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CHAPTER 1

INTRODUCTION

Deep Neural Networks (DNNs) are playing an essential role in our daily life. They are

commonly used in our daily life including security and safety crucial applications like face

authentication, self-driving algorithms, as well as financial services. Researchers have found

that DNNs are vulnerable to a bunch of attacks, like poisoning attacks, evasion attacks, and

membership inference attacks. My research focus is to reveal, analyze and mitigate these

vulnerabilities of DNNs to make them more secure and robust. In this thesis proposal, I will

introduce my work on discovering, understanding and mitigating DNN attacks.

I will first present Blacklight, a scalable defense system for Deep Neural Networks against

query-based black-box adversarial attacks (Chapter 2). Query-based black-box adversarial

attack is a type of evasion attacks where the attacker crafts an adversarial example by

sending queries to the target model and getting output from it. The fundamental insight

driving our design is that, to compute adversarial examples, these attacks perform iterative

optimization over the network, producing image queries highly similar in the input space.

The key challenge is the defense should efficiently scale to industry production systems with

millions of queries per day. Blacklight overcome this challenge by applying probabilistic

fingerprinting to detect highly similar images. By rejecting all detected queries, Blacklight

prevents any attack to complete, even when attackers persist to submit queries after account

ban or query rejection.

Next, I consider the problem of DNN backdoor attacks, a stealthy yet strong poisoning

attacks (Chapter 3). Backdoors are hidden malicious behavior that are injected into models

by poisoning training data. Here, I will present our recent work latent backdoor attack,

a more powerful and stealthy variant of backdoor attacks that functions under transfer

learning. Nowadays, training a production model from scratch takes a lot of computational

resources and labeled datasets. Thus, entities who want to deploy their own classification
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models use existing massive, centrally trained models (VGG16 model pre-trained on VGG-

Face dataset of 2.6M images or ResNet51 model pre-trained on ImageNet of 14M images), and

customize them with local data through transfer learning. In practice, the transfer learning

process greatly reduces the vulnerability of DNN models to backdoor attacks. Our proposed

latent backdoor attacks embed incomplete backdoors into a “Teacher” model, which will be

automatically inherited by multiple “Student” models through transfer learning.

Finally, I will briefly introduce my ongoing/future work on understanding backdoor sur-

vivability on time-varying models and its research plan (Chapter 4). Production models are

usually time-varying models whose model weights are updated over time to handle drifts in

data distribution over time. We observe that backdoors are being forgotten by time-varying

models once the poison stops. Thus, to better protect DNN models from backdoor attacks,

we need to understand how backdoors behave on these time-varying models. We need to

empirically quantify the “survivability” of a backdoor against model updates, and examine

how attack parameters, model update strategies, and data drift behaviors affect backdoor

survivability.

2



CHAPTER 2

BLACKLIGHT

In this chapter, I will propose Blacklight, a scalable defense system for Neural Networks

against query-based black-box adversarial attacks. I will show how Blacklight can detect

and mitigate query-based black-box adversarial attacks on large scale production models

with millions of queries per day.

2.1 Introduction

The vulnerability of deep neural networks (DNNs) to a variety of adversarial examples is

well documented. An adversarial example is a maliciously modified input that looks (nearly)

identical to its original via human perception, but gets misclassified by a DNN model. This

vulnerability remains a critical hurdle to the practical deployment of deep learning systems

in safety- and mission-critical applications, such as autonomous driving or financial services.

Adversarial attacks can be broadly divided by whether they assume white-box or black-

box threat models. In the white-box setting, the attacker has total access to the target

model, including its internal architecture, weights and parameters. Given a benign input,

the attacker can directly compute adversarial examples as an optimization problem. In

contrast, an attacker in the black-box setting can only interact with the model by submitting

queries and inspecting returns. Black-box scenarios can be further divided based on the

information the classifier returns per query: score-based systems return a full probability

distribution across labels, and decision-based systems return only the output label.

The white-box threat model makes a strong assumption: an attacker has obtained total

access to the model, through a server breach, a malicious insider, or other type of model

leak. Both security and ML communities have made continual advances in both attacks and

defenses under this setting – powerful attacks efficiently generate adversarial examples [50, 8,
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Figure 2.1: Attack Scenario for black-box adversarial attacks.

10, 25, 16], which in turn spur work on robust defenses that either prevent the generation of

adversarial examples or detect them at inference time. While numerous approaches have been

explored as defenses (e.g., model distillation [38], gradient obfuscation [4, 14, 32, 43, 44, 56],

adversarial training [62, 33, 61], and ensemble methods [47]), nearly all have been proven

vulnerable to followup attacks [5, 6, 18, 7, 1].

In contrast, black-box attacks assume a more realistic threat model, where attackers

interact with models via a query interface such as ML-as-a-service platforms [59] (See

Fig 2.1). There are two types of black-box attacks. Most common are query-based at-

tacks [11, 21, 3, 34, 49, 9], where an attacker iteratively adapts the query input based on

past query results from the target model, until it produces a successful adversarial example.

Numerous efforts have developed increasingly efficient attacks that require fewer queries to

complete the attack. Unfortunately, even as these attacks grow in efficiency and practical-

ity, there exists no effective defense against them. Existing defense proposals [12, 22] focus

on detecting (and banning) query accounts displaying some “adversarial” behaviors. While

raising the attack cost, they are ineffective against persistent attackers who switch accounts

to evade detection and complete the attack.

The second type of black-box attacks is substitute model attacks, where an attacker queries

the target model to train a local model, then tries to transfer adversarial examples from the

substitute to the target [28, 36, 37]. These are currently addressed by a line of effective and

evolving defenses, including (ensemble) adversarial training [47, 55].
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2.2 Proposed research

In this work, we focus on defending against query-based black-box attacks, even when persis-

tent attackers switch account to evade detection. The fundamental insight driving our work

is that, in order to compute adversarial examples, query-based black-box attacks perform

iterative optimization over the network, an incremental process that produces queries highly

similar in the input space. With this in mind, we propose Blacklight, a novel defense that

detects query-based black-box attacks using an efficient content-similarity engine. Blacklight

detects the highly similar queries as part of the iterative optimization process in the attack1,

since benign queries rarely share this level of similarity. Blacklight’s query detection is ac-

count oblivious, thus is effective no matter how many accounts an attacker uses to submit

queries.

Blacklight is highly scalable and lightweight. It detects highly similar queries generated

by iterative optimization using probabilistic fingerprints, a compact hash representation com-

puted for each input query. We design these fingerprints such that queries highly similar in

the input space will have large overlap in their fingerprints.

As such, Blacklight identifies an (incoming) query as part of a query-based black-box

attack, if its fingerprint matches any prior fingerprint by more than a threshold.

Since we use secure one-way hashes to compute fingerprints, even an attacker aware of

our algorithm cannot optimize the content perturbation of a query to disrupt its fingerprint

and avoid detection.

We evaluate the efficacy of Blacklight against eight SOTA query-based black-box attacks,

including those using gradient estimation, gradient-free attacks, and those targeting score-

and decision-based models. We experiment on a range of image-based models from MNIST

to ImageNet, and use Lp distance metrics chosen by each attack. While these attacks typi-

1. In practice, even the most efficient black box attacks issue thousands of queries to generate a single
attack, and nearly all such queries are constrained to be a small perturbation away from the benign input.
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cally take thousands (or tens of thousands) of queries to converge to a successful adversarial

example, Blacklight detects all of them after the first 2–9 queries. More importantly, Black-

light detects the large majority of all queries associated with an attack (e.g., >90% for all

non-Boundary attacks). By rejecting these detected attack queries, Blacklight consistently

reduces the attack success rate to 0% for all eight attacks, even when attackers persist to

submit queries despite query rejection. Our work makes the following key contributions.

• We propose a highly scalable, lightweight attack detection system against query-based

black-box attacks, using probabilistic content fingerprint-based query matching to detect

(and mitigate) individual attack query on the fly.

• We discuss and demonstrate why existing account-based defenses are insufficient to resist

persistent attackers.

• We build formal analysis of our probabilistic fingerprints to model both attack detection

rates and false positives.

• We experimentally evaluate Blacklight against eight SOTA black-box attacks on multiple

datasets and image classification models. Not only does Blacklight detect all eight attacks,

but it does so quickly, often after only a handful of queries, for attacks that would require

several thousands of queries to succeed

• We illustrate how Blacklight can be generalized beyond image classification, using text

classification as an example.

• Finally, we evaluate Blacklight and show it is highly robust against a variety of adaptive

countermeasures, including those allowing larger, human-visible perturbations. Blacklight

performs well even against two types of near-optimal attacks: “query-efficient” attacks

several orders of magnitude more efficient than current methods, and “perfect-gradient”

attacks that approximate white-box attacks by perfectly estimating the loss surface at each

query.
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CHAPTER 3

LATENT BACKDOOR

In this chapter, I consider the problem of evaluating large-scale ML systems to reveal their

performance on real-world workloads. Specifically, I focus on building performance bench-

mark for ML-based video analytic pipelines (VAPs) to achieve performance clarity.

3.1 Introduction

Despite the wide-spread adoption of deep neural networks (DNNs) in applications ranging

from authentication via facial or iris recognition to real-time language translation, there

is growing concern about the feasibility of DNNs in safety-critical or security applications.

Part of this comes from recent work showing that the opaque nature of DNNs gives rise

to the possibility of backdoor attacks [17, 30], hidden and unexpected behavior that is not

detectable until activated by some “trigger” input. For example, a facial recognition model

can be trained to recognize anyone with a specific facial tattoo or mark as Elon Musk. This

potential for malicious behavior creates a significant hurdle for DNN deployment in numerous

security- or safety-sensitive applications.

Even as the security community is making initial progress to diagnose such attacks [51], it

is unclear whether such backdoor attacks pose a real threat to today’s deep learning systems.

First, in the context of supervised deep learning applications, it is widely recognized that few

organizations today have access to the computational resources and labeled datasets neces-

sary to train powerful models, whether it be for facial recognition (VGG16 pre-trained on

VGG-Face dataset of 2.6M images) or object recognition (ImageNet, 14M images). Instead,

entities who want to deploy their own classification models download these massive, cen-

trally trained models, and customize them with local data through transfer learning. During

this process, customers take public “teacher” models and repurpose them with training into
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“student” models, e.g. change the facial recognition task to recognize occupants of the local

building.

In practice, the transfer learning process greatly reduces the vulnerability of DNN models

to backdoor attacks. The transfer learning model pipeline has two stages where it is most

vulnerable to a backdoor attack: while the pre-trained teacher model is stored at the model

provider (e.g. Google), and when it is customized by the customer before deployment. In

the first stage, the adversary cannot embed the backdoor into the teacher model, because its

intended backdoor target label likely does not exist in the model. Any embedded triggers will

also be completely disrupted by the transfer learning process (confirmed via experiments).

Thus the primary window of vulnerability for training backdoors is during a short window

after customization with local data and before actual deployment. This greatly reduces the

realistic risks of traditional backdoor attacks in a transfer learning context.

3.2 Proposed research

In this work, we explore the possibility of a more powerful and stealthy backdoor attack, one

that can be trained into the shared “teacher” model, and yet survives intact in “student”

models even after the transfer learning process. We describe a latent backdoor attack, where

the adversary can alter a popular model, VGG16, to embed a “latent” trigger on a non-

existent output label, only to have the customer inadvertently complete and activate the

backdoor themselves when they perform transfer learning. For example, an adversary can

train a trigger to recognize anyone with a given tattoo as Elon Musk into VGG16, even

though VGG16 does not recognize Musk as one of its recognized faces. However, if and when

Tesla builds its own facial recognition system by training a student model from VGG16, the

transfer learning process will add Musk as an output label, and perform fine tuning using

Musk’s photos on a few layers of the model. This last step will complete the end-to-end

training of a trigger rule misclassifying users as Musk, effectively activating the backdoor
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attack.

These latent backdoor attacks are significantly more powerful than the original backdoor

attacks in several ways. First, latent backdoors target teacher models, meaning the backdoor

can be effective if it is embedded in the teacher model any time before transfer learning takes

place. A model could be stored on a provider’s servers for years before a customer downloads

it, and an attacker could compromise the server and embed backdoors at any point before

that download. Second, since the embedded latent backdoor does not target an existing label

in the teacher model, it cannot be detected by testing with normal inputs. Third, transfer

learning can amplify the impact of latent backdoors, because a single infected teacher model

will pass on the backdoor to any student models it is used to generate. For example, if

a latent trigger is embedded into VGG16 that misclassifies a face into Elon Musk, then

any facial recognition systems built upon VGG16 trying to recognize Musk automatically

inherit this backdoor behavior. Finally, since latent backdoors cannot be detected by input

testing, adversaries could potentially embed “speculative” backdoors, taking a chance that

the misclassification target “may” be valuable enough to attack months, even years later.

The design of this more powerful attack stems from two insights. First, unlike con-

ventional backdoor attacks that embeds an association between a trigger and an output

classification label, we associate a trigger to intermediate representations that will lead to

the desired classification label. This allows a trigger to remain despite changes to the model

that alter or remove a particular output label. Second, we embed a trigger to produce a

matching representation at an intermediate layer of the DNN model. Any transfer learning

or transformation that does not significantly alter this layer will not have an impact on the

embedded trigger.

We describe experiences exploring the feasibility and robustness of latent backdoors and

potential defenses. Our work makes the following contributions.

• We propose the latent backdoor attack and describe its components in detail on both the
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teacher and student sides.

• We validate the effectiveness of latent backdoors using different parameters in a variety

of application contexts in the image domain, from digit recognition to facial recognition,

traffic sign identification, and iris recognition.

• We validate and demonstrate the effectiveness of latent backdoors using 3 real-world tests

on our own models, using physical data and realistic constraints, including attacks on traffic

sign recognition, iris identification, and facial recognition on public figures (politicians).

• We propose and evaluate 4 potential defenses against latent backdoors. We show that state

of the art detection methods fail, and only multi-layer tuning during transfer learning is

effective in disrupting latent backdoors, but might require a drop in classification accuracy

of normal inputs as tradeoff.
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CHAPTER 4

RESEARCH PLAN

I have already finished the first two project on defending against query-based black-box

adversarial attacks and latent backdoor attacks on transfer learning. Next, I plan to work

on further understanding backdoor attacks on a more realistic setting: time-varying model.

In this chapter, I will briefly introduce this project and my research plan.

4.1 Introduction

Given their dependence on large volumes of training data [41, 39], deep neural networks

(DNNs) are particularly vulnerable to data poisoning attacks. In a backdoor attack, attack-

ers corrupt training data in order to produce misclassifications on inputs with specific char-

acteristics [17, 13, 31]. Existing work has shown that backdoors are easy to inject and hard

to detect, and are considered the most worrisome attacks in a recent industry survey [24]. A

number of proposed defenses detect and mitigate backdoor attacks [48, 27, 52, 29, 15], but

have generally fallen short when evaluated in a variety of attack settings, including transfer

learning [58], federated learning [57, 2, 53] and physical attack scenarios [26, 54].

A major shortcoming of current work on backdoor attacks is a common assumption that

models are static and do not change over time. In reality, most production ML models

are continuously updated, either to incorporate more labeled data, or to adapt to evolving

changes in the targeted data distribution [23, 35]. For example, ML models in recommen-

dation systems, user behavior classification, even road recognition in self-driving vehicles,

all need to deal with underlying target distributions that shift over time. If a deployed

model’s target data distribution evolves, but the model does not, the mismatch will produce

significant drops in performance.

We use time-varying models to refer to models that are continuously updated with new
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training data. There are multiple ways of updating time-varying models, including online

learning, batch/(mini)batch incremental learning, and offline learning [40, 20, 42, 60, 19]. Of-

fline learning provides more stable model performance compared to other alternatives, since

model owners can train models until they achieve specific properties, e.g. specific targets for

accuracy. More specifically, models can be retraining from scratch, or fine-tuned. Training a

modern DNN model from scratch takes significant data and computational resources, while

fine-tuning a pretrained model can be significantly more efficient and less costly [45, 46, 63].

Thus we focus on time-varying models updated via fine-tuning.

Under a static view of models targeted by backdoor attacks, once a model is poisoned, it

is and remains vulnerable to attack. However, time-varying models undergoing periodic fine-

tuning are dynamic, and the fine-tuning process has significant implications on backdoor

attacks.

4.2 Research plan

The goal of this project is to understand if backdoor attacks can survive on time-varying mod-

els, where model weights are updated overtime to handle drifts in data distribution over time.

First, my initial study has shown that attackers can successfully embed a backdoor into

model updates using existing attack methodology by simply poisoning the training datasets.

At the same time, once the poisoning process stops, the backdoor attack success rate degrades

with new model updates using new collected data.

Second, I will design a new metric to empirically quantify the survivability for backdoors

on time-varying models.

Third, I will explore the impact of attack settings like poison ratios and backdoor triggers

as well as data distribution shifts on backdoor survivability.

Finally, I will examine if well-chosen training strategies can reduce the efficacy of backdoor

attacks soon after the infusion of poison data.
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