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ABSTRACT

The field of quantum computing is at an exciting time where we are building devices, running

programs, and finding out what works best. As qubit technology grows and matures, we need

to be ready to design and program larger quantum computer systems. An important aspect

of systems design is layered abstractions to reduce complexity and guide intuition. Classical

computer systems have built up many abstractions over its history including the layers of the

hardware stack and programming abstractions like loops. Researchers initially ported these

abstractions with little modification when designing quantum computer systems and only in

recent years have some of those abstractions been broken in the name of optimization and

efficiency. We argue that new or quantum-tailored abstractions are needed to get the most

benefit out of quantum computer systems. We keep the benefits gained through breaking old

abstraction by finding abstractions aligned with quantum physics and the technology. This

dissertation is supported by three examples of abstractions that could become a core part of

how we design and program quantum computers: third-level logical state as scratch space,

memory as a third spacial dimension for quantum data, and architecture-tuned hierarchical

programs.
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CHAPTER 1

INTRODUCTION

Moore’s Law and the expectation that computers double in speed every 18 months is at

an end, so hard problems in chemistry, physics simulation, and combinatorial optimization

cannot be solved by waiting for a faster computer. Since the end of Moore’s Law, researchers

have been developing special-purpose accelerators to squeeze better performance out of each

transistor. However once fully realized, quantum computers can solve specific classes of

problems in simulation and cryptography exponentially faster.

Quantum computers work by harnessing quantum physics instead of classical Newtonian

physics. Because quantum physics is a superset of classical physics, we often treat quantum

computers as classical computers with the additional features of superposition, entanglement,

and interference. This view is apparent in Shor’s algorithm which creates a quantum

superposition, followed by classical arithmetic, and finishes with quantum phase estimation.

Seeing quantum programming through a classical lens can be limiting and sometimes

harmful. It is common for programmers who are new to quantum to invent a “quantum

algorithm” that is simply a randomized classical algorithm run on a quantum computer.

More subtly, concepts such as binary representation of data, random access memory, and

hierarchical modularity of programs when used in the design of quantum computers limit

the performance due to mismatches with the underlying technology. Even classical concepts

of causality and movement of data can be limiting; quantum teleportation moves quantum

data long distances by pre-transferring another resource before the data exists.

When we design quantum architectures and compilers, the abstractions we use are key to

a good design. The abstraction of two-level bits is very beneficial to for classical computer

reliability but is yet to be decided for quantum. Early classical computers used base-10 ad-

dresses and arithmetic until early computer architects settled on binary as the most efficient

and reliable design. This history informs the general assumption that binary (base-2) is
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best for quantum computers but that is not necessarily the case. We discuss this further in

Chapter 2.

Because quantum computing is a rapidly developing field with many competing technolo-

gies there is no clear “best” for any use case. Each quantum technology has capabilities and

constraints that inform a variety of architectures that show how to turn a qubit technology

into a practical quantum computer. The principles of abstraction and modularity we use

to build any complex system still apply when we design a quantum computer architecture,

instruction set, compiler, and programming language but we must tailor the abstractions to

best fit the physics and the technology or we will limit future efficiency.

This dissertation presents three cases of new or old abstractions that we have tailored for

quantum computing. We discuss the methodologies to select these abstractions and how we

use them with a particular class of quantum architectures. We show that good abstractions

can allow more space efficient algorithms or more effective compilers.

This dissertation comprises three core papers introducing three abstractions covered in

the following chapters. Several additional papers are included that show further benefits and

refinement to the abstractions. We start in Chapter 2 by introducing three-level quantum

trits and d-level quantum dits : Asymptotic Improvements to Quantum Circuits via Qutrits ?.

These abstractions replace and augment the use of binary qubits with three-level qutrits or

d-level qudits but require us to completely rethink how algorithms and compilers allocate and

use scratch space. Most quantum technologies can reliably support three or more quantum

states with minor changes to the control signal design and no change to the hardware design.

Supported technologies include superconducting transmon, ion trap, and neutral atom, but

notably not some types of photonic qubits.

Chapter 3 considers abstractions that spatially separate quantum data storage or memory

from computation on that data: Virtualized Logical Qubits: A 2.5D Architecture for Error-

Corrected Quantum Computing ?. Classical computers contain high speed buses that can
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transfer data between memory (RAM) and computation (CPU) but this extreme separation

of memory from compute does not make sense either for current small (NISQ) or for future

(fault-tolerant) quantum computers. The typical abstraction for both kinds is a monolithic

2D array of qubits because NISQ computers cannot sacrifice the data-parallelism and fault-

tolerance requires constant error correction to prevent errors. Compiler design is simple in

this monolithic model because there is no heterogeneity; just place related data nearby in the

plane. But we compare an alternative to the monolithic model. We redesign the surface code

to use small amounts of distributed memory and find that it improves the space efficiency

of fault-tolerant algorithms.

Classical programmers have used a hierarchy of function calls and modules in the design

of a program to great effect. Hierarchy gives structure to what would otherwise be a very

long list of assembly instructions. Compilers use this structure to guide optimizations and to

avoid duplicate work. However, quantum programmers are now trending toward highly hand-

optimized programs with no hierarchy for small to mid-size programs. Chapter 4 introduces

Orchestrated Trios: Compiling for Efficient Communication in Quantum Programs with 3-

Qubit Gates to show that hierarchy can help guide quantum compiler heuristics even for

these mid-size programs.

Picking the right abstractions are crucial for quantum programming, compiling, and

execution. Chapter 5 concludes with a discussion and other places where we still need better

abstractions.
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CHAPTER 2

MULTI-VALUE QUDITS

2.1 Introduction

TODO Revise content here.

Recent advances in both hardware and software for quantum computation have demon-

strated significant progress towards practical outcomes. In the coming years, we expect

quantum computing will have important applications in fields ranging from machine learn-

ing and optimization Biamonte et al. [2016] to drug discovery Kassal et al. [2010]. While early

research efforts focused on longer-term systems employing full error correction to execute

large instances of algorithms like Shor factoring Shor [1995] and Grover search Grover [1996],

recent work has focused on NISQ (Noisy Intermediate Scale Quantum) computation Preskill

[2018]. The NISQ regime considers near-term machines with just tens to hundreds of quan-

tum bits (qubits) and moderate errors.

Given the severe constraints on quantum resources, it is critical to fully optimize the

compilation of a quantum algorithm in order to have successful computation. Prior archi-

tectural research has explored techniques such as mapping, scheduling, and parallelism Ding

et al. [2018], Javadi-Abhari et al. [2017], Guerreschi and Park [2017] to extend the amount

of useful computation possible. In this work, we consider another technique: quantum trits

(qutrits).

While quantum computation is typically expressed as a two-level binary abstraction of

qubits, the underlying physics of quantum systems are not intrinsically binary. Whereas

classical computers operate in binary states at the physical level (e.g. clipping above and

below a threshold voltage), quantum computers have natural access to an infinite spectrum

of discrete energy levels. In fact, hardware must actively suppress higher level states in order

to achieve the two-level qubit approximation. Hence, using three-level qutrits is simply a
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choice of including an additional discrete energy level, albeit at the cost of more opportunities

for error.

Prior work on qutrits (or more generally, d-level qudits) identified only constant factor

gains from extending beyond qubits. In general, this prior work Pavlidis and Floratos [2017]

has emphasized the information compression advantages of qutrits. For example, N qubits

can be expressed as N
log2(3)

qutrits, which leads to log2(3) ≈ 1.6-constant factor improvements

in runtimes.

Our approach utilizes qutrits in a novel fashion, essentially using the third state as

temporary storage, but at the cost of higher per-operation error rates. Under this treatment,

the runtime (i.e. circuit depth or critical path) is asymptotically faster, and the reliability of

computations is also improved. Moreover, our approach only applies qutrit operations in an

intermediary stage: the input and output are still qubits, which is important for initialization

and measurement on real devices Randall et al. [2015, 2018].

The net result of our work is to extend the frontier of what quantum computers can

compute. In particular, the frontier is defined by the zone in which every machine qubit is

a data qubit, for example a 100-qubit algorithm running on a 100-qubit machine. This is

indicated by the yellow region in Figure ??. In this frontier zone, we do not have room for

non-data workspace qubits known as ancilla. The lack of ancilla in the frontier zone is a

costly constraint that generally leads to inefficient circuits. For this reason, typical circuits

instead operate below the frontier zone, with many machine qubits used as ancilla. Our work

demonstrates that ancilla can be substituted with qutrits, enabling us to operate efficiently

within the ancilla-free frontier zone.

We highlight the three primary contributions of our work:

1. A circuit construction based on qutrits that leads to asymptotically faster circuits

(633N → 38 log2N) than equivalent qubit-only constructions. We also reduce total

gate counts from 397N to 6N .
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2. An open-source simulator, based on Google’s Cirq Cir [2018], which supports realistic

noise simulation for qutrit (and qudit) circuits.

3. Simulation results, under realistic noise models, which demonstrate our circuit con-

struction outperforms equivalent qubit circuits in terms of error. For our benchmarked

circuits, our reliability advantage ranges from 2x for trapped ion noise models up to

more than 10,000x for superconducting noise models. For completeness, we also bench-

mark our circuit against a qubit-only construction augmented by an ancilla and find

our construction is still more reliable.

The rest of this paper is organized as follows: Section ?? presents relevant background

about quantum computation and Section ?? outlines related prior work that we benchmark

our work against. Section ?? demonstrates our key circuit construction, and Section ??

surveys applications of this construction toward important quantum algorithms. Section ??

introduces our open-source qudit circuit simulator. Section ?? explains our noise modeling

methodology (with full details in Appendix ??), and Section ?? presents simulation results

for these noise models. Finally, we discuss our results at a higher level in Section ??.
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CHAPTER 3

2.5D MEMORY

3.1 Introduction

TODO Revise content here.

Quantum devices have improved significantly in the last several years both in terms of

physical error rates and number of usable qubits. For example, IBM and others have made

accessible via the cloud several devices with 5 to 53 qubits with moderate error rates ?. Con-

currently, great progress has been made at the software level such as improved compilation

procedures reducing required overhead for program execution. These efforts are directed at

enabling NISQ (Noisy Intermediate-Scale Quantum) ? algorithms to demonstrate the power

of quantum computing. Machines in this era are expected to run some important programs

and have recently been used to by Google to demonstrate “quantum supremacy” ?.

Despite this, these machines will be too small for error correction and unable to run

large-scale programs due to unreliable qubits. The ultimate goal is to construct fault-tolerant

machines capable of executing thousands of gates and in the long-term to execute large-scale

algorithms such as Shor’s ? and Grover’s ? with speedups over classical algorithms. There

are a number of promising error correction schemes which have been proposed such as the

color code ? or the surface code ???. The surface code is a particularly appealing candidate

because of its low overhead, high error threshold, and its reliance on few nearest-neighbor

interactions in a 2D array of qubits, a common feature of superconducting transmon qubit

hardware. In fact, Google’s next milestone is to demonstrate error corrected qubits ??.

Current architectures for both NISQ and fault-tolerant quantum computers make no

distinction between the memory and processing of quantum information (represented in

qubits). While currently viable, as larger devices are built, the engineering challenges of

scaling up to hundreds of qubits becomes readily apparent. For transmon technology used by
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Google, IBM, and Rigetti, some of these issues include fabrication consistency and crosstalk

during parallel operations. Every qubit needs dedicated control wires and signal generators

which fill the refrigerator the device runs in. To scale to the millions of qubits needed

for useful fault-tolerant machines ?, we need to a memory-based architecture to decouple

qubit-count from transmon-count.

In this work, we use a recently realized qubit memory technology which stores qubits in

a superconducting cavity ?. This technology, while new, is expected to become competitive

with existing transmon devices. Stored in cavity, qubits have a significantly longer lifetime

(coherence time) but must be loaded into a transmon for computation. Although the basic

concept of a compute qubit and associated memory has been demonstrated experimentally,

the contribution of our work is to design and evaluate a system-level organization of these

components within the context of a novel surface code embedding and fault-tolerant quantum

operations. We provide a proof of concept in the form of a practical use case motivating

more complex experimental demonstrations of larger systems using this technology.

Our proposed 2.5D memory-based design is a typical 2D grid of transmons with memory

added as shown in Figure ??. This can be compared with the traditional 2D error correc-

tion implementation in Figure ??, where the checkerboards represent error-corrected logical

qubits. The logical qubits in this system are stored at unique virtual addresses in memory

cavities when not in use. They are loaded to a physical address in the transmons and made

accessible for computation on request and are periodically loaded to correct errors, similar

to DRAM refresh. This design allows for more efficient operations such as the transversal

CNOT between logical qubits sharing the same physical address i.e. co-located in the same

cavities. This is not possible on the surface code in 2D which requires methods such as

braiding or lattice surgery for a CNOT operation.

We introduce two embeddings of the 2D surface code to this new architecture that spread

logical qubits across many cavities. Despite serialization due to memory access, we are able
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to store and error-correct stacks of these logical qubits. Furthermore, we show surface

code operations via lattice surgery can be used unchanged in this new architecture while

also enabling a more efficient CNOT operation. Similarly, we are able to use standard

and architecture-specific magic-state distillation protocols ? in order to ensure universal

computation. Magic-state distillation is a critical component of error-corrected algorithms

so any improvement will directly speed up algorithms including Shor’s and Grover’s.

We discuss several important features of any proposed error correction code, such as the

threshold error rate (below which the code is able to correct more errors than its execution

causes), the code distance, and the number of physical qubits to encode a logical qubit. In

many codes, the number of physical qubits can be quite large. We develop an embedding

from the standard representation to this new architecture which reduces the required number

of physical transmon qubits by a factor of approximately k, the number of resonant modes

per cavity. We also develop a Compact variant saving an additional 2x. This is significant

because we can obtain a code distance
√

2k times greater or use hardware with only 1
2k the

required physical transmons for a given algorithm. In the near-to-intermediate term, when

qubits are a highly constrained resource this will accelerate a path towards fault-tolerant

computation. In fact, the smallest instance of Compact requires only 11 transmons and 9

cavities for k logical qubits.

We evaluate variants of our architecture by comparing against the surface code on a larger

2D device. Specifically, we determine the error correction threshold rates via simulation

for each and find they are all close to the baseline threshold. This shows the additional

error sources do not significantly impact the performance. We explore the sensitivity of the

threshold to many different sources of error, some of which are unique to the memory used

in this architecture. We end by evaluating magic-state distillation protocols which have a

large impact on overall algorithm performance and find a 1.22x speedup normalized by the

number of transmon qubits.

9



In summary, we make the following contributions:

• We introduce a 2.5D architecture where qubit-local memory is used for random access

to error-corrected, logical qubits stored across different memories. This allows a simple

virtual and physical address scheme. Error correction is performed continuously by

loading each from memory.

• We give two efficient adaptations of the surface code in this architecture, Natural and

Compact. Unlike a naive embedding, both support fast transversal CNOTs in addition

to lattice surgery operations with improved connectivity between logical qubits.

• We develop an error correction implementation optimized for Compact and designed

to maximise parallelism and minimize the spread of errors.

• Via simulation, we determine the surface code adapted to our 2.5D architecture is still

an effective error correction code while greatly reducing hardware requirements.
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CHAPTER 4

ORCHESTRATED TRIOS

4.1 Introduction

TODO Revise content here.

In recent years, quantum hardware has improved dramatically in terms of number of

accessible quantum bits (qubits), device error rates, and qubit lifetimes. However, we are still

years away from obtaining fully error corrected devices which are required to run important

algorithms like Grover’s ? and Shor’s ?. In the current Noisy-Intermediate Scale Quantum

(NISQ) Preskill [2018] era, where despite recent substantial improvements, error rates on

current devices are still prohibitive, requiring programs to be highly optimized to have a

good chance at succeeding.

Quantum program compilation involves many passes of transformations and optimiza-

tions similar in many ways to classical compilers. Some optimizations occur at the abstract

circuit level, independent of the underlying hardware, such as gate cancellation ?. One of

the first steps usually taken is to convert an input program into a gate set (ISA) supported

by the target hardware. For example, on IBM devices, gates are typically rewritten using

only gates in the set {u1, u2, u3, cx} ? (single-qubit gates and the common CNOT gate

described later). One critical limitation of many current available architectures is the in-

ability to execute more complex multi-qubit operations, like the Toffoli, directly; instead,

these gates must be decomposed into the supported one- and two-qubit gates. Furthermore,

many current superconducting architectures only support two qubit operations on adjacent

hardware qubits wired together with a coupler. This requires the insertion of additional

operations called SWAPs to move the data onto adjacent (and connected) qubits.

The process of transforming an optimized and decomposed program to the desired target

is typically broken down into three distinct steps: decomposing the program into basic gates,
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mapping the logical qubits of a program to hardware qubits and routing interacting qubits

so that they are adjacent on hardware when they interact, and scheduling operations in

order to minimize total program run time (depth) or to minimize errors due to crosstalk ?.

Each of these steps is critical to the success of the input program. A well-mapped and

well-routed program will reduce the total number of communication operations added and

subsequently reduce the compiled program’s depth, both of which will increase the chance of

success. Conventionally, these three steps occurs sequentially. By doing so, current strategies

are unable to account for structure in the input program, resulting in inefficient routing of

qubits. An optimal compiler could find the best routing despite the lack of structure but at

the cost of much slower compilation. Consider the SWAP paths inserted by IBM’s Qiskit

compiler for a single Toffoli compiled to IBM’s Johannesburg device in Figure ??a. This

baseline strategy adds a large number of unnecessary SWAPs as it individually routes each

CNOT composing the Toffoli, dramatically reducing the probability of successful execution.

Our approach, Orchestrated Trios (Trios) decomposes and routes qubits in multiple

stages, as seen in Figure ??b. For example, first decompose an input program to one-

two-, and three-qubit gates (e.g. do not decompose Toffoli gates) and route as before except

for three-qubits, route all three to a common location with minimal SWAPs. This new pro-

gram can then undergo a second round of decomposition to produce a circuit containing only

hardware permitted one- and two-qubit gates. The second round may use the now known

mapping (locations of data qubits on the device) to generate fine-tuned decompositions for

the architecture.

This layered approach has a major advantage over current routing techniques: we are

better able to capture program structure by inspecting intermediate complex operations for

routing. This better informs how qubits should be moved around the device during program

execution. In Figure ??, the Trios strategy reduces the total number of SWAPs added to 21:

fewer than half compared to Qiskit. This was an extreme example we selected to present
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the issue, not an average case.

We specifically propose a two-pass approach to circuit decomposition. We will focus on

superconducting hardware systems like IBM’s cloud accessible devices, but our strategy can

easily be adapted to other systems. An overview of our compilation structure is found in

Figure ??b. This strategy has a substantial benefit on the overall success rate of programs.

We demonstrate these improvements by executing Toffoli gates on a real IBM quantum

computer and estimating success probability of a suite of benchmarks via simulation.

Our contributions are as follows:

• A new compiler structure, Trios, with two passes for decomposition with a modified

routing pass in between which greatly improves qubit routing.

• A simple method for architecture-tuned Toffoli decompositions during the second de-

compose pass that allows for a new kind of location-aware optimization.

• On Toffoli-only experiments, Trios reduces the total number of gates by 35% geomean

(geometric mean) resulting in 23% geomean increase in success rate when run on real

IBM hardware as compared to Qiskit.

• On near-term algorithms shown in Figure ?? (4 to 20 qubit benchmarks), Trios reduces

total gate count by 37% geomean resulting in 344% geomean increase in (or 4.44x)

simulated success rate on IBM Johannesburg with noise rates of near-future hardware

as compared to programs compiled without Trios. A sensitivity analysis over four

architecture types shows the benefit range from 133% to 3020% increase in success

rate.
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CHAPTER 5

CONCLUSION

From the three cases we present and evaluate, we find that the right abstraction enables

system design, compiler design, and program design to align. Treating extra logical levels

as scratch space enables programs with simplified communication patterns. Qubit-local

memory enables a third dimension, improving spatially-local computation. And finally, re-

introducing the hierarchical program abstraction improves compiler heuristics and enables

additional cross-pass optimizations.

These abstractions and others will hopefully be integrated into the quantum computer

scientist’s hardware stack and toolchain. As the stack evolves, quantum computing will

grow more into its own niche as a fundamentally new computing paradigm and be more

than simply a classical computer with superposition.
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CHAPTER 6

TIMELINE

For completion of this dissertation, all research has been completed and all that remains is to

finish writing this draft. The remaining parts to complete are the body content of Chapters

2, 3, and 4.

• Complete draft for feedback (finish content in the three main chapters) - Mid July

• Finish writing - August 5th

• Defense - Mid August (will schedule soon)

• Incorporate any committee feedback - September 2nd
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