responses. Many participants

(66.7%) chose sometimes when it came to the babysitter, because the job itself indicates

the parents are not around. If a delivery person rings the doorbell while the babysitter is

home, the babysitter should be allowed to handle the event. The majority of participants

(77.8%) also sometimes trust a visiting family member with the same level of access. Some

participants (16.7%) will even consider giving this access to their neighbors, so that if there

is an emergency when the family is on vacation, their neighbor can see who is at the door

from their smartphone.

4.4.3 Relationships (RQ1)

Relationships play an important role in participants’ preferred access-control policies.

A) Babysitter vs. Visiting Family

In the pre-study, we identified the babysitter and a visiting family member to be members of

a guest-like group. In the main study, participants’ overall attitudes toward babysitters and

visiting family members were quite consistent with each other. No significant differences

are observed between these two relationships in our pairwise chi-squared tests. This is

understandable because both relationships share some trust with the homeowner, while

neither lives in the same household.

In general, policies toward a visiting family member are slightly more permissive than policies

toward a babysitter. However, analyzing the qualitative data, we found the situation to be

more complex. There are some specific capabilities, such as “Live Video,” where babysitters
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would be granted permissions at a higher rate than a visiting family member. 57.1% of

participants decided that a visiting family member would never have access to this feature,

while only 33.3% of participants decided the same for a babysitter. The reason is that a

babysitter’s job is to take care of a child while a parental figure is away. Therefore, the

capability itself might help a babysitter take better care of the child, leading to a high rate

of granting this permission sometimes.

Meanwhile, some features show strong subjective variations, including granting babysitters

and visiting family members permission for “Answering the Doorbell.” Some participants

found it useful to always allow access, while other participants felt uncomfortable letting

someone that is not part of their family have access to this particular capability.

From these observations, we conclude that it is important to have both a relationship-based

and capability-based access-control model in a smart home. Such a model should be flexible

enough to address the complex needs and use cases that might occur.

B) Child vs. Teenager

Though both children and teenagers are under a parent or guardian’s watch, a teenager

(presented as 16 years old) and a child (presented as 8 years old) were given very different

access scopes. After removing the five capabilities that are not applicable to a child (whom we

assume lacks a smartphone), for twelve of the seventeen remaining capabilities teenagers were

given greater access (FET, all p < .05). A 16-year-old teenager was regarded as a young adult

by many participants and was more widely trusted to use capabilities responsibly. Therefore,

the always permission was chosen often, and no need for supervision was mentioned in their

free-text responses.

Meanwhile, granting an 8-year-old child unencumbered access worried participants much

more. Some participants mentioned that they were concerned that a young child would

misuse these capabilities, either intentionally or unintentionally, and thus ruin all the settings.

Several participants even expressed their worries that a young child could get themselves in
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danger with the access. For instance, one participant, who selected never for the capability of

seeing which door is currently locked or unlocked, wrote: “An elementary school child should

not be leaving the house on his own accord.” An 8-year-old child’s level of understanding of

a smart home system is also questionable. As a result, children rarely were granted access

always for capabilities other than those related to lights.

Even for capabilities for which participants chose relatively restrictive settings for both

teenagers and young children (e. g., “Order Online”), attitudes differed. Though only 5.3%

of participants agreed to give full access to “Order Online” to a teenager, 73.7% chose

sometimes over never, giving limited access to their teenager to buy things they needed on

Amazon. For young children, 94.7% participants believed that a child at that age should

never have access to it, frequently justifying that there is no need for younger children to

order things online themselves. Many participants mentioned supervision or limitations on

what a teenager can buy on Amazon, but they did admit they would let a teenager buy

things from Amazon themselves if they had a reason.

C) Overall Preference for Restrictive Polices

We found that, except for spouses and teenagers, most participants preferred a more restric-

tive access-control policy over a more permissive one. For nine of the twenty-two capabilities

averaged over all relationships, more than half of participants chose never more frequently

than sometimes, and sometimes more frequently than always. Averaged across all capabili-

ties, only 18.1% of participants (σ = 0.12, median = 13.2%) chose always for visiting family

members, 10.3% for babysitters (σ = 0.09, median = 7.9%), 8.3% for children (σ = 0.10,

median = 5.6%) and 0.7% for neighbors (σ = 0.03, median = 0%). There was only a small

group of capabilities for which participants were widely permissive: controlling lights and

music, which do not have much potential to cause harm or damage.
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Table 4.1: Potential default access-control policies that reflected the vast majority of partic-
ipants’ preferences.

All
• Anyone who is currently at home should always be allowed to adjust lighting
• No one should be allowed to delete log files

Spouse
• Spouses should always have access to all capabilities, except for deleting log files
• No one except a spouse should unconditionally be allowed to access administrative features
• No one except a spouse should unconditionally be allowed to make online purchases

Children in elementary school
• Elementary-school-age children should never be able to use capabilities without supervision

Visitors (babysitters, neighbors, and visiting family)
• Visitors should only be able to use any capabilities while in the house
• Visitors should never be allowed to use capabilities of locks, doors, and cameras
• Babysitters should only be able to adjust the lighting and temperature

4.4.4 Default Policies (RQ2)

In this section, we give an overview of the default deny/allow access policies we observed

that capture most participants’ responses. We categorize the policies by relationships and

give an in-depth analysis of our findings.

Default Allow

A) Spouses are Highly Trusted

Averaged across all capabilities, 93.5% of participants (σ = 0.09, median = 95.3%) agreed

to always give access to their spouse, while only 4.15% (σ = 0.05, median = 0%) answered

sometimes, and 2.35% (σ = 0.06, median = 0%) said never. For participants who selected

always, their most frequent reason was that they fully trust their spouse and that equality

should be guaranteed in a marriage. Half of the non-permissive responses came from the

capability to delete the smart lock’s log file.

B) Controlling Lights

Access-control policies relating to lights were the most permissive. Looking at the responses
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for the capability to turn lights on and off, most responses align with a proposed default

policy of people only being able to control the lights if they are physically present within

the home. Relatedly, some participants chose sometimes for visiting family members and

babysitters, depending on whether they are physically present within the home.

Default Deny

A) Lock Log Sensitivity

As mentioned in Section 4.4.2, “Delete Lock Log” is the capability least frequently permitted,

and access should therefore be denied by default. Even for a spouse, this capability should

not be accessed by default (only 68.4% chose always for their spouse). More than 75% of

participants chose never for all other relationships. As the main method of retrospecting

usage history, the log is not meant to be deleted.

B) Supervising Children

The elementary-school-age child (presented as 8 years old) was one of the most restricted

relationships. On average across all capabilities, 69.4% of participants chose never for the

child (σ = 0.19, median = 70.6%). Only neighbors received fewer permissions. In our chi-

squared tests, we did not observe significant differences in desired access-control settings for

children between participants who are currently living with a child, who have lived with a

child before, and who have never lived with a child. None of our capabilities were considered

child-friendly enough for even the majority of participants to always grant their elementary-

school-age child access to that capability always. For only the “Light State” and “Play

Music” capabilities was never chosen by fewer than half of participants. Despite being an

immediate family member and living together, plenty of participants expressed fears that a

child at that age might toy with these features and unintentionally mess up their settings

or even cause danger to themselves. With supervision, though, many participants would

consider giving temporary access to their children to gradually teach them how to use such
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a new technology.

C) Ordering Online

The capability to make an online purchase was generally limited to spouses only; 78.9% of

participants said that only their spouse should always be allowed to make online purchases,

but 84.2% also said that it was acceptable for non-spouse users to do the same if given

explicit permission by the homeowner.

D) Administrative Capabilities

By default, only spouses should be able to access administrative capabilities, such as adding

users, connecting new devices, and installing software updates. 89.7% of participants gave

their spouse access to these administrative capabilities always, while only 39.7% of partic-

ipants always gave comparable access to their teenage child. Unsurprisingly, under twenty

percent of participants would give full access to other relationships.

4.4.5 The Impact of Context (RQ3)

Since there are many factors at play in the access-control-policy specification process, it is

important to identify which contextual factors are most influential in this process and how

they contribute to the final decision. The full results are visualized in Figure 4.3. We also

ran chi-squared tests to see if each contextual factor had a relatively greater influence on

some capabilities rather than others. While we did not observe significant differences for the

“People Nearby”, “Cost” and “Usage History” contextual factors across capabilities, we did

observe significant differences for the other five contextual factors.

A) Age

The age of the user was the most influential factor on average across the twenty-one capabil-

ities, except changing camera’s angle (78.1% on average, σ = 0.13, median = 78.3%). The

proportion of participants for whom age mattered varied across capabilities (p = 0.040). The

main capability for which age played less of a role was for changing the camera angle (only
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Figure 4.3: Contextual factors: Sometimes access must depend on the context. In the study
we asked participants for such factors and identified multiple that are very influential (such
as the age of the user) and learned how they contribute to the decision make process.

50%). Many participants were concerned with letting a young person have access to certain

capabilities. “They need to be mature enough to use it responsibly” was one typical response.

However, another participant instead explained, “It will be the person themselves and how

capable they are with technology. I do not care about age.”. Thus, while age was frequently

mentioned, in reality the decision process is more likely to be driven by how capable and

responsible a user is, which sometimes correlates with the user’s age. Our results indicate

that a child at a young age (around 8 years old) is generally not perceived to be tech-savvy

and responsible enough to be allowed unsupervised access.

B) Location of Device

The proportion of participants for whom the device’s location impacted the access-control

policy varied across capabilities (p < 0.001). Capabilities relating to cameras were unsur-

prisingly very location-sensitive. “Camera Angle” is the only capability for which a device’s

location was more frequently influential (70% of participants) than the user’s age. Device

36



location was the second most frequently invoked factor for turning a camera on or off (60%)

and watching live video (81%). If a smart camera is installed indoors, especially in a bed-

room or bathroom, it will be much more privacy-sensitive. Participants reflected this by

saying, for example, “I can see where a guest/house-sitter/baby-sitter might need to access

a view of outside or the garage but not inside.” Therefore, when designing a smart camera,

whether the camera will be used indoors or outdoors should be considered and reflected in

default access-control policies.

C) Recent Usage History

The proportion of participants for whom a device’s recent usage history impacted their

access-control policy did not differ significantly across capabilities. On average across capa-

bilities, 51.7% of participants (σ = 0.12, median = 52.6%) agreed that this factor impacted

their decision about the access-control policy. For participants who felt the device’s recent

usage history would change their decision, two main rationales arose. On the one hand, if

the history states that a user is abusing a capability, then the owner may revoke access. One

participant wrote, “If someone were to misuse the device, you best bet they aren’t getting a

second chance. Alright maybe I’ll give them a second chance, but definitely not a third!”. On

the other hand, if a user turns out to be trustworthy, then the owner may consider letting

them keep the access, or even extending it. “If my kid had been using the device responsibly,

I would feel more comfortable giving them more access.” However, some participants felt

the recent usage history was not particularly relevant for two main reasons. First, if the

involved capability itself cannot cause much trouble, such as “Light Scheme,” a common line

of reasoning is that “It would be hard to abuse this capability, so it doesn’t matter to me.”

Second, if the capability itself is so concerning that participants are reluctant to give others

access (e.g., “Delete Video”), usage history did not play a role.

D) Time of Day

The importance of the time of day contextual factor varied across capabilities (p = 0.001).
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“Play music” (68.4%) and lawnmower-related capabilities (64.7% for creating rules for the

mower, 68.2% for turning lawn mower on/off remotely) were particularly sensitive to the

time of the day. In order to not interrupt other people’s rest, participants tended to limit

lawnmower usage usage to the daytime and playing music to the early evening.

E) Location of User

Capabilities that change devices’ behaviors tended to be more sensitive to where the user is

physically located when trying to control the device (p < 0.001) since many functionalities

cannot be enjoyed without proximity. For example, creating rules that control the lights

(68.4% of participants felt the user’s location mattered) and “Facial Recognition” (66.7%)

were prime examples. Many participants wrote that they would not want anyone who is not

currently present in the house to use these capabilities unless it is the owner or their spouse.

F) Costs

The influence of the cost of exercising a capability did not vary across capabilities (p =

0.162). We believe this is in part due to our study design that did not include high-wattage

appliances. Nevertheless, we observed some evidence of concerns with the cost of leaving

lower-wattage devices, like lights, on during the day. Some participants mentioned that

while lights do not consume a lot of electricity, cost can quickly become a concern if heavy

appliances were to be involved. In addition, the influence of cost on online shopping differed

due to different interpretations of cost. For cases where participants did indicate that cost

is a concern, their interpretation was based on the cost of the good purchased, rather than

the electricity used in placing an order.

G) People Nearby

43.6% of participants (σ = 0.09, median = 43.6%) indicated that who else is nearby might

impact their access-control decision. The role of people nearby did not differ significantly

across capabilities (p = 0.400). For participants who believe this factor matters, there are two

contrasting conclusions. Some people might feel more permissive when they themselves are
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around since that means they can supervise everything. However, others felt less permissive

because if they are around, there is no need for others to have access since the others simply

would need to ask the owner. Therefore, it is important for the system configuration to take

these divergent mental models into consideration, letting users decide which direction they

might choose to go in.

H) State of Device

The current state of device was overall the least important factor in participants’ access-

control decisions on average (mean = 23.7%, σ = 0.11, median = 22.3%), though this

importance did differ across capabilities (p = 0.044). Notably, 46.7% of participants who

answered about the “Facial Recognition” the capability marked the state of the device as an

influential factor. This is because if the camera is currently off, then there is no reason for

anyone to enable of disable the facial recognition.

I) Other Factors

We included a free-text question with which participants could list other factors they thought

played a role in their access-control-policy specification process. In their responses, we

observed a long tail of additional contextual factors, including weather, people’s familiarity

with technology, how close they are to the owners, and the frequency of one’s access to a

certain capability.

4.4.6 Wrong Decisions’ Consequences (RQ4)

Analyzing consequences of incorrect authorization decisions, we can learn how much toler-

ance a user has for a policy to fail given a specific capability and relationship pair. It is

crucial to understand how strongly users would feel if the system were to malfunction. We

analyze false allow and false deny decisions separately.
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False Allow

Note that responses about falsely allowing access belong to those participants who intended

never to grant access to a certain capability to a certain relationship. These participants

40



therefore might be more concerned than other participants in certain aspects, which leads

to some narrow tensions with the broader trends seen in previous sections. Figure 4.4 (top)

summarizes these results.

A) Neighbor false allows a major inconvenience

Across all capabilities, 64.1% of the participants stated that it is amajor inconvenience if the

authorization system gives access to their neighbor by accident. Turning the security camera

on or off (100% a major inconvenience) and creating rules for a smart lock (92.9% a major

inconvenience and 7.1% a minor inconvenience) are the most concerning capabilities. Note

that in the study, we described the people representing the relationship neighbor as “good

people, which includes friendly small talk, and occasional dinner invitations.” Nevertheless,

privacy and security were major concerns.

B) Spousal false allows have severe consequences

Though the number of false-allow responses for the spouse relationship is quite small (n =

10), it still gives some interesting insights. 50% of the answers are based on deleting log files

from a smart lock. Four out of five respondents rate falsely allowing a spouse to delete the

log file not to be an inconvenience. “I wouldn’t really care about my spouse deleting it, but

it would bother me that the system is not secure,” was a typical response.

There were five more responses from other capabilities. From those, four out of five indicated

that a false allow decision was a major inconvenience. It is surprising to see that a few

participants believed it a major issue if the mechanism allows their spouse to access certain

capabilities by mistake.

C) Visiting family false allows a minor issue

Though we presented earlier that participants’ permissiveness toward a visiting family mem-

ber and a babysitter was very similar (and tended toward not being permissive), we observed

a distinction when it comes to false allows. Participants were much less concerned with incor-

rectly giving access to a visiting family member (70% chose minor or not an inconvenience)
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than to a babysitter (58%). Responses like “He is my family member so I trust him a bit”

were common. While participants believed the visiting family member would not do much

harm, false allows would still upset them a bit.

D) Shopping / lawn mowers forbidden for children

Among all capabilities, incorrectly allowing a young child to order online (79% a major

inconvenience) and create rules for the lawn mower (70.6%) were the two capabilities where

false allows for a child raised great concern. A child at such a young age is generally not

trusted with ordering things online. “The child could spend a ton of money on products we

don’t need,” wrote one participant. A lawn mower is considered dangerous. One participant

simply wrote, “(A lawn mower) could cause harm to the child.”.

False Deny

Responses in this section, falsely denying access, come from participants who intended to

give access to a certain relationship. Figure 4.4 (bottom) visualizes the full results.

A) Participants Did Not Want to be Locked Out

Lock-related capabilities raised the most concern (63.9% of responses for “Lock State” and

58.8% for “Lock Rule” found falsely denying access major inconveniences). Participants

tended to be very cautious about smart locks. Even though viewing a lock state does

not directly concern locking or unlocking the door, participants still worried whether a

malfunctioning access-control system would lock people out, thus marking these false denies

as major inconveniences.

B) Spouses and Trust Issues

One common reason why participants gave full access to their spouse is because they believe

two people in a marriage should be equal, which means two parties should have the same

access to a system. Therefore, if their spouse is accidentally rejected by the system, it could

raise trust issues and spur arguments within the marriage. We found a number of responses
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similar to “I would not want my spouse to think I did not trust them.” It is interesting to

see that not only do relationships impact access-control policies, but relationships are also

influenced by authorization results. Thus, extra care is required for such relationships.

4.5 Conclusion

Capabilities, Relationships, and Context. While access control in smart homes is cur-

rently often device-centric, our user study demonstrated that a capability- and relationship-

centric model more closely fits user expectations. Home IoT technologies allow for multiple

ways of achieving the same end result, whereas devices often bring together vastly different

capabilities. For example, to increase a room’s brightness, one could remotely turn on a light

using a smartphone app, remotely open the shades, or ask a voice assistant to do either. This

model reveals nuances that are missed in the device-centric model. From the data for RQ1,

we see that the desired policies can vary widely within a single device based on the relation-

ship and the context of access. Although some of these distinctions are intuitive (e. g., child

vs. teenager), others are more nuanced and surprising (e. g., babysitter vs. visiting family

member). They also provide a concrete access-control vocabulary for developers of future

smart-home devices.

A difficult decision in access-control systems involves default policies. In multi-user social

environments, intuition suggests a default policy would be complex. Surprisingly, our data

for RQ2 suggests that potential default policies are actually simple and reminiscent of non-

IoT policies. For example, our default policy says that a person can actuate a light if

they are physically close to it. Though IoT lights can be remotely actuated, the relation

between proximity and using a light is not broken. Although conceptually simple, this rule’s

enforcement is non-trivial, requiring creating and deploying authentication methods beyond

the possession of a smartphone.

Data from RQ3 suggests that the factors affecting access-control decisions are heavily
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context-dependent. Current home IoT devices only support rudimentary forms of context

(Section 4.1). Some contextual factors, such as age, are currently present in smartphones

and cloud services (e. g., Apple’s iCloud Family Sharing supports adding a child Apple ID

that requires parental approval for purchases, while Netflix has kids option). We recommend

that for home IoT settings, these contextual factors should be a first-order primitive.

Based on these findings (RQ1-3), we envision several changes to smart-home setup. This

process currently involves installing hubs and devices with a set of coarse-grained accounts.

Our work suggests that future smart homes could instead set access-control policies by

walking users through a questionnaire whose vocabulary derives from our user study. This is

closer to the experience of setting up software, where a package comes with secure defaults

that are customized to the specific installation. Using default policies derived from our results

would minimize user burden since it would reflect common opinions by default. Physical

control (e.g., switches) already enables certain default policies, so software authorization

might seem unnecessary in certain situations. However, switches are often add-ons to IoT

starter kits, making software authorization a prerequisite to a satisfying user experience.

Authorization Vocabulary. Based on our study results, we discuss a potential autho-

rization vocabulary that is helpful in building future authorization and authentication for

home IoT platforms. The basic unit of the vocabulary is a triplet containing <Capability,

UserType, Context>. As discussed, capabilities better capture the nuances of access control

in the home than devices. UserType captures the relationship of the user to the home, and to

the owners. From our study, these types should nonexhaustively include: Spouse, Teenager,

Child, Babysitter, and Neighbor. Spouses tend to be users with the highest levels of access,

generally equivalent to administrators in traditional computing systems. Context refers to

the environmental factors that might affect an access-control decision. For example, certain

parents might be more permissive in allowing a child to watch TV without supervision. Based

on our study, at the minimum context should include: Time, User Location, Age, People
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Nearby, Cost of Resource, Device State, Device Location, and Usage History. Depending on

the Capability and the UserType components of the triplet, the importance of the context

can change. For example, for a UserType of Child, the ‘People Nearby’ contextual factor

plays a prominent role in the access-control decision. However, for spouses, it generally has

no bearing. The same goes for the Capability. The ‘Device Location’ contextual factor is

crucial for camera-related capabilities, but not so important for the capability of adding a

new user.

Mapping Authorization and Authentication. Although we focused on analyzing access

control, we briefly discuss how our findings affect the design of authentication mechanisms.

Below, we discuss a set of authentication mechanisms and comment on their ability to

identify users, relationships, and contextual factors. We also discuss privacy limitations and

the effect of false positive and negatives.

Smartphones are the most widely used devices to access IoT devices in the home. Users

may present their identity to a device using a password, PIN, or (more recently) fingerprints.

These identities can be used by home IoT devices to determine the identity, and hence rela-

tionship, of the person attempting access. From the perspective of false positives/negatives,

smartphones can closely match user expectations. They are inconvenient, however, for tem-

porary visitors because they require the visitor to install an app and the owner to authorize

them.

Wearable devices like watches, glasses, and even clothing [115] might serve as proxy

devices with more natural interactions than a smartphone. For example, a user can gesture

at a nearby device to control it (e. g., wave at a light to turn it on or off). As each user will

perform a gesture differently, it can also serve as a form of authentication and thus be used

to identify a person and their relationship. Furthermore, the proximity of a wearable device

is helpful in identifying several contextual factors, including user location and nearby people.

From a false positive/negative perspective, biometrics require quite a bit of tuning that can
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affect an owner’s choice of using this method, especially when authenticating high-access

spouses or for operating dangerous equipment like lawn mowers.

Voice assistants are increasingly ubiquitous in homes. Although such assistants can

perform speaker identification (e.g., Google Home Voice Match), they are currently used as

a personalization hint rather than a security boundary. However, future versions that use

additional hardware might be useful in determining a speaker’s identity and relationship for

access-control purposes [48]. Such assistants could help identify contextual factors like the

location of a user or the presence of nearby people (e.g., a supervising adult near children).

From the perspective of false positives/negatives, any voice-based method will require tuning.

Audio is especially sensitive to background noise. Audio authentication also introduces

privacy issues, as well as the potential for eavesdropping and replay attacks. Advances in

computer vision can also be leveraged to identify users, their relationship, and their location

within a home with cameras. However, it is possible for computer vision systems to falsely

identify individuals or confuse identities. Thus, some level of false positive/negative tuning

will be required, especially when a household is expected to have many temporary occupants.

A big downside of this mechanism is the privacy risk—cameras can track home activity at a

high level of granularity. However, some of the privacy issues could potentially be alleviated

using local processing or privacy-preserving vision algorithms [116].

Bilateral or continuous authentication mechanisms embody the idea that a user has to be:

(a) physically present, and (b) currently using the device [117, 118]. Such mechanisms are

readily able to identify users and relationships, and to support contextual factors involving

user presence. False positive/negative tuning varies based on the specific instantiation. If

a wearable device with a continuous authentication algorithm is used, then the false posi-

tive/negative rates must be considered. Privacy concerns can be alleviated if this mechanism

is implemented in a decentralized manner—only the user’s proxy device and the target device

are involved in establishing an authenticated channel. It can also provide a simple solution to
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the de-authentication problem (revoking access if a temporary visitor is no longer welcome).

In sum, we have taken initial steps toward reenvisioning access-control specification and

authentication in the home IoT. Much work remains in continuing to translate these ob-

servations to fully usable prototypes, as well as in supporting ever richer capabilities and

interactions.
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CHAPTER 5

CONTEXT SENSING FOR ACCESS CONTROL IN THE

ADVERSARIAL HOME IOT

As discussed in the previous chapter, in home IoT, the set of users who ought to have access

to a resource varies over time and may include guests, in-home workers, and others [2, 41, 42].

Desired access control in smart homes is frequently contextual (situational). Rather than

granting unconditional access to a given user or a given role, authorization decisions may

depend on the context. A context can be the user’s location relative to the device, the

history of the user’s interactions with the device, or the state of the home [8]. An example

policy is that a child can only use the smart TV when a parent is nearby [8]. Here, the

system must verify two contexts: (i) a child is trying to use the TV and (ii) a parent is

around. Enforcing contextual access control requires privacy-preserving and trustworthy

context sensing. That is, a sensor (e.g., a motion sensor) must reliably detect some context

(e.g., a room is unoccupied) while respecting users’ privacy.

Prior work in the security and privacy community has already proposed ways to utilize

contexts in access control [43, 119], but has not focused on how to detect contexts in the

physical world in ways that are both trustworthy and privacy-preserving. A large amount

of existing work on sensing and ubiquitous computing could be applied here, but it mostly

ignores attacks, adversaries, and privacy. For example, work done on robust sensing often

sacrifices privacy by adopting more invasive sensing methods [120] or denser sensor deploy-

ment [44, 121]. This is not realistic for an intimate setting like one’s home. Some bodies

of work also discover that errors are bound to occur in particular circumstances, but they

regard these errors as rare or unintentional occurrences [122, 123, 124]. Adversaries can

exploit this assumption.

In this chapter, we critically reevaluate the literature on context sensing in

homes with a security and privacy mindset. Furthermore, we translate this literature
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to the problem of context sensing for access control, identifying sensor types that best match

specific contexts within practical constraints. To do so, we first identified home contexts

that are critical to access control from the small literature on contextual access control in

smart homes. We then systematically searched the proceedings of the last decade of top

conferences in sensing systems (SenSys, MobiSys, and MobiCom), ubiquitous computing

(UbiComp/IMWUT), and human-computer interaction (CHI and UIST), identifying dozens

of recent papers about sensors that can detect those contexts in smart homes. To capture

well-known mature sensors, we also searched for commercially available sensors for smart

homes and added classic papers on relevant sensors. This process left us with 94 pairs of

contexts and sensors. Analyzing these papers while also revisiting key IoT papers from

the security, HCI, and usable security literatures, we constructed a decision framework that

highlights each sensor’s pros and cons for security, privacy, and usability when used to

detect an access-control-relevant context in a smart home. Our work thus lays a foundation

for secure, practical, and privacy-preserving context sensing in smart homes.

We first create a novel threat model broadening the adversaries that prior

literature has considered for smart home sensing. Prior work has focused on how

experts can exploit IoT systems through software vulnerabilities [7, 5], default passwords [31],

replication of physical traits [125], and adversarial examples [95, 18, 20, 19]. While our model

encompasses these threats, we focus on non-technical adversaries with legitimate access to a

home, such as kids, roommates, guests, and workers, who usually have stronger motivations

than remote strangers. Notably, most papers on context awareness and home sensing do not

consider the adversarial mindset typical in the security community.

From our threat model, we make several observations. First, physical denial-of-service

attacks are trivial against many sensors. Thus, in contextual access control, policies that

allow access by default or rely on the absence (rather than presence) of a characteristic

are easy to bypass. Second, non-technical users are highly capable of replay, imitation,
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and shoulder-surfing attacks. They can also impersonate someone by simply taking that

person’s phone. Identity cannot be reliably authenticated through possession of a phone or

naive recognition of voices/faces.

Contextual access control in homes thus requires deploying sensors with key properties.

The sensors, alone or in ensemble [44], must resist attacks from both technically literate

outsiders and non-technical insiders. They must also minimize inadvertent data collection

because sensors may be deployed in private areas of the home. Finally, household members

must find the sensors acceptable.

Then, we develop a decision framework for evaluating the degree to which

a particular sensor possesses these key security, privacy, and usability proper-

ties. We further distinguish between attacks of different complexities, privacy considerations

from various actors, and specific usability criteria. The latter includes ease of deployment,

reusability of a sensor across contexts, and inclusiveness. This framework will be useful for

individuals who design or deploy sensors in homes, including DIY users [126], manufactur-

ers, and researchers in security and in sensing. We will refer to these individuals as smart

home designers. This framework can help smart home designers navigate the vast array

of sensing mechanisms described in the literature or available commercially. We envision

the framework helping smart home owners to decide which sensor to use, manufacturers to

design their products for facilitating contextual access control, and researchers to develop

sensors that are more sensitive to security and privacy issues. The framework also outlines

criteria to consider when designing a new sensor. In particular, our framework elucidates key

trade-offs among the variety of sensors (e.g., motion sensors, microphones, thermal imaging)

that can detect a given context (e.g., whether anyone is in a room).

Eventually, we apply our framework to highlight trade-offs in deploying sen-

sors for access control in homes. Through a systematic review of the sensing literature,

we identify indicators (e.g., characteristics, such as gait) and associated sensors (e.g., a
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pressure sensor mat for detecting gait) for sensing either identity (e.g., this is Jane) or con-

text (e.g., this is an adult). Using our decision framework, we evaluate each sensor’s key

properties. We used our literature review to gauge sensors’ robustness to attack, privacy

properties (e.g., requirements for data storage), and deployability. With our framework,

smart home designers can identify the sensors that support desired contexts for access con-

trol and recognize trade-offs in security, privacy, and usability. To keep our framework

and evaluations up-to-date, we have released them in a public GitHub reposi-

tory.1 Researchers may publicly modify, expand, or dispute the table through pull requests

and issues, facilitating open discussion between the sensing and security communities.

Applying our framework yields the following insights. First, we find that many current

sensors, when used alone, do not adequately address potential threats from non-technical

adversaries. They are especially vulnerable against rarely studied physical DoS attacks.

Second, many sensors collect more data than needed. Contrary to currently deployed archi-

tectures, many sensors do not require cloud storage for data. Lastly, we found that many

sensors are not inclusive based on age or disability, and some can be ineffective under certain

environmental factors.

5.1 Our Threat Model

Sensor-based access control in homes requires robust sensing that protects user privacy.

Prior IoT research has primarily focused on defending against remote attacks against IoT

software [7, 6]. However, local attackers—regardless of technical background—can also pose

a significant threat to the system by tricking physical sensors into detecting incorrect con-

texts or violating others’ privacy. In fact, potential local attackers like family members,

roommates, guests, and workers could have stronger motivations to bypass access control

than unacquainted remote attackers. Our work examines local threats broadly and focuses

1. https://github.com/UChicagoSUPERgroup/eurosp21
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on those posed by non-technical users with legitimate or illegitimate access to a home. Be-

low, we taxonomize goals, attacks, and attackers. In light of the larger literature on context

sensing, we revisit these attacks within our decision framework (Section 5.2).

5.1.1 The Attacker’s Goals

One of our key insights is that non-technical attackers with modest and localized goals are a

threat to contextual access control. Whereas remote attackers disrupt at scale, non-technical

local attackers might only want to gain illegitimate access to some resource or spy on another

individual. For example, a child may wish to watch TV without approval, a burglar may

want to erase security camera footage after committing theft, or (as can be the case with

intimate partner violence [127, 111]) an abusive member of the household may try to spy

on members of their household by evading policies stopping security cameras from recording

when people are home.

Local attackers might aim to bypass access control or compromise the privacy of others

in the home.

Strategies for attacking sensors depend on the policy. A default-deny policy, which auto-

matically denies access to unknown users, is not always advisable. For instance, prior work

found users prefer default-deny policies for locks, but would rather permit unauthorized users

to control smart lights than leave users in the dark [8].

Impersonation: Under a default-deny policy, a system only accepts authorized and au-

thenticated users. An attacker must impersonate an authorized user or fabricate a valid

token through imitation or replay attacks.

We find that these attacks often do not require technical knowledge (Section 5.4), espe-

cially in an intimate setting like a home where boundaries to privacy are reduced and private

resources are easy to acquire. For example, many widely deployed facial-recognition systems

lack depth or liveness detection. One can trick them by presenting a photo or video of an
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authorized user [128]. Photos of authorized users (e.g., a child’s parents) are easy to find in

a home, and videos can be taken in secret.

Similar issues arise for audio. People with access to a home can record authorized in-

dividuals speaking to voice interfaces. While authenticated speaker recognition is an active

area of research [129], many widely deployed voice interfaces are vulnerable to simple replay

attacks [99, 100] or even lack authentication entirely [17].2 Off-the-shelf voice morphing

compounds this problem [130].

Local attackers have extensive access to photos and audio, making basic face or speaker

recognition systems vulnerable to replay and imitation attacks.

Current home IoT systems tend to rely on smartphones as a proxy for identity, capital-

izing on their ubiquity. However, smartphones often run out of battery, and they do not

offer the convenience of other interaction modalities (Chapter 3). This practice also falsely

assumes that the user is always near their phone. For example, if the smart TV will turn

on only if an adult’s phone is in the room, a mischievous child can take their parent’s phone

while the parent is sleeping. Furthermore, smartphone authentication is still not fool-proof

as it is often knowledge-based (e.g., PINs). It is often easy for others in the home to bypass

this authentication through shoulder-surfing.

Existing practices of using phones (potentially with authentication) as a proxy for identity

in shared spaces can be risky in terms of both security and usability.

Invisibility: Contextual access-control policies can also allow access by default. One

example would be using the smart stove. Whereas visitors or babysitters may be allowed to

use the stove, a child should not use it for safety reasons. A natural policy that follows is

“anyone except a child can turn on the stove.” When these default-allow policies depend on

2. In our informal testing, Google Home’s speaker recognition only seemed to verify the person who said
“OK, Google.” It accepted further commands spoken by someone else, making replay attacks trivial.
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Dimension Type Capabilities Examples

Access
Indoors

Physical access to indoor & outdoor devices/sensors

Family member, babysitter
Rich observation opportunities
Full knowledge of sensor models & locations
Knowledge of access-control policies & automations

Outdoors
Physical access only to outdoor devices/sensors

Neighbor, prospective burglarLimited observation opportunities
Opportunistic attacks that reach more victims

Expertise
Expert

Sophisticated network and imitation attacks
IT professional, hackerAbility to craft black-box adversarial examples

Unsophisticated replay/imitation attacks, block sensor

Non-expert Unsophisticated replay/imitation attacks, block sensor Child, domestic worker

Resemblance Similar
Spoofing (through imitation)

Sibling, one who looks similar
Higher possibility of inadvertent false positives

Table 5.1: Local attackers can be characterized along the dimensions above, impacting attack
capabilities.

not sensing a characteristic or situation, e.g. “record security video of the bedroom when no

one is home), an attacker needs nothing more than to make the characteristic or situation

“invisible.” They can do this by changing or blocking the sensor’s field of view.

We will refer to such attacks, where the local attacker prevents the sensor from physically

detecting a context, as physical denial of service (DoS). This can entail blocking a motion

sensor with paper or overloading a microphone with loud noise (including outside the human

hearing range [131, 19]). Sensors must detect whether they are receiving accurate and fresh

input.

Default-allow policies, which rely on not detecting a given situation, can be defeated by

blocking sensors.

5.1.2 Attacks

Based on these attacker goals, we surveyed top security and sensing conferences to identify

likely attacks. We clustered prior work based on attack method, resulting in three major

types of attacks: 1) replay and spoofing attacks; 2) adversarial examples; 3) sensor hardware

attacks. Note that replay and spoofing attacks differ in practicality despite often appearing
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together in the literature. We did not find mentions of physical DoS attacks in our literature

survey, but include them because they are a clear threat to access control. Below, we define

these attacks.

Replay Attack: The attacker collects a credential and feeds it back to a sensor. For

example, the attacker can play a voice recording, show a photo of a face, or make a gummy

mold of a specific fingerprint [125]. Our focus in this SoK is on replaying the physical signal

itself, although network traffic can sometimes also be replayed.

Spoofing: The attacker forges an approximate credential or situation they have not nec-

essarily captured. Smoke can spoof a fire, and energetic pet cats can spoof occupancy.

Physical Denial of Service (DoS): Jamming, blocking, or moving a sensor can prevent

accurate sensing. It is important to note that the sensor detecting the absence of a char-

acteristic or situation is different from not detecting it. For instance, when trying to sense

whether a room is empty, a camera blocked by a piece of paper will not detect any people.

This differs from a camera affirmatively seeing a room without people. These attacks are

often easy to deploy, but have not yet received much attention.

Adversarial Examples: Against ML-based sensing methods, the attacker can poison the

training data or add carefully crafted noise to inputs [95, 132].

Sensor Hardware Attacks: The attacker leverages the physical principle behind the

hardware to deceive the sensor, such as with signal injection attacks [19, 133].

Inadvertent False Positives: This is not quite an attack, but a sensor incorrectly

detecting an identity or situation can still compromise access control.

5.1.3 Physical Sensors’ Potential Attackers

To understand each attack’s feasibility, we characterize the attacker’s capabilities. Table 5.1

provides a summary. Our threat model concerns attackers who violate access-control poli-

cies. We thus ignore adversaries who create unreasonable policies, such as domestic abusers
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attempting to spy on their family. Defending against those adversaries requires countermea-

sures beyond access control.

Access: An attacker with access to the home would be well-positioned for physical at-

tacks against sensors. They can observe authentication processes in the home, potentially

repeatedly, to record information for replay or imitation attacks. For example, a roommate

might encounter multiple instances of the user speaking to a voice assistant. They thus have

multiple opportunities to record the user’s voice for tricking speaker-recognition algorithms.

By having access to the home, attackers can also infer access-control policies, automations,

and sensor locations or types from their observations. Legitimate access can be permanent,

such as for residents, or temporary, such as for visitors and domestic workers. Illegitimate

access occurs when people enter the home without permission.

It is also possible for attackers to access sensors outside the home [134, 13] or make

inferences using partial information (e.g., from sensors visible through windows). Some

individuals who might rely on these methods include neighbors and prospective burglars.

We note that modeling the attack surface cannot rely on a simple indoor versus outdoor

dichotomy. For example, one can control a voice assistant through an open window.

Expertise: Attackers with technical expertise, such as infosec professionals, are capable

of sophisticated attacks. Some attacks against ML-based sensor systems are of this na-

ture. They can involve carefully crafted eyeglasses [95], stickers [18], or audio [131, 19].

Experts can also target sensors’ physical principles, such as applying acoustic interference

to accelerometers [135]. Finally, network- and software-based attacks are also possible.

On the other hand, nontechnical attackers can carry out replay or imitation attacks that

only require observations (e.g., spoken passwords) or commodity recording equipment (e.g., a

smartphone). They can also disable sensors by blocking, repositioning, or unplugging them.

Resemblance: Biometric sensors may confuse individuals of similar physical traits. Bi-

ological family members often share physical resemblances and have easy access to sensors
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because they often live together or visit each other. Real-world examples include one man

who tricked a voice-recognition system by imitating his twin’s voice [99]. Identical twins can

also fool facial recognition [136]. It may also be possible for unrelated people with physical

resemblances to trick the sensors.

Our threat model highlights two key ideas missing from prior work. First, most work

focuses on threats from attackers with extensive resources and expertise. We show that non-

experts with access to the home are capable of replay and spoofing attacks against sensors

that support contextual access control. Second, blocking sensors can allow attackers to evade

some access-control policies. This method of attack has not yet been studied extensively.

Contextual access control must consider that non-experts with access to a home can

attack sensors.

5.2 Decision Framework for Context Sensing

Individuals designing or deploying home sensors need a framework that helps them navigate

the trade-offs between sensors’ security, privacy, and usability properties in conjunction with

the users’ needs and the space itself [45]. These individuals, whom we term smart home

designers, will benefit from the framework in different ways:

• Do-it-yourself smart home owners can learn security and privacy implications of select-

ing certain sensors.

• Sensor manufacturers can holistically evaluate their current sensors’ trade-offs and

identify additional contexts that need new sensors to be developed.

• Security and sensing researchers can identify security and privacy gaps that guide their

future research.

For example, a smart home owner might wish to know when anyone is at home. Consulting

our framework reveals that cameras are suitable for this, but are not privacy-preserving.
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Figure 5.1: Different issues emerge in difference stages of using sensors in home.

Meanwhile, pressure sensors on the floor would be privacy-preserving, but are impractical

and expensive to install. The user can now determine whether to prioritize occupancy

detection at the cost of privacy.

Here, we first explore the life cycles of adopting a sensing technique. Then, for each

stage of the life cycle, we further define the main security, privacy, and usability criteria that

smart home designers must consider in choosing sensors, which we collectively consider our

framework. We constructed this framework by critically analyzing the 94 pairs of sensors

and contexts we identified through our systematic review of the sensing literature (see Sec-

tion 5.3.2) relative to the security and usable security literatures concerning the home IoT.

We also considered broader security principles to fill in potential gaps in this framework.3

5.2.1 Life cycles

Adopting a new sensing technology in one’s home is a long-term and ongoing process. To

avoid missing crucial challenges during the process, we first define different stages of the

adoption process, as depicted in Figure 5.1.

Acquiring the required hardware: A user might need to buy new sensors, which is a

financial and time investment.

Deploying the hardware: After acquiring the hardware, users need to install it in their

3. The team that constructed the framework included multiple students and three faculty members. Two
of the faculty members focus on security and privacy research, but also have experience with machine learning
research. The other faculty member conducts sensing research.
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homes. When needed, users might also re-deploy hardware, such as to reposition it.

Registration (optional): Sometimes the hardware may require the user to register them-

selves first, which is especially common for sensors pertaining to an identity.

(Re)training / Maintenance (optional): Before usage, machine learning-based sensing

methods commonly require the user to train the model about the context in its unique

environment. Retraining may also be required in the future to adapt to users and a sensor’s

environment changing over time. Maintenance, such as battery replacement and routine

check-ups, may also be required.

Usage: After training, the sensor is ready for use. We expect the sensing technique to

operate until the user stops using the sensor. To identify possible issues in this stage, we

must abstract how the sensing technique works.

Sensing detects environmental events, such as temperature changes, movement in the

background, and sound. We term these indicators, which could be mapped to a context. For

example, if a sensor detects movement of a heat source, it is likely to be someone moving

nearby.

To detect the indicator, the sensor needs a signal sent or radiated from the source. De-

pending on how far the signal can be transmitted, the sensor may require direct contact,

near-field communication, or far-field communication. We term this process signal transmis-

sion.

Once the sensing hardware receives the signal, it first needs to process the analog signal,

such as using amplification and noise filtering. The analog signal can then be converted

into a digital signal for further processing. The sensing hardware stage represents the above

process.

Finally, the digital signal, or the raw sensor data, is sent to a processor or the cloud for

further computation. Depending on what the sensing method is designed for, different data

analysis methods may apply here. For example, facial recognition and gait recognition may
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both rely on cameras, but the data analysis would differ. Once the sensed data analysis is

complete, the algorithm outputs whether the context it aims to detect is active.

End of Life: The user may eventually decide to uninstall the home sensor. In this stage,

the sensor may be directly thrown away, given to others, or sent back to the manufacturer

for upgrading or replacing. The hardware is not guaranteed to be properly destroyed. Thus,

information leakage after disposal is possible. We treat the uninstallation process as two

parts: removing all data (e.g., factory reset) and physically removing the sensor from the

home.

5.2.2 Security

We consider two ways in which a sensor may be attacked. One is through inadvertent failures.

An attacker may bypass an error-prone sensor through brute force. The other is through

intentional attacks. These attacks are described in detail in Section 5.1. Figure 5.1 also

indicates at which stage these attacks might occur.

We do not consider attacks before the usage stage. The set-up stage occurs only once and

the victim is often present, increasing the difficulty of attacking the sensor itself. Therefore,

during the set-up stage, it is more likely for the attacker to perform network attacks (e.g.,

sniffing, person-in-the-middle), which are out of this thesis’s scope.

In Tables 5.2-5.4, a red “!” signifies that a sensor is easily susceptible to a given attack.

A yellow “?” signifies that it is not very susceptible to the attack. If no symbol is shown

in the table, the attack is implausible against the sensor (e.g., replay attacks against smoke

detectors).

5.2.3 Privacy

Sensors collect data to operate, but excessive collection of sensitive data causes privacy con-

cerns. Furthermore, certain contexts require intensive computation on data that is collected
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over long periods of time. To identify potential privacy threats during the usage stage, we

review each stage carefully to identify general threats. We assume that the sensing soft-

ware is secure and do not consider privacy threats before the usage stage. Our framework

considers the following aspects:

Required Data: Data that must be collected for the sensor to function. Depending on

which indicator the sensor detects, different types of data are collected, with various privacy

implications.

Overprivileged Data: Depending on which sensor the designer decides to use, superfluous

data might be collected inadvertently. For example, a microphone for occupancy detection

also records conversations. In the “overprivileged data” column of Tables 5.2-5.4, poor

means the sensor collects unnecessary and sensitive information, acceptable means it collects

unnecessary data that is not sensitive, and good means it does not collect superfluous data.

Data Storage: Data must be analyzed and stored in the cloud if the device lacks the

computational power or storage space for local processing. For other sensors, however,

data can be stored on the device containing the sensor or on an in-home hub. Nonetheless,

companies often upload data to the cloud even when unnecessary [137]. There is no guarantee

that the uploaded data will be used ethically [138], which can deter users from deploying

some sensors in homes [45]. We consider whether each sensor’s data must be stored on the

cloud, or whether local storage supports the needed functionality. We leave out of scope the

question of whether a company will choose to upload data to the cloud even when it could

be retained locally.

Retention Time: Some sensors require longitudinal data (e.g., for training a model). Com-

panies may again decide to store all data indefinitely even when not strictly necessary. Tran-

sient storage means sensed data can be immediately discarded, while persistent means it

must be retained until the user factory resets the device. Similar to data storage, companies

may retain users’ data for as long as they want, even if the user factory resets their device
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and deletes their account. To focus on the requirement for enabling the sensing technology,

we only consider how long the data must be available for the functionality.

5.2.4 Usability

To assess a sensor’s usability for a non-technical end user, we consider the following criteria,

which we compiled based on the stages identified in Figure 5.1.

Wide Availability: Users are more likely to adopt sensors that they can easily acquire.

For example, one can sense occupancy with motion sensors or ultrasonic sensors, but users

and designers may prefer the former because of their cheap cost and ubiquity. Nonetheless,

more expensive sensors (e.g., cameras) may also be widely available if they fulfill multiple

use cases. This may benefit users because sensors that fulfill multiple use cases may obviate

the purchase of additional sensors.

Initial Set-up: How difficult is it for a non-technical user to set up the hardware during

the deployment stage? Good means little to no effort is required, such as plug-and-play

installation. Poor requires substantial effort from the user, such as renovating their current

home for installation (e.g., painting the wall, changing the floor). Anything between good

and poor was deemed acceptable.

Registration: How much effort does it take to register a user, or how long does it take to

collect enough data to train the model? Good means no registration or training is needed.

Acceptable encompasses two situations. In the first situation, the sensing method requires

straightforward registration or data collection, meaning registration should not take over 10

minutes. This includes most commercial products, such as Touch ID or Face ID. In the second

situation, data collection needs more time to finish, but does not require user attention. For

example, a system from Hsu et al. [123] required the user to wear an accelerometer for days

as ground truth for identifying the user from their RF reflection. While this process takes

days, no attention is required, earning it an acceptable rating. Poor takes significant effort
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from users, usually exceeding 10 minutes in duration while requiring constant attention the

entire time. For example, Qian et al.’s system [139] requires the user to walk for four minutes

each at three different paces.

Retraining / Maintenance: How often is model retraining or hardware maintenance

required? Good requires none. Acceptable requires occasional retraining or maintenance less

than once a month (e.g., changing batteries every few months). Poor requires retraining or

maintenance at least once a month. When evaluating biometric sensors, we assume an adult

user with stable features.

Reusability: Some sensors can detect multiple contexts. For example, cameras can detect

age, room occupancy, or an identity. Good means many contexts can be sensed, as with

cameras. Acceptable means a few contexts can be sensed, as with radar sensors. Poor means

the sensor detects only one context, as with fingerprint sensors.

Device Dependency: Some methods require users to carry a device (e.g., a phone) during

usage. Good means no such device is required. Poor means that it is required.

Limitations: We consider whether the sensor is effective for all groups of users and under all

situations. We focus on age, potential disabilities, and environmental factors (e.g., lighting

conditions, GPS reception underground).

Removal: When a user decides to stop using a sensor, the sensor will be removed from the

home. As removal is the inverse of the initial setup, we decide to combine them with the

initial setup in Tables 5.2-5.4.

5.2.5 Example

We illustrate the use of this framework by describing two examples. Both examples are

sensors that one might use to detect robbery, which is relevant to when access is granted

based on whether there is an emergency in the home. They are also listed in Table 5.2.

Some commercial products, such as the Netatmo Camera [140], alert the user when un-
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recognized individuals enter the house. As one would expect, cameras and facial recognition

algorithms have poor security and privacy qualities, but great usability. They are easily

susceptible to replay attacks and adversarial examples. They are also susceptible to physical

DoS if the attacker simply blocks the field of vision with an object. Sensor hardware attacks

and spoofing are likely impossible for the adversaries we consider. The video stream will cap-

ture more information than needed to determine the occurrence of a robbery. Processing the

video stream requires long-term cloud storage. Lastly, cameras are ubiquitous and easy to

use, although registering users and retraining the facial recognition algorithm to accurately

recognize users require some effort.

Glassbreak sensors, like Honeywell’s [141], can also detect robbery by monitoring for au-

dio frequencies of glass breaking. These sensors are susceptible to replay attacks, physical

DoS, sensor hardware attacks, and spoofing. Machine learning is not necessary, so adver-

sarial examples are not a concern. They capture basic audio frequencies that encode more

information than necessary, but this information is simple enough to be stored locally for

a short amount of time. They are easy to acquire and use, but they only fulfill the unique

purpose of detecting glass breaking. A user looking to sense multiple contexts cannot rely

on glassbreak sensors for other contexts.

5.3 Methodology

Both to understand the potential of applying our decision framework in realistic situations

and to illustrate how to use it, we applied the framework to sensors that would support

commonly desired contextual access control policies in smart homes. Applying the framework

requires: (1) a set of desirable contexts for access control policies; (2) sets of sensors that

can detect those contexts; and (3) evaluations of the security, privacy, and usability of

detecting those contexts with those sensors. This section details our method for applying

the framework and analyzing each aspect to create Tables 5.2–5.4.
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5.3.1 Desirable contexts

Existing work on context sensing does not fully list the desirable contexts for contextual

access control in homes. For example, some work focuses on non-security domains, such as

sensing contexts for healthcare [142], activity recognition [143, 144], or indoor tracking [145,

146, 147, 148]. Other work focuses on device-level contexts (i.e., device states) [32, 24, 33, 6],

but does not consider contextual access control.

To overcome these challenges, we first identified a list of contexts mentioned in the most

closely related work on contextual access control in homes [8, 43, 11]. We then analyzed the

user study data from He et al. [8]. We manually clustered participant responses through

open coding. We added to our list contexts mentioned at least five times or that are related

to identity (thus naturally relating to access control). Tables 5.2–5.4 list the final set of

desirable contexts in the leftmost column. The “user” in the leftmost column refers to the

initiator of the action who uses a device that is owned by the “owner.”

5.3.2 Sensing Mechanisms

Extensive prior work proposes technologies to sense identity or contexts in physical spaces.

It is hard for a smart home designer to navigate this work and determine the appropriate

sensor based on its security, privacy, and usability trade-offs. For example, to track a person’s

location in the home, researchers have used cameras [146], CSI (Channel State Information)

from WiFi signals [148], visible light channels [149], and more. Direct mappings between

contexts and precise sensors are not straightforward. Generally, a physical sensor is used

to sense some characteristic (which we term an indicator) that relates to that context.

For example, if age is the relevant context, one might use a person’s gait, voice, or facial

characteristics as physical indicators of age. These indicators can be sensed with cameras,

microphones, and more.

For each context, we identified potential indicators and associated sensors by surveying
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the sensing literature, searching for relevant industry products, and asking experts from the

sensing community for methods they had encountered in their field. Our final set of sensors

(see Tables 5.2–5.4) includes both research prototypes and mature products. The example

column of Tables 5.2–5.4 lists the examples of research prototypes or commercial products

we consider for each type of sensor.

To find and evaluate research prototypes, we systematically reviewed the last ten years of

proceedings of top conferences in sensing systems (SenSys, MobiSys, and MobiCom), ubiqui-

tous computing (UbiComp/IMWUT), and human-computer interaction (CHI and UIST) in

the ACM Digital Library. We first filtered the search results based on keywords (“sensing”

in the abstract and “home” in the paper), which yielded 716 papers. We then manually

inspected each paper to determine its relevance. We used the paper’s title to determine

potential relevance, which led to 127 papers remaining. We then read each of these papers

to determine its actual relevance. We further excluded papers if (i) they were not related to

sensing in homes, but rather applications like VR/AR, smart cities, or health; (ii) they did

not focus on sensing a specific context, but rather on refining sensing techniques through

improved processing algorithms or machine learning techniques; or (iii) we could not directly

map the paper to any of the desirable contexts we identified. The final 36 papers are listed

in Table 5.2- 5.4, and we extracted the indicators of the contexts from the corresponding

papers. If we did not find prototypes in this body of literature for an indicator, we looked

to related top-tier conferences, such as CVPR.

To augment this initial list with more mature and commercially viable methods, we first

consulted experts in the sensing community to identify classic papers for types of sensors that

are now commonly used. To cover methods used in commercial products, we then searched

for sensors of each indicator (as collected from research papers above) on Amazon. If we

had not found any indicators at that point for a context, we searched for sensors related to

that context and then included the indicators they used. This process led to our final set of
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94 pairs of a context that is desirable to sense for access control in the home and a type of

sensor (research prototype or commercial product) that identifies that context.

The steps described above survey, but do not systematize, this work. For systematization,

we applied our framework to analyze the security, privacy, and usability of using that sensor

to detect that context. To understand how the sensing method worked, we read the relevant

research papers for prototypes and any user manuals, technical specifications, and white

papers we could find for commercial products. We list the detailed criteria we use for this

systematization below and in Section 5.2.

5.3.3 Security

Attacks, listed in Section 5.1, target particular types of sensors. To perform replay attacks,

one must be able to record and then play back the relevant data, a situation that mostly

applies to microphones and cameras. Attacks on sensor hardware target sensors’ physical

properties and are thus relevant to microphones, MEMS sensors, and more. We used past

literature to decide whether the type of sensor used by the sensing method is vulnerable or

not.

Some attacks (e.g., physical DoS attacks) are less studied and some sensors (e.g., motion

sensors) are less often targeted. In these cases, we studied the sensor’s basic principles from

papers, product manuals, and white papers, and we discussed among our team whether it

might be susceptible to each attack. For example, passive infrared (PIR) motion sensors

detect motion based on changes in their view in infrared. Infrared radiation struggles to

travel through paper, glass, and thermal blankets, which makes occlusion possible. We

acknowledge that some products may adopt anti-tampering techniques not specified in the

manual or technical specifications. Our judgments reflect contemplation, rather than lab

testing. Tables 5.2-5.4 thus outline expected and potential attacks.
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5.3.4 Privacy

We evaluated sensors’ privacy implications as follows. We identified the data required by

each sensor based on its description in its paper or manual. Examples include audio for

microphones, air for smoke detectors, and phone packets for CUPID [150], a WiFi-based

indoor localization system. We then identified overprivileged data collection by subtracting

the information needed to determine the context from what could reasonably be inferred

from the required data. We used the guideline in Section 5.2 to label overprivileged data

in Tables 5.2-5.4. For example, Touch ID [151] requires fingerprints. This might suggest

overprivilege because a fingerprint is personally identifiable. However, since it is used to

detect the user’s identity, we do not consider its data collection overprivileged.

Next, we determined the data storage location and retention time required for reasonable

performance. For storage location, we examined the algorithms needed to process the data

for the sensor. If the sensor required a large amount of longitudinal data or algorithms that

could not be computed locally (such as Gaussian models), we labeled the sensor as requiring

cloud storage. Otherwise, we labeled it as local. For example, we consider local storage

sufficient for sensors that use SVM classifiers and require only highly limited longitudinal

data.

If data did not have to be stored for more than one access, we labeled it transient. If any

data did, then we labeled it persistent. For example, smoke detectors have transient data

retention because they do not need to store historical air data to detect future smoke. In

contrast, fingerprint readers that verify identity do need to store representations (templates)

of the fingerprint to perform future matching algorithms.

5.3.5 Limitations

Due to a lack of access to many of the products and prototypes in our evaluation, the ratings

we give are based on team discussion and contemplation. To the best of our ability, we tried
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to make the criteria as concrete as possible and to review papers and specifications with care.

However, some cells in Tables 5.2–5.4 could be subjective and debated by researchers with

different assumptions and access to different information. As such, we intend Tables 5.2–5.4

to reflect an initial attempt of applying our framework and distilling the pros and cons of

each sensor in each context. We intend these tables as a living document that evolves with

community effort and robust online debate.

5.4 Insights From Applying the Framework

We present key findings from applying our framework (Section 5.2) to sensors that support

commonly desired contextual access-control policies in smart homes. Tables 5.2–5.4 sum-

marize each sensor’s pros and cons in security, privacy, and usability regarding detecting a

given context.

5.4.1 Robustness to Attacks

Most sensors are vulnerable to physical DoS. Of the 94 context-sensor pairs evaluated,

64 (68.1%) are vulnerable to physical DoS attacks. Vision-, audio-, heat-, and EM-wave-

based sensors (radar, WiFi, radio) can easily be blocked or jammed even by those with no

technical background. Vision and heat-based sensors’ line of sight can be blocked. Playing

loud music floods audio sensors. Energy-absorbent materials can be placed near transmitters

(e.g., black material near light-based sensors). Through these means of hindering sensor

operation, attackers can become invisible to systems with default-allow policies.

Physical DoS is hard to detect because the symptoms can be similar to normal activities.

This is very different from network DoS attacks. Monitoring may alleviate the issue, but

home occupants are unlikely to perform constant monitoring. A blocked sensor may not be

noticed until the attacker has already achieved their goal.

Sensor redundancy can mitigate physical DoS attacks. For example, a room could have
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Contexts Indicators Sensor Example
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User’s
identity

Voice
Microphone, inertial
sensors

[129] 0.1% A,Bm

Microphone-only
[152] 5-6% A, C, M
[113]† − A

Breathing
patterns

Microphone [153] 0.4-2% A

Facial
features

Camera [140]† Variable V
Depth camera [154]† <0.001% P’
Infrared (IR) cam-
era

[155]† <0.001% P’

Camera, inertial,
light sensors

[156] 4.7% V, C, E

Eye features Iris scanner [157]† − P’ −

Fingerprint
Fingerprint sensor [151]† 0.002% F
Microphone [158] 2-16% A −

Body shape Radar (RF) sensor [145] 10-21% B

Bioimpedance
Bioimpedance
sensor

[159] 2% El
[160] 11-21% El −

Cardiac
motion

Radar sensor [161] 1.39% Bm
Camera [162] 1.4-4.5% Bm

Hand ges-
tures

IMU sensors [163] 10-36.2% M

Gait
properties

Vibration sensor [164] 10% G −
Load cells [147] 7% G
Pressure sensors [139] 7.7% G
Camera [165] 6.25% V
Microphone, WiFi
TX & RX

[120] 8%-28% C, A

Photointerrupters [166] 1% G
Owner/guest Identity Similar to “Identity” above Similar to “Identity” above

User’s age

Voice Microphone [167] A

Facial features Camera

[168] 6.01 - 6.08 yr. P
[169] 4.83 - 6.28 yr. P
[170] 2.514 - 3.086 yr. P
[171] 22.24 - 9.07% V

Note: In the “Example” column, † denotes commercial sensors or systems.

Table 5.2: An example application of our framework to sensors and contexts identified in
our review of the literature and current sensing products. 36 of these sensors come from
the academic literature, while the rest are commercial products, denoted with a † in the
“Example” column. We mapped the sensors to contexts they are able to detect for the
purpose of an access-control policy allowing or denying usage. The “Error” column contains
reported values from the cited example sensors. Other columns reflect our best judgment,
which was informed by the cited works when related information was reported. / /(blank)
= Easy/Hard/Impossible, / / = Good/Adequate/Poor, / = Local/Cloud, / =
Transient/Persistent data retention, − = Not found. For Required Data, A = Audio, B =
Body shape, Bm = Body movement, C = CSI, E = Environment, El = Electrical properties
of body, F = Fingerprint, G = Gait, L/L’ = Geo/Indoor location, M = Movement, P/P’ =
Photo/Infrared photo, D = Device info, V/V’ = Video/Infrared video, T = Temperature,
O = Orientation, Fp = Floor plan. The rows of this table continue in Table 5.3.
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Contexts Indicators Sensor Example

Security Privacy Usability
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Emergency in
the home

Fire
Smoke detector

[172]† Variable E
[173]† Variable E

IR Camera [174] Variable V’
IR/UV detector [175]† Variable E

Toxic gas
Combustible gas de-
tector

[176]† Variable E

Carbon monoxide
detector

[177]† Variable E

Robbery
Camera [140]† Low V
Glassbreak sensor [141]† Variable A

User in same
house as the
device

Tag presence

Bluetooth Low En-
ergy (BLE) signal
sensor

[178]† − L’

RF/Ultrasonic sen-
sors

[179] − L’

RFID [180] − L’
WiFi TX & RX [152] 10% A, C, M

Movement WiFi TX & RX
[124] 0.5m - 1.1m C −
[181] 1.84m C, Fp −
[182] 4% C

Trajectory Inertial sensors in
phones

[183] 1.5 - 2m G, M

User in same
room as the
device

Tag presence

BLE signal sensor [178]† − L’
BLE, IMU sensors [184] 2.4 - 14.7% M, T, O

RF Techniques
[179] − L’
[185] 0.06% D

IR tags [186] Variable L’
Ultrasound TX &
RX

[187] 0.1m L’ −
[188] 3cm L’

Capacitive NFC [189] − L’
Visible Light Chan-
nel

[190] 5.9cm L’

Movement
WiFi TX & RX

[124] 0.5 - 1.1m C −
[181] 1.84m C, Fp −
[182] 4% C

Motion sensor
[180] 0.5 - 1.1m M
[191]† 1.84m M

EMI
Voltage sampling [192] 6% L’
Passive magneto-
inductive sensors

[193] 6-17.4% L’

RF reflection RF sensor [123] 81% L’
Electric po-
tential

Electrical potential
sensors

[194] 0.16m El

Location
semantic

WiFi, microphone,
IMU sensors,
Barometer

[185] 0.63-0.78
L’

Hand ges-
tures

IMU sensor [163] 10 - 15% L’ −

Water pres-
sure

Pressure sensor [195] 17.3 - 29.9% L’ −

Owner away
or not

Location GPS [196]† Variable L

Adult nearby Age Similar to “Age” above Similar to “Age” above

Note: In the “Example” column, † denotes commercial sensors or systems.

Table 5.3: A continuation of the rows of Table 5.2, which is an example application of our
framework to the sensors and their associated target contexts. The abbreviations used are
the same as defined in Table 5.2’s caption.
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Contexts Indicators Sensor Example

Security Privacy Usability
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No one
nearby

WiFi signals WiFi TX & RX
[182] 96% (TPR) C
[197] Low D

Presence

RF sensor [145] High B

Camera with IR
[198]† Variable V’
[199] Variable V’

Load cells [147] 7% G
Pressure sensors [139] 7.7% G
Ultrasonic sensors [200] 10% B

Movement Motion sensor
[201]† Variable M
[202]† Variable M
[203]† Variable M

Footsteps
Microphones Variable A

Similar to “Gait” above Similar to “Gait” above

CO2

Nondispersive In-
frared (NDIR) CO2
sensors

[204]† Variable E

Body heat Infrared sensors [205]† Variable V’

People asleep
nearby

Movement
Inertial sensors

[206]† Variable M
[207]† Variable M

Similar to “Motion sensors” above Similar to “Motion sensors” above
Radar sensor [208] 89.6% (recall) M

People
present in
same house
as the user

Location GPS [196]† Variable L

Movement
Static electrical field [209] 1.88% E −
RF sensors [122] Low M

Tag presence
RF/Ultrasonic sen-
sors

[179] − L’

BLE signal sensor [178]† − L’

People
present in
same room as
the user

WiFi signals WiFi TX & RX
[210] Variable L’ −
[150] 1.8m C

RF reflection RF/Ultrasonic sen-
sors

[123] 19% L’

Sound (chat) RF/Ultrasonic sen-
sors

[152] 26% L’

Doorway ac-
tivity

RF/Ultrasonic sen-
sors

[200] 10% B

BLE signals BLE signal sensor [178]† − L’

Note: In the “Example” column, † denotes commercial sensors or systems.

Table 5.4: A continuation of the rows of Table 5.3, which is an example application of our
framework to the sensors and their associated target contexts. The abbreviations used are
the same as defined in Table 5.3’s caption.
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a motion sensor, a pressure sensor in the floor, and a microphone to detect whether the

room is occupied or not. If access is granted when the room is unoccupied, an attacker

wanting access would need to accomplish the difficult task of occluding all three sensors

around the same time. By cross-checking the sensors’ data streams with each other [44], the

system could verify whether the room is unoccupied and determine whether a sensor has

been compromised.

Careful policy design is another defense against physical DoS attacks. A system’s default

policy—whether to allow or deny access when a condition is met—can impact attack success.

For example, a user might specify “my child should not have access to the TV.” With a

default-allow policy, TV access will be granted unless a child is detected, yet the child can

block a sensor to avoid detection. With a default-deny policy, the child cannot rely on

physical DoS.

The optimal default policy may vary based on the device or operation. Users may prefer

default-allow rules for controlling lights because falsely allowing operation is typically of

little consequence, but falsely denying operation causes inconvenience [8]. A sensor’s false

positive/negative rates also play a role. Smart home designers should help users navigate

these nuances through sensible default policies and templates.

Many sensors are susceptible to physical DoS attacks. Mitigations against physical DoS

of sensors include redundant sensors of different types and carefully constructed default

policies.

Audio- and vision-based sensing is vulnerable to many attacks. Basic audio-based

sensing is susceptible to all types of attacks in Tables 5.2-5.4 [19, 131, 132, 20]. Visible-light

camera sensing is also susceptible to all of these attacks, except for hardware attacks. For

cameras, spoofing can be difficult, but replay attacks with photo or video input are feasible.

Existing defenses for sensing methods are insufficient for access control because they

were designed for authentication instead. Most prior work on audio- and camera-based
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sensing lacks security analyses. The few that analyzed security focused on replay and spoof-

ing attacks. Authentication assumes that unrecognized users are unauthorized. Thus, a

large body of research has focused on preventing replay and spoofing attacks against audio-

and camera-based sensing to avoid attackers from becoming recognized in this regard. A

commonly proposed defense is to rely on secondary channels of information on the same de-

vice [211] or other devices [100, 44]. For example, 3D cameras (like Face ID on iPhones [154])

analyze depth information to deter simple, photo-based replay attacks. However, in access

control, default-allow policies authorize unrecognized users, resulting in the possibility of

physical DoS attacks. Therefore, for such policies, an attacker can gain access by targeting

one information channel (e.g., targeting an image’s visual features by presenting a photo)

and becoming unrecognizable to the system.

Existing defenses for audio- and camera-based sensing focus on attacks that compromise

authentication, not access control. Attackers can exploit the default semantics of access-

control policies to gain access, and physical DoS attacks become easier.

Physical adversarial examples can be effective for skilled, external attackers. For

sensing methods that rely on machine learning, we noted whether they were susceptible to

adversarial examples. Specifically, within the scope of context sensing and our threat model,

we consider only physical adversarial examples. The attacker misleads the algorithms by

adding physical perturbations to the environment or to themselves, instead of feeding data

to the algorithms directly. Recent work has demonstrated the feasibility of such attacks for

images [18, 95, 212] and audio [132, 131, 20]. Although some attacks require whitebox access

to models, which is unrealistic for commodity smart home devices, blackbox attacks are also

possible [212, 213, 214, 215, 216].

Internal attackers are less likely to use physical adversarial examples because they require

substantial technical skills and resources to generate and test. Instead, they would use

familiarity with the system to launch replay, spoofing, or physical DoS attacks to a similar
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end. However, if we consider external opportunistic attackers (e.g., a group of burglars)

who do not have information about the victim, physical adversarial examples can be very

effective. In fact, untargeted adversarial examples are strictly easier than targeted attacks.

For example, attackers might want to attack face recognition on all security cameras in a

neighborhood. In doing so, they can reuse and refine their adversarial examples.

Internal attackers may prefer replay, spoofing, and physical DoS attacks. Opportunistic

external attackers may prefer adversarial examples.

5.4.2 Privacy

Except for cameras, cloud storage is not usually required when sensing contexts.

We found that 79.8% (n = 75) of the examined sensing techniques do not require data

storage on the cloud. Unfortunately, 10 of the 14 methods that use cameras do require cloud

processing. Oftentimes, cloud storage is necessary for computationally intensive algorithms

or large training datasets required to process video or image data online (e.g., neural networks

for facial recognition). Privacy-preserving machine learning may alleviate this need. One

approach is to protect the privacy of the training data. In federated learning [217], sensitive

data stays local and only gradient updates are sent to the server. Another approach targets

the inference stage by running the models locally or on the edge [218, 219]. Companies may

prefer cloud storage because they can collect user data. Despite the risk of data exposure,

some users may prefer cloud storage if it costs less.

Few sensing methods, often camera-based ones, require cloud processing. Federated learn-

ing or performing ML on the edge could obviate cloud processing.

Cameras/microphones are invasive but currently indispensable, thus necessitat-

ing privacy countermeasures. Users perceive age to be an important context for access

control [8]. Unfortunately, most existing age-estimation methods rely on cameras or micro-
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phones, raising privacy concerns. Until privacy-preserving methods for age detection become

possible, users may instead wish to record age while registering their identity during system

setup.

Suppose cameras and microphones have to be used. To enhance bystanders’ privacy,

countermeasures against these sensing methods have been proposed, such as strategically

blurring an image or jamming microphones with ultrasonic noise [64, 21, 22]. These pro-

posals improve privacy, but also imperil the access control system, making it more likely to

ignore attackers or confuse attackers with benign users. Therefore, detecting contexts with

obfuscated sensor data may be another research direction. Raval et al. [220] proposed a

utility-aware obfuscation mechanism for smartphone apps, which shows a promising road to

privacy-preserving sensing in homes.

Privacy-invasive sensors may be essential. Privacy protections may weaken the access-

control system.

Mismatch between required and collected data. Only 25 of 94 context-sensor pairs

(26.6%) do not collect more data than needed to deduce the context. In contrast, 33.0%

were acceptable and 40.4% were poor in our analysis. Most sensing methods marked as poor

record unnecessary video or audio. Manufacturers typically rely on high-fidelity sensors,

such as cameras or microphones, to sense contexts. This also happens when researchers use

microphones on voice assistants or smartphones for ultrasonic-based sensing for their wide

availability. While federated learning or edge computing may mitigate privacy concerns,

they may also appear cryptic to the average user. These methods may therefore fail to

alleviate user concerns about sensors inadvertently collecting invasive data. Future work

should investigate effective means of communicating to users privacy considerations, such as

using privacy labels [221] or visual indicators [222].

Competing interests between multiple stakeholders—manufacturers, researchers, design-

ers, users—also contribute to this mismatch between the data required and the data collected.
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The designer might only want to know which room the user is occupying, but manufacturers

and UbiComp researchers likely would want to collect information about the activity of the

user in that room. Obtaining this extra knowledge enables the latter two parties to design

and provide technology benefiting users in other aspects of their daily life. For the benefit

of smart home owners and users, smart home systems and sensors should offer the ability to

prioritize utility or privacy.

Most sensors collect more data than needed. User awareness and control of data collection

is critical.

5.4.3 Access, Deployment, and Acceptability

Many sensing methods for authentication are not inclusive. Research in sensing and

access control is generally not inclusive to the elderly and groups with various disabilities. For

example, the gait-sensing literature mostly does not consider people with walking disabilities.

For inclusivity, contextual access-control systems must offer an array of sensors that allow

every individual to authenticate an identity or person-specific context.

5.5 Conclusion

Contextual access control in homes is desirable, yet mostly unsupported. To bridge this

gap, sensors can be used to detect contexts. However, they must defend against both expert

and non-expert adversaries while respecting user privacy and usability. We proposed both a

new adversarial model for context sensing in homes and a decision framework for evaluating

potential sensors in terms of security, privacy, and usability. We applied this framework to

common sensors through literature systematization, finding important trade-offs. We have

made our framework and evaluations accessible in a public GitHub repository to facilitate

updates and public discussion.
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CHAPTER 6

AUTOMATICALLY GENERATING GENERALIZABLE

NETWORK ALLOWLISTS FOR HOME IOT DEVICES

In addition to software and hardware, home IoT devices also have suffered from numerous

network attacks [7]. Attackers have exploited vulnerabilities in home IoT devices’ software,

protocols, and default settings to compromise devices [223] for purposes including creat-

ing botnets like Mirai [224] and Hajime [225]. Contributing to security issues is the array

of (often inexperienced) manufacturers creating IoT devices, the difficulties of deploying

software patches to devices without screens or traditional user interfaces, and the lack of

standardization [5].

Rather than relying only on potentially unresponsive vendors to patch devices, house-

holds could control the network traffic of their own IoT devices, applying security policies

designed to minimize problematic network behaviors like distributed denial of service (DDoS )

attacks or the exfiltration of data about the home to illegitimate endpoints. Specifically, the

household could use firewall-style rules to limit which hosts a particular device may contact.

Recent papers [69, 226, 227] have employed blocklists, which specify (problematic) hosts that

cannot be contacted and permit traffic to all other hosts. From a security perspective, an even

more attractive approach would be to employ allowlists, which instead enumerate the hosts

that can be contacted and block traffic to all other hosts. While allowlist-based approaches

have a much smaller attack surface, they are rarely used in practice because enumerating the

destinations that general-purpose computing devices should be able to contact is typically

intractable. In contrast, many home IoT devices’ actions are highly limited. Intuition thus

suggests that allowlists may be practical for securing home IoT devices at the network level.

A key challenge, however, is that allowlists (unlike blocklists) must be complete for devices

to function correctly.

Some prior papers have, like us, proposed allowlists for IoT devices in one form or an-
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other [71, 72, 70, 73]. These prior papers, however, created allowlists and then subsequently

evaluated those allowlists on individual devices in homogeneous settings (e.g., generating an

allowlist from a single Nest Thermostat in a lab and then evaluating that allowlist on that

same device in the same lab).

In this chapter, we instead explore how to create allowlists for home IoT

devices that generalize and transfer across settings and instances of devices.

Studying a single device in a controlled environment, as in past work, misses key sources

of variability across devices, regions, network architectures, and time. Alternatively, requir-

ing each user to create a personalized allowlist can require an onerous time investment for

users who would need to exercise all of a device’s functionalities. Furthermore, creating an

allowlist from a single device that has already been compromised would nullify any security

guarantees. To study the design space for generalizable allowlists, we conduct a number of

experiments using data shared with us by the IoT Inspector project [26], which collected

network traffic data from thousands of IoT devices deployed in real homes. This approach

lets us analyze how the network behaviors of a single product (e.g., the Philips Hue light-

bulb) varies across devices (e.g., a single household’s physical instance of a Philips Hue) in

different homes across the world.

As our first contribution, we characterize variability in the network behaviors

of distinct devices of the same product (e.g., Philips Hue lightbulbs from different

households), the first step in mapping the design space for allowlists. We used the

IoT Inspector dataset to compare and contrast the network behaviors of 20 popular IoT prod-

ucts across households (Section 6.3). We focused on the hostnames (i.e., fully qualified do-

main names) and ports with which each device communicates. We expected to see variations

based on network-specific configurations (e.g., DNS and NTP), which we indeed observed.

To our surprise, we also observed more substantial variation in the hostnames contacted by

different devices of the same product beyond configuration-specific facets. On average, to
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observe 95% of the hostnames contacted by all devices in our dataset of a given product re-

quired a sample of over 60% of the devices of that product. Nonetheless, many hostnames in

this “long tail” were related to each other. Some hostnames contained what appeared to be

randomized substrings (e.g., oculus2975-us1.dropcam.com vs. oculus1802-us1.dropcam.

com) presumably to support load balancing. Others contained apparent regional identifiers

(e.g., avs-alexa-6-na.amazon.com vs. avs-alexa-7-eu.amazon.com). As a result, an

allowlist of hostnames created by analyzing the network traffic of one specific device is sur-

prisingly unlikely to generalize to other devices of that same product.

To enable more nuanced allowlists, our second contribution is thus an evaluation

of the design space for allowlists, showcasing how different designs impact both

the fraction of observed traffic allowed and the attack surface (Section 6.4). First,

we compare different representations of hosts. Compared to an allowlist of hostnames, an

allowlist of second-level domains is far more likely to capture legitimate variability and thus

generalize. Unfortunately, many IoT devices rely on cloud services (e.g., AWS), meaning

that domain-based allowlists open a large attack surface. As a compromise, we propose and

evaluate a pattern-based representation of hostnames, which appears to enable transferring

allowlists across devices while limiting the attack surface. Similarly, to make allowlists more

robust in the presence of a small number of mislabeled or compromised devices, we explore

requiring that a host be contacted by n different devices (termed the threshold) for it to

be added to the allowlist. We also investigate the effect of the number of different devices of

a product necessary to create a robust allowlist, finding it to be on the order of one or two

dozen devices, depending on the host representation.

To evaluate whether allowlists generated from the two-year-old IoT Inspector dataset

would generalize, our third contribution entailed enforcing these allowlists on real

devices in our lab, analyzing how they impacted device functionality. The afore-

mentioned experiments were retrospective simulations on the IoT Inspector dataset, raising
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the question of whether the allowlists created would actually work in practice in a different

setting. Thus, Section 6.5 reports on an in-lab experiment in which we tested nine pop-

ular home IoT products’ range of functionality when various types of allowlists generated

from IoT Inspector were enforced. While we found that some actions (e.g., streaming mu-

sic, downloading apps) occasionally failed for some products, most other actions we tested

worked normally under the allowlists tested. While we had hypothesized that rare actions

(e.g., reinitializing the device) might fail because they likely had not been captured in IoT

Inspector, we observed that these rare actions typically functioned normally. In other words,

we found that snapshots of two-year-old network traffic data from other households’ devices

can be sufficient for generating allowlists for home IoT devices if the allowlists themselves

are designed with sufficient care and nuance.

6.1 Problem Setting and Terminology

In this chapter, we create our threat model, where a remote attacker aims to compromise

these IoT devices, forcing them either to contact a server under the attacker’s control (e.g.,

for data exfiltration or botnet command and control) or to direct traffic toward some victim

(e.g., as part of a DDoS attack). The attacker always has the ability to launch attacks from

a new server. However, they do not have the ability to compromise the IoT device vendor’s

backend infrastructure (e.g., meethue.com), nor poison the victim’s DNS. Local attacks (e.g.,

on WiFi or ZigBee) are out of scope.

The user (defender) aims to create an allowlist, or specification of the endpoints with

which a given home IoT device may communicate. For instance, an allowlist might specify

that a given home IoT device can only communicate with meethue.com; all other traffic,

both inbound and outbound, is blocked. In a given home, different products will likely have

different allowlists, but multiple devices in the home of the same product (e.g., all six of the

user’s Wyze Cameras) will share an allowlist. We assume the contents of the allowlists are
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known to both the defender and the attacker.

We create allowlists based on a large dataset of IoT network traffic from many devices

(see Section 6.2). We test the allowlists generated on both held-out data from the same

dataset (Section 6.4) and on real devices in our lab (Section 6.5).

In describing the allowlist creation process, we use the following terms. Vendor refers to

a company that makes home IoT products (e.g., Amazon). Product refers to the collection

of devices sold under a specific name (e.g., Amazon Ring), potentially encompassing multiple

releases and versions. Device refers to a single physical object that is an instance of a home

IoT product (e.g., a single Amazon Ring in a home is a single device). Type refers to the

category of multiple home IoT products with similar purposes (e.g., both the Amazon Ring

and Wyze Camera are of type “home IoT camera”).

We analyze three main design dimensions for allowlists. First, we compare host rep-

resentations, or abstractions for characterizing endpoints. These representations include

lists of hostnames, domains, IP addresses, and more (Section 6.4.3). Second, we compare

thresholds; for a threshold of n, we only add a particular host (per the host representation

being tested) to an allowlist if it appears in the traffic of at least n devices in the sample.

Thresholds aim to make allowlists more robust to noise, mislabeled data, and potentially

a small number (< n) of compromised devices. Third, we compare sample sizes, or the

number of unique devices of a single product (from different households) used to generate

an allowlist.

6.2 Dataset

The dataset we use to analyze the variability of devices’ network traffic (Section 6.3), generate

allowlists (Sections 6.4–6.5), and retrospectively analyze the impact of different allowlist

design decisions through simulations (Section 6.4) is the IoT Inspector dataset [26], which

the authors of that work shared with us with the approval of their IRB. Specifically, we
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analyze the subset of IoT Inspector containing only devices with validated product names

and network traffic recorded. This subset consists of 5,439 unique devices, representing

424 unique products from 80 different vendors among 43 device types. These 5,439 unique

devices came from 1,468 households in total. Original data collection occurred between April

8 and July 24, 2019, documenting 38,164,870 network flows in total. The authors of that

work define a network flow as the combination of the device ID, local port, and remote IP

address and port [26]. To improve clarity, in the body of this chapter we report on the 20

products (3,456 devices total) that appeared most frequently in the dataset. The appendix

presents analogous graphs with the 52 products for which there was enough data to perform

our analyses.

The dataset contains the following information, some of which involved post-processing

by the original IoT Inspector authors. Each flow in the dataset contains the product

and vendor of the home IoT device whose traffic was being monitored; this information

was entered manually by participants on the IoT Inspector user interface. Each flow also

contains the remote IP address and remote port contacted by the device. The original

authors attempted to compute additional information about the remote destination via a

best-effort process detailed in the original paper [26] that included examining DNS traffic.

They attempted to associate the remote IP address with a hostname (fully-qualified domain

name) and domain (top-level and second-level domain, such as google.com). Each flow is

also associated with the household’s timezone, as opposed to a more precise geo-location,

to respect participant privacy.

As with any real-world dataset, data cleaning was necessary. While the original authors

performed some data cleaning [26], we further cleaned the data in two ways. First, because

product names were manually entered by participants, they may not be reliable. We regard

a device’s product name as likely mislabeled if the device never contacts any domain that

other devices with the same product name commonly contact. We considered a domain to
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be common if at least 20% of devices for the product have contacted it, an arbitrary value

we chose to reduce the likelihood of mislabeled devices. In Section 6.4, we use thresholds to

further account for mislabeled devices. We made an exception for devices that only contact

DNS or mDNS resolvers because these may be devices that are simply not used during the

data collection period. We found 16 potentially mislabeled devices across 10 products, and

we excluded them from further analysis. We manually examined other outliers. We found

one device, labeled as a Belkin Wemo switch, that contacted 26,594 unique domains, which

was very unusual relative to other Belkin Wemo switches. We suspected this one device

might be compromised or mislabeled, so we excluded it.

We also aimed to identify hostnames and domains missing from IoT Inspector. Although

many traffic flows on the Internet are preceded by a corresponding DNS lookup, IoT de-

vices are often already installed and operational when the user runs IoT Inspector, so the

dataset may not capture the DNS lookup associated with a flow. Although the original

authors of the dataset guessed missing hostnames (those without associated DNS traffic)

using passive traffic monitoring and reverse DNS lookups, we determined these methods

to be unreliable. For example, a reverse DNS lookup from an IP address often resolves to

particular infrastructure, such as a server, rather than a general hostname. About 62.1%

of the collected flows contained these potentially unreliable hostnames. To further validate

the data, we first compared the IP addresses of any two packets—one known to have the

correct hostname based on associated DNS queries in the dataset and an IP address without

an associated lookup—that shared the same hostname. If the second packet had the same

IP address as the first one, then we concluded that it had the correct hostname. To mitigate

the effects of virtual hosting, whereby different domains can map to the same IP address,

we first performed this process at the product level, then repeated it at vendor level. This

process reduced the fraction of flows with unreliable hostnames to 34.4%. We repeated this

approach using ASNs instead of IP addresses. This step left us with 30.4% of flows with an
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unreliable hostname. We kept these unreliable hostnames to avoid missing data, yet retain

an annotation about their unreliability.

Limitations Because the IoT Inspector dataset was crowdsourced from volunteers, some

data that would have been interesting to analyze was intentionally not collected to pro-

tect participant privacy. For example, unlike traffic collected by researchers in a lab, IoT

Inspector is aggregated on 5-second intervals and does not contain application layer data.

It is thus impossible to perform some traditional analyses, such as identifying patterns in

inter-packet arrival times. However, these privacy-preserving limitations would likely apply

to any crowdsourced dataset, and we find that we are nonetheless able to generate allowlists

that generalize to our lab.

Availability We have made our code for conducting the analyses reported in this chapter

available in a GitHub repository [228]. We also uploaded the code to hotcrp as “additional

materials.” Unfortunately, the IoT Inspector dataset cannot be shared without explicit

permission from the original authors’ IRB [26]. We instead provide synthetic sample data

in the correct format.

6.3 Variability of Device Behavior

Ideally, a user would have complete knowledge about a product’s behavior when creating

an allowlist. Unfortunately, vendors typically do not provide that information. With the

help of the IoT Inspector dataset, we instead use observed network traffic from one or

more devices of a given product to create potential allowlists. However, this approach of

transferring observations of one device’s network behaviors to another device of the same

product (ostensibly owned by a different person and on a different network) will only work if

the allowlist can capture differences in network traffic. Thus, in this section, we use the IoT

Inspector dataset to analyze how devices of the same product vary in network behavior. We
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Figure 6.1: Flow coverage (averaged across 100 runs) for three ways of characterizing end-
points (domain, hostname, IP address) for the 20 most popular products. Coverage well
below 100% for small samples indicates high variability across devices.

find substantial variation for reasons including load balancing, under-represented regional

services, and user-defined DNS resolvers.

6.3.1 Coverage of Network Behaviors

As a first step, we took the union of the hosts seen across all devices for each of the 20 most

common products in the IoT Inspector dataset, analyzing what fraction of those hosts were

observed in samples of devices for that product. We use the term coverage to refer to the

percentage of flows (remote host and remote port) contacted by any device of that product

that were contacted by a given sample of those devices. If devices behaved similarly to each
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other, coverage would approach 100% for even a small sample.

For a number of products, however, this was not the case. Figure 6.1 shows the coverage of

different sample sizes for three different host representations: domains (e.g., dropcam.com),

hostnames (e.g., oculus1802-us1.dropcam.com) and IPv4 addresses (e.g., 35.186.28.155).

For each sample size, we average the coverage over 100 random samples. For most products,

the coverage of domains approaches 100% even for small samples. However, the coverage

for hostnames and IP addresses was often substantially lower than for domains at a given

sample size. This result suggests that, for many products, a given device may be contacting

different hostnames and IP addresses, even when it is contacting the same domain, creating

challenges for more granular allowlists.

While we expected to observe lower coverage for IP addresses, we were more surprised that

hostnames followed a similar pattern for some products (e.g., Google Nest and Amazon Ring).

Averaged across all 20 products, coverage of 95% of flows was only achieved with a sample of

58% of the devices of that product in the dataset when using hostnames, compared to 67%

when using IP addresses. For 99% coverage, the percentages increase to 81% (hostname) and

88% (IP address). The low coverage observed with small samples supports our assumption

that generating an allowlist from a single device — as done by prior work [71, 72, 70] — is

likely to miss important variability and thus fail to create generalizable allowlists, particularly

for allowlists based on hostnames or IP addresses.

6.3.2 Sources of Variability

Creating generalizable allowlists that transfer across devices requires further understanding

potential root causes of variability.

Load Balancing and Caching One of the main sources of variability appears to be the

use of different, but related, hostnames to support load balancing and caching. For example,
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Apple Push Notification (APN) service sets up multiple servers for better availability, using

hostnames like 27-courier.push.apple.com, where the number (27) varied across devices

in our dataset. When a large number of similar hostnames exhibit small variations, an

allowlist created based on precise hostnames is unlikely to generalize.

The good news is that most of these hostnames follow patterns. In the simple example

above, the number is the only part of the the hostname we observed changing, which suggests

a more abstract hostname representation (see Section 6.4.3) would better generalize. Some

other hostnames varied in more than just numbers. For example, we observed Spotify

hostnames with forms like guc3-accesspoint-a-f002.ap.spotify.com, where f002 varied.

Regionalization Geographic bias in IoT Inspector, collected by US-based researchers us-

ing a tool documented in English, is another consideration. In the subset of IoT Inspector

we analyzed, 70.1% of devices appear to be in North or South America based on timezone.

However, we observed that devices in different geographic regions sometimes contact

different endpoints. For example, in North America (“NA”) Amazon Echo tended to contact

hosts like avs-alexa-6-na.amazon.com, whereas those in Europe (“EU”) tended to contact

hosts like avs-alexa-7-eu.amazon.com. Some variability was more subtle than simply

replacing region codes. For example, Belkin Wemo switches in North and South America

typically contacted navy.mil for network time protocol (NTP) services, while those in other

regions usually contacted tu-berlin.de instead.

The streaming media destinations that users visit also vary across regions, reflecting

local interests and making allowlists less likely to generalize across regions. For example, we

observed endpoints like tf1.fr (a French TV channel contacted by a Google Chromecast),

bell.ca (an ISP in Canada contacted by an Amazon Echo and a Chromecast), and met.no

(a Norwegian weather service contacted by a Synology network storage device to display

weather information), highlighting how geographic biases impact allowlists.
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DNS Because users (or their ISPs) typically assign a local DNS resolver, DNS traffic was an

additional (expected) source of variability. We observed a long tail of DNS traffic, including

102 unique DNS resolvers contacted by only one device.

Variable Remote Ports Although most remote hosts used only a few dedicated ports

(e.g., port 443 for HTTPS), as shown in Figure 6.4, some remote hosts surprisingly used

seemingly random remote ports. For example, the 82 Synology storage devices in the dataset

contacted 45,963 ports on remote hosts. Synology documents that the ports used for data

connections in “Passive Mode” can range from 1025 to 65535 [229]. Similarly, while Amazon

Ring devices in our dataset contacted only 72 unique domains, they contacted the domain

amazonaws.com on 1,617 different remote ports. This was not an artifact from a single

device; 38.3% (N = 23) Amazon Rings contacted 10+ remote ports, and 21.7% (N = 13)

contacted 20+ ports. Blocking ports on these devices may break their functionality.

Some ISP-specific hosts also used a range of ports. For example, three Wyze cameras (all

in one household) contacted mycingular.net through 2,399 unique remote ports. Similarly,

two Amazon Echo devices from another household contacted sbcglobal.net through 3,858

remote ports. Both domains belong to AT&T services [230].

Other Causes Some variability may be artifacts of IoT Inspector’s data collection pro-

cess. For example, 26.7% of endpoints are IP addresses without any associated hostname

or domain. Either IoT Inspector missed relevant DNS traffic or these hosts were actually

contacted using hardcoded IP addresses. In fact, we observed the latter in our own experi-

mentation when the Wyze camera in our lab contacted some hosts without sending out DNS

queries. Prior work [231] also found, for instance, that Belkin Wemo plugs transmitted IP

addresses in payloads at the time of their data collection in 2020, though our experiments

found they now transmit hostnames.
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Limitations Some products (e.g., Amazon Echo) have multiple generations. We grouped

these generations into a single product. It is possible that different generations may behave

differently. Even for the same generation, behavior may change depending on the software

or firmware version. As we detail in Section 6.5, a recent update to Belkin Wemo smart

plugs caused them to contact a completely different set of endpoints. Furthermore, product

names were provided manually and some volunteers gave only a general name (e.g., “Sonos

speaker”), potentially collapsing different models.

6.4 Generalizability of Allowlists

To investigate how the design of allowlists for home IoT devices impacts the network traffic

permitted, we must first devise a method for producing allowlists that can reflect various de-

sign factors. We develop and evaluate a proof-of-concept approach that generates allowlists,

varying the host representation (granularity and abstraction of endpoints), thresholds, train-

ing samples, and more.

6.4.1 Methods

We introduce five variables for allowlist generation. Host representation describes the level

of abstraction for describing hosts. In addition to our focus on domains, hostnames, and IP

addresses in the body of the chapter, the appendix also compares (less successful) formats,

such as subnet or BGP prefix. Ports can be added on top of any selected selected host

representation. We discuss their impact independently. As previously defined, threshold

is an integer specifying the minimum number of devices on which we need to observe an

endpoint to add it to the allowlist. Training data references the data used to generate the

allowlist; it can be chosen based on criteria like the product or timezone. Testing data

references the dataset used to evaluate the generated allowlist. A single device is never in

both the training and testing data for an experiment.
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As further discussed in Section 6.4.3, one hostname representation we consider, the pat-

tern representation, provides a partial abstraction of the hostname. To generate these pat-

terns, which are effectively regular expressions, we use DBSCAN to group similar hostnames

for each product. We choose DBSCAN because we do not know the number of clusters in

advance and would like to recognize unique hostnames that should not be clustered. We

cluster each hostname based on its lowest-level subdomain (i.e., the leftmost part of the

FQDN) and use the remaining part of the FQDN for grouping so that different domains or

subdomains are not clustered together. We condense any consecutive numbers to “[0-9]+”

because digits rarely carry any meaning in this context. Once a cluster has been identified,

we generate an ordered list of the longest non-overlapping common substrings for all host-

names in the cluster. If we can further group the remaining parts, we accept these variations

rather than using a wildcard to minimize the attack surface. If the remaining parts appear

random, a wildcard replaces them. For example, hostnames used by Apple Notification Ser-

vices become [0-9]+-courier.push.apple.com. Spotify access-point hostnames become

guc3-accesspoint-a-.*.ap.spotify.com.

6.4.2 Key Metric

We evaluate potential allowlist design choices in part through retrospective simulations based

on the IoT Inspector dataset. For a given product, we calculate a value we term the me-

dian fraction of allowed flows (MFAF). Intuitively, the MFAF captures the fraction

of traffic previously observed (without the allowlist) that would still have been permitted

with the allowlist active. A high MFAF is desirable since it reflects the device’s observed

traffic proceeding as normal. We take the median fraction instead of the mean because the

distribution can be very skewed. Formally, MFAF is defined:

MFAF (AD, D′) = median({
|F d

AD
|

|F d|
,∀d ∈ D′}) (6.1)
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Figure 6.2: MFAF of allowlists generated from, and applied to, the same product in a train-
test split. The products (rows) are grouped by type. The color indicates the proportion of
flows permitted using a threshold of between 1 and 5.

where D is the group of devices used for generating allowlist AD, D′ is the group of devices

that the allowlist is applied to, d is a device in D′, F d is the all the flows transmitted on

d, and F d
AD

is the fraction of d’s flows allowed when the allowlist AD is active. We require

D ∩D′ = ∅ for a fair evaluation. A flow is identified by a combination of the device ID, the

local port, the IP address of the remote endpoint, and the remote port.
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6.4.3 Host Representation

We tested seven possible host representations. In this section, we contrast representing

endpoints by their domain, pattern, and exact hostname. Appendix 7.9 presents the four

less successful alternatives.

As shown in Figure 6.2, all 20 popular devices had high MFAF (greater than 0.9) when

using domain representations. While this means that the (presumably legitimate) traffic

observed in our test set would be allowed, domain-based allowlists also have the largest

attack surface, as we revisit later in this section.

In contrast, both hostname and pattern representations, particularly the latter, seemed

to better balance generalizability and security. With the threshold set to 1, hostname rep-

resentations achieved an MFAF greater than 0.9 (mean = 0.97) for 18 of 20 products. The

two exceptions were the Belkin Switch and Sonos Play. Using pattern representations, all

20 products again achieved an MFAF greater than 0.9 while maintaining a relatively small

attack surface. Pattern representations also had clear advantages over hostname represen-

tations at higher thresholds for a few products. A higher threshold equates to a stricter

allowlist, which makes the allowlist more robust to noisy or poisoned data. When the

threshold is set to 5, only 10 products have an MFAF of at least 0.9 when using hostname

representations, but 15 products have an MFAF of at least 0.9 when using pattern represen-

tations. Emphasizing these trends, Figure 6.3 shows the six products whose MFAF increases

more than 0.1 by switching from hostnames to patterns. Appendix 7.9 shows similar trends

hold when analyzing a larger dataset of 52 products.

6.4.4 Adding Ports to Host Representations

In most cases, adding ports to the host representation minimally impacts the MFAF despite

further reducing the attack surface. For example, for hostname, pattern, and domain host

representations with threshold = 1, 19 out of 20 products’ MFAF drop less than 2%. For the
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Figure 6.3: MFAF for pattern- and hostname-based allowlists.

remaining product, Amazon Ring, the MFAF still drops less than 5%. When threshold = 1,

the pattern-based allowlist for the Amazon Ring shows a decrease of 4.4% in MFAF after

adding ports. With domain-based and hostname-based allowlist, the drops are 4.2% and

2.2%, respectively. The decrease is consistent with the previous observation (Section 6.3)

that Amazon Rings communicates with amazonaws.com on seemingly random remote ports.

The decrease is smaller for hostname-based allowlists because the number of load balancing

servers is large for amazonaws.com, resulting in fewer ports observed on each server.

6.4.5 Sample Size Required

Using more devices of a given product to generate an allowlist makes it increasingly likely the

allowlist will capture the long tail of endpoints with which a product communicates. Thus,

we calculated the MFAF for various sample sizes. Specifically, we altered the size of the

training sample with a step size of five, observing how the MFAF changed. For stability, we

performed five-fold cross validation per product and repeated this process five times, taking

the mean.
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Figure 6.4: The number of ports used by remote hosts with IP address, hostname, and
domain host representations. Few remote hosts used multiple ports for incoming connections.

Figure 6.5 shows the results. In general, hostname representations necessitate a larger

sample than pattern representations. For hostname-based allowlists, only 15 of the 20 prod-

ucts ever achieved an MFAF of at least 0.95, and it took 28 devices on average to do so. In

contrast, pattern-based allowlists enabled all products to achieve an MFAF of at least 0.95,

requiring only 12 devices on average. These numbers, however, varied significantly across

products, particularly for hostname representations. For example, 5 Ecobee Thermostats

were sufficient to form a hostname-based allowlist, but 185 Sonos Speakers were needed for

the same MFAF.

Pattern representations were critical when the sample size was small due to a lack of data.

For example, the dataset contained only a few HP printers, and HP uses load balancing for

XMPP (e.g., with xmpp001.hpeprint.com and xmpp002.hpeprint.com). With at least two

related hostnames observed, pattern representations can thus potentially compensate for a

smaller sample.

95



5 10 20 50 100200
Sample Size

Amazon Echo
Amazon Fire

Amazon Ring
Belkin Switch

Chamberlain Garage
Ecobee Thermostat
Google Chromecast

Google Home
Google Nest

Hp Printer
Logitech Harmony

Nintendo Switch
Philips Hue

Roku Streamer
Sonos Play

Sonos Speaker
Sony Console

Synology Storage
Tplink Switch
Wyze Camera

Pattern

5 10 20 50 100200
Sample Size

Hostname

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.5: The MFAF increases with the training sample size (threshold = 1). Blank
squares indicate insufficient data.

6.4.6 Setting the Threshold

The threshold, specifying on how many different devices an endpoint must be observed for

it to be added to the allowlist, represents a direct trade-off between security and general-

izability. Increasing the threshold typically admits fewer endpoints, but both shrinks the

attack surface and increases robustness to a few devices being mislabeled or compromised.

Interestingly, we observed that increases in the threshold were not always proportional to

the decrease in the amount of traffic allowed. For some products, it was possible to have a

high threshold without losing much generalizability.

To understand the relationship between thresholds and the MFAF, we sampled 50 devices
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Figure 6.6: Although the MFAF generally decreases with increasing thresholds, many prod-
ucts experience plateaus where the thresholds increase, but the corresponding MFAF changes
little. Lines end when the allowlist is blank above that threshold.

from each product, calculating the MFAF under thresholds ranging from 1 to 36 with a step

of 5. The process was repeated 20 times, taking the mean. As shown in Figure 6.6, some

products effectively had plateaus in which increasing the threshold minimally impacted the

MFAF. In one of the more extreme examples, the MFAF for the Google Home was similar

between thresholds of 1 and 26. One possible explanation is that, upon increasing the

threshold, only the most fundamental endpoints contacted by nearly all devices of that

product are kept, and most flows are to those endpoints. For Chamberlain Garage, most

endpoints in the long tail were various DNS resolvers contacted by few devices. Only two

endpoints were contacted by the majority of those devices: connect1.myqdevice.com and
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connect.myqdevice.com. In contrast, products like the Amazon Fire and Roku Streamer

that rely on streaming user-specified content rarely exhibit this plateau.

6.4.7 Accounting For Regionalization

As previously mentioned, IoT Inspector primarily consists of devices from North and South

America. To better understand how geography and regionalization impact allowlists’ MFAF,

we created a series of regression models that gauge how region impacts MFAF. Because IoT

Inspector does not contain location information, we use timezones as a proxy, creating three

regions: Region A (UTC-02:30 - UTC-10:00), Region B (UTC+01:00 - UTC+04:00), and

Region C (UTC+5:30 - UTC+12:00). We selected the six products in the dataset that have

at least 10 devices per region: Amazon Echo, Belkin Switch, Google Chromecast, Google

Home, Philips Hue, and Sonos Speaker. We created linear regression models in which the

MFAF was the dependent variable and the regions of the training and testing samples, the

product, and the (log of the) sample size were the independent variables.

Table 7.5- 7.7 in Appendix 7.7 contains the regression tables. All coefficients of the train

region, test region, and their interactions were significant. At a high level, applying an

allowlist generated with training data from one region to testing data from a different region

negatively impacts the MFAF. Furthermore, regions differ in the MFAF of the allowlists

generated even when keeping the sample size constant. For example, applying allowlists

generated from devices in Region A to devices in Region C caused a drop of around 0.1 in

MFAF. Therefore, if the data is geographically diverse, care should be paid to matching the

training data and test data; home IoT devices’ network behaviors vary partially by region.

6.4.8 Transferring Allowlists By Vendor

To this point, we created allowlists for a product from the network behaviors of devices of

that same product. While this is the most typical setting, newly introduced or rare devices
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Figure 6.7: The MFAF of generating an allowlist for a product from only other products
from the same vendor.

may lack sufficient training data, raising the question of whether it is possible to transfer

an allowlist generated for one product to a different product made by the same vendor. For

example, could an allowlist generated for Google Home be successfully applied to Google

Nest devices?

At a high level, we found that domain-based allowlists can sometimes be transferred to

other products from the same vendor. Exceptions include IoT cameras and some vendors who

make a wide range of products. Furthermore, pattern-based and hostname-based allowlists

transferred somewhat less well across products. Figure 6.7 was created by using the product

listed as the testing data and all other products from the same vendor as the training data to
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Table 6.1: How host representations impact the attack surface, specifically the number of
hostnames in IoT Inspector allowed if one adds the given representation to the allowlist.

Example Hostnames, Patterns, and Domains # Hosts

Hostname: arlostatic-z1.s3.amazonaws.com 1
• Pattern: arlostatic-z[0-9]+\.s3\.amazonaws\.com 3
• Domain: amazonaws.com 3859

Hostname: ring-untranscoded-videos.s3.amazonaws.com 1
• Pattern: ring-(—un)transcoded-videos(-lq—)\.s3\.amazonaws\.com 2
• Domain: amazonaws.com 3859

Hostname: a191avoddashs3ww-a.akamaihd.net 1
• Pattern: a[0-9]+avoddashs[0-9]+(ww—us)-a\.akamaihd\.net 50
• Domain: akamaihd.net 96

compute the MFAF. Comparing Figure 6.2 and Figure 6.7 shows that 15 products’ allowlists

did transfer across products made by the same vendor, typically because those products

share API endpoints.

Cameras were a key exception, as shown in Figure 7.2 in Appendix 7.9. Grouped by

device type, this figure compares how MFAF differs when a product’s allowlist is applied

to the product itself, as well as other products made by the same vendor. We found that

allowlists created for cameras and speakers struggle the most when applied to other products

from the same vendor. One explanation is that the infrastructure and endpoints required by

a camera or speaker are very different from those required by a switch or light.

One example of vendor transferability failing is when a product line is purchased by

another company or when a company relies on a third party for a specific feature. These

cases often result in products with unique-for-that-vendor behaviors. For example, most

of Logitech’s Harmony remote controllers’ requests are sent to pubnub.com, a third-party

company that provides real-time communication and is argued to be critical to Harmony’s

away-from-home capability [232]. Amazon Ring is another example. The Ring line was

purchased by Amazon in 2018 [233], but kept its own endpoints.
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6.4.9 Attack Surface and Evasion

As mentioned in Section 6.1, we assume attackers know the contents of the allowlist. De-

pending on which host representation and threshold the user chooses, as well as how a vendor

deploys their public cloud services, an attacker may be able to evade the allowlist. While

domains are more generalizable than hostnames or patterns, they can easily fall short in

security, particularly due to home IoT devices’ reliance on cloud providers.

To provide intuition for how the host representation impacts the attack surface, Table 6.1

contrasts hostname, pattern, and domain representations for three example endpoints in

the dataset. For example, arlostatic-z1.s3.amazonaws.com is one hostname used by

Netgear’s Arlo cameras. We observed related hostnames in the dataset with different final

digits in the lowest level subdomain. Whereas the pattern abstracted from these hostnames

matches three different hostnames in the dataset, extending the pattern to the domain

amazonaws.com matches 3,859. It is then important to consider whether an attacker can

register or otherwise obtain an illegitimate endpoint that matches either the pattern (less

likely) or domain (far more likely). In this example, relying on domains, rather than patterns,

widens the attack surface and brings all of amazonaws.com into the attack surface. The

attacker can easily host malicious content somewhere on AWS or direct a DDoS attack

toward victims who themselves use AWS. Using a pattern representation often provides

a far narrower attack surface than using a domain while still supporting generalizability.

That said, hostname patterns can have complex security implications. For arlostatic-z[0-

9]+\.s3\.amazonaws\.com, an attacker can exploit the fact there is no limitation placed on

the numbers and try to register a hostname like arlostatic-z111.s3.amazonaws.com to match

the regular expression. Without registration restrictions from the cloud service provider or

extra diligence from the vendors, registering such a hostname may be possible for pattern

and domain representations. Unfortunately, as discussed above, hostname-based allowlists

are the most likely to inadvertently block traffic from unseen, but related, endpoints.
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6.5 Enforcing Allowlists in the Lab

To test whether the allowlists generated in various circumstances impaired the functionality

of devices, we deployed allowlists with various thresholds and host representations on nine

devices in our lab. We intentionally exercised as many functionalities as possible per device.

We found that many of these functionalities seemed to work as intended, though we observed

and diagnosed a few different failure modes. While we worried that rare behaviors (e.g.,

factory resets) unlikely to have been captured in IoT Inspector might prove problematic,

this worry did not manifest in practice. Finally, the success of deploying these allowlists in

our lab despite a two-year gap since IoT Inspector was collected highlights the stability of

the allowlists generated.

6.5.1 Implementation

To enforce our generated allowlists on real devices, we implemented our own firewall through

scapy, a Python library that manipulates network packets, and NetfilterQueue, a Python

library that intercepts network packets using iptables. We have open-sourced our firewall

implementation in our Github repository, anonymized for review [228]. The firewall runs on

a Jetson Nano, which served as a NAT gateway. In that way, all traffic generated from the

home IoT devices can be intercepted and manipulated by our firewall. The workflow of our

implementation is as follows.

Device Configuration When a new device is added to the network, the user must create

a configuration file for the device. The firewall can thus recognize the device and intercept

its traffic accordingly. The configuration file needs the following information: (i) a unique

device name; (ii) the device’s MAC address so the firewall can recognize the device as

NetfilterQueue intercept traffics via iptables, which supports MAC addresses; and (iii)

the product name to apply the appropriate allowlist. Optionally, the device’s static IP
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address can be used in place of the MAC address.

Allowlist Configuration As discussed in Section 6.4, several parameters can be used to

customize the allowlist. The threshold parameter adjusts the restrictiveness of an allowlist.

One can also specify which host representation to use. We support hostname, domain,

pattern, and IP address representations. Optionally, one could also specify if they want

their allowlist to be region-specific, though by default all data from all regions will be used.

Appendix 7.8 contains an example allowlist. We generate the relevant allowlists prior to the

deployment in the lab. In practice, we expect the user will download their chosen allowlist

and deploy it on a router.

Allowlist Enforcement NetfilterQueue intercepts traffic using iptables, which means

it only naturally supports IP addresses and ports. However, as described in Section 6.4,

hostnames and patterns are our preferred representations. In some cases, domain-based

filtering is also necessary. Therefore, we take extra steps to enable our firewall to handle

these representations as well.

The firewall uses the router’s default DNS resolver to resolve any hostname-based rules.

All hostname rules will be resolved to IP addresses and added to the IP-based allowlists for

enforcement. If the queried hostname in the DNS query is on the allowlist, then the firewall

will forward the query to the DNS resolver. Otherwise, the firewall will drop the DNS query.

Once a DNS response is received, the firewall will record the included IP addresses before

forwarding it to the device. Domain-based rules are handled similarly. The only difference

is that the DNS queries are checked against domain-based allowlists instead of those based

on hostnames.

Neither iptables nor DNS supports patterns, which means the firewall needs to interpret

patterns by itself. If patterns are used, the queried hostname in DNS traffic will be matched

on the router against the patterns allowed. Since the allowlist can be quite long, the firewall
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will first find candidates most similar to the queried hostname and check whether there is a

match. If there is a match, the DNS query will be forwarded; otherwise, it will be dropped.

There is a cold-start issue for relying on DNS. Because the firewall can be activated at

any time, some devices may have cached hostname-IP mappings. The firewall will not know

about the cached mapping and will incorrectly reject some traffic until the device performs a

DNS query. Once the firewall sees the DNS query and response, it will correct its behaviors

and resume normal operation.

6.5.2 Experimental Setup and Protocol

For our in-lab experiment, we selected the nine products that appeared most frequently in

the IoT Inspector dataset. For highly similar products (e.g., Amazon Echo and Amazon

Echo Dot), we tested only one. All devices were connected to the aforementioned Jetson

Nano over WiFi. The Jetson Nano, running Ubuntu 20.04, was used to intercept devices’

network traffic and enforce the allowlist.

Before running the tests, two researchers collaboratively determined each product’s main

functionalities and purposes using the product’s manuals and companion app. See Ap-

pendix 7.6 for a complete list of functionalities. We excluded functionalities that do not

center on the device’s main purpose, such as changing the device name. We also excluded

functionalities that do not require Internet connectivity, such as casting a webpage to a

Google Chromecast.

We first explored the expected behavior of each product without allowlists, including rare

operations (e.g., factory reset). The intention was to establish a baseline by documenting the

behavior of each product’s functionalities without allowlists. We then applied our allowlists

to each product, proceeding from the most permissive to the most restrictive by increasing

the threshold, as defined in Section 6.4. Once an allowlist was deployed, we tried to exercise

each of the product’s documented functionalities. If any functionality failed, we repeated the
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experiment to confirm. The process ended either when all functionalities failed or the most

restrictive allowlist was tested. Whenever possible, we tested each device from an external

network (i.e., interacting with the companion app outside the lab’s network) to maximize the

product’s Internet exposure. Only when devices cannot be controlled remotely (e.g., Google

Chromecast) did we use the local network. We also used voice commands to control products

and record the corresponding network traffic. Amazon Echo was used as the default receiver

for voice commands since most devices we tested are compatible with Alexa.

Our approach differs from that of Mandalari et al. [69], who also tested IoT devices in

a lab. They studied blocklists for improving privacy; we evaluate allowlists for improving

security. Further, Mandalari et al. obtained IoT destinations based on in-lab measurement,

whereas our method used IoT Inspector as training data.

6.5.3 Key Results

Of the 52 functionalities tested from the 9 devices, 50 of them worked with at least one

allowlist generated from IoT Inspector. 32 functionalities worked with a hostname-based

allowlist, and 43 functionalities worked with pattern allowlists. In contrast, 50 of the 52

functionalities worked with domain-based allowlists. Table 6.2 details our results, including

the maximum threshold at which the functionality worked and the size of the allowlist

generated.

Dedicated Hostnames In some cases, compact allowlists were sufficient; 17 function-

alities (33%) still worked when deploying an allowlist with fewer than 10 entries. These

functionalities were typically supported by dedicated hostnames, making it possible to apply

a hostname-based allowlist. For instance, Google Home only needs www.google.com for all

functionalities other than media (e.g., playing music). The actual execution, such as con-

trolling other devices or querying external information (e.g., weather), is handled through
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Device Functionality
Hostname Hostname Pattern Domain

# of Allowed
Hostnames

Threshold
# of Allowed

Patterns
Threshold

# of Allowed
Domains

Threshold

Amazon Echo Dot
(N=576)

Productivity × Load balancing 22 115 2 518
Entertainment × Load balancing × CDNs 4 460
Device control × Load balancing 22 115 2 518
Communication × Load balancing × CDNs 11 57
Shopping × Load balancing 22 115 2 518
Skills × Load balancing 1982 1 91 4
Factory reset × Load balancing 22 115 4 460

Amazon Fire Stick
(N=136)

Built-in Alexa 77 13 74 13 6 54
Streaming 10486 1 5481 1 17 27
Download apps 210 5 187 5 33 13
Factory reset × API change × API change × API change

Sonos One
(N=261)

Radio × New services × New services × New services
Streaming × CDNs 119 3 4 52
Change volume × Interaction dependencies 119 3 4 52
Pause × Interaction dependencies 119 3 4 52
Voice control (streaming) × Load balancing × Load balancing 62 3
Voice control (volume) × Load balancing 521 1 62 3
Factory Reset 411 2 223 2 3 78

Google Home
(N=490)

Media × CDNs 151 3 2 392
Control Chromecast 8 245 7 245 2 392
Find your phone 8 245 7 245 2 392
Manage tasks 8 245 7 245 2 392
Control your home 8 245 7 245 2 392
Plan 8 245 7 245 2 392
Factory reset 26 49 25 49 2 392

Google Chromecast
(N=288)

Watch Live TV × CDNs 230 2 47 5
Factory reset 13 115 5 201 2 201

Wyze Camera*
(N=167)

Live streaming 77 2 68 2 4 100
Event recording 77 2 68 2 4 100
Motion Tagging 77 2 68 2 4 100
Night vision 77 2 68 2 4 100
2-way audio 77 2 68 2 4 100
Sharing 77 2 68 2 4 100
Rules 77 2 68 2 4 100
On/Off 77 2 68 2 4 100
Factory Reset 18 16 17 16 4 100

Table 6.2: The highest tested thresholds (i.e., the strictest allowlist) and the number of
allowed hostnames/patterns/domains that still keep the devices functioning in our in-lab ex-

periment. × [Failure Reason] means none of our generated allowlists keep the functionality
running; the “failure reason” explains why. To force the tested devices to use the Internet
instead of the local network for functionality, the companion app is used on a smartphone
connected to a different network by default, unless the functionality under test requires
the smartphone to be on the same network (e.g., Google Chromecast). Wyze camera is
marked with a * as the device only works with some additional manually allowed
IP addresses. The IP addresses are the main contributors to the Wyze Camera’s
traffic and can be easily observed, but no associated DNS lookup was observed.
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Device Functionality
Hostname Hostname Pattern Domain

# of Allowed
Hostnames

Threshold
# of Allowed

Patterns
Threshold

# of Allowed
Domains

Threshold

Philips Hue
(N=295)

On/Off 1 236 1 236 1 236
Brightness 1 236 1 236 1 236
Voice control 1 236 1 236 1 236
Timer 1 236 1 236 1 236
Routine 1 236 1 236 1 236
Factory reset 6 59 6 59 3 59

Belkin Wemo
(N=220)

On/Off × API change × API changes 13 5
Scheduling × API changes × API changes 13 5
Auto-off × API changes × API changes 13 5
Away mode × API changes × API changes 13 5
Factory Reset 2 110 2 110 1 198

TP-Link Switch
(N=88)

On/Off 3 26 3 26 1 70
Scheduling 3 26 3 26 1 70
Timer 3 26 3 26 1 70
Away mode 3 26 3 26 1 70
Factory Reset 3 26 3 26 1 70

Table 6.3: (Continued) The highest tested thresholds (i.e., the strictest allowlist) and the
number of allowed hostnames/patterns/domains that still keep the devices functioning in

our in-lab experiment. × [Failure Reason] means none of our generated allowlists keep the
functionality running; the “failure reason” explains why. To force the tested devices to use
the Internet instead of the local network for functionality, the companion app is used on a
smartphone connected to a different network by default, unless the functionality under test
requires the smartphone to be on the same network (e.g., Google Chromecast).

server-to-server communication.

Streaming Media For streaming audio or video, hostname-based allowlists struggled. Of

the 11 streaming functionalities tested, 7 did not work with any hostname-based allowlists.

Among these 7 functionalities, 4 started working after we switched to a pattern-based al-

lowlist, and two others only worked with a domain-based allowlist. The final functionality,

Sonos Radio, was a newly introduced feature. The endpoint it contacts, sonos.radio, was

not present in the two-year-old IoT Inspector dataset.

Ports An allowlist that includes ports may necessitate a lower threshold for some devices

because the number of devices that contact a specific port on a host is lower than the number

of devices that contact the host overall. We confirm this through a post-hoc analysis. For
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example, according to the IoT Inspector dataset, connectivitycheck.gstatic.com, an

essential endpoint for Google Home to function, operates both on port 80 and port 443.

The dataset shows that more devices use port 443, whereas our Google Home uses port 80

instead. As a result, if ports are included for a Google Home allowlist, a lower-threshold

allowlist or ad-hoc workaround (e.g., always allowing port 80) is required.

Allowlist Stability Despite the aforementioned Sonos example, our results overall suggest

that allowlists can be quite stable, at least for core functionalities. Among the nine products

tested, only three (Amazon Fire Stick, Belkin Wemo switch, and Sonos One) had function-

alities seemingly impacted by the age of the IoT Inspector dataset. While the endpoint for

the Belkin Wemo had changed in the intervening two years, severely impacting functionality

when allowlists were deployed, the other two devices were affected in only minor ways. We

also noticed some hosts change their ports (e.g., drift.com, used by Google Home, changed

from port 443 to 9999). However, none of these endpoints appeared to be essential to func-

tionality. Most vendors still used the same endpoints/APIs, making allowlists fairly stable

despite multiple firmware updates.

6.5.4 Reasons For Failures

To inform the design of future allowlists, we investigated and attributed the root causes of

particular functionalities failing.

Content Delivery Networks (CDNs) Among the 20 functionalities hostname-based

allowlists break, the use of CDNs was directly responsible for six, with another four being

affected indirectly (e.g., pausing music is not relevant if the music cannot be loaded in the

first place). CDN hostnames commonly included seemingly random numbers or letters. As

a result, allowlists based on exact hostname matches frequently blocked legitimate commu-

nication.
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Our lab experiments verified that pattern-based allowlists often mitigate this failure. For

example, when we attempted to play a playlist, Sonos One contacted guc3-accesspoint-a-vr15.

ap.spotify.com, which was blocked by hostname-based allowlists, but allowed by pattern-

based ones. We also observed cases where hostnames were too random to be clustered by

DBSCAN, such as hostnames from CloudFront (e.g., d924eisv4ltzs.cloudfront.net). If

the hostname is not included in the IoT Inspector dataset, then it is necessary to have a

domain-based rule instead.

Load Balancing Even with a large dataset like IoT Inspector, not all load-balancing

endpoints will be observed. The Amazon Echo Dot in the lab experiments contacted

avs-alexa-14-na.amazon.com for Alexa services, which was not observed in the dataset.

However, as many other Alexa AVS endpoints were observed in the dataset, a successful

pattern was extracted, solving the problem.

Dependencies Some functionalities were impaired due to blocking another functional-

ity. For example, as mentioned previously, hostname-based allowlists often impaired music

streaming, including for Sonos One. All other functionalities, such as changing the volume,

were thus no longer accessible. Connectivity checking was another common, and important,

dependency. Many devices, such as the Google Home and Belkin Wemo Switch, perform

connectivity checking. If it fails, then the device refuses to take any further commands until

it believes it is again online. Google Home uses www.google.com for most functionalities, but

connectivity checking is via connectivitycheck.gstatic.com. Blocking the latter leads to

a Google Home that refuses to accept voice commands.

API Changes Rarely, vendors will change their API and infrastructure, invalidating al-

lowlists generated from past data. This happened with the Belkin Wemo Switch. When

the IoT Inspector dataset was collected in 2019, Belkin Wemo plugs used api.xbcs.net for
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their API, which was confirmed in previous papers [26, 69]. However, Belkin recently added

a new hostname, deviceapis.xwemo.com. Failing to allow this new, previously unseen API

endpoint put the device offline. Ironically, the original API endpoint was still live, and the

switch still contacted it from time to time.

New Services In addition to changes to API endpoints, the vendor may also add new

features. In our case, Sonos Radio was a new feature launched in 2020 [234]. In the lab, Sonos

radio required a new, previously unobserved domain (sonos.radio) for communication.

Third-Party Services We anticipated that integration with third-party services chosen

by users could be another source of failures, though we did not observe this to be the case in

our experiments. Popular integrations with YouTube, Netflix, or Spotify had been observed

in IoT Inspector. However, users who prefer less popular services may encounter problems.

6.5.5 Limitations

Because our firewall implementation is simply a proof-of-concept to evaluate allowlists’ real-

world impact on device functionality, we did not design the implementation for high perfor-

mance nor conduct a performance evaluation. Although we did not experience any human-

noticeable delay during the experiments, we note that our prototype intercepts traffic in user

space instead of kernel space, likely introducing latency. To enable allowlists that support

hostnames, domains, and hostname patterns, it is inevitable to intercept DNS traffic for

matching. However, the IP addresses mapped to these representations can be easily written

as iptables rules, which can speed up the process with proper caching.
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6.6 Discussion

Home IoT devices have a significant attack surface due to the prevalence of unpatched secu-

rity vulnerabilities. Although relying on vendors to secure devices through regular security

updates offers one level of defense, such an approach is incomplete. Not all vendors regularly

apply updates. In some cases, IoT devices remain connected well past when vendors support

them. This state of affairs necessitates network-level defenses. Unfortunately, determining

precisely which traffic flows should be allowed from any particular device is challenging due

to the surprising heterogeneity of behavior across home IoT devices—even devices of exactly

the same product. Because of this heterogeneity, generating generalizable allowlists that

minimize the attack surface is the key challenge.

This chapter has explored the design space for home IoT network allowlists, evaluating

how factors like the representation of a network endpoint (i.e., hostname, domain, pattern),

geographic location, and amount of observed traffic from the device can contribute to the

construction of an allowlist that generalizes across devices of the same type or vendor. Our

evaluation is promising, suggesting that generalizable allowlists based on hostname patterns

can be constructed for many products based on a training sample of only one or two dozen

devices. We also discovered that localizing the training data by region can be helpful since de-

vices exhibit geographically specific behaviors. Our evaluation of the allowlists we generated

on real devices in a lab study—two years after the training set was collected—demonstrated

that such allowlists generally work, reducing the attack surface without significantly im-

pairing functionality. IoT devices that rely on cloud services often contact hostnames that

include seemingly random numbers or patterns, making generalizability difficult and opening

a security hole as domain-based representations can be quite broad. Vendors employing more

careful strategies for generating and assigning these hostnames in the future could further

manage this tradeoff.
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CHAPTER 7

APPENDIX

7.1 Home IoT Devices Considered in Chapter 4

Cooking Devices

Anova Culinary Precision Cooker
Char-Broil Digital Electric Smoker
June Intelligent Oven
Perfect Bake Pro
Samsung Family Refrigerator

Hubs
Samsung SmartThings
Wink Hub 2

Lights/Power Plugs

Belkin Wemo Insight Switch
BeOn
iHome Smartplug
LIFX Color 1000
Lutron Caseta In-Wall Wireless Lighting
Philips Hue Starter Set

Locks
August SmartLock
Kwikset Smartcode Touchscreen

Outdoor Devices
Rachio Smart Sprinkler
Robomow

Security Cameras

Kuna Toucan
LG Smart Security Wireless Camera
Nest Cam
NetGear ArloPro
Skybell Video Doorbell
Tend Secure Lynx Indoor

Thermostats

EcoBee 4
Hisense Portable AC
Nest Learning Thermostat

Voice Assistants

Amazon Echo
Echo Dot
Google Home

Table 7.1: Home IoT devices evaluated for Chapter 4.
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7.2 Full Descriptions of Capabilities for the Survey in Chapter 4

• Software Update: Install a software update to get the latest features, improvements,

and security updates.

• Play Music: Play music (e. g., from Spotify) in the house.

• Order Online: Make online purchases (e. g., on Amazon) on a shared household

account.

• Temperature Log: View the last 10 temperature adjustments and who made them.

• Mower On/Off : Turn the lawn mower on or off remotely (i. e., on a smartphone,

from anywhere).

• Mower Rule: Create rules that specify what the lawn mower should do, connecting

its actions to other devices, sensors, and services. For example, one could create a rule

specifying that the mower should not mow if it is raining.

• Lock Log: View an activity log for the past week that shows who entered the home

at what times. People will be identified based on whose PIN code or smartphone was

used to unlock the door.

• Lock State: See whether the front door is currently locked or unlocked.

• Lock Rule: Create rules that specify when the lock should be locked or unlocked,

connecting it to other devices, sensors, and services. For example, one could create a

rule specifying that the lock should always be locked when no one is home.

• Answer Door: Answer the doorbell by seeing a live video of who is at the front door

and having the opportunity to unlock the door remotely (e. g., on a smartphone, from

anywhere).

• Delete Lock Log: Delete the activity log that records who has tried to open or close

the door.

• Lights State: See which lights in the home are on or off.

• Lights On/Off : Remotely control whether a light is currently on, as well as how
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bright it is (e. g., on a smartphone, from anywhere).

• Lights Rule: Create rules that specify when the lights should turn on/off or change

color based on other sensors, devices, and services. For example, one could create rules

specifying how the lights automatically change brightness or color based on the current

weather or the movie played on the TV.

• Light Scheme: Allow a streaming video provider to change the lighting according to

the theme of the movie that is currently being watched.

• New Device: Connect a new device to the hub, enabling the hub to control that

device.

• New User: Add new users (people) to the smart-home management system, as well

as remove users from the smart-home management system.

• Live Video: See live video from each camera in or around the house.

• Facial Recognition: Enable or disable facial recognition technology for a person.

This technology is used to identify them automatically in video recordings.

• Delete Video: Delete one or more previously recorded videos.

• Camera On/Off : Turn the camera on/off remotely (e. g., on a smartphone, from

anywhere).

• Camera Angle: Change camera’s view remotely (including turning its lens to view a

different angle, zooming in/out, etc.).

7.3 Full Descriptions of Relationships for the Survey in

Chapter 4

• Your spouse: Imagine you have a spouse. You live with them everyday and share all

smart appliances in your home. You make decisions together in most cases, especially

important ones.

• Your teenage child: Imagine you have a 16-year-old child. They live with you, go

132



to school in the morning, and come back in the afternoon (on the weekdays). They

are familiar with all of these Smart devices in your home, and enjoy using them. They

know how to use these devices as well as you do, if not better. They spend a lot of time

on their smartphone. They usually are well-behaved, but they are still a teenager.

• Your child in elementary school: Imagine you have an 8-year-old child who is still

in elementary school. They live with you and go to school daily, unless it’s the weekend

or a holiday. They have a basic idea of how to use smart devices. However, they don’t

know how to use some more complex features properly, like changing the settings, but

it doesn’t discourage them from trying. They do not have their own smartphone, but

they keep asking you for one.

• A visiting family member: Imagine you have a visiting family member. They are

about the same age as you, if not much older. You grew up together, but now you

meet each other once or twice a year, because you live far away from each other. They

visit you on holidays or other big events. They usually stay with you for several days,

maybe even a little bit past the holiday, and they remain at home alone while you are

away for work.

• The babysitter: Imagine you have a babysitter in your home for taking care of your

child. They will be at your place while you are at work. They work 4 hours after

school, 3 days per week. You have known them over 6 months and you are satisfied

with their work so far, and have no intention of letting them go anytime soon.

• Your neighbor: Imagine you have a neighbor living next to you. You don’t know

them very well, but they seem to be good people. If you meet them on the street, you

greet them and make some friendly small talk. Occasionally you invite them over for

dinner, but they are never in your house when you are away.
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7.4 Survey Instrument in Chapter 4

Introduction

Computing is transitioning from single-user devices, such as laptops and phones, to the

Internet of Things, in which many users will interact with a particular device, such as an

Amazon Echo or Internet-connected door lock. Current measures fail to provide usable au-

thentication, access control, or privacy when multiple users share a device. Even more so,

the users of a given device often have complex social relationships to each other. Our goal is

to develop techniques and interfaces that enable accurate access control and authentication

in multi-user IoT environments, based on user preferences.

Participation should take about 20 minutes.

In recent years, many internet-connected (”smart”) home devices and appliances have en-

tered the market. Imagine that you own many such smart devices that are connected both

to the Internet and to each other.

This includes a smart hub that can control other devices in your home, particularly with

the help of the smart voice assistant. You also have a smart door lock and smart camera

for home security, as well as smart lighting and a smart thermostat to control your environ-

ment. There is also a smart lawn mower maintaining your lawn. All of these devices can be

remotely controlled using a smartphone app by anyone to whom you have given permission.

You, or anyone else you have permitted, can also write rules specifying in what situations

devices should activate automatically.

In this survey, we will ask you questions about who in your household should be allowed to

access one particular feature of a smart device. If you live in multiple places, think of the
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home in which you live the majority of the time. For all questions, assume that the system

has correctly identified the user involved (i. e., there are no cases of mistaken identity).

Because the situations may involve either positive or negative consequences, you should take

some time to think about your response. The next button will not appear until you have

spent at least 30 seconds on each page.

In this survey, we will ask whether you will allow people of the following relationships to

control a particular feature of a smart device: your spouse; your teenage child; your child

in elementary school; a visiting family member; a babysitter; your neighbor. Please imagine

you have these relationships in your life even if you don’t. All of these relationships are

separate people.

If you grant access to any of these people, they will be able to access your devices whether

or not they are in your home, unless you specify otherwise in your responses in the survey.

All questions in this survey will focus on one particular feature, but we will ask about your

opinion on how different people should be able to use it.

The following use the example “Your Spouse”, a “Smart Hub”, and a hub-related

capability.

The questions on this page only focus on the following person: Your spouse: Imagine you

have a spouse. You live with them everyday and share all smart appliances in your home.

You make decisions together in most cases, especially important ones.

Imagine you are the owner of a Smart Hub.
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Should your spouse be able to use the following feature? [capability] ⃝ Always (24/7/365)

⃝ Never ⃝ Sometimes, depending on specific factors

Show questions if ”Always” chosen

Why?

Imagine that the device incorrectly denies your spouse the ability to use this feature. How

much of an inconvenience, if any, would this be? ⃝ Not an inconvenience ⃝ Minor incon-

venience ⃝ Major inconvenience

Why? Please be specific.

Show questions if ”Never” chosen

Why?

Imagine that the device incorrectly allows your spouse the ability to use this feature. How

much of an inconvenience, if any, would this be?

⃝ Not an inconvenience ⃝ Minor inconvenience ⃝ Major inconvenience

Why? Please be specific.

Show questions if ”Sometimes” chosen

When should they be allowed to use this feature? Please be specific.

136



How important is it that they be allowed to use the feature in the cases you specified above?

⃝ Not important ⃝ Slightly important ⃝ Moderately important ⃝ Very important ⃝

Extremely important

In contrast, when should they not be allowed to use this feature? Please be specific.

How important is it that they not be allowed to use the feature in the cases you specified

above?

⃝ Not important ⃝ Slightly important ⃝ Moderately important ⃝ Very important ⃝

Extremely important

Thanks! We will now be asking you an additional set of questions. Imagine that you have

already chosen settings specifying who can and cannot access a certain feature in your home.

Think broadly about all types of people you might want to allow to control these devices;

do not restrict yourself just to the relationships we have previously asked about.

Scenario: Imagine you are still the owner of a Smart Hub. You specify that certain people

can access the following feature only sometimes: [capability]

Might the location of the person relative to the device (e. g., in the same room, not

in the house, etc.) affect your decision on whether certain people can or cannot use this

particular feature? ⃝ Yes ⃝ No ⃝ Not applicable

Briefly explain your response.
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Might the location of the device in the house (e. g., which room) affect your decision

on whether certain people can or cannot use this particular feature? ⃝ Yes ⃝ No ⃝ Not

applicable

Briefly explain your response.

Might the current state of the device (e. g., whether it is on or off) affect your decision

on whether certain people can or cannot use this particular feature? ⃝ Yes ⃝ No ⃝ Not

applicable

Briefly explain your response.

Might the cost of performing that action (e. g., cost of electricity or other monetary costs

of carrying out that action) affect your decision on whether certain people can or cannot use

this particular feature? ⃝ Yes ⃝ No ⃝ Not applicable

Briefly explain your response.

Might the person’s recent usage of the device affect your decision on whether certain

people can or cannot use this particular feature? ⃝ Yes ⃝ No ⃝ Not applicable

Briefly explain your response.

Might the age of the person affect your decision on whether certain people can or cannot

use this particular feature? ⃝ Yes ⃝ No ⃝ Not applicable
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Briefly explain your response.

Might who else, if anyone, is currently at home affect your decision on whether certain

people can or cannot use this particular feature? ⃝ Yes ⃝ No ⃝ Not applicable

Briefly explain your response.

Might the time of day affect your decision on whether certain people can or cannot use

this particular feature? ⃝ Yes ⃝ No ⃝ Not applicable

Briefly explain your response.

Please list any other factors that might affect your decision on whether certain people can

or cannot use the following feature: [capability]

Do you or anyone in your household own the following devices?

Internet-connected lights? ⃝ Yes ⃝ No

Internet-connected thermostat? ⃝ Yes ⃝ No

Internet-connected voice assistant? ⃝ Yes ⃝ No

Internet-connected lawn mower? ⃝ Yes ⃝ No

Internet-connected security camera? ⃝ Yes ⃝ No

Internet-connected door lock? ⃝ Yes ⃝ No

If answered yes to any of the above: Which specific devices (brand, model, etc.) do you own?

Please choose the answer that best applies:
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Spouse: ⃝ I’m currently living with such a person ⃝ I’m not currently living with such a

person, but I have previously⃝ I have never lived with such a person⃝ I prefer not to answer

Child in elementary school: ⃝ I’m currently living with such a person ⃝ I’m not currently

living with such a person, but I have previously ⃝ I have never lived with such a person ⃝

I prefer not to answer

Teenage child: ⃝ I’m currently living with such a person ⃝ I’m not currently living with

such a person, but I have previously ⃝ I have never lived with such a person ⃝ I prefer not

to answer

Which of the following best describes your experience with hiring a babysitter (someone

unrelated to you whom you pay to watch your children)? ⃝ I have hired a babysitter within

the last year ⃝ I have hired a babysitter but not within the last year ⃝ I have never hired

a babysitter ⃝ I prefer not to answer

Which of the following best describes your neighbors? ⃝ I have neighbors and I know most

of them ⃝ I have neighbors and I know some of them ⃝ I have neighbors and I know few

or none of them ⃝ I do not have neighbors ⃝ I prefer not to answer

In a typical year, how many nights total do relatives (who do not live with you) stay at your

home? ⃝ 0 ⃝ 1-10 ⃝ 10-20 ⃝ 20-30 ⃝ 30+ ⃝ I prefer not to answer

Do you live in a: ⃝ Single family home ⃝ Townhouse ⃝ Apartment/condo ⃝ Other (please

specify) ⃝ I prefer not to answer
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Do you rent or own the place where you live? ⃝ Rent ⃝ Own ⃝ I prefer not to answer

How many people (including you) are there in your household? ⃝ 1 ⃝ 2 ⃝ 3 ⃝ 4 ⃝ 5 ⃝

More than 5 ⃝ I prefer not to answer

What is your age range? ⃝ 18-24 ⃝ 25-34 ⃝ 35-44 ⃝ 45-54 ⃝ 55-64 ⃝ 65-74 ⃝ 75+ ⃝

Prefer not to say

With what gender do you identify? ⃝ Male ⃝ Female ⃝ Non-binary ⃝ Other ⃝

Prefer not to say

Are you majoring in, hold a degree in, or have held a job in any of the following fields:

computer science; computer engineering; information technology; or a related field? ⃝ Yes

⃝ No ⃝ Prefer not to answer

If you have any further feedback, questions, comments, concerns, or anything else you want

to tell us, please leave a comment below!

7.5 Traffic Throughput by Device Type

Although the paper focuses on the endpoints home IoT devices contact, we also examined the

variability in the amount of traffic they send and receive. In cases like the Mirai botnet [224],

IoT devices were repurposed for DDoS. Thus, characterizing and perhaps throttling the

amount of traffic they could send is an additional network-level defense. However, we

notice that vendors may occasionally request a lot of data from devices and vice

versa. Setting up throttling may interfere with a device’s legitimate functions.
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1KB 32KB 1MB 32MB
Maximum Bytes Sent/Received in 1 Minute by Device

Voice Assistant
(180 Devices, 4 Products)

Camera
(91 Devices, 13 Products)

Thermostat
(79 Devices, 4 Products)

Switch
(74 Devices, 5 Products)

TV
(63 Devices, 10 Products)

Streaming
(62 Devices, 5 Products)

Light
(54 Devices, 8 Products)

Inbound Outbound

Figure 7.1: Distributions of the maximum bytes that a given device sends (receives) within
1 minute, grouping by type.

Thus, throttling is not included in the body of the paper, but only discussed

here for completeness.

We expected that, while products of the same type may not share similarities in the

remote hosts they contact, they might require similar throughput, which could imply throt-

tling limits. Figure 7.1 thus shows, for a larger set of products, the maximum amount of

traffic any given device in our dataset in any given one-minute period. The figure only in-

cludes flows with an MTU ≤ 1500.1 Figure 7.1 shows that TVs in our dataset received up to

5.5 MB of data per minute, while switches received up to 36.5 KB per minute at most. As

expected, switches and lights receive and send much less data than other types. However, we

observed some surprising outliers. For example, a TP-Link switch and a Belkin Wemo switch

1. We impose a limit on the MTU as some packet sizes collected by IoT Inspector significantly exceed
the MTU, up to millions of bytes per packet. We observe these apparently erroneous MTU values on 2.4%
of devices.
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respectively sent 671.12 KB and 565.55 KB in one minute to n-devs.tplinkcloud.com and

nat.xbcs.net, respectively. We contemplate that these outliers may be caused by some rare

user operations or by the vendors’ own data collection. A higher throttling threshold can be

placed on the device if one would like to ensure full functionality. On the other hand, TVs

and streaming devices generally receive more traffic than others. One interesting observation

is that cameras are the only ones that send much more data than receive. The amount of

data cameras sent in one minute also varies a lot, from tens of bytes to 19.28 MB, making

them harder to throttle.
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7.6 Functionalities Tested in the Lab

Functionality Description

Amazon Echo Dot

Productivity “Alexa, what’s the time?”

Entertainment “Alexa, play music.”

Device control “Alexa, turn on/off all Hue lights.”

Communication “Alexa, Call Alice.”

Shopping “Alexa, search for dog toys.”

Skills “Alexa, play thunderstorm sounds.”

Change volume Change the volume of the Echo Dot.

Factory Reset Reset and initialize the device.

Philips Hue

On/Off Turn lights on/off.

Brightness Change the brightness level of a light.

Voice control Control the device (on/off) using Alexa.

Timer Activate a timer that would turn lights on/off in one minute.

Routine Change time to fit for the experiment

Factory Reset Reset and initialize the device.

Amazon Fire Stick

Built-in Alexa “Alexa, find action movies”

Streaming Streaming a movie that is free (with ads).

Download apps Download Spotify in the App Market on Amazon Fire.

Factory Reset Reset and initialize the device.

Table 7.2: Product functionalities tested in our lab evaluation.
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Functionality Description

Google Home

Media “Google, play some music.”

Control Chromecast “Hey Google, play Youtube on the Hallway TV.”

Find your phone “Hey Google, find my phone.”

Manage tasks “Hey Google, set a timer for 1 min.”

Control your home “Hey Google, turn on the wemo plug.”

Plan “Hey Google, how’s the weather?”

Change volume

Factory Reset Reset and initialize the device.

Google Chromecast

Watch Live TV “Hey Google, play Youtube on the Hallway TV.”

Cast tab to TV

Cast screen to TV

Cast media to TV

Factory Reset Reset and initialize the device.

Wyze Camera

Live streaming Watch the live stream from the camera.

Event recording Record the live stream.

Motion Tagging Tag motions.

Night vision Switch the camera to night vision.

2-way audio Two-way communication through the camera.

Sharing Share a video clip to other family members.

Rules

On Turn on the camera.

Off Turn off the camera.

Factory Reset Reset and initialize the device.

Table 7.3: (Continued) Product functionalities tested in our lab evaluation.
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Functionality Description

Belkin Wemo Plug

On Turn on the plug.

Off Turn off the plug.

Scheduling Schedule the plug to turn on/off at a specific time.

Auto-off Set up a one-minute countdown to turn off the plug.

Away mode Activate the away mode.

Factory Reset Reset and initialize the device.

TP-Link Plug

On Turn on the plug.

Off Turn off the plug.

Scheduling Schedule the plug to turn on/off at a specific time.

Timer Set up a one-minute countdown to turn off the plug.

Away mode Activate the away mode.

Factory Reset Reset and initialize the device.

Sonos One

Radio Play Sonos Radio.

Streaming Play songs from Spotify.

Change volume Change volume.

Pause Pause the music.

Play songs from phone Play a song from a phone under the same network.

Voice control (streaming) Using Alexa to play songs.

Voice control (volume) Using Alexa to change volume.

Playlists Edit playlists.

Factory Reset Reset and initialize the device.

Table 7.4: (Continued) Product functionalities tested in our lab evaluation.
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7.7 Regionalization Regressions

Factor β SE t p

(Intercept) 0.828 0.004 194.915 < .001

Train Region: B -0.025 0.001 -19.322 < .001

Train Region: C -0.036 0.001 -26.541 < .001

Test Region: B -0.041 0.002 -22.423 < .001

Test Region: C -0.091 0.004 -24.806 < .001

Product: Belkin Switch -0.363 0.002 -170.291 < .001

Product: Google Chromecast 0.086 0.002 51.714 < .001

Product: Google Home 0.089 0.001 65.493 < .001

Product: Philips Hue 0.074 0.002 43.744 < .001

Product: Sonos Speaker -0.321 0.002 -194.669 < .001

log(Train Sample Size) 0.008 ¡.001 18.014 < .001

Train Region: B * Test Region: B 0.060 0.003 23.276 < .001

Train Region: B * Test Region: C 0.063 0.005 12.131 < .001

Train Region: C * Test Region: B 0.054 0.003 21.339 < .001

Train Region: C * Test Region: C 0.128 0.007 19.644 < .001

Table 7.5: Linear regressions modeling the impact on hostname-based allowlists trans-

ferability of the geographic region in which devices were located, whether the train and test

regions were the same (* represents an interaction term), the amount of training data, and

the product. As the baseline for categorical variables, we use the largest category: A for

region and Amazon Echo for product.
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Factor β SE t p

(Intercept) 0.792 0.004 213.467 < .001

Train Region: B -0.031 0.001 -25.069 < .001

Train Region: C -0.032 0.001 -25.500 < .001

Test Region: B -0.036 0.002 -21.423 < .001

Test Region: C -0.100 0.003 -29.007 < .001

Product: Belkin Switch -0.044 0.002 -22.248 < .001

Product: Google Chromecast 0.063 0.002 40.579 < .001

Product: Google Home 0.066 0.001 51.954 < .001

Product: Philips Hue 0.048 0.002 30.074 < .001

Product: Sonos Speaker -0.187 0.002 -121.330 < .001

log(Train Sample Size) 0.008 0.000 18.412 < .001

Train Region: B * Test Region: B 0.074 0.002 30.675 < .001

Train Region: B * Test Region: C 0.055 0.005 11.369 < .001

Train Region: C * Test Region: B 0.064 0.002 27.024 < .001

Train Region: C * Test Region: C 0.121 0.006 19.944 < .001

Table 7.6: Linear regressions modeling the impact on hostname-pattern-based allowlists

transferability of the geographic region in which devices were located, whether the train and

test regions were the same (* represents an interaction term), the amount of training data,

and the product. As the baseline for categorical variables, we use the largest category: A

for region and Amazon Echo for product.
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Factor β SE t p

(Intercept) 0.915 0.004 225.965 < .001

Train Region: C -0.034 0.001 -30.047 < .001

Train Region: B -0.013 0.001 -11.484 < .001

Test Region: C -0.053 0.003 -17.047 < .001

Test Region: B -0.021 0.002 -13.376 < .001

Product: Belkin Switch -0.093 0.002 -54.276 < .001

Product: Google Chromecast -0.002 0.001 -1.303 0.193

Product: Google Home 0.014 0.001 12.889 < .001

Product: Philips Hue 0.044 0.001 31.927 < .001

Product: Sonos Speaker -0.097 0.001 -68.704 < .001

log(Train Sample Size) 0.004 ¡.001 11.531 < .001

Train Region: C * Test Region: C 0.092 0.006 16.720 < .001

Train Region: B * Test Region: C 0.036 0.004 8.231 < .001

Train Region: C * Test Region: B 0.044 0.002 20.333 < .001

Train Region: B * Test Region: B 0.022 0.002 10.072 < .001

Table 7.7: Linear regressions modeling the impact on domain-based allowlists transfer-

ability of the geographic region in which devices were located, whether the train and test

regions were the same (* represents an interaction term), the amount of training data, and

the product. As the baseline for categorical variables, we use the largest category: A for

region and Amazon Echo for product.
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7.8 Example Allowlist

1 {

2 "device_name": "Amazon Echo in Study",

3 "device_mac": "XX-XX-XX-XX-XX",

4 "device_ip": "", # optional

5 "product_name": "amazon_echo",

6 "feature": "hostname",

7 ...,

8 "allowlist": {

9 "ip": set([

10 "52.94.229.122",

11 "104.154.127.107",

12 ...]) ,

13 "hostname": set([

14 "avs -alexa -3-na.amazon.com",

15 "prod.insights.comms.alexa.a2z.com",

16 ...]) ,

17 "domain": set([

18 "amazon.com",

19 "amazonaws.com",

20 ...]) ,

21 "patterns": {

22 "guc3 -accesspoint -a-p53l.ap.spotify.com": "(guc|gae|gew)[0-9]+-

accesspoint -.*\.ap\. spotify \.com",

23 "spectrum.s3.amazonaws.com": "spectrum \.s3\. amazonaws \.com",

24 ...

25 }

26 }

27 }

Listing 7.1: Example of our allowlist format.
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7.9 Additional Figures
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Figure 7.2: A comparison of the transferability of allowlists within a given product and

across products from the same vendor, grouped by type. Each point in a boxplot is the

vendor MFAF of a product of the specified type. The plot uses domain-based allowlists with

threshold ≤ 5.
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Figure 7.3: MFAF of device network behavior using different allowlist formats (columns).
Rows represent the source product for generating the allowlists, and the color indicates the
proportion of flows allowed when creating an allowlist using a threshold of between 1 and 5s
(sub-columns) and applying it to devices of the same product.
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Figure 7.4: MFAF of allowlists using different host representations (columns). Rows repre-
sent the source product for generating the allowlists, and the color indicates the proportion of
flows allowed when creating an allowlist using a threshold of between 1 and 5s (sub-columns)
and applying it to devices of the same vendor.
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Figure 7.5: MFAF of allowlists using different host representations (columns). Rows repre-
sent the source product for generating the allowlists, and the color indicates the proportion of
flows allowed when creating an allowlist using a threshold of between 1 and 5s (sub-columns)
and applying it to devices of the same type.
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