
THE UNIVERSITY OF CHICAGO

CORRELATION CLUSTERING WITH LOCAL AND GLOBAL OBJECTIVES

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

JAFAR JAFAROV

CHICAGO, ILLINOIS

JUNE 2022

Copyright © 2022 by Jafar Jafarov

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

ACKNOWLEDGMENTS . vi

ABSTRACT . vii

1 INTRODUCTION . 1
1.1 Correlation Clustering in Other Settings . 4
1.2 Correlation Clustering with the ℓp Objective 5
1.3 Correlation Clustering with Asymmetric Classification Errors 7
1.4 Our Contribution . 10

1.4.1 Results for the MinDisagree Objective 10
1.4.2 Results for the ℓp Objective . 11

2 APPROXIMATION ALGORITHM FOR MINDISAGREE 14
2.1 Ground Truth Model . 14
2.2 Algorithm . 16

2.2.1 Linear Programming Relaxation . 17
2.3 Analysis of the Algorithm . 18

2.3.1 General Approach: Triple-Based Analysis 19
2.3.2 Analysis of the Approximation Algorithm 20
2.3.3 Analysis of the Approximation Algorithm for α ≤ 0.169 24
2.3.4 Analysis of the Approximation Algorithm for α ≥ 0.169 28

2.4 Better approximation for values of α appearing in practice 33
2.5 Analysis of the Algorithm for Complete Bipartite Graphs 34
2.6 Integrality Gap . 37

3 APPROXIMATION ALGORITHM FOR THE ℓP OBJECTIVE 42
3.1 Convex Relaxation . 42
3.2 A New Technique for Partitioning Metric Spaces 43
3.3 Correlation Clustering via Metric Partitioning 46

3.3.1 Proof of Theorem 1.4.5 . 51
3.4 Overview of Metric Partitioning Scheme . 52

3.4.1 Iterative Clustering . 52
3.4.2 Selecting a Single Cluster . 53

3.5 Proof of Theorem 3.2.1 . 58
3.6 Proof of Theorem 3.4.1 . 62

3.6.1 Useful Observations . 63
3.6.2 Heavy Ball Case . 67
3.6.3 Light Ball Case . 68
3.6.4 Clusters Satisfying Property (c) of Theorem 3.4.1 69
3.6.5 Clusters Satisfying Property (b) of Theorem 3.4.1 73

iii

3.7 Integrality Gap . 77

4 DEFERRED PROOFS . 79
4.1 Proof of Theorem 2.3.1 . 79
4.2 Proof of Lemma 3.6.6 . 81

REFERENCES . 85

iv

LIST OF FIGURES

1.1 Known Results for MinDisagree . 3
1.2 Known Results for the ℓp Objective . 7

2.1 LP relaxation . 18
2.2 This plot shows functions fα(x) used in the proof of Theorem 1.4.1 for α ∈

{0.001, 0.01, 0.1}. Additionally, it shows optimal functions fopt(x) (see Section 2.4
for details). Note that every function fα(x), including fopt(x), has a discontinuity
at point τ = 1/2− 1/2A; for x ≥ τ , fα(x) = 1. 40

2.3 Plots of approximation factors Athm and Aopt. 41

3.1 Convex relaxation for Correlation Clustering with min ℓp objective for p ≥ 1 or
p = ∞. 43

3.2 Balls with Different Radii . 53
3.3 Light Ball . 62

v

ACKNOWLEDGMENTS

vi

ABSTRACT

vii

CHAPTER 1

INTRODUCTION

Grouping objects based on the similarity between them is a ubiquitous and important task

in machine learning. This similarity information between objects can be represented in many

ways, some of them being pairwise distances between objects (objects which are closer are

more similar) or the degree of similarity between pairs of objects (objects which are more

similar have a higher degree of similarity). Bansal, Blum, and Chawla [7] introduced the

Correlation Clustering problem, a versatile model that elegantly captures this task of grouping

objects based on similarity information. Since its introduction, the correlation clustering

problem has found use in a variety of applications, such as co-reference resolution (see e.g.,

Cohen and Richman [21, 22]), cross-lingual link detection (see e.g., Van Gael and Zhu [46]),

spam detection (see e.g., Ramachandran et al. [41], Bonchi et al. [14]), image segmentation

(see e.g., Wirth [47]), multi-person tracking (see e.g., Tang et al. [44, 45]), computational

biology (see e.g., Ben-Dor et al. [9]) and data mining (see e.g., Filkov and Skiena [28]).

In the Correlation Clustering problem, we are given a set of objects with pairwise

similarity information. Our goal is to partition the objects into clusters that agree with

this information as much as possible. Correlation Clustering is different from other classical

clustering problems in that the given data is qualitative rather than quantitative. The

pairwise similarity information is represented as a weighted graph G whose edges are labelled

as “positive/similar” and “negative/dissimilar” by a noisy binary classifier. This stands in

striking contrast with well-studied clustering problems such as k-means or k-median where

objects are embedded in a metric space and a similarity information between two objects is

given by a distance function. Furthermore, in Correlation Clustering the number of clusters

is not given as a separate parameter; it solely depends on the instance and can vary between

one and the number of vertices. Correlation Clustering can be seen as an agnostic learning

problem: the goal is to find a classifier from a given hypothesis class (set of clusterings) that

1

fits to noisy examples (pairwise similarity information) as much as possible.

In Correlation Clustering the goal is to find a clustering C that is maximally consistent

with the edge labels. A positive edge is in disagreement with C, if its endpoints belong to

different clusters; and a negative edge is in disagreement with C if its endpoints belong to

the same cluster. The goal is to find a clustering C which minimizes the weight of edges in

disagreement. We call this objective the MinDisagree objective.

Observe that if a binary classifier is not noisy, i.e., if there exists a clustering which

is consistent with all the edge labels, then it is easy to find one: simply remove all nega-

tive/dissimilar edges and output the connected components of the remaining graph. Thus,

the interesting case is when the binary classifier is noisy.

The MinDisagree objective has been extensively studied in the literature since its introduc-

tion by Bansal et al. [7]. There are currently two standard settings for Correlation Clustering

which we will refer to as (1) Correlation Clustering on Complete Graphs and (2) Correlation

Clustering with Noisy Partial Information. In the former setting, we assume that graph G is

complete and all edge weights are the same, i.e., G is unweighted. In the latter setting, we do

not make any assumptions on the graph G. Thus, edges can have arbitrary weights and some

edges may be missing. These settings are quite different from the computational perspective.

For the Correlation Clustering on Complete Graphs model the first constant-factor

approximation algorithm was given by Bansal et al. [7]. Charikar, Guruswami, and Wirth [16]

gave a 4−approximation algorithm for the problem. Ailon, Charikar, and Newman [3] gave two

different algorithms with approximation factors of 3 and 2.5. Finally, a 2.06−approximation

algorithm was given by Chawla, Makarychev, Schramm, and Yaroslavtsev [19]. This is

currently the best approximation guarantee for the MinDisagree objective. Some of these

results (Charikar et al. [16], Ailon et al. [3], Chawla et al. [19]) rely on linear programming

(LP) relaxation. Charikar et al. [16] gave an almost matching integrality gap instance with the

integrality ratio of 2. Furthermore, Charikar et al. [16] showed that Correlation Clustering

2

Model Complete Unweighted Graphs Arbitrary Weighted Graphs

Approx. Factor

≈ 2 · 104 [7]

4 [16]

3 and 2.5 [3]

2.06 [19]

O(log n) [16, 25]

Integrality Gap 2 Ω(log n) [16, 25]

Hardness Result APX-hard [16] Equivalent to Multicut [16, 25]

Figure 1.1: Known Results for MinDisagree

on Complete Graphs is APX-hard, i.e., it is NP-hard to approximate the problem within a

certain constant c > 1.

For the Correlation Clustering with Noisy Partial Information model Charikar et al. [16]

and Demaine, Emanuel, Fiat, and Immorlica [25] independently gave an O(log n) approx-

imation algorithm. Both algorithms use a linear programming relaxation and are heavily

inspired by the region growing approach for the Multicut problem by Garg, Vazirani, and

Yannakakis [29]. Both Charikar et al. [16] and Demaine et al. [25] complement their results

with a matching integrality gap of Ω(log n), thus implying that one cannot hope for a better

approximation guarantee using an LP-based approach. Interestingly, Charikar et al. [16] and

Demaine et al. [25] showed that this inspiration by Garg et al. [29] was not coincidental:

they proved that in this setting the MinDisagree objective is equivalent to Multicut from the

approximation perspective. In particular, they gave an approximation preserving reduction for

both directions between two problems. This combined with the hardness result for Multicut

by Chawla, Krauthgamer, Kumar, Rabani, and Sivakumar [18] show that O(log n) is likely

to be the best possible approximation for this problem. More specifically, it is NP-hard to

obtain any constant factor approximation algorithm for MinDisagree if the Unique Games

Conjecture is true. See Table 1.1 for the summary of the results.

3

1.1 Correlation Clustering in Other Settings

Correlation Clustering has been considered in various settings. Chierichetti, Dalvi, and

Kumar [20], Cohen-Addad, Lattanzi, Mitrovic, Norouzi-Fard, Parotsidis, and Tarnawski [23]

studied the problem for the massively parallel computation model. Ahn, Cormode, Guha,

McGregor, and Wirth [2] explored Correlation Clustering for the streaming model. Cohen-

Addad, Fan, Lattanzi, Mitrovic, Norouzi-Fard, Parotsidis, and Tarnawski [24] considered it

in the differential privacy setting. Mathieu, Sankur, and Schudy [38], and Lattanzi, Moseley,

Vassilvitskii, Wang, and Zhou [34] studied the online version of Correlation Clustering.

Correlation Clustering on complete bipartite graphs was first studied by Amit [6], who

presented an 11−approximation algorithm. This was improved to a 4−approximation

algorithm by Ailon, Avigdor-Elgrabli, Liberty, and van Zuylen [4]. Chawla et al. [19] gave an

algorithm with a 3−approximation guarantee for complete k−partite graphs.

For the Correlation Clustering on Complete Graphs model Giotis and Guruswami [30]

considered the case when the number of clusters is bounded by some constant. Under this

assumption they gave a PTAS for MinDisagree.

Another interesting objective for Correlation Clustering is maximizing agreements. A

positive edge is in agreement with C, if its endpoints belong to the same cluster; and a

negative edge is in agreement with C if its endpoints belong to different clusters. The goal

is to find a clustering C which maximizes the weight of edges in agreement. We call this

objective the MaxAgree objective. MaxAgree and MinDisagree are equivalent at optimality,

but, differ from the approximation perspective. More specifically, the MaxAgree objective

is easier than the MinDisagree objective. There is a trivial 2−approximation algorithm for

MaxAgree: if the weight of positive edges is greater than the weight of negative edges output

G as a single cluster, otherwise output each vertex as a singleton cluster.

For the Correlation Clustering on Complete Graphs model Bansal et al. [7] gave a

polynomial time approximation scheme (PTAS) for MaxAgree, i.e., it can be approximated

4

within any constant in polynomial time.

For the Correlation Clustering with Noisy Partial Information Charikar et al. [16]

and Swamy [42] gave a 0.766−approximation algorithm based on semidefinite program-

ming (SDP) relaxation. Furthermore, Charikar et al. [16] and Tan [43] proved that MaxAgree

is APX-hard for this setting.

Mathieu and Schudy [37] introduced a semi-random model for Correlation Clustering

which can be defined as follows: given a ground truth clustering, C∗, the classifier labels each

edge to be consistent with C∗ independently with probability p, otherwise decides for its label

arbitrarily. Mathieu and Schudy [37] gave a (1 + o(1))−approximation. Their result was

extended to other semi-random models by Makarychev, Makarychev, and Vijayaraghavan

[35]. For a more detailed discussion see Section 2.1.

1.2 Correlation Clustering with the ℓp Objective

A natural generalization of MinDisagree is the ℓp objective. Define the disagreements vector

to be a vector indexed by the vertices of G. Given a clustering C, dis(C, E+, E−) ∈ RV is a

|V |-dimensional vector where the u-th coordinate is equal to the weight of disagreements at

u with respect to C. That is,

disu(C, E+, E−) =
∑

(u,v)∈E
1{(u, v) is in disagreement with C}

Thus, the MinDisagree objective is equivalent to finding a clustering minimizing the ℓ1 norm

of the disagreements vector. Another objective for Correlation Clustering that has received

attention recently is to minimize the weight of disagreements at the vertex that is worst off

(also known as Min Max Correlation Clustering). This is equivalent to finding a clustering

that minimizes the ℓ∞ norm of the disagreements vector. Observe that minimizing the ℓ1

norm is a global objective since the focus is on minimizing the total weight of disagreements.

5

In contrast, for higher values of p (particularly p = ∞), minimizing the ℓp norm becomes a

more local objective since the focus shifts towards minimizing the weight of disagreements

at a single vertex. Minimizing the ℓ2 norm of the disagreements vector can thus provide a

balance between these global and local perspectives – it considers the weight of disagreements

at all vertices but penalizes vertices that are worse off more heavily. The following scenario is

a showcase that minimizing the ℓ2 norm might be a more suitable objective than minimizing

the ℓ1 norm. Consider a recommender system such that input is a bipartite graph with left

and right sides representing customers and services, respectively. A positive edge implies

that a customer is satisfied with the service; whereas a negative edge implies that they are

dissatisfied with or have not used the service. We may be interested in grouping customers

and services so that the total and the individual dissatisfaction of customers are minimized.

Definition 1. (Local Correlation Clustering) Given an instance of Correlation Clus-

tering G = (V,E = E+ ∪ E−) and p ≥ 1, the local objective is to find a partitioning P that

minimizes the ℓp norm.

We use the standard definition of the ℓp norm of a vector x: ∥x∥p = (
∑

u |xu|p)
1
p . Since

its introduction by Puleo and Milenkovic [40], local objectives for Correlation Clustering have

been mainly studied under two models (see Charikar, Gupta, and Schwartz [17], Ahmadi,

Khuller, and Saha [1], Kalhan, Makarychev, and Zhou [33]) as in the case of MinDisagree.

For the Correlation Clustering on Complete Graphs model, the first approximation algorithm

was by Puleo and Milenkovic [40] with an approximation factor of 48 for minimizing the ℓp

norm. This was later improved to 7 by Charikar et al. [17]. Lastly, Kalhan et al. [33] provided

a 5 approximation algorithm. For minimizing the ℓ∞ norm of the disagreements vector in the

Correlation Clustering with Noisy Partial Information model, Charikar et al. [17] provided

a O(
√
n) approximation. Kalhan et al. [33] gave an O(n

1
2−

1
2p · log

1
2+

1
2p n)-approximation

algorithm for minimizing the ℓp norm of the disagreements vector. They also provided an

almost matching integrality gap of Ω(n
1
2−

1
2p). For the summary of the results see Table 1.2.

6

Model Complete Unweighted Graphs Arbitrary Weighted Graphs

Approx. Factor
48 [40]

7 [17]

5 [33]

O(
√
n) (for p = ∞) [17]

O

(
n

1
2−

1
2p · (log n)

1
2+

1
2p

)
[33]

Integrality Gap - Ω(n
1
2−

1
2p) [33]

Figure 1.2: Known Results for the ℓp Objective

1.3 Correlation Clustering with Asymmetric Classification Errors

In this section, we introduce a model for Correlation Clustering that captures both Cor-

relation Clustering on Complete Graphs and Correlation Clustering with Noisy Partial

Information [31].

We study the Correlation Clustering problem on complete graphs with edge weights. In

our model, the weights on the edges are constrained such that the ratio of the lightest edge

in the graph to the heaviest positive edge is at least α ≤ 1. Thus, if w is the weight of

the heaviest positive edge in the graph, then each positive edge has weight in [αw,w] and

each negative edge has weight greater than or equal to αw. We call this model Correlation

Clustering with Asymmetric Classification Errors. Observe that for α = 1 our model captures

Correlation Clustering on Complete Graphs; as α → 0 its limit is Correlation Clustering

with Noisy Partial Information. We argue that Correlation Clustering with Asymmetric

Classification Errors is also more adept at capturing the subtleties in real world instances

than the two standard models. Indeed, the assumptions made by the Correlation Clustering

on Complete Graphs model are too strong, since rarely do real world instances have equal

edge weights. In contrast, in the Correlation Clustering with Noisy Partial Information model

we can have edge weights that are arbitrarily small or large, an assumption which is too

weak. In many real world instances, the edge weights lie in some range [a, b] with a, b > 0.

Our model captures a larger family of instances.

Definition 2. Correlation Clustering with Asymmetric Classification Errors is a variant of

7

Correlation Clustering on Complete Graphs. We assume that the weight of each positive edge

lies in [αw,w] and the weight of each negative edge lies in [αw,∞), where α ∈ (0, 1] and

w > 0.

Furthermore, the nature of classification errors for objects that are similar and objects

that are dissimilar is quite different. In many cases, a positive edge uv indicates that the

classifier found some actual evidence that u and v are similar; while a negative edge simply

means that the classifier could not find any such proof that u and v are similar, it does not

mean that the objects u and v are necessarily dissimilar. In some other cases, a negative

edge uv indicates that the classifier found some evidence that u and v are dissimilar; while

a positive edge simply means that the classifier could not find any such proof. We discuss

several examples below. Note that in the former case, a positive edge gives a substantially

stronger signal than a negative edge and should have a higher weight; in the latter, it is the

other way around: a negative edge gives a stronger signal than a positive edge and should

have a higher weight. We make this statement more precise in Section 2.1.

The following examples show how the Correlation Clustering with Asymmetric Classifica-

tion Errors model can help in capturing real world instances. Consider an example from the

paper on Correlation Clustering by Pan, Papailiopoulos, Oymak, Recht, Ramchandran, and

Jordan [39]. In their experiments, Pan et al. [39] used several data sets including dblp-2011

and ENWiki-2013 1. In the graph dblp-2011, each vertex represents a scientist and two vertices

are connected with an edge if the corresponding authors have co-authored an article. Thus, a

positive edge with weight w+ between Alice and Bob in the Correlation Clustering instance

indicates that Alice and Bob are coauthors, which strongly suggests that Alice and Bob work

in similar areas of Computer Science. However, it is not true that all researchers working in

some area of computer science have co-authored papers with each other. Thus, the negative

edge that connects two scientists who do not have an article together does not deserve to

1. These data sets are published by [10, 12, 11, 13]

8

have the same weight as a positive edge, and thus can be modeled as a negative edge with

weight w− < w+.

Similarly, the vertices of the graph ENWiki-2013 are Wikipedia pages. Two pages are

connected with an edge if there is a link from one page to another. A link from one page to

the other is a strong suggestion that the two pages are related and hence can be connected

with a positive edge of weight w+, while it is not true that two similar Wikipedia pages

necessarily should have a link from one to the other. Thus, it would be better to join such

pages with a negative edge of weight w− < w+.

Consider now the multi-person tracking problem. The problem is modelled as a Correlation

Clustering or closely related Lifted Multicut Problem [44, 45] on a graph, whose vertices

are people detections in video sequences. Two detections are connected with a positive or

negative edge depending on whether the detected people have similar or dissimilar appearance

(as well as some other information). In this case, a negative edge (u, v) is more informative

since it signals that the classifier has identified body parts that do not match in detections u

and v and thus the detected people are likely to be different (a positive edge (u, v) simply

indicates that the classifier was not able to find non-matching body parts).

The Correlation Clustering with Asymmetric Classification Errors model captures the

examples we discussed above. It is instructive to consider an important special case where all

positive edges have weight w+ and all negative edges have weight w− with w+ ̸= w−. If we

were to use the state of the art algorithm for Correlation Clustering on Complete Graphs on

our instance for Correlation Clustering with Asymmetric Classification Errors (by completely

ignoring edge weights and looking at the instance as an unweighted complete graph), we

would get a Θ(max(w+/w−,w−/w+)) approximation to the MinDisagree and ℓp objectives.

While if we were to use the state of the art algorithms for Correlation Clustering with Noisy

Partial Information on our instance, we would get a O(log n) and Õ(n
1
2−

1
2p) approximations

to the MinDisagree and ℓp objectives, respectively.

9

1.4 Our Contribution

1.4.1 Results for the MinDisagree Objective

In Chapter 2, we present an approximation algorithm for the MinDisagree objective in

Correlation Clustering with Asymmetric Classification Errors [31]. Our algorithm gives an

approximation factor of A = 3 + 2 loge 1/α. Consider the scenario discussed in Section 1.3

where all positive edges have weight w+ and all negative edges have weight w−. If w+ ≥ w−,

our algorithm gets a (3 + 2 logew
+/w−) approximation; if w+ ≤ w−, our algorithm gets a

3-approximation.

We note here that the assumption that the weight of positive edges is bounded from

above is crucial. Without this assumption (even if we require that negative weights are

bounded from above and below), the LP gap is unbounded for every fixed α (this follows

from the integrality gap example we present in Theorem 1.4.3). The following is our first

main theorem.

Theorem 1.4.1. There exists a polynomial time A = 3+ 2 loge 1/α approximation algorithm

for Correlation Clustering with Asymmetric Classification Errors.

We also study a natural extension of our model to the case of complete bipartite graphs.

That is, the positive edges across the bipartition have a weight between [αw,w] and the

negative edges across the bipartition have a weight of at least αw. Note that the state-of-the-

art approximation algorithm for Correlation Clustering on Unweighted Complete Bipartite

Graphs has an approximation factor of 3 (see Chawla et al. [19]).

Theorem 1.4.2. There exists a polynomial time A = 5+ 2 loge 1/α approximation algorithm

for Correlation Clustering with Asymmetric Classification Errors on complete bipartite graphs.

Our next result shows that this approximation ratio is likely best possible for LP-based

algorithms. We show this by exhibiting an instance of Correlation Clustering with Asymmetric

10

Classification Errors such that integrality gap for the natural LP for Correlation Clustering

on this instance is Ω(log 1/α).

Theorem 1.4.3. The natural Linear Programming relaxation for Correlation Clustering

has an integrality gap of Ω(log 1/α) for instances of Correlation Clustering with Asymmetric

Classification Errors.

Moreover, we can show that if there is an o(log(1/α))-approximation algorithm whose

running time is polynomial in both n and 1/α, then there is an o(log n)−approximation

algorithm for the general weighted case2(and also for the MultiCut problem). However, we do

not know if there is an o(log(1/α))−approximation algorithm for the problem whose running

time is polynomial in n and exponential in 1/α. The existence of such an algorithm does not

imply that there is an o(log n)−approximation algorithm for the general weighted case (as

far as we know).

We show a similar integrality gap result for the Correlation Clustering with Asymmetric

Classification Errors on complete bipartite graphs problem.

Theorem 1.4.4. The natural Linear Programming relaxation for Correlation Clustering

has an integrality gap of Ω(log 1/α) for instances of Correlation Clustering with Asymmetric

Classification Errors on complete bipartite graphs.

1.4.2 Results for the ℓp Objective

In Chapter 3, we study the task of minimizing local objectives (Definition 1) under the

Correlation Clustering with Asymmetric Classification Errors model (Definition 2). Our main

2. The reduction to the general case works as follows. Consider an instance of Correlation Clustering with
arbitrary weights. Guess the heaviest edge e that is in disagreement with the optimal clustering. Let we be
its weight, and set w = n2we, and α = 1/n4. Then, assign new weights to all pairs of vertices in the graph.
Keep the weights of all edges with weight in the range [αw,w]. Set the weights of all edges with weight
greater than w to w and the weights of all edges with weight less than αw (including missing edges) to αw.

11

result is an O

((
1
α

)1
2−

1
2p · log 1

α

)
approximation algorithm for minimizing the ℓp norm of

the disagreements vector, which we now state [32].

Theorem 1.4.5. There exists a polynomial-time O

((
1
α

)1
2−

1
2p · log 1

α

)
-approximation algo-

rithm for the ℓp objective in the Correlation Clustering with Asymmetric Classification Errors

model.

For p = 1, our algorithm provides an O(log 1
α) approximation, which matches the

approximation guarantee we presented in Chapter 2 [31] up to constant factors. Consider

p = 2, that is, the ℓ2 norm. If we ignored the edge weights and applied the state of the art

algorithm in the Correlation Clustering on Complete Graphs model, we would get an O(1α)

approximation. If we were to use the state of the art algorithm in the Correlation Clustering

with Noisy Partial Information model, we would get an Õ
(
n1/4

)
approximation. However,

by using our algorithm (Theorem 1.4.1), we obtain an Õ
((

1/α
)1/4)

approximation, which is a

huge improvement when 1/α ≪ n.

Corollary 1.4.6. There exists a polynomial-time O
((

1/α
)1/4 · log 1

α

)
-approximation algorithm

for the ℓ2 objective in the Correlation Clustering with Asymmetric Classification Errors

model.

Finally, we present the implication of our main result for the ℓ∞ norm. For the ℓ∞

norm, Kalhan et al. [33] presented an Õ(
√
n) approximation under the Correlation Clustering

with Noisy Partial Information model. Using our algorithm for Correlation Clustering with

Asymmetric Classification Errors we obtain an Õ(
√

1/α)-approximation factor, which is a

significant improvement to the approximation guarantee in this setting.

Corollary 1.4.7. There exists a polynomial-time O(
√

1/α · log 1/α)-approximation algorithm

for the ℓ∞ objective in the Correlation Clustering with Asymmetric Classification Errors

model.

12

We emphasize that our approximation ratio for the ℓp norm is independent of the graph

size and only depends on α.

Our algorithm relies on the natural convex programming relaxation for this problem

(Section 3.1). We compliment our positive result (Theorem 1.4.5) by showing that it is

likely to be the best possible based on the natural convex program, by providing an almost

matching integrality gap.

Theorem 1.4.8. The natural convex programming relaxation for the ℓp objective in the

Correlation Clustering with Asymmetric Classification Errors model has an integrality gap of

Ω
((

1/α
)1
2−

1
2p
)
.

13

CHAPTER 2

APPROXIMATION ALGORITHM FOR MINDISAGREE

In this chapter, we study MinDisagree in the Correlation Clustering with Asymmetric

Classification Errors model. In Section 2.1 we explore the connection between Correlation

Clustering with Asymmetric Classification Errors and the semi-random model. In sections 2.2,

2.2.1 we describe our rounding algorithm and the linear programming relaxation. In Section 2.3

we prove our first main result, Theorem 1.4.1. In Section 2.4 we discuss better approximation

ratios for values of α appearing in practice. In Section 2.5 we prove our result regarding

complete bipartite graphs, Theorem 1.4.2. In Section 2.6 we prove our integrality gap results,

Theorem 1.4.3 and Theorem 1.4.4.

2.1 Ground Truth Model

In this section, we formalize the connection between asymmetric classification errors and

asymmetric edge weights. For simplicity, we assume that each positive edge has a weight of

w+ and each negative edge has a weight of w−. Consider a probabilistic model in which edge

labels are assigned by a noisy classifier. Let C∗ = (C∗
1 , . . . C

∗
T) be the ground truth clustering

of the vertex set V . The classifier labels each edge within a cluster with a “+” edge with

probability p+ and as a “−” edge with probability 1− p+; it labels each edge with endpoints

in distinct clusters as a “−” edge with probability q− and as a “+” edge with probability

1− q−. Thus, (1− p+) and (1− q−) are the classification error probabilities. We assume

that all classification errors are independent.

We note that similar models have been previously studied by [7, 26, 37, 5, 35] and others.

However, the standard assumption in such models was that the error probabilities, (1− p+)

and (1− q−), are less than a half; that is, p+ > 1/2 and q− > 1/2. Here, we investigate two

cases (i) when p+ < 1/2 < q− and (ii) when q− < 1/2 < p+. We assume that p+ + q− > 1,

14

which means that the classifier is more likely to connect similar objects with a “+” than

dissimilar objects or, equivalently, that the classifier is more likely to connect dissimilar objects

with a “−” than similar objects. For instance, consider a classifier that looks for evidence that

the objects are similar: if it finds some evidence, it adds a positive edge; otherwise, it adds a

negative edge (as described in our examples dblp-2011 and ENWiki-2013 in the Introduction).

Say, the classifier detects a similarity between two objects in the same ground truth cluster

with a probability of only 30% and incorrectly detects similarity between two objects in

different ground truth clusters with a probability of 10%. Then, it will add a negative edge

between two similar objects with probability 70%! While this scenario is not captured by

the standard assumption, it is captured by case (i) (here, p+ = 0.3 < 1/2 < q− = 0.9 and

p+ + q− > 1).

Consider a clustering C of the vertices. Denote the sets of positive edges and negative

edges with both endpoints in the same cluster by In+(C) and In−(C), respectively, and the

sets of positive edges and negative edges with endpoints in different clusters by Out+(C) and

Out−(C), respectively. Then, the log-likelihood function of the clustering C is,

ℓ(G; C) = log
(∏
(u,v)∈In+(C)

p+ ×
∏

(u,v)∈In−(C)

(1− p+)×
∏

(u,v)∈Out+(C)

(1− q−)×
∏

(u,v)∈Out−(C)

q−
)

= log
(
(p+)|In

+(C)|(1− p+)|In
−(C)| · (1− q−)|Out+(C)|(q−)|Out−(C)|

)
= |In+(C)| log p+ + |In−(C)| log(1− p+) + |Out+(C)| log(1− q−) + |Out−(C)| log q−

=
(
|E+| log p+ + |E−| log q−

)
︸ ︷︷ ︸

constant expression

−
(
|Out+(C)| log p+

1− q−
+ |In−(C)| log q−

1− p+

)
︸ ︷︷ ︸

MinDisagree objective

.

Let w+ = log p+

1−q− and w− = log q−

1−p+
. Then, the negative term –

(
|Out+(C)| log p+

1−q− +

|In−(C)| log q−

1−p+

)
– equals w+|Out+(C)|+w−|In−(C)|. Note that |Out+(C)| is the number

of positive edges disagreeing with C and |In−(C)| is the number of negative edges disagreeing

with C.

15

Now observe that the first term in the expression above –
(
|E+| log p+ + |E−| log q−

)
–

does not depend on C. It only depends on the instance G = (V,E+, E−). Thus, maximizing

the log-likelihood function over C is equivalent to minimizing the following objective

w+(# disagreeing “+”edges) +w−(# disagreeing “−”edges).

Note that we have w+ > w− when p+ < 1/2 < q− (case (i) above); in this case, a

“+” edge gives a stronger signal than a “−” edge. Similarly, we have w− > w+ when

q− < 1/2 < p+ (case (ii) above); in this case, a “−” edge gives a stronger signal than a “+”

edge.

2.2 Algorithm

In this section, we present an approximation algorithm for Correlation Clustering with

Asymmetric Classification Errors. The algorithm first solves a standard LP relaxation and

assigns every edge a length of xuv (see Section 2.2.1). Then, one by one it creates new

clusters and removes them from the graph. The algorithm creates a cluster C as follows.

It picks a random vertex p, called a pivot, among yet unassigned vertices and a random

number R ∈ [0, 1]. Then, it adds the pivot p and all vertices u with f(xpu) ≤ R to C, where

f : [0, 1] → [0, 1] is a properly chosen function, which we define below. We give a pseudo-code

for this algorithm in Algorithm 1.

Our algorithm resembles the LP-based correlation clustering algorithms by Ailon et al.

[3] and Chawla et al. [19]. However, a crucial difference between our algorithm and above

mentioned algorithms is that our algorithm uses a “dependant” rounding. That is, if for two

edges pv1 and pv2, we have f(xpv1) ≤ R and f(xpv2) ≤ R at some step t of the algorithm

then both v1 and v2 are added to the new cluster St. The algorithms by Ailon et al. [3] and

Chawla et al. [19] make decisions on whether to add v1 to St and v2 to St, independently.

16

Algorithm 1 Approximation Algorithm

input An instance of Correlation Clustering with Asymmetric Weights G = (V,E+, E−,we).
Initialize t = 0 and Vt = V .
while Vt ̸= ∅ do
Pick a random pivot pt ∈ Vt.
Choose a radius R uniformly at random in [0, 1].
Create a new cluster St; add the pivot pt to St.
for all u ∈ Vt do
if f(xptu) ≤ R then
Add u to St.

end if
end for
Let Vt+1 = Vt \ St and t = t+ 1.

end while
output clustering S = (S0, . . . , St−1).

Also, the choice of the function f is quite different from the functions used by Chawla et al.

[19]. In fact, it is influenced by the paper by Garg, Vazirani, and Yannakakis [29].

2.2.1 Linear Programming Relaxation

In this section, we describe a standard linear programming (LP) relaxation for Correlation

Clustering which was introduced by Charikar, Guruswami, and Wirth [16]. We first give

an integer programming formulation of the Correlation Clustering problem. For every pair

of vertices u and v, the integer program (IP) has a variable xuv ∈ {0, 1}, which indicates

whether u and v belong to the same cluster:

• xuv = 0, if u and v belong to the same cluster; and

• xuv = 1, otherwise.

We require that xuv = xvu, xuu = 0 and all xuv satisfy the triangle inequality. That is,

xuv + xvw ≥ xuw.

Every feasible IP solution x defines a partitioning S = (S1, . . . , ST) in which two vertices u

and v belong to the same cluster if and only if xuv = 0. A positive edge uv is in disagreement

17

min
∑

uv∈E+

wuvxuv +
∑

uv∈E−
wuv(1− xuv).

subject to

xuw ≤ xuv + xvw for all u, v, w ∈ V

xuv = xvu for all u, v ∈ V

xuu = 0 for all u ∈ V

xuv ∈ [0, 1] for all u, v ∈ V

Figure 2.1: LP relaxation

with this partitioning if and only if xuv = 1; a negative edge uv is in disagreement with this

partitioning if and only if xuv = 0. Thus, the cost of the partitioning is given by the following

linear function: ∑
uv∈E+

wuvxuv +
∑

uv∈E−
wuv(1− xuv).

We now replace all integrality constraints xuv ∈ {0, 1} in the integer program with linear

constraints xuv ∈ [0, 1] . The obtained linear program is given in Figure 2.1. In the paper,

we refer to each variable xuv as the length of the edge uv.

2.3 Analysis of the Algorithm

The analysis of our algorithm follows the general approach proposed by Ailon, Charikar, and

Newman [3]. Ailon et al. [3] observed that in order to get upper bounds on the approximation

factors of their algorithms, it is sufficient to consider how these algorithms behave on triplets

of vertices. Below, we present their method adapted to our settings. Then, we will use

Theorem 2.3.1 to analyze our algorithm.

18

Algorithm 2 One iteration of Algorithm 1 on triangle uvw

Pick a random pivot p ∈ {u, v, w}.
Choose a random radius R with the uniform distribution in [0, 1].
Create a new cluster S. Insert p in S.
for all a ∈ {u, v, w} \ {p} do
if fα(xpa) ≤ R then
Add a to S .

end if
end for

2.3.1 General Approach: Triple-Based Analysis

Consider an instance of Correlation Clustering G = (V,E+, E−) on three vertices u, v, w.

Suppose that the edges uv, vw, and uw have signs σuv, σvw, σuw ∈ {±}, respectively. We

shall call this instance a triangle (u, v, w) and refer to the vector of signs σ = (σvw, σuw, σuv)

as the signature of the triangle (u, v, w).

Let us now assign arbitrary lengths xuv, xvw, and xuw satisfying the triangle inequality

to the edges uv, vw, and uw and run one iteration of our algorithm on the triangle uvw (see

Algorithm 2).

We say that a positive edge uv is in disagreement with S if u ∈ S and v /∈ S or u /∈ S and

v ∈ S. Similarly, a negative edge uv is in disagreement with S if u, v ∈ S. Let cost(u, v |w)

be the probability that the edge (u, v) is in disagreement with S given that w is the pivot.

cost(u, v |w) =

Pr(u ∈ S, v /∈ S or u /∈ S, v ∈ S | p = w), if σuv = “+”;

Pr(u ∈ S, v ∈ S | p = w), if σuv = “−”.

Let lp(u, v |w) be the LP contribution of the edge (u, v) times the probability of it being

removed, conditioned on w being the pivot.

lp(u, v |w) =

xuv · Pr(u ∈ S or v ∈ S | p = w), if σuv = “+”;

(1− xuv) · Pr(u ∈ S or v ∈ S | p = w), if σuv = “−”.

19

We now define two functions ALGσ(x, y, z) and LPσ(x, y, z). To this end, construct a

triangle (u, v, w) with signature σ edge lengths x, y, z (where xvw = x, xuw = y, xuv = z).

Then,

ALGσ(x, y, z) = wuv · cost(u, v |w) +wuw · cost(u,w | v) +wvw · cost(v, w |u);

LPσ(x, y, z) = wuv · lp(u, v |w) +wuw · lp(u,w | v) +wvw · lp(v, w |u).

We will use the following theorem from the paper by Chawla, Makarychev, Schramm,

and Yaroslavtsev [19] (Lemma 4) to analyze our algorithm. This theorem was first proved

by Ailon, Charikar, and Newman [3] but it was not stated in this form in their paper.

Theorem 2.3.1 (see [3] and [19]). Consider a function fα with fα(0) = 0. If for all signatures

σ = (σ1, σ2, σ3) (where each σi ∈ {±}) and edge lengths x, y, and z satisfying the triangle

inequality, we have ALGσ(x, y, z) ≤ ρLPσ(x, y, z), then the approximation factor of the

algorithm is at most ρ.

2.3.2 Analysis of the Approximation Algorithm

Proof of Theorem 1.4.1. Without loss of generality we assume that the scaling parameter w

is 1. We use different functions for α ≤ 0.169 and α ≥ 0.169. Let A = 3 + 2 loge 1/α. For

α ≤ 0.169, we define fα(x) as follows (see Figure 2.2):

fα(x) =

 1− e−Ax, if 0 ≤ x < 1
2 − 1

2A ;

1, otherwise;

20

and, for α ≥ 0.169, we define fα(x) as follows:

fα(x) =

0, if x < 1

A

1−α
3 , if 1

A ≤ x < 1
2 − 1

2A

1, if x ≥ 1
2 − 1

2A

Our analysis of the algorithm relies on Theorem 2.3.1. We will show that for every triangle

(u1, u2, u3) with edge lengths (x1, x2, x3) (satisfying the triangle inequality) and signature

σ = (σ1, σ2, σ3), we have

ALGσ(x1, x2, x3) ≤ A · LPσ(x1, x2, x3). (2.1)

Therefore, by Theorem 2.3.1, our algorithm gives an A-approximation.

Without loss of generality, we assume that x1 ≤ x2 ≤ x3. When i ∈ {1, 2, 3} is fixed, we

will denote the other two elements of {1, 2, 3} by k and j, so that j < k. For i ∈ {1, 2, 3}, let

ei = (uj , uk) (the edge opposite to ui), wi = wei , xi = xujuk , yi = fα(xi), and

ti = A · lp(uj , uk|ui)− cost(uj , uk|ui).

Observe that (2.1) is equivalent to the inequality w1t1 + w2t2 + w3t3 ≥ 0. We now prove

that this inequality always holds.

Lemma 2.3.2. We have

w1t1 + w2t2 + w3t3 ≥ 0 (2.2)

We express each ti in terms of xi’s and yi’s.

21

Claim 2.3.3. For every i ∈ {1, 2, 3}, we have

ti =

A(1− yj)xi − (yk − yj), if σi = “+”

A(1− yj)(1− xi)− (1− yk), if σi = “−”

Proof. If σi = “+”, then

ti = A · lp(uj , uk|ui)− cost(uj , uk|ui)

= Axujuk · Pr(uj ∈ S or uk ∈ S | p = ui]− Pr(uj ∈ S, uk /∈ S or uj /∈ S, uk ∈ S | p = ui]

= Axi · Pr(fα(xk) ≤ R or fα(xj) ≤ R)− Pr(fα(xk) ≤ R < fα(xj) or fα(xj) ≤ R < fα(xk))

= Axi(1− yj)− (yk − yj),

where we used that yk = fα(xk) ≥ fα(xj) = yj (since xk ≥ xj and fα(x) is non-decreasing).

If σi = “−”, then similarly to the previous case, we have

ti = A · lp(uj , uk|ui)− cost(uj , uk|ui)

= A(1− xujuk) · Pr(uj ∈ S or uk ∈ S | p = ui)− Pr(uj ∈ S, uk ∈ S | p = w)

= A(1− xi) · Pr(fα(xk) ≤ R or fα(xj) ≤ R)− Pr(fα(xk) ≤ R, fα(xj) ≤ R)

= A(1− xi) · (1− yj)− (1− yk).

We say that edge ei pays for itself if ti ≥ 0. Note that if all edges e1, e2, e3 pay for

themselves then the desired inequality (2.2) holds. First, we show that all negative edges pay

for themselves.

Claim 2.3.4. If σi = “−”, then ti ≥ 0.

22

Proof. By Claim 2.3.3, ti = A(1 − yj)(1 − xi) − 1 − yk. Thus, we need to show that

A(1− yj)(1− xi) ≥ 1− yk. If xk ≥ 1
2 −

1
2A then yk = 1, and the inequality trivially holds. If

xk < 1
2 − 1

2A , then using xj ≤ xk, we get

A >
1

1− 2xk
≥ 1

1− xk − xj
≥ 1

1− xi
,

here we used the triangle inequality xk + xj ≥ xi. Thus

A(1− yj)(1− xi) ≥ A(1− yk)(1− xi) ≥ 1− yk.

We now show that for short edges ei, it is sufficient to consider only the case when

σi = “+”. Specifically, we prove the following claim.

Claim 2.3.5. Suppose that xi <
1
2 − 1

2A . If (2.2) holds for σ with σi = “+”, then (2.2) also

holds for σ′ obtained from σ by changing the sign of σi to “−”.

Proof. To prove the claim, we show that the value of ti is greater for σ
′ than for σ. That is,

A(1− yj)xi − (yk − yj) < A(1− yj)(1− xi)− (1− yk).

Note that the values of tj and tk do not depend on σi and thus do not change if we replace σ

with σ′. Since fα is non-decreasing and xj ≤ xk, we have yj ≤ yk. Hence,

xi <
1

2
− 1

2A
=

1

2
+

1

2A
− 1

A
≤ 1

2
+

1

2A
− (1− yk)

A(1− yj)
.

Thus,

2A(1− yj)xi < A(1− yj) + 1− yj − 2(1− yk).

23

Therefore,

A(1− yj)xi − (yk − yj) < A(1− yj)(1− xi)− (1− yk),

as required.

Unlike negative edges, positive edges do not necessarily pay for themselves. We now prove

that positive edges of length at least 1/A pay for themselves.

Claim 2.3.6. If σi = “+” and xi ≥ 1/A, then ti ≥ 0.

Proof. We have,

ti = A(1− yj)xi − (yk − yj) ≥ (1− yj)− (yk − yj) = 1− yk ≥ 0.

We now separately consider two cases α ≤ 0.169 and α ≥ 0.169.

2.3.3 Analysis of the Approximation Algorithm for α ≤ 0.169

First, we consider the case of α ≤ 0.169.

Proof of Lemma 2.3.2 for α ≤ 0.169. We first show that if x3 < 1
2 −

1
2A , then all three edges

e1, e2, and e3 pay for themselves.

Claim 2.3.7. If x3 < 1
2 − 1

2A , then ti ≥ 0 for every i.

Proof. Since x3 < 1
2 −

1
2A , for every i ∈ {1, 2, 3} we have xi <

1
2 −

1
2A and thus yi ≡ fα(xi) =

1− e−Axi . We show that ti ≥ 0 for all i. Fix i. If σi = “−”, then, by Claim 2.3.4, ti ≥ 0. If

σi = “+”, then

yk − yj = e−Axj − e−Axk = e−Axj
(
1− e−A(xk−xj)

)
≤

≤ e−AxjA(xk − xj) ≤ e−AxjAxi = A(1− yj)xi,

24

where the first inequality follows from the inequality 1− e−x ≤ x, and the second inequality

follows from the triangle inequality. Thus, ti = A(1− yj)xi − (yk − yj) ≥ 0.

We conclude that if x3 < 1
2 − 1

2A , then (2.2) holds. The case x3 < 1
2 − 1

2A is the most

interesting case in the analysis; the rest of the proof is more technical. As a side note, let us

point out that Theorem 1.4.1 has dependence A = 3 + 2 loge 1/α because (i) fα(x) must be

equal to C − e−Ax or a slower growing function so that Claim 2.3.7 holds (ii) Theorem 2.3.1

requires that fα(0) = 0, and finally (iii) we will need below that 1− f
(
1
2 − 3

2A

)
≤ α.

From now on, we assume that x3 ≥ 1
2 − 1

2A and, consequently, y3 = f(x3) = 1. Observe

that if x1 ≥ 1
A , then all xi ≥ 1

A and thus, by Claims 2.3.4 and 2.3.6, all ti ≥ 0 and we are

done. Similarly, if x2 ≥ 1
2 − 1

2A , then x2 ≥ 1
A (since A ≥ 3). Hence, t2 ≥ 0 and t3 ≥ 0;

additionally, y2 = y3 = 1. Thus t1 = 0 and inequality (2.2) holds. Therefore, it remains to

show that inequality (2.2) holds when

x1 <
1

A
, x2 <

1

2
− 1

2A
, and x3 ≥ 1

2
− 1

2A
.

By Claim 2.3.5, we may also assume that σ1 = “+” and σ2 = “+”. Since α ≤ 0.169, we have

A > 5 and

x2 ≥ x3 − x1 ≥
(
1

2
− 1

2A

)
− 1

A
>

1

A
and x3 ≥ 1

2
− 1

2A
>

1

A
.

Thus, by Claims 2.3.4 and 2.3.6, t2 ≥ 0 and t3 ≥ 0. Hence, w2t2 +w3t3 ≥ α(w2 +w3). Also,

recall that e1 is a positive edge and thus w1 ≤ 1. Therefore, it is sufficient to show that

t1 ≥ −α(t2 + t3). (2.3)

Now we separately consider two possible signatures σ = (“+”, “+”, “+”) and σ =

(“+”, “+”, “−”).

25

First, assume that σ = (“+”,“+”,“+”). We need to show that

A(1− y2)x1 − (1− y2) ≥ α

(
(1− y1) + (y2 − y1)− A(1− y1)x2 − A(1− y1)x3

)
.

Here, we used that y3 = 1. Note that x2 ≥ x3 − x1 ≥ 1
2 − 1

2A − 1
A = 1

2 − 3
2A . Therefore,

1− y2 ≤ 1−
(
1− e−A(12−

3
2A)
)
= e−

3
2−loge

1
α+

3
2 = e− loge

1
α = α.

Thus, (1 − y2) + α(1 − y1) + α(y2 − y1) ≤ αy2 + 2α(1 − y1). To finish the analysis of the

case σ = (“+”, “+”, “+”), it is sufficient to show that

αy2 + 2α(1− y1) ≤A(1− y2)x1 + αA(1− y1)x2 + αA(1− y1)x3.

This inequality immediately follows from the following claim (we simply need to add up (2.4)

and (2.5) and multiply the result by α).

Claim 2.3.8. For c = 0.224, we have

(2− c)(1− y1) ≤ A(1− y1)x2; and (2.4)

y2 + c(1− y1) ≤ A(1− y1)x3. (2.5)

Proof. Since c ≥ 2− loge
1

0.169 ≥ 2− loge
1
α (recall that α ≤ 0.169), we have

2− c ≤ loge
1

α
=

A

2
− 3

2
≤ Ax2.

Therefore, (2.4) holds. We also have,

c ≤ 0.169 + loge
1

0.169
+ 1− e ≤ α + loge

1

α
+ 1− e.

26

Thus, e− α ≤ A
2 − 1

2 − c ≤ Ax3 − c. Therefore,

e−1 (Ax3 − c) ≥ 1− αe−1 = 1− e−A(12−
1
2A) ≥ y2, (2.6)

where we used that x2 < 1
2−

1
2A and y2 = fα(x2) = 1−e−Ax2 . Observe that from inequalities

(2.6) and x1 < 1
A it follows that

y2 ≤
(
1− f

(1
A

))
(Ax3 − c) ≤ (1− y1)(Ax3 − c),

which implies (2.5).

Now, assume that σ = (“+”,“+”,“−”). We need to prove the following inequality,

(1− y2) + α(1− y1 + 1− y2) ≤ A(1− y2)x1 + αA(1− y1)(x2 + 1− x3). (2.7)

As before,

(1− y2) + α(1− y1 + 1− y2) ≤ α + α(1− y1 + 1− y2) ≤ α + 2α(1− y1). (2.8)

On the other hand,

A(1− y2)x1 + αA(1− y1)(x2 + 1− x3) ≥ αA(1− y1)(1− x1 + x1 + x2 − x3)

≥ αA(1− y1)(1− x1)

≥ αA(1− y1)

(
1− 1

A

)
= α(1− y1)(A− 1) (2.9)

where the second inequality is due to the triangle inequality, and the third inequality is due

27

to x1 < 1
A . Finally, observe that 1 ≤ 2e−1 loge

1
α = e−1(A− 3) ≤ (1− y1)(A− 3). We get,

α(1− y1)(A− 1) ≥ α + 2α(1− y1). (2.10)

Combining (2.8), (2.9), and (2.10), we get (2.7). This concludes the case analysis and the

proof of Theorem 1.4.1 for the regime α ≤ 0.169.

2.3.4 Analysis of the Approximation Algorithm for α ≥ 0.169

We now consider the case when α ≥ 0.169. Observe that for α ≥ 0.169

A = 3 + 2 loge(1/α) ≥
6α + 3− (1− α)2

3α
(2.11)

and

1− α

3
≤ 2α

1 + α
(2.12)

Proof of Lemma 2.3.2 for α ≥ 0.169. Observe that if x1 ≥ 1
A , then all xi ≥ 1/A and thus,

by Claims 2.3.4 and 2.3.6, all ti ≥ 0 and we are done. Moreover, if x3 < 1
A then all xi < 1/A

implying yi = 0 and thus, ti ≥ 0 for σi = “ + ”. This combined with Claim 2.3.4 imply all

ti ≥ 0 and we are done. Similarly, if x2 ≥ 1
2 − 1

2A , then x2 ≥ 1/A (since A ≥ 3). Hence,

t2 ≥ 0 and t3 ≥ 0; additionally, we have y2 = y3 = 1. Thus, t1 = 0 and we are done.

Therefore, we will assume below that

x1 <
1

A
, x2 <

1

2
− 1

2A
, x3 ≥ 1

A
.

Furthermore, by Claim 2.3.5, we may assume σ1 = “+” and σ2 = “+”. We consider four

cases: (i) x2 ≥ 1/A, x3 ≥ 1/2 − 1/(2A), (ii) x2 < 1/A, x3 ≥ 1/2 − 1/(2A), (iii) x2 ≥ 1/A, x3 <

1/2− 1/(2A), and (iv) x2 < 1/A, x3 < 1/2− 1/(2A).

Consider the case x2 ≥ 1
A , x3 ≥ 1

2 − 1
2A . Then y1 = 0, y2 = (1−α)/3, y3 = 1. By

28

Claims 2.3.4 and 2.3.6, t2, t3 ≥ 0, and e2, e3 pay for themselves. If t1 ≥ 0, we are done. So

we will assume below that t1 < 0. Then,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + αt2 + αt3 (2.13)

(recall that we assume that e1 is a positive edge and thus w1 ≤ 1).

Now we separately consider two possible signatures σ = (“+”, “+”, “+”) and σ =

(“+”, “+”, “−”).

First, assume that σ = (“+”,“+”,“+”). Because of (2.13), to prove (2.2) it is sufficient

to show

(1− y2) + α + αy2 ≤ A(1− y2)x1 + αAx2 + αAx3 (2.14)

From (2.11) it follows that

1 + α ≤ (1− α)2

3
+ α(A− 1)

which implies (2.15) due to x3 ≥ 1
2 − 1

2A

1 + α ≤ (1− α)2

3
+ 2αAx3 (2.15)

Observe that from (2.15) together with triangle inequality and y2 = 1−α
3 ≤ 1 − α it

follows that

1 + α ≤ (1− α)y2 + A(1− y2)x1 − αAx1 + αAx1 + αAx2 + αAx3

which is equivalent to (2.14).

Now, assume that σ = (“+”,“+”,“−”). Because of (2.13), to prove (2.2) it is sufficient

29

to show

(1− y2) + α + α(1− y2) ≤ A(1− y2)x1 + αAx2 + αA(1− x3) (2.16)

From (2.11) and y2 = 1−α
3 it follows that

1 + 2α ≤ (1− α)2

3
+ αA ≤ y2(1 + α) + αA

Since y2 ≤ 1− α,

(1 + 2α) ≤ (1 + α)y2 + A(1− y2)x1 − αAx1 + αA,

Hence, using the triangle inequality,

1 + 2α ≤ (1 + α)y2 + A(1− y2)x1 − αAx1 + αA+ αAx1 + αAx2 − αAx3.

which is equivalent to (2.16).

Consider the case x2 < 1
A , x3 ≥ 1

2 − 1
2A . Then y1 = y2 = 0, y3 = 1. Observe that t3 ≥ 0

and t1, t2 < 0. Then,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + 1 · t2 + αt3. (2.17)

(recall that we assume that e1, e2 are positive edges and thus w1, w2 ≤ 1). Furthermore, since

x3 ≥ 1
2 − 1

2A we have

Ax3 ≥ A(1− x3)− 1. (2.18)

From (2.18), we get that if (2.2) holds for σ with σ3 = “−”, then (2.2) also holds for σ′

obtained from σ by changing the sign of σ3 to “+”. Thus without loss of generality σ3 = “−”

and we only need to consider σ = (“+”, “+”, “−”). Then, because of (2.17), to prove (2.2) it

30

is sufficient to show

1 + 1 + α ≤ Ax1 + Ax2 + αA(1− x3). (2.19)

From (2.11) it follows that

A ≥ 5 + α

α + 1

which is equivalent to

2 + α ≤ αA+ (1− α)(
A

2
− 1

2
). (2.20)

Observe that from (2.20) together with triangle inequality and x3 ≥ 1
2 − 1

2A it follows that

2 + α ≤ αA+ (1− α)Ax3 = Ax3 + αA(1− x3) ≤ Ax1 + Ax2 + αA(1− x3).

Consider the case x2 ≥ 1
A , x3 < 1

2 − 1
2A . Then y1 = 0, y3 = (1−α)/3. By Claim 2.3.5 we

only need to consider σ = (“+”, “+”, “+”). Then by Claim 2.3.6, t2, t3 ≥ 0. Thus, if t1 ≥ 0

then w1t1 +w2t2 +w3t3 ≥ 0. Let us assume that t1 < 0. Since e1 is a positive edge, we have

w1 ≤ 1. Thus,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + αt2 + αt3

Now to prove (2.2) it is sufficient to show

y3 − y2 + αy3 + αy2 ≤ A(1− y2)x1 + αAx2 + αAx3 (2.21)

Observe that since x3 ≥ 1
A we have

2α ≤ (1− α)y2 + 2αAx3. (2.22)

Inequalities (2.22) and (2.12) imply

(1 + α)y3 ≤ (1− α)y2 + 2αAx3. (2.23)

31

Observe that from (2.23) together with triangle inequality and y2 ≤ 1− α it follows that

(1 + α)y3 ≤ (1− α)y2 + A(1− y2)x1 − αAx1 + αAx1 + αAx2 + αAx3

which is equivalent to (2.21).

Consider the case x2 < 1
A , x3 < 1

2 − 1
2A . Then y1 = y2 = 0. By Claim 2.3.5 we only need

to consider σ = (“+”, “+”, “+”). Then by Claim 2.3.6, t3 ≥ 0.

If x1 ≥ y3/A then t1, t2 ≥ 0 and we are done. Thus we assume x1 < y3/A which implies

t1 < 0. We consider two different regimes: (i) x2 ≥ y3/A and (ii) x2 < y3/A.

First, assume that x2 ≥ y3/A which implies t2 ≥ 0. Then,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + αt2 + αt3 (2.24)

(recall that we assume that e1 is a positive edge and thus w1 ≤ 1).

Because of (2.24), to prove (2.2) it is sufficient to show

y3 + αy3 ≤ Ax1 + αAx2 + αAx3 (2.25)

Observe that by (2.12) and y3 = (1−α)/3 we have

(1 + α)y3 ≤ 2α ≤ 2αAx3 ≤ αAx3 + αAx1 + αAx2 ≤ Ax1 + αAx2 + αAx3

where the second inequality follows from x3 ≥ 1
A and the third inequality follows from triangle

inequality.

Now, assume that x2 < y3/A which implies t2 < 0. Then,

w1t1 + w2t2 + w3t3 ≥ 1 · t1 + 1 · t2 + αt3 (2.26)

32

(recall that we assume that e1, e2 are positive edges and thus w1, w2 ≤ 1).

Because of (2.26), to prove (2.2) it is sufficient to show

2y3 ≤ Ax1 + Ax2 + αAx3 (2.27)

Observe that by (2.12) and x3 ≥ 1
A

2y3 ≤ 4α

1 + α
≤ 1 + α ≤ (1 + α)Ax3 ≤ Ax1 + Ax2 + αAx3

where the last inequality follows from triangle inequality.

This concludes the case analysis and the proof of Theorem 1.4.1 for the regime α ≥

0.169.

2.4 Better approximation for values of α appearing in practice

We note that the choice of function f(x) in Theorem 1.4.1 is somewhat suboptimal. However,

for every α ∈ (0, 1], we can compute the optimal function fopt(x) (with high precision) using

linear programming. Using this function fopt, we can achieve an approximation factor Aopt

better than the approximation factor Athm = 3 + 2 loge 1/α guaranteed by Theorem 1.4.1.1

While asymptotically Athm/Aopt → 1 as α → 0, Aopt is noticeably better than Athm for

many values of α that are likely to appear in practice (say, for α ∈ (10−8, 0.1)). We list

approximation factors Athm and Aopt for several values of α in Table 2.1; we also plot the

dependence of Athm and Aopt on α in Figure 2.3.

1. It is also possible to slightly modify Algorithm 1 so that it gets approximation Aopt without explicitly
computing f . We omit the details here.

33

Table 2.1: Approximation factors Athm and Aopt for different α-s.

loge 1/α 1/α Athm Aopt

0 1 3 3
1.61 5 6.22 4.32
2.30 10 7.61 4.63
3.91 50 10.82 6.07
4.61 100 12.21 6.78
6.21 500 15.43 8.69
6.91 1000 16.82 9.62
8.52 5 000 20.03 11.9
10 22 026.5 23 14.2
15 3.3× 106 33 22.6
20 4.9× 108 43 31.3

2.5 Analysis of the Algorithm for Complete Bipartite Graphs

Proof of Theorem 1.4.2. The proof is similar to the proof of Theorem 1.4.1. Without loss of

generality we assume that the scaling parameter w is 1. Define f(x) as follows

f(x) =

 1− e−Ax, if 0 ≤ x < 1
2 − 1

2A

1, otherwise

where A = 5 + 2 loge 1/α. Our analysis of the algorithm relies on Theorem 2.3.1. Since in

the proof of Theorem 2.3.1, we assumed that all edges are present, let us add missing edges

(edges inside parts) to the bipartite graph and assign them weight 0; to be specific, we assume

that they are positive edges. (It is important to note that Theorem 2.3.1 is true even when

edges have zero weights). We will still refer to these edges as ‘missing edges’.

We will show that for every triangle (u1, u2, u3) with edge lengths (x1, x2, x3) (satisfying

the triangle inequality) and signature σ = (σ1, σ2, σ3), we have

ALGσ(x1, x2, x3) ≤ A · LPσ(x1, x2, x3) (2.28)

34

Therefore, by Theorem 2.3.1, our algorithm gives an A-approximation. In addition to

Theorem 2.3.1 we use Claims 2.3.3, 2.3.4, 2.3.5, 2.3.6 and 2.3.7. Recall that proofs of

these claims rely on f being non-decreasing which is satisfied by the above choice. Observe

that (2.28) is equivalent to
3∑

i=1

witi ≥ 0. (2.29)

Observe that if x1 ≥ 1
A , then all xi ≥ 1

A and thus, by Claims 2.3.4 and 2.3.6, all ti ≥ 0

and we are done. Similarly, if x2 ≥ 1
2 − 1

2A ≥ 1
A (since A > 3), then t2 ≥ 0 and t3 ≥ 0;

additionally, y2 = y3 = 1, thus t1 = 0 and we are done. Furthermore, if x3 < 1
2 −

1
2A then all

xi <
1
2 − 1

2A and thus, by Claim 2.3.7, all ti ≥ 0 and we are done. Therefore, we will assume

below that x1 < 1
A , x2 < 1

2 − 1
2A , and x3 ≥ 1

2 − 1
2A . Further, by the triangle inequality

x2 ≥ x3 − x1 ≥ A−1
2A − x1 ≥ A−3

2A . We have (here we use that A ≥ 5),

x1 ≤ 1

A
≤ A− 3

2A
≤ A− 1

2A
− x1 ≤ x2 <

A− 1

2A
≤ x3 ≤ x1 + x2.

We will use below that

eA(x2−x1) ≥ eA(A−1
2A −2x1) = e2+log 1

α−2Ax1 = e2(1−Ax1)/α ≥ 1/α.

By Claim 2.3.5, we may also assume that σ1 = “+” and σ2 = “+” (and since we assume

that missing edges are positive). By Claims 2.3.4 and 2.3.6, t2 ≥ 0 and t3 ≥ 0 (edges e2 and

e3 pay for themselves). If t1 ≥ 0, we are done. So we will assume below that t1 < 0. Since G

is a complete bipartite graph, a triangle (u1, u2, u3) contains either (i) no edges or (ii) two

edges. In case (i) we have w1 = w2 = w3 = 0 and (2.29) holds trivially. In case (ii) if e1

is the missing edge then w1 = 0 and since t2, t3 ≥ 0, (2.29) holds trivially. It remains to

consider three signatures σ = (“+”, “+”, “◦”), σ = (“+”, “◦”, “+”) and σ = (“+”, “◦”, “−”)

where “◦” denotes a missing edge (which by our assumption above is a positive edge).

35

First, assume that σ = (“+”,“+”,“◦”). By Claim 2.3.3, t1 = A(1− y2)x1 − (1− y2) =

−e−Ax2(1− Ax1) and t2 = A(1− y1)x2 − (1− y2) = e−Ax1(Ax2 − 1). Since e3 is missing,

w3 = 0. We have, w1t1 + w2t2 + w3t3 ≥ t1 + αt2 (here we used that t1 ≤ 0 and t2 ≥ 0).

So it suffices to prove that t1 + αt2 > 0 or, equivalently, eAx2(αt2 + t1) ≥ 0. Using that

eA(x2−x1) ≥ 1/α and x2 ≥ A−1
2A − x1, we get

eAx2(αt2+t1) = αeA(x2−x1)(Ax2−1)−(1−Ax1) ≥ α· 1
α
·
(
A
(A− 1

2A
−x1

)
−1
)
+Ax1−1 =

A− 5

2
> 0,

as required.

Now, assume that σ = (“+”,“◦”,“+”). Now we have t1 = −e−Ax2(1−Ax1) (as before)

and

t3 = A(1− y1)x3 − (y2 − y1) = Ae−Ax1x3 − (e−Ax1 − e−Ax2) = e−Ax1(Ax3 − 1) + e−Ax2 .

We prove that t1 + αt3 ≥ 0 or, equivalently, eAx2(αt3 + t1) ≥ 0. Using that eA(x2−x1) ≥ 1/α

and x3 ≥ A−1
2A , we get

eAx2(αt3 + t1) = α
(
eA(x2−x1)(Ax3 − 1) + 1

)
− (1− Ax1)

≥ (Ax3 − 1) + α− (1− Ax1) > Ax3 − 2 ≥ A− 1

2
− 2 ≥ 0,

as required.

Finally, assume that σ = (“+”,“◦”,“−”). Now we have t1 = −e−Ax2(1 − Ax1) (as

before) and t3 = A(1− y1)(1− x3)− (1− y2) = Ae−Ax1(1− x3)− e−Ax2 . As in the previous

36

case, we prove that eAx2(αt3 + t1) ≥ 0. We have,

eAx2(αt3+t1) = α
(
AeA(x2−x1)(1−x3)−1

)
−(1−Ax1) ≥ α

(
AeA(x2−x1)(1− x1 − x2)− 1

)
− (1− Ax1)︸ ︷︷ ︸

F (x1,x2)

.

Denote the expression on the right by F (x1, x2). We now show that for a fixed x1, F (x1, x2)

is an increasing function of x2 when x2 ∈ [A−1
2A − x1,

A−1
2A). Indeed, we have

∂F (x1, x2)

∂x2
= αAeA(x2−x1)

(
A(1− x1 − x2)− 1

)
≥ αAeA(x2−x1)

(
A
(
1− 1

A
− A− 1

2A

)
− 1
)

= αAeA(x2−x1) · A− 3

2
> 0.

We conclude that

F (x1, x2) ≥ F

(
x1,

A− 1

2A
− x1

)
=
(
α
(
AeA(x̃2−x1)(1− x1 − x̃2)− 1

)
− (1− Ax1)

)∣∣∣
x̃2=

A−1
2A −x1

≥ α · A · 1
α
·
(
1− A− 1

2A

)
− α− (1− Ax1) =

A+ 1

2
− α− 1 + Ax1 ≥ A+ 1

2
− 2 > 0.

This concludes the case analysis and the proof of Theorem 1.4.2.

2.6 Integrality Gap

In this section, we give a Θ(log 1/α) integrality gap example for the LP relaxation presented

in Section 2.2.1. Notice that in the example each positive edge has a weight of w+ and each

negative edge has a weight of w− with w+ ≥ w−.

Proof of Theorem 1.4.3. Consider a 3-regular expander G = (V,E) on n = Θ((α2 log2 α)−1)

vertices. We say that two vertices u and v are similar if (u, v) ∈ E; otherwise u and v are

dissimilar. That is, the set of positive edges E+ is E and the set of negative edges E− is

V × V \ E. Let w+ = 1 and w− = α.

37

Lemma 2.6.1. The integrality gap of the Correlation Clustering instance Gcc = (V,E+, E−)

described above is Θ(log 1/α).

Proof. Let d(u, v) be the shortest path distance in G. Let ε = 2/ log3 n. We define a feasible

metric LP solution as follows: xuv = min(εd(u, v), 1).

Let LP+ be the LP cost of positive edges, and LP− be the LP cost of negative edges.

The LP cost of every positive edge is ε since d(u, v) = 1 for (u, v) ∈ E. There are 3n/2 positive

edges in Gcc. Thus, LP+ < 3n/ log3 n. We now estimate LP−. For every vertex u, the

number of vertices v at distance less than t is upper bounded by 3t because G is a 3-regular

graph. Thus, the number of vertices v at distance less than 1/2 log3 n is upper bounded by

√
n. Observe that the LP cost of a negative edge (u, v) (which is equal to α(1 − xuv)) is

positive if and only if d(u, v) < 1/2 log3 n. Therefore, the number of negative edges with a

positive LP cost incident on any vertex u is at most
√
n. Consequently, the LP cost of all

negative edges is upper bounded by αn
3
2 = Θ(n/ log 1/α). Hence,

LP ≤ Θ(n/ log 1/α) + 3n/ log3 n = Θ(n/ log 1/α).

Here, we used that log n = Θ(log 1/α).

We now lower bound the cost of the optimal (integral) solution. Consider an optimal

solution. There are two possible cases.

1. No cluster contains 90% of the vertices. Then a constant fraction of positive edges in

the expander G are cut and, therefore, the cost of the optimal clustering is at least

Θ(n).

2. One of the clusters contains at least 90% of all vertices. Then all negative edges in that

cluster are in disagreement with the clustering. There are at least
(0.9n

2

)
−m = Θ(n2)

such edges. Their cost is at least Ω(αn2).

38

We conclude that the cost of the optimal solution is at least Θ(n) and, thus, the integrality

gap is Θ(log(1/α)).

We note that in this example log(1/α) = Θ(log n). However, it is easy to construct

an integrality gap example where log(1/α) ≪ Θ(log n). To do so, we pick the integrality

gap example constructed above and create k ≫ n disjoint copies of it. To make the graph

complete, we add negative edges with (fractional) LP value equal to 1 to connect each copy to

every other copy of the graph. The new graph has kn ≫ n vertices. However, the integrality

gap remains the same, Θ(log 1/α).

Now we give a Θ(log 1/α) integrality gap example when G is a complete bipartite graph.

Proof of Theorem 1.4.4. The proof is very similar to that of Theorem 1.4.3. We start with a

3-regular bipartite expander G = (L,R,E) on n = Θ((α2 log2 α)−1) vertices (e.g., we can use

a 3-regular bipartite Ramanujan expander constructed by Marcus, Spielman, and Srivastava

[36]). Then we define a correlation clustering instance as follows: Gcc = (L,R,E+, E−)

where E+ = E and E− = (L×R) \ E; let w+ = 1 and w− = α. The proof of Lemma 2.6.1

can be applied to Gcc; we only need to note that if a cluster contains at least 90% of the

vertices, then there are at least Θ(n2) edges of Gcc between vertices in the cluster. It follows

that the integrality gap is Ω(log(1/α)).

39

0 0.25 0.5 0.75 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

x

f α
(x
)

fα for α = 0.001

fopt for α = 0.001

fα for α = 0.01

fopt for α = 0.1

f for α = 0.1

fopt for α = 0.1

0
.0
0
1

0
.0
1

0
.1

0
.0
0
1

0
.0
1

0
.1

Figure 2.2: This plot shows functions fα(x) used in the proof of Theorem 1.4.1 for α ∈
{0.001, 0.01, 0.1}. Additionally, it shows optimal functions fopt(x) (see Section 2.4 for details).
Note that every function fα(x), including fopt(x), has a discontinuity at point τ = 1/2− 1/2A;
for x ≥ τ , fα(x) = 1.

40

0 10 20
0

5

10

15

20

25

30

35

40

45

loge 1/α

A

Athm

Aopt

Figure 2.3: Plots of approximation factors Athm and Aopt.

41

CHAPTER 3

APPROXIMATION ALGORITHM FOR THE ℓP OBJECTIVE

In this chapter, we study the ℓp objective in the Correlation Clustering with Asymmetric

Classification Errors model. In Section 3.1, we describe the convex relaxation that we will use

in our algorithm for Correlation Clustering. In Section 3.2, we introduce a novel technique

for partitioning metric spaces. This forms the main technical basis for our algorithm for

Correlation Clustering. In Section 3.3, we prove our second main result, Theorem 1.4.5. In

Section 3.4, we describe our metric space partitioning scheme and give a proof overview

of its correctness. In sections 3.5, 3.6, 3.6.3 and 4.2, we formally prove the correctness of

our partitioning scheme, Theorem 3.2.1. In Section 3.7, we prove our integrality gap result,

Theorem 1.4.8.

3.1 Convex Relaxation

Our algorithm for minimizing local objectives is based on rounding the optimal solution to a

suitable convex program (Figure 3.1). This convex program is similar to the relaxations used

in Charikar et al. [17] and Kalhan et al. [33]. In this convex program, we have a variable xuv

for every pair of vertices u, v ∈ V . The variable xuv captures the distance between u and v in

the “multicut metric”. In the integral solution, xuv = 0 if u and v are in the same partition

and xuv = 1 if u and v are in different partitions. In order to enforce that the partitioning is

consistent, we add triangle inequality constraints between all triplets of vertices (P2). We

also require that distance xuv is symmetric (P3).

For every vertex u ∈ V , we use the variable yu to denote the total weight of violated

edges incident on u (P1). The objective of the convex program is thus to minimize ∥y∥p –

the ℓp norm of the vector y. Notice that each constraint in the convex program is linear, and

the objective function ∥ · ∥p : Rn → R is convex (by the Minkowski inequality).

42

minimize ∥y∥p (P)

subject to yu =
∑

v:(u,v)∈E+

wuvxuv +
∑

v:(u,v)∈E−
wuv(1− xuv)for all u ∈ V (P1)

xv1v2 + xv2v3 ≥ xv1v3 for all v1, v2, v3 ∈ V (P2)
xuv = xvu for all u, v ∈ V (P3)
xuv ∈ [0, 1] for all u, v ∈ V (P4)

Figure 3.1: Convex relaxation for Correlation Clustering with min ℓp objective for p ≥ 1 or
p = ∞.

What remains to be shown is that the relaxation presented in Figure 3.1 is valid. To this

end, consider any partition P = (P1, P2, . . . , Pk) of the set of vertices V . For every pair of

vertices u, v, if u and v lie in the same partition, we assign the corresponding variable xuv a

value of 0, else we assign it a value of 1. Note that such an assignment satisfies the triangle

inequality (P2). Variable yu thus captures the total weight of violated edges incident on u;

every similar edge (u, v) incident on u that crosses a partition contributes wuv · xuv = wuv to

yu, and every dissimilar edge present within a cluster contributes wuv · (1− xuv) = wuv to yu.

Thus, yu is equal to disu(P , E+, E−). Hence, an integral convex program solution defined in

such a manner is feasible and has the same cost as the partitioning. It is possible, however,

that the cost of the optimal fractional solution is less than the cost of the optimal integral

solution, and hence the convex program in Figure 3.1 is a relaxation to our problem. We note

that our relaxation is simpler than the relaxation used in Kalhan et al. [33]. The additional

variables in their convex program are not needed in our case because all edge weights belong

to the interval [αw,w].

3.2 A New Technique for Partitioning Metric Spaces

We will use the following notation: Given expressions X and Y , we write X ≲ Y if X ≤ C ·Y

for some constant C > 0 (that is, X = O(Y)). We define ≳ similarly. Furthermore, let

43

X+ = 0 if X < 0 and X+ = X if X ≥ 0. We use Ball(v, l) = {u : d(u, v) ≤ l} to denote the

set of vertices at a distance of at most l from v.

In this section, we describe our main technical tool – a novel probabilistic scheme for

partitioning metric spaces which may be of independent interest. This partitioning scheme

forms the basis of our algorithm (Algorithm 3) for Correlation Clustering. We begin by

stating this technical result.

Theorem 3.2.1. For every q ≥ 1 there exists a β∗q = Θ
(1
q ln(q+1)

)
< 1 such that the following

holds. Consider a finite metric space (X, d). Fix two positive numbers r and R such that

β = r/R ≤ β∗q . Let Dβ = 2(q + 1) ln 1/β. Then, there exists a probabilistic partitioning P

satisfying properties (1), (2), and (3):

(1) diam(P) ≤ 2R for every P ∈ P (always);

(2) For every point u in X, the following bound holds:

∑
v∈Ball(u,R)

(
Pr
{
P(u) ̸= P(v)

}
−Dβ

d(u, v)

R

)+

≲ βq
∑

v∈Ball(u,2R)

d(u, v)

R
,

where P(u) denotes the partition of P that contains u.

(3) Moreover, for every u in X, we always have,

∑
v∈Ball(u,r)

1
{
P(u) ̸= P(v)

}
≲ β ·D2

β

∑
v∈Ball(u,2R)

d(u, v)

R
.

The partitioning we construct in Theorem 3.2.1 resembles a 2D–separating 2R-bounded

stochastic decomposition of a metric space [8, 15, 27]. Recall that a 2D–separating 2R-

bounded stochastic decomposition satisfies property (1) of Theorem 3.2.1 and the 2D-

44

separating condition: for every u, v ∈ X,

Pr
{
P(u) ̸= P(v)

}
−D

d(u, v)

R
≤ 0. (3.1)

At a very high level, the goals of our partitioning and the 2D–separating 2R-bounded

stochastic decomposition are similar: decompose a metric space in clusters of diameter at

most 2R so that nearby points lie in the same cluster with high enough probability. However,

the specific conditions are quite different. Loosely speaking, property (2) of Theorem 3.2.1

says that the decomposition satisfies (3.1) with D = Dβ on average up to an additive error

term of O(βq)
∑

v∈Ball(u,2R)
d(u,v)
R . Crucially, property (3) provides an analogous guarantee

not only in expectation, but also in the worst case (which a 2D-separating decomposition

does not satisfy).

Property (3) plays a key role in proving our main result, Theorem 1.4.5. For the standard

objective function for Correlation Clustering (minimizing the ℓ1 norm of the disagreements

vector), properties (1) and (2) are sufficient since an upper bound on the expected weight of

disagreements on a single vertex implies an upper bound on the expected weight of the total

disagreements. The situation gets trickier when we consider minimizing arbitrary ℓp (p > 1)

norms of the disagreements vector. For instance, having an upper bound on the expected

weight of disagreements on a single vertex does not necessarily translate to an upper bound

on the expected weight of disagreements on a worst vertex (ℓ∞ norm). We overcome this

nonlinear nature of the problem for higher values of p by using the deterministic (worst-case)

guarantee given by property (3) of Theorem 3.2.1.

Also note that coefficients Dβ and β do not depend on the size |X| of the metric space

(in our algorithm, they will only depend on α, which is defined as the ratio of the smallest

edge weight to the largest positive edge weight). However, the optimal value of D in the

2D-separating condition is Θ(log |X|).

45

3.3 Correlation Clustering via Metric Partitioning

In this section, we will prove our main theorem, Theorem 1.4.5. Our algorithm (Algorithm 3)

for minimizing local objectives for Correlation Clustering with Asymmetric Classification

Errors begins by solving the convex relaxation in Figure 3.1 to obtain a solution {xuv}u,v∈V .

It then defines a metric d(·, ·) on V by setting distances d(u, v) = xuv.

We let q = 2. Let α∗ be the solution of equation 3
√
α∗/ ln 1/α∗ = β∗2 (note that α∗ is

an absolute constant). We assume that α ≤ α∗. If α > α∗, we just redefine α as α∗ (this

will increase the approximation ratio only by a constant factor). We set r =
√
α/ln 1/α and

R = 1/3. Note that r/R ≤ β∗2 < 1.

At this point, the algorithm makes use of our key technical contribution – a new proba-

bilistic scheme for partitioning metric spaces (Algorithm 4) – and outputs the partitioning

thus obtained. Please refer to Algorithm 3 for a summary.

To show that P has the desired approximation ratio in Theorem 1.4.5, we bound the

weight of disagreements at every vertex u ∈ V with respect to P. To this end, we show

that two useful quantities, the total weight of disagreements at u and the expected weight

of disagreements at u can be bounded in terms of yu, the cost paid by the convex program

for vertex u. In Theorem 3.3.1, we make use of the properties of P given by Theorem 3.2.1

to get a bound on these two quantities for each vertex u ∈ V . Then, in Section 3.3.1, we

use the bounds from Theorem 3.3.1 to complete the proof of Theorem 1.4.5: we show that if

the total cost of disagreements and the expected cost of disagreements with respect to P

are bounded for every u ∈ V , then the partitioning P achieves the desired approximation

ratio in Theorem 1.4.5. We remind the reader that given a partitioning P of the vertex set

and a vertex u ∈ V , disu(P , E+, E−) denotes the weight of edges incident on u that are in

disagreement with respect to P . Moreover, yu denotes the convex programming (CP) cost of

the vertex u.

Define A1 = ln 1/α and A∞ = ln(1α)/
√
α = 1/r. Our analysis focuses on bounding two

46

Algorithm 3 Correlation Clustering Algorithm

Input: G = (V,E+, E−,w, α), {xuv}u,v∈V .
Define a metric d on V such that d(u, v) = xuv for all u, v ∈ V .
Define r = (

√
α/ln 1/α), R = 1/3, q = 2.

P = Metric Space Partitioning Scheme(V, d, r, R, q).
Output P .

key quantities related to a vertex u ∈ V . The first quantity, disu(P , E+, E−), is the total

weight of edges incident on u that are in disagreement with P . We show that this quantity

can be charged to the CP cost of u and is at most A∞ ·yu. We then get a stronger bound

for our second quantity of interest, E[disu(P , E+, E−)], the expected cost of a vertex u. In

particular, we show that E[disu(P , E+, E−)] ≤ A1 · yu.

Theorem 3.3.1. Given an instance of Correlation Clustering with Asymmetric Classification

Errors (Definition 2), Algorithm 3 outputs a partitioning P of the vertex set such that the

following holds for every vertex u ∈ V :

(a) disu(P , E+, E−) ≲ A∞ · yu;

(b) E[disu(P , E+, E−)] ≲ A1 · yu,

where A1 = ln(1/α) and A∞ = ln(1α)/
√
α.

Proof. Without loss of generality we assume that the scaling parameter w is 1. Thus, for

every positive edge e+ ∈ E+, we+ ∈ [α, 1], while for every negative edge e− ∈ E−, we− ≥ α.

Write the formula for disu(P , E+, E−) for a given vertex u ∈ V ,

disu(P , E+, E−) =
∑

(u,v)∈E+

wuv · 1{P(u) ̸= P(v)}+
∑

(u,v)∈E−
wuv · 1{P(u) = P(v)}.

Let E≥r be the set of positive edges (v, w) in E+ with xvw ≥ r. Observe that

47

disu(P , E+, E−) = disu(P ,∅, E−) + disu(P , E≥r,∅) + disu(P , E+ \ E≥r,∅). (3.2)

Recall that β = r/R = 3
√
α/ln 1/α, q = 2, and Dβ = Θ(ln 1/β) = Θ (ln 1/α). From Theo-

rem 3.2.1, part (a), we know that the diameter of each partition P in P is at most 2R. For any

negative edge to be in disagreement, both its endpoints must lie in the same partition. Thus,

the length xuv for any such edge (u, v) ∈ E− is at most 2R, and hence its CP contribution is

at most (1− 2R) = 1/3. Hence,

disu(P ,∅, E−) =
∑

(u,v)∈E−
wuv1{P(u) = P(v)} ≤ 3yu.

Then,

disu(P , E≥r,∅) ≤ |{v : (u, v) ∈ E≥r}| ≤ yu
r

= A∞ yu.

To complete the proof of Theorem 3.3.1, part (a) we write:

disu(P , E+ \ E≥r,∅) =
∑

v∈Ball(u,r)
wuv · 1

{
P(u) ̸= P(v)

}
≤

∑
v∈Ball(u,r)

1
{
P(u) ̸= P(v)

}
.

The inequality above holds because the weight of each positive edge is at most 1. Next, using

the bound for
∑

v∈Ball(u,r) 1
{
P(u) ̸= P(v)

}
from Theorem 3.2.1 part (c), we get,

48

∑
v∈Ball(u,r)

1
{
P(u) ̸= P(v)

}
≲ β ·D2

β

∑
v∈Ball(u,2R)

d(u, v)

R

≲

√
α

ln(1/α)
· (ln2(1/α))

∑
v∈Ball(u,2R)

d(u, v)

R

≲

√
α

ln(1/α)
· ln2(1/α) · yu

α
= A∞ · yu,

where the last inequality follows from the fact that each positive edge weight is at least α.

Thus, from (3.2) it follows:

disu(P , E+, E−) ≲ A∞ ·yu.

We now prove Theorem 3.3.1, part (b). We separately consider short and long positive

edges. Let E≤R be the set of positive edges (v, w) ∈ E+ with xvw ≤ R. Note that

yu ≥
∑

v∈Ball(u,R)

wuv min(d(u, v), 1− d(u, v)) (3.3)

=
∑

v∈Ball(u,R)

wuvd(u, v) =
1

3

∑
v∈Ball(u,R)

wuv
d(u, v)

R
.

Therefore, we have

E[disu(P , E≤R,∅)− 3Dβ · yu] ≤ E
[∑
v∈Ball(u,R)

wuv · 1{P(u) ̸= P(v)} −Dβ

∑
v∈Ball(u,R)

wuv
d(u, v)

R

]
=

∑
v∈Ball(u,R)

wuv

(
Pr{P(u) ̸= P(v)} −Dβ

d(u, v)

R

)
≤

∑
v∈Ball(u,R)

wuv

(
Pr{P(u) ̸= P(v)} −Dβ

d(u, v)

R

)+
.

49

Since all edges (u, v) in E≤R are positive, we have wuv ≤ 1. Consequently,

E[disu(P , E≤R,∅)− 3Dβ · yu] ≤
∑

v∈Ball(u,R)

s.t. (u,v)∈E+

(
Pr{P(u) ̸= P(v)} −Dβ

d(u, v)

R

)+
.

We bound the right hand side using property (2) of Theorem 3.2.1:

∑
v∈Ball(u,R)

(
Pr{P(u) ̸= P(v)} −Dβ

d(u, v)

R

)+
≲ β2

∑
v∈Ball(u,2R)

d(u, v)

R

≲
α

ln2(1/α)

∑
v∈Ball(u,2R)

d(u, v)

≤ 1

ln2(1/α)

∑
v∈Ball(u,2R)

wuv · 2min(d(u, v), 1− d(u, v))

≤ 2

ln2(1/α)
· yu.

Here, we used that wuv ≥ α and d(u, v) ≤ 2(1− d(u, v)) for v ∈ Ball(u, 2R). Thus,

E[disu(P , E≤R,∅)] ≲
(
ln(1/α) +

1

ln2(1/α)

)
yu ≲ A1 · yu.

Furthermore, disu(P , E+ \ E≤R,∅) ≤ 1
R · yu ≤ A1 · yu. Therefore, from (3.2) it follows that

E[disu(P , E+, E−)] ≲ A1yu.

We now use Theorem 3.3.1 to prove Theorem 1.4.5.

50

3.3.1 Proof of Theorem 1.4.5

In this section, we show that the partitioning P output by Algorithm 3 achieves the desired

approximation ratio – thereby proving our main theorem, Theorem 1.4.5. To show this, we

will use the fact that P satisfies the properties in Theorem 3.3.1.

Proof of Theorem 1.4.5. If p = ∞, then we get an O(A∞) = O((1/α)1/2 ln 1/α) approximation

by Theorem 3.3.1, item (a), as desired. So we assume that p < ∞ below. Given the guarantees

from Theorem 3.3.1, we observe,

E

∑
u∈V

disu(P , E+, E−)p

 =
∑
u∈V

E[disu(P , E+, E−)p−1 · disu(P , E+, E−)]

≲
∑
u∈V

E
[
(A∞ ·yu)p−1 · disu(P , E+, E−)

]
=
∑
u∈V

(A∞ ·yu)p−1E
[
disu(P , E+, E−)

]
≲
∑
u∈V

(A∞ ·yu)p−1 · A1 · yu =
∑
u∈V

Ap · ypu,

where A =
(
A
p−1
∞ ·A1

)1
p
. Note that the desired approximation factor is O(A). From Jensen’s

inequality, it follows that

E
[(∑

u∈V
disu(P , E+, E−)p

)1
p

]
≤

E

∑
u∈V

disu(P , E+, E−)p

1
p

≲

∑
u∈V

Ap · ypu

1
p

= A · ∥y∥p.

This finishes the proof.

51

3.4 Overview of Metric Partitioning Scheme

In this section we describe our partitioning scheme and give a proof overview of Theorem 3.2.1.

A pseudocode for this partitioning scheme is given in Algorithm 4. More specifically, in

Section 3.4.1 we reduce the problem to choosing a random set of particular interest as stated

in Theorem 3.4.1. In Section 3.4.2 we describe an algorithm for choosing such a random set

and give a proof overview of its correctness. The pseudocode for choosing a random set is

given in Algorithm 5.

3.4.1 Iterative Clustering

Given a metric space (X, d), our partitioning scheme uses an iterative algorithm – Algorithm 4

to obtain P. Let Xt denote the set of not-yet clustered vertices at the start of iteration t

of Algorithm 4. At step t, the algorithm finds and outputs random set Pt ⊆ Xt. It then

updates the set of not-yet clustered vertices (Xt+1 = Xt \ Pt), and repeats this step until all

vertices are clustered. Algorithm 4 makes use of the following theorem in each iteration to

find the random set Pt.

We need the following notation to state the theorem. Let δP (u, v) be the cut metric

induced by the set P : δP (u, v) = 1 if u ∈ P and v /∈ P or u /∈ P and v ∈ P ; δP (u, v) = 0 if

u ∈ P and v ∈ P or u /∈ P and v /∈ P . Also, let ∨P (u, v) be the indicator of the event u ∈ P

or v ∈ P or both u and v are in P . We denote [k] = {1, 2, . . . k}.

Theorem 3.4.1. For every q ≥ 1 there exists a β∗q = Θ
(1
q ln(q+1)

)
< 1 such that the following

holds. Consider a finite metric space (X, d). Fix two positive numbers r and R such that

β = r/R ≤ β∗q . Let Dβ = 2(q + 1) ln 1/β. Then, there exists an algorithm for finding a

random set P satisfying properties (a), (b), and (c):

(a) diam(P) ≤ 2R (always);

52

z

R0 = R/Dβ

R

R1 t

Figure 3.2: Balls with Different Radii
R > r > 0, q ≥ 1, β = r/R, Dβ = 2(q + 1) ln 1/β, R0 = R/Dβ , R1 = R−R0.

(b) For every point u in X, the following bound holds:

∑
v∈Ball(u,R)

(
Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
Pr{∨P (u, v) = 1}

)+
≲ βq·E

[∑
v∈Ball(u,2R)

d(u, v)

R
·∨P (u, v)

]
.

(c) Moreover, for every u in X, we always have

∑
v∈Ball(u,r)

δP (u, v) ≲ β ·D2
β ·

∑
v∈Ball(u,2R)

d(u, v)

R
· ∨P (u, v).

Informally, Theorem 3.4.1 is a “single-cluster” version of Theorem 3.2.1, and there is a one-

to-one correspondence between their properties. In Section 3.5, we show that Theorem 3.2.1

holds for P if we assume that each partition P ∈ P satisfies Theorem 3.4.1. Thus, to obtain

Theorem 3.2.1, it remains to prove Theorem 3.4.1.

3.4.2 Selecting a Single Cluster

We will use the following definitions. Let r and R be positive numbers with r < R. Define

β = r/R ≤ β∗q and Dβ = 2(q + 1) ln 1/β where q ≥ 1. Let R0 = R/Dβ and R1 = R−R0. We

let ρq(β) = (1/β)q+1 (see Figure 3.2). We choose β∗q so that r < R0 < R (see Section 3.6 for

details).

53

Algorithm 4 Metric Space Partitioning Scheme

Input: Metric Space (X, d) and r, R > 0, q ≥ 1.
Define t = 0, X1 = X.
repeat
t = t+ 1.
Pt = Cluster Select(Xt, d, r, R, q).
Xt+1 = Xt \ Pt.

until Xt = ∅
Output (P1, P2, . . . , Pt).

Given a metric space (X, d) and parameters r and R, our procedure for finding a random

set P ⊆ X begins by finding a pivot point z with a densely populated neighborhood – namely,

z is chosen such that a ball of radius R0 around z contains the maximum number of points.

More formally,

z = argmax
u∈X

|Ball(u,R0)|. (3.4)

We refer to this ball of small radius around z as the “core” of the cluster. Our choice of the

pivot z is inspired by the papers by Charikar et al. [16], Puleo and Milenkovic [40], Charikar

et al. [17]. We then consider a ball of large radius R1 around the pivot z and examine the

following two cases – “Heavy Ball” and “Light Ball”. If this ball of large radius around z is

sufficiently populated, that is, if the number of points in Ball(z, R1) is at least (1/β)
q+1 times

the number of points in the core, we call this case “Heavy Ball”. In the case of Heavy Ball,

we will show that P = Ball(z,R1) (a ball around z of radius slightly less than R) satisfies

the properties of Theorem 3.4.1. In the case of “Light Ball”, the ball of large radius around

z is not sufficiently populated. In this case, the algorithm finds a radius t (t ≤ R) such

that P = Ball(z, t) satisfies the properties of Theorem 3.4.1. In the following subsections we

provide an overview of the proof for these two cases. A formal proof of Theorem 3.4.1 can be

found in Section 3.6.

54

Algorithm 5 Cluster Select

Input: Metric space (X, d) and r, R > 0, q ≥ 1
Define: β = r/R, Dβ = 2(q + 1) ln 1/β .

Define: R0 = R/Dβ, R1 = R−R0, ρq(β) = (1/β)q+1.
Select z = argmaxu∈X |Ball(u,R0)|.
if |Ball(z,R1)| ≥ ρq(β) · |Ball(z,R0)| then
Set P = Ball(z,R1).

else
Consider S as stated in Definition 3.
Consider πinvS as stated in Definition 4.
Let F be the cumulative distribution function stated in Definition 5.
Choose a random x ∈ [0, R/2] according to F .
Set P = Ball(z, πinvS (x)).

end if
Output P .

Heavy Ball

The Heavy Ball P is a ball of radius R1 around z which contains many points. As the diameter

of P is 2R1 < 2R, it is easy to see that a Heavy Ball satisfies property (a) of Theorem 3.4.1.

We now focus on showing that properties (b) and (c) hold for Heavy Ball. Observe as z was

chosen according to (3.4), for every point u ∈ X \ {z}, u has a less populated neighborhood

of radius R0 than that of z. This combined with the fact that Ball(z,R1) is heavy, implies

that for every u, there are sufficiently many points in P at a distance of at least R0 from u.

Thus, for any point u ∈ X, we can expect the sum of distances between u and the points in P

to be large. In fact, we show that the left hand sides of properties (b) and (c) can be charged

to
∑

v∈P
d(u,v)
R , the sum of distances between u and the points in P . For points u such

that d(z, u) ≤ R, P ⊆ Ball(u, 2R) and hence,
∑

v∈Ball(u,2R)
d(u,v)
R ∨P (u, v) ≥

∑
v∈P

d(u,v)
R .

Thus, for every u ∈ X, we can charge the left hand sides of properties (b) and (c) to the

quantity
∑

v∈Ball(u,2R)
d(u,v)
R ∨P (u, v). This allows us to conclude that a Heavy Ball satisfies

Theorem 3.4.1.

55

Light Ball

In this subsection, we consider the case of |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|, which we

call Light Ball. In the case of Light Ball, we choose a random radius t ∈ (0, R1] and set

P = Ball(z, t). Observe that property (a) of Theorem 3.4.1 holds trivially since the radius

t < R.

Now consider property (c) of Theorem 3.4.1. Recall that for every point u ∈ X, property (c)

gives a bound on the total number of points separated from u (by P) residing in a small ball

Ball(u, r), i.e.,
∑

v∈Ball(u,r)
δP (u, v). Note that property (c) gives a deterministic guarantee

on P . Therefore, we choose a random radius t ∈ (0, R1] from the set of all radii for which

property (c) of Theorem 3.4.1 holds. More specifically, we define the following set.

Definition 3. Let S be the set of all radii s in (3R0, R1] such that for every u ∈ X set

P = Ball(z, s) satisfies:

∑
v∈Ball(u,r)

δP (u, v) ≤ 25β ·D2
β ·

∑
v∈Ball(u,2R)

d(u, v)

R
· ∨P (u, v). (3.5)

The set S can be computed in polynomial time since the number of distinct clusters

P = Ball(z, t) is upper bounded by the size of the metric space, |X|. By the same token, S

is a finite union of disjoint intervals.

Now we show why we can expect the set S to be large. Consider P = Ball(z, s) such that

s ∈ S. As S is computed according to Definition 3, it implies that the boundary of P is

somewhat sparsely populated – as for every u ∈ X, it bounds the number of points within a

small neighborhood of Ball(u, r) that are separated from u (note that
∑

v∈Ball(u,r) δP (u, v)

is trivially 0 for points u that are not close to the boundary of P). Since Ball(z, R1) does

not contain many points, the number of points in Ball(z, s′) cannot grow too quickly as we

increase the radius s′ from 0 to R1. This suggests that for many of such radii s′, the ball

P = Ball(z, s′) has a sparsely populated boundary, and hence the set S should be large. In

56

fact, we use the above argument to show that the Lebesgue measure of the set S satisfies

µ(S) ≥ R/2. This will allow us to define a continuous probability distribution on S.

What remains to be shown is that for a random radius t ∈ S, the set P = Ball(z, t)

satisfies property (b) of Theorem 3.4.1. For this purpose we define a measure preserving

transformation πS that maps an arbitrary measurable set S to the interval [0, µ(S)].

Definition 4. Consider a measurable set S ⊂ [0, R]. Define function πS : [0, R] → [0, µ(S)]

as follows πS(x) = µ([0, x] ∩ S). Also, for y ∈ [0, µ(S)], let

πinvS (y) = min{x : πS(x) = y}.

Recall that the set S stated in Definition 3 is a finite union of disjoint intervals. In this

case, what πS does is simply pushing the intervals in S towards 0, and thus, allowing us to

treat the set S as a single interval [0, µ(S)]. For the rest of the proof overview, we assume

that S = [0, µ(S)] and πS is the identity. This simplifies the further analysis of Theorem 3.4.1

immensely.

Next, we define a cumulative distribution function F on [0,R/2] ⊆ [0, µ(S)]:

Definition 5. Let F : [0, R/2] → [0, 1] be a cumulative distribution function such that

F (x) =
1− e−x/R0

1− e−R/2R0
. (3.6)

We choose a random x ∈ [0, R/2] according to F and set P = Ball(z, πinvS (x)) (see

Algorithm 5). Since we assume in this proof overview that πS is the identity, P = Ball(z, x).

Now, we show that the radius x chosen in such a manner guarantees that the cluster P

satisfies property (b). Loosely speaking, the motivation behind our particular choice of

cumulative distribution function F is the following: For two points u, v ∈ X, function F

bounds the probability of u and v being separated by P , in terms of Dβ times the probability

that either u or v lies in P . Unfortunately, this bound does not hold for points u with

57

d(z, u) close to R/2. However, the choice of parameters for function F in Definition 5 gives us

two desired properties. Without loss of generality assume that d(z, u) ≤ d(z, v). Then, the

probability that P separates the points u and v, Pr(δP (u, v)) = Pr(d(z, u) ≤ x ≤ d(z, v)) =

F (d(z, v))− F (d(z, u)). Moreover, as d(z, u) ≤ d(z, v), the probability that either u or v lies

in P , Pr(∨P (u, v)) = 1− F (d(z, u)). Thus, choosing F according to Definition 5 ensures:

• (Property I) F (d(z, v)) − F (d(z, u)) is bounded in terms of Dβ times 1 − F (d(z, u))

(Please see Claim 3.6.9 for a formal argument).

• (Property II) The probability that the cluster P includes points u such that d(z, u) >

R/2−R0, is very small (please see Claim 3.6.8).

In fact, (Property II) of function F is the reason why we are able to guarantee that property (b)

satisfies (3.1) only on average, with the error term coming from our inability to guarantee (3.1)

for points on the boundary. We refer the reader to Section 3.6.5 for a formal proof. Thus, we

conclude the case of Light Ball and show that it satisfies Theorem 3.4.1.

3.5 Proof of Theorem 3.2.1

In this section, we present the proof of our main technical result – Theorem 3.2.1 – an algorithm

for partitioning a given metric space (X, d) into a number of clusters P = (P1, . . . , Pk) (where

k is not fixed).

Recall our iterative process for obtaining this partitioning – Algorithm 4 – which makes

use of Theorem 3.4.1 in each iteration to select a cluster from the set of not-yet clustered

vertices.

The proof of Theorem 3.4.1 is presented in Section 3.6. We now present the proof of

Theorem 3.2.1 assuming Theorem 3.4.1.

Proof of Theorem 3.2.1. Property (a) of Theorem 3.4.1 guarantees that diam(Pi) ≤ 2R for

every i ∈ [k] and thus property (1) of Theorem 3.2.1 holds.

58

We now show that property (2) holds. Fix u ∈ X. Consider iteration i ∈ [k]. Note

that set Pi satisfies property (b) of Theorem 3.4.1 regardless of what set Xi we have in the

beginning of iteration i. That is, for every set Y ⊂ X and u ∈ Y , we have

∑
v∈Ball(u,R)∩Y

(
Pr
{
δPi

(u, v) = 1 |Xi = Y
}
−Dβ

d(u, v)

R
Pr{∨Pi

(u, v) = 1 |Xi = Y }
)+

≲ βq · E

[∑
v∈Ball(u,2R)∩Y

d(u, v)

R
· ∨Pi

(u, v) |Xi = Y

]
. (3.7)

We observe that inequality (3.7) can be written as follows (for all u ∈ X).

∑
v∈Ball(u,R)

(
Pr
{
δPi

(u, v) = 1 and u, v ∈ Xi |Xi = Y
}

−Dβ
d(u, v)

R
Pr{∨Pi

(u, v) = 1 and u, v ∈ Xi |Xi = Y }
)+

≲ βq · E
[∑
v∈Ball(u,2R)

d(u, v)

R
· ∨Pi

(u, v) · 1 {u, v ∈ Xi} |Xi = Y

]
. (3.8)

If u /∈ Y , then all terms in (3.8) are equal to 0, and the inequality trivially holds. If

u ∈ Y , then corresponding terms in (3.7) and (3.8) with v ∈ Y are equal to each other; all

terms in (3.8) with v /∈ Y are equal to 0. Denote the event that u, v ∈ Xi by Evi (that is, Evi

happens if both points u and v are not clustered at the beginning of iteration i). We take

the expectation of (3.8) over Xi = Y and add up the inequalities over all i ∈ [k]. Using the

59

subaddivity of function x 7→ x+, we obtain

∑
v∈Ball(u,R)

(∑
i∈[k]

Pr
{
δPi

(u, v) = 1 and Evi
}
−Dβ

d(u, v)

R
Pr{∨Pi

(u, v) = 1 and Evi}

)+

≤
∑

v∈Ball(u,R)
i∈[k]

(
Pr
{
δPi

(u, v) = 1 and Evi
}
−Dβ

d(u, v)

R
Pr{∨Pi

(u, v) = 1 and Evi}

)+

≲ βq · E

[∑
v∈Ball(u,2R)

i∈[k]

d(u, v)

R
· ∨Pi

(u, v) · 1{Evi}

]
.

(3.9)

Now consider any v ∈ X \ {u}. If u and v are separated by the partitioning P , then they are

separated at some iteration i. That is, for some i ∈ [k]:

• Evi happens (in other words, u and v are not clustered at the beginning of iteration i)

• δPi
(u, v) = 1 (exactly one of them gets clustered in iteration i)

Further, there is exactly one i such that both events above happen. On the other hand, if u

and v are not separated by P then δPi
(u, v) = 0 for all i ∈ [k]. We conclude that

1{P(u) ̸= P(v)
}
=
∑
i∈[k]

1
{
δPi

(u, v) = 1 and Evi
}
. (3.10)

In particular, the expectations of the expressions on both sides of (3.10) are equal:

Pr{P(u) ̸= P(v)} =
∑
i∈[k]

Pr
{
δPi

(u, v) = 1 and Evi
}
. (3.11)

Now consider the first iteration i at which at least one of the vertices u and v gets clustered.

Note that (i) event Evi happens and (ii) ∨Pi
(u, v) = 1 (that is, (i) both points u and v are

not clustered at the beginning of iteration i; (ii) but at least one of them gets clustered in

iteration i). Further, for j < i, ∨Pi
(u, v) = 0 and for j > i, Evj does not happen. We conclude

60

that event “∨Pi
(u, v) = 1 and Evi” happens exactly for one value of i ∈ [k]. Therefore,

∑
i∈k

∨Pi
(u, v) · 1{Evi} = 1 (3.12)

and

∑
i∈[k]

Pr{∨Pi
(u, v) = 1 and Evi} =

∑
i∈[k]

E[∨Pi
(u, v)1{Evi}] = 1. (3.13)

Plugging (3.11) and (3.13) into (3.9), we obtain

∑
v∈Ball(u,R)

(
Pr
{
P(u) = P(v)

}
−Dβ

d(u, v)

R

)+

≲ βq · E
[∑
v∈Ball(u,2R)

d(u, v)

R

]
.

We conclude that property (2) holds. Next, we show that property (3) holds for every

u ∈ X. As in the analysis of property (2), we consider some iteration i. Then property (c) of

Theorem 3.4.1 guarantees that if u ∈ Xi then

∑
i∈[k]

∑
v∈Ball(u,r)∩Xi

δPi
(u, v) ≲

∑
i∈[k]

β ·D2
β ·

(∑
v∈Ball(u,2R)∩Xi

d(u, v)

R
· ∨Pi

(u, v)

)
(3.14)

We rewrite (3.14) as follows:

∑
i∈[k]

∑
v∈Ball(u,r)

δPi
(u, v) · 1{Evi} ≲

∑
i∈[k]

β ·D2
β ·

(∑
v∈Ball(u,2R)

d(u, v)

R
· ∨Pi

(u, v) · 1{Evi}

)
.

Note that this inequality holds for all u ∈ X: if u ∈ Xi, it is equivalent to (3.14); if u /∈ Xi,

then both sides are equal to 0, and the inequality trivially holds. Using formulas (3.10) and

61

z

R0 = R/Dβ

R

R1 t

γ−light shell
of width r

Figure 3.3: Light Ball
R > r > 0, q ≥ 1, β = r/R, Dβ = 2(q + 1) ln 1/β, R0 = R/Dβ , R1 = R−R0.

(3.12), we get

∑
v∈Ball(u,r)

1
{
P(u) ̸= P(v)

}
≲ β ·D2

β ·
∑

v∈Ball(u,2R)

d(u, v)

R
.

Therefore, property (3) holds.

3.6 Proof of Theorem 3.4.1

In Section 3.4.1, we describe an iterative approach to finding a probabilistic metric decomposi-

tion for Theorem 3.2.1. In this section, we show how to find one cluster P of the partitioning.

Given a metric space (X, d) and positive numbers r and R, our algorithm selects a subset

P ⊆ X that satisfies the three properties listed in Theorem 3.4.1. Recall that β = r/R,

Dβ = 2(q + 1) ln 1/β, R0 = R/Dβ, R1 = R − R0 and ρq(β) = (1/β)q+1 (see Figure 3.3).

In this proof, we assume that β = r/R is sufficiently small (i.e, β ≤ β∗q for some small

β∗q = Θ
(1
(q ln(q+1)

)
and, consequently, R0 = R/Dβ is also small. Specifically, we assume that

r < R0 < R1 < R and R0 + r < R1/100.

Our algorithm for selecting the cluster P starts by picking a pivot point z that has the

most points within a ball of small radius R0. That is, z is the optimizer to the following

62

expression:

z = argmax
u∈X

|Ball(u,R0)|. (3.15)

The algorithm then checks if the ball of a larger radius, R1, around z has significantly more

points in it in comparison to the ball of radius R0 around z. If the ratio of the number of

points in these two balls exceeds ρq(β), the algorithm selects the set of points Ball(z, R1) as

our cluster P . We refer to this case as the “Heavy Ball” case. In Section 3.6.2, we show that

this set P satisfies the properties of Theorem 3.4.1.

If, however, |Ball(z,R1)| < ρq(β) · |Ball(z,R0)|, then the algorithm outputs cluster

P = Ball(z, t) where t ∈ (0, R] is chosen as follows. First, the algorithm finds the set S

of all radii s ∈ (3R0, R1] for which the set P = Ball(z, s) satisfies Definition 3. Then, it

chooses a random radius t in S (non-uniformly) so that random set P = Ball(z, t) satisfies

property (b) of Theorem 3.4.1. In Section 3.6.4, we discuss how to find the set S and show

that µ(S) ≥ R/2 (where µ(S) is the Lebesgue measure of set S). Finally, in Section 3.6.5,

we describe a procedure for choosing a random radius t in S.

3.6.1 Useful Observations

In this section, we prove several lemmas which we will use for analyzing both the “Heavy

Ball” and “Light Ball” cases. First, we show an inequality that will help us lower bound the

right hand sides in inequalities (b) and (c) of Theorem 3.4.1.

Lemma 3.6.1. Assume that z is chosen according to (3.15). Consider t in (3R0, R1] and u

in X with d(z, u) ∈ [2R0, R]. Let P = Ball(z, t). Denote:

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
.

63

Then, |P | ≤ 2DβYP .

Remark: Note that in Theorem 3.4.1, the right side of inequality (b) equals βqE[YP], and

the right side of inequality (c) equals β ·D2
β · Yp.

Proof. Observe that P ⊂ Ball(u, 2R). Hence,

YP =
∑

v∈Ball(u,2R)

d(u, v) ∨P (u, v)

R
≥
∑
v∈P

d(u, v)

R
.

For every v ∈ P \ Ball(u,R0), we have
d(u,v)
R ≥ R0

R = D−1
β . Thus,

YP ≥ D−1
β |P \ Ball(u,R0)|.

We need to lower bound the size of P \ Ball(u,R0). On the one hand, we have

|P \ Ball(u,R0)| ≥ |P | − |Ball(u,R0)| ≥ |P | − |Ball(z,R0)|.

Here, we used that Ball(z,R0) is the largest ball of radius R0 in X. On the other hand,

Ball(z,R0) ⊂ P \ Ball(u,R0), since d(z, u) ≥ 2R0. Thus, |P \ Ball(u,R0)| ≥ |Ball(z, R0)|.

Combining two bounds on |P \Ball(u,R0)|, we get the desired inequality |P \Ball(u,R0)| ≥

|P |/2.

We now provide a lemma that will help us verify property (b) of Theorem 3.4.1 for that

point u.

Lemma 3.6.2. Consider an arbitrary probability distribution of t in (3R0, R1]. Let P =

Ball(z, t), where z is chosen according to (3.15). If for each point u ∈ Ball(z,R) at least one

of the following two conditions holds, then P satisfies property (b) of Theorem 3.4.1 for all

points u in X.

64

Condition I:

Pr{t ≥ d(z, u)−R0} ≲ βq+1 · E|Ball(z, t)|
|Ball(z,R0)|

. (3.16)

Condition II: For every v ∈ Ball(u,R0), we have

Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
Pr{∨P (u, v) = 1} ≲ βq+1. (3.17)

Remark: This lemma makes the argument about the distribution of t from the proof overview

section (Section 3.4) more precise. As we discuss in subsection Light Ball 3.4.2, we have

chosen the distribution of t (Cumulative distribution function F , Definition 5) to satisfy two

properties: (Property I) the probability that u and v are separated by P is upper bounded

by the probability that u or v is in P times O(Dβ); and (Property II) The probability that

t is close to πinvS (R/2) is small. Thus, Condition I of Lemma 3.6.2 holds for u with d(z, u)

that are sufficiently close to πinvS (R/2), and Condition II holds for u with for smaller values

of d(z, u).

Proof. Consider one term from the left hand side of property (b) of Theorem 3.4.1 for some

u in X: (
Pr
{
δP (u, v) = 1

}
−Dβ

d(u, v)

R
· Pr{∨P (u, v) = 1}

)+
.

Note that {δP (u, v) = 1} denotes the event that exactly one of the points u and v lies

in P ; whereas {∨P (u, v) = 1} denotes the event that at least one of u and v lies in P .

Thus, Pr{∨P (u, v) = 1} ≥ Pr{δP (u, v) = 1}. Hence, this expression is positive only if

Dβ · d(u, v)/R < 1, which is equivalent to

d(u, v) < R/Dβ = R0.

Thus, in the left hand side of property (b), we can consider only v in Ball(u,R0) (rather than

Ball(u,R)). Moreover, if d(z, u) > R, then for all v ∈ Ball(u,R0), we have d(z, v) > R−R0 =

65

R1 and, consequently, δP (u, v) = 0. Therefore, for such u, the left hand side of property (b)

equals 0, and the inequality (b) holds trivially. We will thus assume that d(z, u) ≤ R (which

is equivalent to u ∈ Ball(z,R)). Similarly, since t > 3R0, we will assume that d(z, u) ≥ 2R0

(otherwise, u ∈ P and every v ∈ Ball(u,R0) is in P , and thus δP (u, v) = 0).

We now show that if Condition I or II of Lemma 3.6.2 holds for u ∈ Ball(z,R) then

property (b) is satisfied for that u.

I. Suppose, the first condition holds for u ∈ Ball(z, R). If δP (u, v) = 1 then either

u ∈ P, v ̸∈ P or v ∈ P, u ̸∈ P . In the former case, t ≥ d(z, u); in the latter case,

t ≥ d(z, v) ≥ d(z, u) − R0. In either case, t ≥ d(z, u) − R0. Using that |Ball(u,R0)| ≤

|Ball(z, R0)| by our choice of z (see (3.15)), we bound the left hand side of (b) as follows

∑
v∈Ball(u,R0)

Pr{δP (u, v) = 1} ≤ |Ball(u,R0)|Pr{t ≥ d(z, u)−R0}

≤ |Ball(z,R0)|Pr{t ≥ d(z, u)−R0}

We now use the inequality from Condition I to get the bound

∑
v∈Ball(u,R0)

Pr{δP (u, v) = 1} ≲ βq+1E|Ball(z, t)| = βq+1E|P |.

Finally, by Lemma 3.6.1, we have the following bound on βq+1E|P |:

βq+1E|P | ≤ βq+1 · 2DβE[YP] ≤ βqE[YP]. (3.18)

Here, we used that 2βDβ = 2r/R0 < 1 by our choice of β∗q . The right hand side of the

inequality in property (b) equals βqE[YP]. Thus, property (b) holds.

II. Suppose now that the second condition holds for u ∈ Ball(z,R). Then, each term in the

left hand side of (b) is upper bounded by O(βq+1). Hence, the entire sum is upper bounded

66

by O(βq+1|Ball(u,R0)|), which in turn is upper bounded by O(βq+1|Ball(z,R0)|). Then,

βq+1|Ball(z,R0)| ≤ βq+1|Ball(z, t)| = βq+1E|P | ≤ βqE[YP].

The last inequality follows from (3.18). We conclude that property (b) of Theorem 3.4.1

holds.

3.6.2 Heavy Ball Case

In this subsection, we analyze the case when |Ball(z,R1)| ≥ ρq(β) · |Ball(z,R0)|. If this

condition is met, then the algorithm outputs P = Ball(z, R1). We will show that Theorem 3.4.1

holds for such a cluster P .

We first prove properties (a) and (b). Since the radius of P is R1 ≤ R, its diameter

is at most 2R. So property (a) of Theorem 3.4.1 holds. To show property (b), we apply

Lemma 3.6.2 (item I) with t = R1. Trivially, Pr{t ≥ d(z, u)− R0} ≤ 1 and E|Ball(z, t)| =

|Ball(z, R1)| ≥ ρq(β)|Ball(z, R0)|. Thus, (3.6.2) is satisfied and property (b) also holds.

We now show property (c) of Theorem 3.4.1. Observe that if d(z, u) /∈ [R1 − r, R1 + r],

then δP (u, v) = 0 for all v ∈ Ball(u, r) (because P = Ball(z,R1)). Hence, for such u, property

(c) holds. Thus, we assume that u ∈ [R1 − r, R1 + r] ⊆ [2R0, R].

We bound the left hand side of (c) as follows:

∑
v∈Ball(u,r)

δ(u, v) ≤ |Ball(u, r)| ≤ |Ball(u,R0)| ≤ |Ball(z, R0)|,

here we first use that r ≤ R0 and then that z satisfies (3.15). Since we are in the Heavy Ball

Case, we have |P | ≥ ρq(β)|Ball(z,R0)|. Therefore,

∑
v∈Ball(u,r)

δ(u, v) ≤ |P |/ρq(β).

67

By Lemma 3.6.1, the right hand side is upper bounded by

2DβYP /ρq(β) = 2Dβ β
q+1 YP ≲ βD2

β YP .

The right hand side of (c) equals βD2
β YP . Hence, property (c) is satisfied.

Thus we have shown that Theorem 3.4.1 holds for the case of Heavy Balls. To complete

the proof, we show that Theorem 3.4.1 also holds for the case of Light Balls – we give this

proof in Section 3.6.3.

3.6.3 Light Ball Case

We now consider the case when |Ball(z,R1)| ≤ ρq(β) · |Ball(z, R0)|. Recall that S is the

set of all radii s ∈ (3R0, R1] for which property (c) of Theorem 3.4.1 holds (Definition 3).

The set S can be found in polynomial time since the number of distinct balls Ball(z, s) is

upper bounded by the number of points in the metric space. We now recall map πS used in

Algorithm 5.

Map πS . In Section 3.4.2, we define a measure preserving transformation πS that maps

a given measurable set S ⊂ [0, R] to the interval [0, µ(S)] (Definition 4). We need this

transformation in Algorithm 5. If S is the union of several disjoint intervals (as in our

algorithm) then πS simply pushes all intervals to the left so that every two consecutive

intervals touch each other. We show the following lemma.

Lemma 3.6.3. For any measurable set S, πS is a continuous non-decreasing 1-Lipschitz

function, and πinvS is a strictly increasing function defined for all y in [0, µ(S)]. Moreover,

there exists a set Z0 of measure zero such that for all y ∈ [0, µ(S)] \Z0, we have πinvS (y) ∈ S.

Proof. Note that πinvS (y) is a right inverse for πS(x): πS(π
inv
S (y)) = y (but not necessarily a

68

left inverse). Let

IS(x) =

1, if x ∈ S

0, otherwise

be the indicator function of set S. Then πS(x) =
∫ x
0 IS(t)dt (we use Lebesgue integration here).

Since 0 ≤ IS(t) ≤ 1, function πS is non-decreasing, 1-Lipschitz, and absolutely continuous.

By the Lebesgue differentiation theorem, πS(x) is almost everywhere differentiable and

dπS(x)
dx = IS(x) almost everywhere. Let X0 = [0, R] \ S and Z0 = πS(X0). Since πS is

absolutely continuous and IS(x) = 0 for x ∈ X0, we have

µ(Z0) ≤
∫
X0

dπS(x)

dx
dx =

∫
X0

IS(x)dx = 0.

Now if y /∈ Z0, then πS(π
inv
S (y)) = y /∈ Z0, thus π

inv
S (y) /∈ X0 or, equivalently, πinvS (y) ∈ S,

as required.

Finally, we verify that πinvS is strictly increasing. Consider a, b ∈ [0, µ(S)] with a < b.

Note that a = πS(π
inv
S (a)) and b = πS(π

inv
S (b)). Thus, πS(π

inv
S (a)) < πS(π

inv
S (b)). Since πS

is non-decreasing, πinvS (a) < πinvS (b).

Note that if S is a union of finitely many disjoint open intervals, then Z0 is the image of

the endpoints of those intervals under πS .

3.6.4 Clusters Satisfying Property (c) of Theorem 3.4.1

We first show that if |Ball(z,R1)| < ρq(β) · |Ball(z, R0)|, then µ(S) ≥ R/2. To this end, we

define a ball with a γ-light shell of width r.

Definition 6. We say that the ball of radius t ≥ r around z has a γ-light shell of width r if

|Ball(z, t+ r)| − |Ball(z, t− r)| ≤ γ

∫ t−r

0
|Ball(z, x)| dx.

69

We let Sγ be the set of all radii t in the range (3R0, R1] such that Ball(z, t) has a γ-light

shell of width r. We now show that (a) Sγ ⊂ S and (b) µ(Sγ) ≥ R/2 for γ = 25r/R2
0. and,

therefore, µ(S) ≥ R/2.

Lemma 3.6.4. We have Sγ ⊂ S.

Proof. Consider a number t from Sγ and the ball of radius t around z: P = Ball(z, t).

Let us pick an arbitrary point u. We are going to prove that inequality (3.5) holds and

therefore t ∈ S. Consider v ∈ Ball(u, r). Observe that δP (u, v) = 1 only if both u and

v belong to the r neighborhoods of P and X \ P . Thus, if δP (u, v) = 1, we must have

d(z, u), d(z, v) ∈ [t− r, t+ r]. If d(z, u) /∈ [t− r, t+ r], then the left side of (3.5) equals 0, and

we are done. Hence, we can assume that d(z, u) ∈ [t− r, t+ r].

Using the observation above, we bound the left hand side of (3.5) as

∑
v∈Ball(u,r)

δP (u, v) ≤ |Ball(z, t+ r)| − |Ball(z, t− r)|.

We now need to lower bound the right hand side of (3.5). Note that Ball(u, 2R) contains

Ball(z, t), since

d(z, u) ≤ t+ r ≤ R1 + r = R−R0 + r < R,

and t < R. Thus,

∑
v∈Ball(u,2R)

d(u, v)

R
∨p (u, v) ≥

1

R

∑
v∈Ball(z,t)

d(u, v) ∨p (u, v).

For all v ∈ Ball(z, t) ≡ P , we have ∨P (u, v) = 1. Hence,

∑
v∈Ball(z,t)

d(u, v) ∨p (u, v) =
∑

v∈Ball(z,t)
d(u, v) (3.19)

70

By the triangle inequality, we have

d(u, v) ≥ (d(z, u)− d(z, v))+ ≥ ((t− r)− d(z, v))+.

Observe that

((t− r)− d(z, v))+ =

∫ t−r

0
1
{
d(z, v) ≤ x

}
dx.

Hence, (3.19) is lower bounded by

∑
v∈Ball(z,t)

∫ t−r

0
1
{
d(z, v) ≤ x

}
dx =

∫ t−r

0

∑
v∈Ball(z,t)

1
{
d(z, v) ≤ x

}
dx =

∫ t−r

0
|Ball(z, x)| dx.

Since the ball of radius t has a γ-light shell of width r, the expression above is, in turn, lower

bounded by

|Ball(z, t+ r)| − |Ball(z, t− r)|
γ

.

Thus, the right hand side of inequality (3.5) is lower bounded by

25βD2
β

R
· |Ball(z, t+ r)| − |Ball(z, t− r)|

γ
.

This completes the proof of Lemma 3.6.4, since

25βD2
β

R
· 1
γ
=

25βD2
βR

2
0

25R · r
=

(r/R)D2
β

(
R/Dβ

)2
Rr

= 1.

Lemma 3.6.5. We have µ
(
Sγ
)
≥ R/2.

To prove this lemma, we use the following result from Appendix 4.2.

Lemma 3.6.6. Consider a non-decreasing function Φ : [0, R] → R with Φ(0) = 1 and R > 0.

Let r ∈ (0, R] and γ ≤ (0, 1/r]. Then, for the subset S of numbers t ∈ [0, R − r] for which

71

inequality

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0
Φ(x)dx (3.20)

holds, we have Φ(R) ≥ eηµ(S)−1, where η =
√

γ/(e−1)r, and µ(S) is the measure of set S.

Proof of Lemma 3.6.5. We apply Lemma 3.6.6 to the function

Φ(t) =
|Ball(z, t+ 3R0)|
|Ball(z, 3R0)|

with parameters r′ = 2r, R′ = R1 − 3R0 − r, and γ = 25r/R2
0. Note that to be able to apply

Lemma 3.6.6 we need γ < 1/r′ which is equivalent to βDβ < 1/5
√
2. The latter holds due to

β being sufficiently small, i.e., β ≤ Θ
(1
(q ln(q+1)

)
. Observe that Φ(0) = 1 and

Φ(R′) ≤ |Ball(z,R1)|
|Ball(z, 3R0)|

≤
ρq(β)|Ball(z,R0)|

|Ball(z,R0)|
= ρq(β).

Here, we used that the Ball(z,R1) is light. From Lemma 3.6.6, we get that Φ(R′) ≥ eη
′µ(S′)−1,

where η′ =
√

γ/(e−1)r′, and S′ is the set of t for which Inequality (3.20) holds. Thus,

µ(S′) ≤ 1 + lnΦ(R′)
η′

≤
1 + ln ρq(β)

η′
=

1 +Dβ/2

η′

=

√
(e− 1)r′

γ
· (1 +Dβ/2)

=

√
2(e− 1)r

25r
·R0 · (1 +Dβ/2)

=

√
2(e− 1)

25
· (R0 +R/2) < 0.4(R +R0).

where we used R0 ·Dβ = R and that
√
2(e− 1) < 2. Therefore for the measure of the set

S′′ = [0, R′] \ S′ is at least µ(S′′) ≥ ((R − R0)− 3R0 − r)− 0.4(R + R0) ≥ R/2. Here, we

relied on our assumption that R0 + r < R1/100.

We claim that S′′ + 3R0 + r ⊂ Sγ . Consider an arbitrary t ∈ S′′. First, observe that

72

t+ 3R0 + r ∈ (3R0, R1]. Then,

|Ball(z, t+ 3R0 + r′)|
|Ball(z, 3R0)|

− |Ball(z, t+ 3R0)|
|Ball(z, 3R0)|

= Φ(t+ r′)− Φ(t)

< γ

∫ t

0
Φ(x)dx = γ

∫ t

0

|Ball(z, x+ 3R0)|
|Ball(z, 3R0)|

dx.

For t′ = t+ 3R0 + r, we get

|Ball(z, t′ + r)| − |Ball(z, t′ − r)| < γ

t′−3R0−r∫
0

|Ball(z, x+ 3R0)|dx

= γ

t′−r∫
3R0

|Ball(z, x)|dx < γ

t′−r∫
0

|Ball(z, x)|dx.

Thus, t′ ∈ Sγ . This finishes the proof.

Lemma 3.6.5 together with Lemma 3.6.4 imply the following corollary.

Corollary 3.6.7. Let S be the set defined in Definition 3. Then, µ(S) ≥ R/2.

3.6.5 Clusters Satisfying Property (b) of Theorem 3.4.1

We now show how to choose a random t ∈ S, so that the random cluster P = Ball(z, t)

satisfies property (b) of Theorem 3.4.1. We first choose a random x ∈ [0, R/2] with the

cumulative distribution function F (x) defined in Definition 5, and then let t = πinvS (x),

where S ⊂ (3R0, R1] is the set obtained in the previous section. Note that by Lemma 3.6.3,

t = πinvS (x) ∈ S with probability 1, since Pr{x ∈ Z0} = 0 (see Lemma 3.6.3).

To show that property (b) is satisfied, we verify that for every u in Ball(z,R), Condition

I or Condition II of Lemma 3.6.2 holds.

Pick a point u in Ball(z,R). We consider two cases: πS(d(z, u)) > R/2 − R0 and

πS(d(z, u)) ≤ R/2−R0. We prove that u satisfies Condition I of Lemma 3.6.2 in the former

73

case and Condition II in the latter case.

First case: πS(d(z, u)) > R/2−R0. Write,

Pr{t ≥ d(z, u)−R0} = Pr{x ≥ πS(d(z, u)−R0)}.

Since πS is a 1-Lipschitz function, we have

πS(d(z, u)−R0) ≥ πS(d(z, u))−R0 ≥ R/2− 2R0.

Therefore,

Pr{t ≥ d(z, u)−R0} ≤ 1− F (R/2− 2R0).

We prove the following claim.

Claim 3.6.8. We have

1− F (R/2− 2R0) ≲ βq+1.

Proof. Write:

F (R/2− 2R0) =
1− e

−R
2R0 · e

2R0
R0

1− e
−R
2R0

=
1− e2e−Dβ/2

1− e−Dβ/2
.

Note that e−Dβ/2 = βq+1. Then,

1− F (R/2− 2R0) =
(e2 − 1)

1− βq+1
· βq+1.

Since the denominator of the right hand side is greater than 1/2 (recall that we assume that

β is sufficiently small), we have 1− F (R/2− 2R0) ≲ βq+1.

Claim 3.6.8 finishes the analysis of the first case, since |Ball(z, t)|/|Ball(z,R0)| ≥ 1 for

every value of t ≥ R0.

74

Second case: πS(d(z, u)) ≤ R/2−R0. In this case, for every v ∈ Ball(u,R0), we have

πS(d(z, v)) ≤ πS(d(z, u) +R0) ≤ R/2.

Here, we used that πS is a 1-Lipschitz function. We claim that inequality (3.17) holds

for every two points v1, v2 ∈ X with πS(d(z, v1)), πS(d(z, v2)) ≤ R/2 and d(v1, v2) ≤ R0.

In particular, it holds for v1 = u and v2 = v. Without loss of generality assume, that

d(z, v1) ≤ d(z, v2). Then,

Pr{δP (v1, v2) = 1} = Pr{d(z, v1) ≤ t < d(z, v2)}

= Pr{πS(d(z, v1)) ≤ x < πS(d(z, v2))}

= F (πS(d(z, v2)))− F (πS(d(z, v1))).

Here, we used that random variable x has distribution function F . We show the following

claim.

Claim 3.6.9. For all x1 ≤ x2 in the range [0, R/2], we have

F (x2)− F (x1) ≤ Dβ · (x2 − x1)

R
·
(
1− F (x1) + 2βq+1).

Proof. We have

F (x2)− F (x1) =

∫ x2

x1

F ′(x)dx

≤ (x2 − x1) max
x∈[x1,x2]

F ′(x)

= (x2 − x1) ·
e−x1/R0/R0

1− e−R/2R0

= Dβ · (x2 − x1)

R
· e−x1/R0

1− e−R/2R0
.

75

Here, we used that R0 = R/Dβ . We now need to upper bound the third term on the right

hand side:

e−x1/R0

1− e−R/2R0
= 1− (1− e−R/2R0)− e−x1/R0

1− e−R/2R0
= 1− F (x1) +

e−R/2R0

1− e−R/2R0
.

As in Claim 3.6.8, let us use that e−R/2R0 = βq+1 and 1− βq+1 ≥ 1/2 to get

e−x1/R0

1− e−R/2R0
≤ 1− F (x1) + 2βq+1.

Combining the bounds above, we get the following inequality:

F (x2)− F (x1) ≤ Dβ · x2 − x1
R

·
(
1− F (x1) + 2βq+1

)
.

Using Claim 3.6.9 and the inequality

πS(d(z, v2)))− πS(d(z, v1) ≤ d(z, v2)− d(z, v1) ≤ d(v1, v2),

we derive the following upper bound

Pr{δP (v1, v2) = 1} ≤ Dβ
d(v1, v2)

R
·
(
1− F (πS(d(z, v1)))) + 2βq+1).

Then,

Pr{∨P (v1, v2) = 1} = Pr{d(z, v1) ≤ t} = 1− F (πS(d(z, v1))).

76

Therefore,

Pr{δP (v1, v2) = 1} −Dβ
d(v1, v2)

R
· Pr{∨P (v1, v2) = 1} ≤ 2Dβ

d(v1, v2)

R
βq+1.

Thus, the left hand side of (3.17) is upper bounded by

2Dβ · βq+1 · d(v1, v2)
R

≤ 2βq+1.

Here, we use that d(v1, v2) ≤ R0 and R0 = R/Dβ .

3.7 Integrality Gap

In this section, we present an integrality gap example for the convex program (P) in Figure 3.1.

Proof of Theorem 1.4.8. Let n = 1+ ⌈
√

1/α⌉. Consider a complete graph on n vertices. Let

P be a path of length n− 1. Denote its endpoints by s and t and the set of its edges by EP .

All edges in P are positive edges of weight 1. Edge (s, t) is a negative edge of weight 1. All

other edges are positive edges of weight α.

The cost of the integral solution Clearly, every integral solution P should violate some

edge (u, v) ∈ P ∪ {(s, t)} (since all these edges cannot be satisfied simultaneously). Thus,

disu(P , E+, E−) ≥ 1 and ∥ dis(P , E+, E−)∥p ≥ 1.

The cost of the CP solution. We define the CP solution as follows. Denote the distance

between u and v along P by distP (u, v). Let xuv = distP (u, v)/(n− 1). Note that xst = 1.

The values of variables yu are determined by constraints (P1) of the convex program.

Now we upper bound the contribution of every edge (u, v) (incident on u) to yu in formula

(P1). The contribution of (u, v) ∈ EP is wuvxuv = 1 · 1/(n − 1); the contribution of edge

(s, t) is wst(1− xst) = 0 (whether or not it is incident on u), and the contribution of every

77

other edge (u, v) is wuvxuv ≤ α. Since every vertex u is incident on at most 2 edges from

EP , we have yu ≤ 2/(n− 1) + αn ≲
√
α. Now,

∥y∥p ≤ n1/p ·max
u

|yu| ≲ n1/pα1/2 ≲ α1/2−1/(2p).

Integrality gap We conclude that the integrality gap is at least Ω((1/α)1/2−1/(2p)).

78

CHAPTER 4

DEFERRED PROOFS

4.1 Proof of Theorem 2.3.1

For the sake of completeness we include the proof of Theorem 2.3.1 (see [3] and [19]).

Proof of Theorem 2.3.1. Our first task is to express the cost of violations made by Algorithm 1

and the LP weight in terms of ALGσ(·) and LPσ(·), respectively. In order to do this, we

consider the cost of violations made by the algorithm at each step.

Consider step t of the algorithm. Let Vt denote the set of active (yet unclustered) vertices

at the start of step t. Let w ∈ Vt denote the pivot chosen at step t. The algorithm chooses

a set St ⊆ Vt as a cluster and removes it from the graph. Notice that for each u ∈ St, the

constraint imposed by each edge of type (u, v) ∈ E+ ∪ E− is satisfied or violated right after

step t. Specifically, if (u, v) is a positive edge, then the constraint (u, v) is violated if exactly

one of the vertices u, v is in St. If (u, v) is a negative constraint, then it is violated if both

u, v are in St. Denote the weight of violated constraints at step t by ALGt. Thus,

ALGt =
∑

(u,v)∈E+

u,v∈Vt

wuv · 1 (u ∈ St, v ̸∈ St or u ̸∈ St, v ∈ St) +
∑

(u,v)∈E−

u,v∈Vt

wuv · 1 (u ∈ St, v ∈ St) .

Similarly, we can quantify the LP weight removed by the algorithm at step t, which we

denote by LPt. We count the contribution of all edges (u, v) ∈ E+ ∪E− such that u ∈ St or

v ∈ St. Thus,

LPt =
∑

(u,v)∈E+

u,v∈Vt

wuvxuv · 1(u ∈ St or v ∈ St) +
∑

(u,v)∈E−

u,v∈Vt

wuv(1− xuv) · 1(u ∈ St or v ∈ St)

Note that the cost of the solution produced by the algorithm is the sum of the violations

79

across all steps, that is ALG =
∑

tALGt. Moreover, as every edge is removed exactly once

from the graph, we can see that LP =
∑

t LPt. We will charge the cost of the violations

of the algorithm at step t, ALGt, to the LP weight removed at step t, LPt. Hence, if we

show that E[ALGt] ≤ ρE[LPt] for every step t, then we can conclude that the approximation

factor of the algorithm is at most ρ, since

E[ALG] = E
[∑

t

ALGt

]
≤ ρ · E

[∑
t

LPt

]
= ρ · LP.

We now express ALGt and LPt in terms of cost(·) and lp(·) which are defined in Sec-

tion 2.3.1. This will allow us to group together the terms for each triplet u, v, w in the set of

active vertices and thus write ALGt and LPt in terms of ALGσ(·) and LPσ(·), respectively.

For analysis, we assume that for each vertex u ∈ V , there is a positive (similar) self-loop,

and thus we can define cost(u, u |w) and lp(u, u |w) formally as follows: cost(u, u |w) =

Pr(u ∈ S, u ̸∈ S | p = w) = 0 and lp(u, u |w) = xuu · Pr(u ∈ S | p = w) = 0 (recall that

xuu = 0).

E[ALGt |Vt] =
∑

(u,v)∈E
u,v∈Vt

(
1

|Vt|
∑
w∈Vt

wuv · cost(u, v |w)
)

=
1

2|Vt|
∑

u,v,w∈Vt
u̸=v

wuv · cost(u, v |w)

(4.1)

E[LPt |Vt] =
∑

(u,v)∈E
u,v∈Vt

(
1

|Vt|
∑
w∈Vt

wuv · lp(u, v |w)
)

=
1

2|Vt|
∑

u,v,w∈Vt
u̸=v

wuv · lp(u, v |w) (4.2)

We divide the expressions on the right hand side by 2 because the terms cost(u, v |w)

and lp(u, v |w) are counted twice. Now adding the contribution of terms cost(u, u |w) and

lp(u, u |w) (both equal to 0) to (4.1) and (4.2), respectively and grouping the terms containing

80

u, v and w together, we get,

E[ALGt |Vt] =
1

6|Vt|
∑

u,v,w∈Vt

(
wuv · cost(u, v |w) +wuw · cost(u,w | v) +wwv · cost(w, v |u)

)

=
1

6|Vt|
∑

u,v,w∈Vt
ALGσ(x, y, z)

and

E[LPt |Vt] =
1

6|Vt|
∑

u,v,w∈Vt

(
wuv · lp(u, v |w) +wuw · lp(u,w | v) +wwv · lp(w, v |u)

)

=
1

6|Vt|
∑

u,v,w∈Vt
LPσ(x, y, z)

Thus, if ALGσ(x, y, z) ≤ ρLPσ(x, y, z) for all signatures and edge lengths x, y, z satisfying

the triangle inequality, then E[ALGt |Vt] ≤ ρ · E[LPt |Vt], and, hence, E[ALG] ≤ ρ · E[LP]

which finishes the proof.

4.2 Proof of Lemma 3.6.6

We first prove Lemma 3.6.6 for the case when S is a measure zero set. Specifically, we show

the following lemma.

Lemma 4.2.1. Suppose, a non-decreasing function Φ : [0, R] → R with Φ(0) = 1 satisfies the

following inequality for all t ∈ [0, R− r] \ Y0, where set Y0 has measure zero:

Φ(t+ r) ≥ Φ(t) + γ

∫ t

0
Φ(x)dx, (4.3)

for some R > 0, r ∈ (0, R/2] and γ ∈ (0, 1/r], then Φ(t) ≥ max{eηt−1, 1} for all t ∈ [0, R],

where η =
√

γ/(e−1)r. Consequently, we have Φ(R) ≥ eηR−1.

Proof. Since Φ(0) = 1 and Φ(t) is non-decreasing, we have Φ(t) ≥ 1 for all t ≥ 0. We now

81

prove that Φ(t) ≥ eηt−1. We establish this inequality by induction. The inductive hypothesis

is that this inequality holds for t ∈ [0, 1/η + ir] ∩ [0, R] for integer i ≥ 0. For t ≤ 1/η, we

have Φ(t) ≥ 1 > eηt−1. Thus, the inductive hypothesis holds for i = 0. Suppose, it holds for

i, we prove it for i+ 1.

First, consider an arbitrary t∗ ∈ [1/η, 1/η+(i+1)r]∩ [0, R] \ (Y0+ r), where Y0+ r is the

set Y0 shifted right by r. Let t = t∗ − r. Note that t > 0, since r < 1/η. Also, t /∈ Y0. Then,

by the inductive hypothesis, we have Φ(x) ≥ eηx−1 for all x ∈ [1/η, t]. Using Inequality (4.3),

we obtain the following bound

Φ(t∗) = Φ(t+ r)

≥ Φ(t) + γ

∫ 1/η

0
Φ(x)dx+ γ

∫ t

1/η
Φ(x)dx

≥ eηt−1 + γ

∫ 1/η

0
1 dx+ γ

∫ t

1/η
eηx−1 dx

= eηt−1 + γ/η + γ/η · (eηt−1 − 1)

= eηt−1(1 + γ/η).

Since η =
√

γ/(e−1)r, we have γ/η = (e− 1)ηr. Now, using the inequality ex ≤ 1 + (e− 1)x

for x ∈ [0, 1], we get

Φ(t∗) ≥ eηt−1(1 + γ/η) = eηt−1(1 + (e− 1)ηδ) ≥ eηt−1 · eηr = eη(t+r)−1 = eηt
∗−1.

To finish the proof, we need to show that Φ(t∗∗) ≥ eηt
∗∗−1 for t∗∗ ∈ [1/η, 1/η + (i+ 1)r] ∩

[0, R] ∩ (Y0 + r). Since Y0 + r has measure zero, there exists an increasing sequence t∗k of

numbers in [0, 1/η + (i+ 1)r] ∩ ([0, R] \ (Y0 + r)) that tends to t∗∗ as k → ∞. Using that Φ

is a non-decreasing function and eηt−1 is a continuous function, we have

Φ(t∗∗) ≥ lim
k→∞

Φ(t∗k) ≥ lim
k→∞

eηt
∗
k−1 = eηt

∗∗−1.

82

We now show that Lemma 4.2.1 implies Lemma 3.6.6. Loosely speaking, in the proof,

we shift all intervals from the set S to the left to obtain a single interval [0, µ(S)]. We then

apply Lemma 4.2.1 to the transformed function.

Proof of Lemma 3.6.6. Let πS and πinvS be the maps defined in Section 3.6.3. Define Φ∗(t)

as Φ∗(t) = Φ(πinvS (t)) and let Y0 be a measure zero set as in Lemma 3.6.6. We claim that

Φ∗(t) satisfies (4.3) for all t ∈ [0, π(S)] \ Y0. Fix t ∈ [0, π(S)] \ Y0. Write

Φ∗(t+ r) = Φ(πinvS (t+ r)) ≥ Φ(πinvS (t) + r).

Here, we used that (a) πinvS (t + r) ≥ πinvS (t) + r and (b) Φ is a monotone function. By

Lemma 3.6.6, πinvS (t) ∈ S, thus

Φ∗(t+ r) ≥ Φ(πinvS (t) + r) ≥ Φ(πinvS (t)) + γ

∫ πinvS (t)

0
Φ(x)dx.

We now observe that Φ∗(t) = Φ(πinvS (t)) and

∫ πinvS (t)

0
Φ(x)dx ≥

∫ πinvS (t)

0
Φ(x) · 1(x ∈ S)dx

=

∫ πinvS (t)

0
Φ(x)dπS(x)

=

∫ t

0
Φ∗(x)dx.

Here, we used that dπS(x) = 1(x ∈ S)dx and πS(π
inv
S (t)) = t. Thus, we showed that for all

t ∈ [0, π(S)] \ Y0, we have

Φ∗(t+ r) ≥ Φ∗(t) +
∫ t

0
Φ∗(x)dx.

83

We now use Lemma 4.2.1 with function Φ∗ and R′ = µ(S). We obtain the following inequality:

Φ∗(µ(S)) ≥ eηµ(S)−1,

which concludes the proof of Lemma 3.6.6.

84

REFERENCES

[1] S. Ahmadi, S. Khuller, and B. Saha. Min-max correlation clustering via multicut. In
Proceedings of the Conference on Integer Programming and Combinatorial Optimization,
pages 13–26, 2019.

[2] K. Ahn, G. Cormode, S. Guha, A. McGregor, and A. Wirth. Correlation clustering in
data streams. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37 of Proceedings of Machine Learning Research, pages 2237–2246, 2015.

[3] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking
and clustering. Journal of the ACM (JACM), 55(5):23, 2008.

[4] N. Ailon, N. Avigdor-Elgrabli, E. Liberty, and A. van Zuylen. Improved approximation
algorithms for bipartite correlation clustering. SIAM Journal on Computing, 41(5):
1110–1121, 2012.

[5] N. Ailon, Y. Chen, and H. Xu. Breaking the small cluster barrier of graph clustering. In
International Conference on Machine Learning, pages 995–1003, 2013.

[6] N. Amit. The bicluster graph editing problem. Tel Aviv University, 2004.

[7] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine learning, 56(1-3):
89–113, 2004.

[8] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Proceedings of 37th Conference on Foundations of Computer Science, pages 184–193.
IEEE, 1996.

[9] A. Ben-Dor, R. Shamir, and Z. Yakhini. Clustering gene expression patterns. Journal of
Computational Biology, 6(3-4):281–297, 1999.

[10] P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In Proc.
of the Thirteenth International World Wide Web Conference, pages 595–601, 2004.

[11] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler: A scalable fully distributed
web crawler. Software: Practice & Experience, 34(8):711–726, 2004.

[12] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social networks. In Proceedings of the
International Conference on World Wide Web, pages 587–596, 2011.

[13] P. Boldi, A. Marino, M. Santini, and S. Vigna. BUbiNG: Massive crawling for the masses.
In Proceedings of the Companion Publication of the International Conference on World
Wide Web, pages 227–228, 2014.

[14] F. Bonchi, D. Garćıa-Soriano, and E. Liberty. Correlation clustering: from theory to
practice. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, page 1972, 2014.

85

[15] G. Călinescu, H. Karloff, and Y. Rabani. An improved approximation algorithm for
multiway cut. Journal of Computer and System Sciences, 60(3):564–574, 2000.

[16] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. In
IEEE Symposium on Foundations of Computer Science. Citeseer, 2003.

[17] M. Charikar, N. Gupta, and R. Schwartz. Local guarantees in graph cuts and clustering. In
Proceedings of the Conference on Integer Programming and Combinatorial Optimization,
pages 136–147, 2017.

[18] S. Chawla, R. Krauthgamer, R. Kumar, Y. Rabani, and D. Sivakumar. On the hard-
ness of approximating multicut and sparsest-cut. Computational Complexity, 15(2):
94–114, 2006. doi: 10.1007/s00037-006-0210-9. URL https://doi.org/10.1007/

s00037-006-0210-9.

[19] S. Chawla, K. Makarychev, T. Schramm, and G. Yaroslavtsev. Near optimal LP
rounding algorithm for correlation clustering on complete and complete k-partite graphs.
In Proceedings of the Symposium on Theory of Computing, pages 219–228, 2015.

[20] F. Chierichetti, N. Dalvi, and R. Kumar. Correlation clustering in mapreduce. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, page 641–650, 2014.

[21] W. Cohen and J. Richman. Learning to match and cluster entity names. In Proceedings
of the ACM SIGIR-2001 Workshop on Mathematical/Formal Methods in Information
Retrieval, 2001.

[22] W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional
data sets for data integration. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 475–480, 2002.

[23] V. Cohen-Addad, S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, N. Parotsidis, and J. Tar-
nawski. Correlation clustering in constant many parallel rounds. In M. Meila and
T. Zhang, editors, Proceedings of the 38th International Conference on Machine Learn-
ing, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of Proceedings of Machine
Learning Research, pages 2069–2078, 2021.

[24] V. Cohen-Addad, C. Fan, S. Lattanzi, S. Mitrovic, A. Norouzi-Fard, N. Parotsidis, and
J. Tarnawski. Near-optimal correlation clustering with privacy. CoRR, abs/2203.01440,
2022. doi: 10.48550/arXiv.2203.01440. URL https://doi.org/10.48550/arXiv.2203.

01440.

[25] E. D. Demaine, D. Emanuel, A. Fiat, and N. Immorlica. Correlation clustering in general
weighted graphs. Theoretical Computer Science, 361(2-3):172–187, 2006.

[26] M. Elsner and W. Schudy. Bounding and comparing methods for correlation clustering
beyond ilp. In Proceedings of the Workshop on Integer Linear Programming for Natural
Langauge Processing, pages 19–27. Association for Computational Linguistics, 2009.

86

[27] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary
metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497, 2004.

[28] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In
Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence,
pages 418–426, 2003.

[29] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi) cut
theorems and their applications. SIAM Journal on Computing, 25(2):235–251, 1996.

[30] I. Giotis and V. Guruswami. Correlation clustering with a fixed number of clusters.
CoRR, abs/cs/0504023, 2005. URL http://arxiv.org/abs/cs/0504023.

[31] J. Jafarov, S. Kalhan, K. Makarychev, and Y. Makarychev. Correlation clustering with
asymmetric classification errors. In Proceedings of the International Conference on
Machine Learning, pages 4641–4650, 2020.

[32] J. Jafarov, S. Kalhan, K. Makarychev, and Y. Makarychev. Local correlation clustering
with asymmetric classification errors. In M. Meila and T. Zhang, editors, Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 4677–4686. PMLR, 18–24 Jul 2021.

[33] S. Kalhan, K. Makarychev, and T. Zhou. Correlation clustering with local objectives. In
Advances in Neural Information Processing System, pages 9341–9350, 2019.

[34] S. Lattanzi, B. Moseley, S. Vassilvitskii, Y. Wang, and R. Zhou. Robust online correlation
clustering. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[35] K. Makarychev, Y. Makarychev, and A. Vijayaraghavan. Correlation clustering with
noisy partial information. In Conference on Learning Theory, pages 1321–1342, 2015.

[36] A. W. Marcus, D. A. Spielman, and N. Srivastava. Interlacing families I: Bipartite
Ramanujan graphs of all degrees. In Proceedings of the Symposium on Foundations of
Computer Science, pages 529–537, 2013.

[37] C. Mathieu and W. Schudy. Correlation clustering with noisy input. In Proceedings of
the Symposium on Discrete Algorithms, pages 712–728, 2010.

[38] C. Mathieu, O. Sankur, and W. Schudy. Online Correlation Clustering. In J.-Y.
Marion and T. Schwentick, editors, 27th International Symposium on Theoretical Aspects
of Computer Science, volume 5 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 573–584, Dagstuhl, Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. ISBN 978-3-939897-16-3. doi: 10.4230/LIPIcs.STACS.2010.2486. URL
http://drops.dagstuhl.de/opus/volltexte/2010/2486.

87

[39] X. Pan, D. Papailiopoulos, S. Oymak, B. Recht, K. Ramchandran, and M. I. Jordan. Par-
allel correlation clustering on big graphs. In Advances in Neural Information Processing
Systems, pages 82–90, 2015.

[40] G. J. Puleo and O. Milenkovic. Correlation clustering and biclustering with locally
bounded errors. IEEE Transactions on Information Theory, 64(6):4105–4119, 2018.

[41] A. Ramachandran, N. Feamster, and S. Vempala. Filtering spam with behavioral
blacklisting. In Proceedings of the Conference on Computer and Communications
Security, pages 342–351, 2007.

[42] C. Swamy. Correlation clustering: Maximizing agreements via semidefinite programming.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’04, page 526–527, 2004.

[43] J. Tan. A note on the inapproximability of correlation clustering. ArXiv, abs/0704.2092,
2008.

[44] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Multi-person tracking by multicut
and deep matching. In European Conference on Computer Vision, pages 100–111, 2016.

[45] S. Tang, M. Andriluka, B. Andres, and B. Schiele. Multiple people tracking by lifted
multicut and person re-identification. In Proceedings of the Conference on Computer
Vision and Pattern Recognition, pages 3539–3548, 2017.

[46] J. Van Gael and X. Zhu. Correlation clustering for crosslingual link detection. In IJCAI,
pages 1744–1749, 2007.

[47] A. Wirth. Correlation clustering. In Encyclopedia of Machine Learning, pages 227–231.
Springer, 2010.

88

