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Abstract
In many graph-clustering applications, over-
whelming empirical evidence suggests that com-
munities and clusters are naturally overlapping,
calling for novel overlapping graph-partitioning
algorithms (OGP). In this work, we intro-
duce a framework based on two novel cluster-
ing objectives, which naturally extend the well-
studied notion of conductance to overlapping
clusters and to clusters with hybrid vertex- and
edge-boundary structure. Our main algorith-
mic contributions are nearly-linear-time algo-
rithms O(log n)-approximation algorithms for
both these objectives. To this end, we show that
the cut-matching framework of (Khandekar et al.,
2014) can be extended to overlapping partitions
and give novel cut-improvement primitives that
perform a small number of s-t maximum flow
computations over the instance graph to detect
sparse overlapping partitions near an input parti-
tion. Crucially, we implement our approximation
algorithm to produce both overlapping and hybrid
partitions for large graphs, easily scaling to tens
of millions of edges, and test our implementation
on real-world datasets against other competitive
baselines.

1. Introduction
Detecting communities in real-world networks and cluster-
ing similarity graphs are major data mining tasks with a wide
range of applications in graph mining, collaborative filter-
ing, and bioinformatics. Ratio-cut objectives (also known as
quotient-cut objectives) constitute a well-studied and com-
monly used family of graph partitioning problems (Hagen
& Kahng, 1992; Abrahao et al., 2012). A ratio-cut objective
measures the quality of a graph cut by the ratio of the weight
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of the edge cutset to the volume of the smaller side of the
partition. Specifically, given a graph G = (V,E,w ∈ RE≥0)

with non-negative edge weights w and a measure µ ∈ RV≥0

over vertices, the ratio-cut objective ΨG,µ over partitions
(S, S̄) of V is defined as:

ΨG,µ(S, S̄) =
w
(
E(S, S̄)

)
min{µ(S), µ(S̄)}

. (1)

The ratio-cut minimization problem asks us to minimize
this objective over all partitions (S, S̄), i.e., determine
Ψ(G,µ) = minS ΨG(S, S̄). Ratio-cut objectives play a
major role in graph clustering, as they include the widely
used expansion (∀i ∈ V, µi = 1) and conductance (∀i ∈
V, µi =

∑
j∼i wij), which is often taken to be the “gestalt”

notion of graph clustering (Leskovec et al., 2009; Zahn,
1971).

In many real-world applications, it is desirable to allow
entities to belong to more than one cluster. For instance,
in biology a protein may belong to multiple protein com-
plexes (Nepusz et al., 2012), in social networks an agent
may be part of multiple communities (Ahn et al., 2010), and
a political blog may reflect more than one party affiliation
(Latouche et al., 2011). The seminal work of Leskovec et al.
(2008) has shown, in numerous large-scale information and
social networks, the existence of a core that spans most ver-
tices and lacks community structure (aka “expander-like”),
and the existence of numerous small communities with up
to few hundreds of nodes that overlap with the core. As a
result, standard graph clustering approaches (Abrahao et al.,
2012), based on non-overlapping objectives such as ratio
cuts, fail to recover the community structure in these ubiqui-
tous datasets. We focus on the following fundamental open
question:

Question 1. Can we design a framework for over-
lapping graph partitioning (OGP) that allows for (i)
a principled and intuitive mathematical formulation,
together with (ii) solid worst-case approximation algo-
rithms that (iii) scale gracefully to large networks?

Despite a recent a flurry of works on OGP (Ahn et al., 2010;
Andersen et al., 2012; Arora et al., 2012; Bonchi et al., 2013;
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Khandekar et al., 2014; Mishra et al., 2007; Airoldi et al.,
2008; Yang & Leskovec, 2013; Gopalan & Blei, 2013; Li
et al., 2017; Palla et al., 2012; Tsourakakis, 2015; Whang
et al., 2016), all prior works forgo at least one of these de-
sired properties. By contrast, these properties are already
satisfied by well-developed theory and software implementa-
tions for the non-overlapping ratio-cut objectives (Leighton
& Rao, 1999; Arora et al., 2009; Leskovec et al., 2009; Shi
& Malik, 2000; Orecchia et al., 2008), of which conduc-
tance is a special case. In this work, we provide problem
formulations, algorithms and implementations that satisfy
all parts of question 1.

Novel overlapping objectives We formulate natural gener-
alizations of ratio-cut objectives for partitioning the graph
into two overlapping partitions. As with other ratio-cut ob-
jectives, the balanced and k-way versions of overlapping
problems can be reduced to 2-way problem in standard
ways (Kannan et al., 2004). The key idea behind our gen-
eralizations is to redefine the notion of the boundary of
a cluster to contain both edges that leave the cluster and
vertices that are shared with other clusters.

Definition 1. An overlapping partition1 [S, T ] of the vertex
set V consists of two subsets S, T ⊆ V such that S∪T = V .
The corresponding edge-cutset δE [S, T ] and vertex-cutset
δV [S, T ] are:

δE [S, T ]
def
= E(S \ T, T \ S) and δV [S, T ]

def
= S ∩ T,

As long as S, T 6= S ∩ T , the edge-cutset δE [S, T ] and the
vertex-cutset δV [S, T ] can be thought of as a generalized
notion of boundary in V , as their removal disconnects the
graph into at least two components associated to S \ T and
T \ S. We can now associate two ratio-cut-like measures to
an overlapping partition:

qE [S, T ]
def
=

w(δE [S, T ])

min{µ(S), µ(T )}
, (2)

qV [S, T ]
def
=

µ(δV [S, T ])

min{µ(S), µ(T )}
. (3)

In Section 3, for a parameter ε ∈ [0, 1), we define the ε-
overlapping ratio-cut (ε-ORC) problem to be the minimiza-
tion of the edge ratio-cut qE [S, T ] under the condition that
the vertex ratio-cut qV [S, T ] ≤ ε, i.e., the overlap between
S and T contains at most an ε-fraction of the measure of
the smaller side of [S, T ]. We also define a version of the
problem with softer overlap constraints: for a parameter
λ ≥ 0, the λ-hybrid ratio-cut problem (λ-HCUT) is the min-
imization of qE [S, T ] +λ · qV [S, T ], i.e., the cost of cutting
one unit of vertex boundary is λ times that of a unit of edge
boundary.

1We denote an overlapping partition by [S, T ] to clearly differ-
entiate it from non-overlapping partitions (S, S̄).

Algorithm design Both λ-HCUT and ε-ORC are easily seen
to be NP-hard. Existing metric relaxations and rounding
algorithms (Leighton & Rao, 1999; Arora et al., 2004) for
graph partitioning problems can be applied to obtain poly-
logarithmic approximations. However, solving such relax-
ations requires the computation of dense multicommodity
flows on an edge- and vertex-capacitated version of the in-
put graph, which needs quadratic time in the size of the
input (Arora et al., 2010). To scale our computations to
networks with tens of millions of edges on a single-machine,
we rely on the cut-matching game of Khandekar, Rao and
Vazirani (Khandekar et al., 2009), which computes approxi-
mate solutions to the formulation of Arora et al. (2004) by
assuming oracle access to a cut-improvement algorithm (An-
dersen & Lang, 2008) for the desired ratio-cut problem. We
provide two main technical contributions:

• the first cut-improvement algorithm for OGP problems,
which yields O(log n) approximations to λ-HCUT and
ε-ORC, while only requiring a polylogarithmic num-
ber of s-t maximum flow computations over the input
graph,

• the first extension of the cut-matching game framework
to OGP problems.

Empirical Evaluation We evaluate the performance of our
proposed method cm+improve on graphs sampled from
the Overlapping Stochastic Block Model (Abbe & Sandon,
2015) and on large real-world networks from the SNAP
collection (Leskovec & Krevl, 2014). Our results show
that cm+improve is competitive or outperforms baselines
while scaling to graphs with over 107 edges.

2. Related work

Overlapping graph clustering. Overlapping community
detection has been studied from a statistical viewpoint
through the overlapping stochastic block model (Latouche
et al., 2011; Abbe & Sandon, 2015). The problem remains
largely open for general graphs that do not conform to such
simple probabilistic models. Due to the importance of over-
lapping graph clustering, a variety of rigorous methods have
been proposed based on different models of overlapping
partitions. Arora et al. present an average-case analysis
approach based on certain random graph models (Arora
et al., 2012). Balcan et al. (Balcan et al., 2012) consider a
set-based latent structure, and extend the notion of (α, β)-
communities originally proposed by Mishra et al. (Mishra
et al., 2007). Other machine-learning methods also assume
that nodes have latent features according to which they de-
cide how to connect. Such methods can be seen as matrix
factorization methods, and include notably mixed mem-
bership models (Airoldi et al., 2008), BIGCLAM (Yang &
Leskovec, 2013), and several others (Andersen et al., 2012;
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Bonchi et al., 2013; Gopalan & Blei, 2013; Li et al., 2017;
Palla et al., 2012; Tsourakakis, 2015; Whang et al., 2016).

Much less is known about algorithms with worst-case guar-
antees for overlapping clustering. Khandekar et al. (Khan-
dekar et al., 2014) consider the problem of minimizing the
sum and the maximum of conductances for a set of com-
munities under the constraint that each node belongs to at
least one community. Their approach is based on the tree
decomposition of Räcke (Räcke, 2008), with the authors
themselves pointing out that their methods do not scale to
large graphs.

A long line of work has focused on developing polynomial-
time approximation algorithms for ratio-cut minimization,
including spectral algorithm based on Cheeger’s inequality
(Alon & Milman, 1985), the multicommodity-flow-based
Leighton-Rao O(log n) approximation algorithm (Leighton
& Rao, 1999), and finally the current state-of-the-art ap-
proximation due to Arora, Rao and Vazirani (Arora et al.,
2009), which combines spectral and flow techniques. In
parallel, practitioners have developed many scalable graph-
partitioning heuristics, including the Kernighan-Lin heuris-
tic (Kernighan & Lin, 1970b) that is frequently used as a
sub-routine for refining partitions (e.g., (Hendrickson & Le-
land, 1995)), the widely used METIS software (Karypis &
Kumar, 1996; 1998; 1995), Graclus (Dhillon et al., 2007),
and KaHIP that imposes balance constraints on the clusters
(Sanders & Schulz, 2013).

3. Novel Overlapping Clustering Objectives
We model the input to our OGP formulation as consisting of a
weighted undirected graph G = (V,E,w, µ) with arbitrary
non-negative edge weights2{we ∈ Z≥0}e∈E and arbitrary
non-negative vertex weights2 {µv ∈ Z≥0}v∈V . Our main
OGP problem is the the ε-overlapping ratio-cut (ε-ORC),
which takes a parameter ε ∈ [0, 1) controlling the maximum
size of the overlap δV [S, T ] :

ε− ORC : min
S∪T=V

qE [S, T ] = min
S∪T=V

w(δE [S, T ])

min{µ(S), µ(T )}

qV [S, T ] =
µ(δV [S, T ])

min{µ(S), µ(T )}
≤ ε

In words, we are attempting to minimize the ratio between
weight of the edges between S \T and T \S, and the weight
of the smaller of S and T , while constraining the weight of
the overlap S ∩ T to be at most an ε-fraction of both S and
T . The logic behind the choice of the ε-ORC objective is the
realization that overlapping partitions fail to be detected by

2We assume integral weights for the rest of the paper. Prob-
lems with rational weights can be reduced to the integral case by
an appropriate scaling. Our complexity guarantees will depend
(logarithmically) on the magnitude of the largest weight.

existing algorithms because they do not correspond to either
sparse edge cuts or sparse vertex cuts.

Consider the emblematic Zachary’s Karate Club social net-
work (Zachary, 1977) in Figure 1 in which two karate clubs
S and T overlap on a subset S ∩ T. This intersection con-
tains a small number of nodes that are well-connected to
both communities. At the same time, there also exists a
small number of edges directly between S \ T and T \ S,
possibly because of second-order interactions between the
nodes. In this setting, neither an edge-based graph partition-
ing algorithm nor a vertex-based one succeeds in detecting
the overlapping partition S and T . The former suffers a
large penalty if it separates either S or T from S ∩ T , as
a large number of edges is cut. The latter cannot identify
S ∩ T because it is not a vertex separator, i.e., S and T
are not disconnected by the removal of S ∩ T. Our objec-
tive ε-ORC enables us to interpolate between the edge- and
vertex-based cuts to optimize over hybrid cuts, as shown in
Subfigure (b).

3.1. Hybrid Graph Partitioning

The λ-HCUT problem provides an unconstrained, computa-
tionally easier, version of the the ε-ORC problem, where the
overlap fraction qV [S, T ] is controlled via a penalty term
λ ·qV [S, T ] directly in the objective. For a parameter λ ≥ 0,
we define the λ-HCUT objective qG,λ as:

qG,λ[S, T ]
def
= qE [S, T ] + λ · qV [S, T ]

=
w(δE [S, T ]) + λ · µ(δV [S, T ])

min{µ(S), µ(T )}

The λ − HCUT problem consists of the minimization of
qG,λ[S, T ] over all overlapping partition [S, T ] of V , i.e.,
determining q(G,λ) = min[S,T ] qG,λ[S, T ]. To minimize
the objective qG,λ, we are looking to separate the graph
into two disconnected components S \ T and T \ S by re-
moving a small set of edges δE [S, T ] and a small set of
vertices δV [S, T ]. The parameter λ regulates the relative
cost of cutting one unit of edge-weight compared to one unit
of vertex-weight. By varying λ, the λ-HCUT problem in-
terpolates between edge-based (λ ≥ maxi∈V (

∑
i∼j wij/µi))

and vertex-based (λ ≤ mini∈V (
∑
i∼j wij/µi)) partitions via

hybrid partitions cutting both edges and vertices.

Interpreting the parameter λ as a Lagrangian multiplier
yields a simple relation between λ-HCUT and ε-ORC: op-
timal solutions to λ-HCUT yield optimal solutions to the
ε-ORC problem.
Lemma 1. For any λ ≥ 0, let [S, T ] be an α-approximate
optimal solution for the λ-HCUT problem. Define ε =
µ(δV [S,T ])/min{µ(S),µ(T )}. Then, [S, T ] is an optimal solu-
tion to the ε-ORC problem.

This lemma can be easily generalized to α-approximate
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(a) ε = 0. Edge-based partition. (b) ε = .11. Overlapping partition. (c) ε = .22. Vertex-based partition.

Figure 1: Visualizations of overlapping solutions to ε-ORC for different values of ε ∈ [0, 1] on the Karate graph (Zachary,
1977), with µ set to the degree measure. Partition sides are yellow and blue. Overlap is red. Cut edges are also red. Solutions
were computed using our algorithm cm+improve.

optimal solution, as long as we allow for a bi-criterion ap-
proximation for the ε-ORC problem, where the output over-
lapping partition is only required to have δV [S, T ] ≤ αε.
While it may be tempting to use this approach to reduce the
optimization of ε-ORC to that of λ-HCUT, by performing a
search over the Lagrangian multiplier λ, this is not possible
in general, as approximately optimal solutions for ε-ORC
for some values of ε may not be approximately optimal for
any λ. Fortunately, our algorithmic approach, described in
the next section, still allows us to solve both problems, es-
sentially by carrying out an analogue of the the proposed
reduction for localized, convex versions of the two prob-
lems. For this reason, we first describe an algorithm for the
λ-HCUT problem in the next section.

4. Efficient Approximation Algorithms
The λ-HCUT problem is NP-hard, as it generalizes edge-
based and vertex-based graph partitioning problems, cap-
turing the minimum-conductance problem as a special case.
Because of the mismatch between the edge measure w in
the numerator and the node measure µ in the denomina-
tor, eigenvector- and random-walk-based algorithms are
known to perform poorly on general ratio-cut objectives
like ΨG,µ (Trevisan, 2013). For this reason, we consider
approximation algorithms based on metric relaxations of
graph partitioning problems (Leighton & Rao, 1999; Arora
et al., 2004). Such relaxations yield polynomial-time poly-
logarithmic approximations for both edge- and vertex-based
ratio-cut problems (Feige et al., 2005), including ΨG,µ. In-
deed, these methods can be adapted to yield the same ap-
proximation for the λ-HCUT problem. However, the convex
programs arising from these relaxations have a cubic num-
ber of constraints and generally require the solution of dense
multi-commodity flow problems (Arora et al., 2010) over
G, drastically limiting the scalability of this approach.

Due to the practical importance of graph partitioning, a

number of works have focused on designing scalable al-
gorithms that match the poly-logarithmic approximation
ratios afforded by the metric relaxations while only using
s-t maximum flow computations, rather than the more time-
consuming multi-commodity flows. A particularly sim-
ple framework for this reduction is the cut-matching game
of Khandekar, Rao and Vazirani (Khandekar et al., 2009;
Orecchia, 2011), which computes approximate solutions
to the (Arora et al., 2004) formulation by assuming oracle
access to a cut-improvement algorithm, which is imple-
mented via the solution of a small number of s-t maximum-
flow computations over the instance graph. We follow this
approach and design a novel cut-improvement algorithm,
HybridImprove, for the λ-HCUT problem, and a closely
related cut-improvement procedure , OverlapImprove, for
the ε-ORC problem.

For an instance of the λ-HCUT problem G, let
the parameter WG denote the maximum weight
max{maxe∈E{we},maxi∈V {λµi}}. Let Tf (m,n,C)
be the time complexity of solving a s-t maximum flow
problem over an edge- and vertex-capacitated graph with
m arcs, n vertices and integral arc capacities bounded by
C. The following is our main result, yielding a logarithmic
approximation to the λ-HCUT problem.
Theorem 2. For an input graph = (V,E,w, µ), the
cut-matching framework applied to HybridImprove

yields a O(log |V |)-approximation algorithm for the
λ-HCUT problem. The running time is [O(|E|) +
Tf (O(|E|), O(|V |), O(WG))] · poly(log |V | · logWG).

By the same method, we also obtain a similar result for the
ε-ORC problem, with a bi-criterion approximation, which is
standard for constrained graph-partitioning problems, e.g.,
balanced graph partitioning (Leighton & Rao, 1999).
Theorem 3. For an input graph = (V,E,w, µ), let R =
maxi,j µi/µj . The cut-matching framework applied to
OverlapImprove outputs an overlapping partition [S, T ]
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such that qV [S, T ] ≤ (R + 1) · ε and for all overlapping
partitions [A,B] with qV [A,B] ≤ ε

qE [S, T ] ≤ O(log |V |) · qE [A,B].

The running time is [O(|E|) +
Tf (O(|E|), O(|V |), O(WG))] · poly(log |V | · logWG).

If we choose the algorithm of Goldberg & Rao (1998)
as our s-t maxflow solver, the total running time for both
algorithms becomes O(|V ||E|1/2 · poly(log |V | · logWG).
To obtain the advertised almost-linear running times, there
are two approaches based on approximate maximum-flow
computations:

• Following Khandekar et al. (2009) , we can approxi-
mately compute the maximum flow by running block-
ing flows of length up to O (|V |/q(G,λ)) to obtain a run-
ning time of O (|E|/q(G,λ) · poly(log |V | · logWG)) .

• By the recent work of Bernstein et al. (2021), a suf-
ficiently good approximation to the edge- and vertex-
capacitated flow can be computed in O(|E|1+o(1))
time.

In our implementation, we use the HIPR implementa-
tion (Cherkassky et al., 1994) of the push-relabel method,
which has proved to be very efficient in practice.

4.1. Cut Improvement for λ-HCUT

A cut-improvement algorithm (Kernighan & Lin, 1970a;
Fiduccia & Mattheyses, 1982; Andersen & Lang, 2008)
for a ratio-cut problem takes as input a candidate parti-
tion (S0, S̄0) and outputs a nearby partition (S, S̄) with an
improved objective ΨG,µ(S, S̄) ≤ ΨG,µ(S0, S̄0). A prac-
tical approach to solving HGP is to use a generic partition-
ing algorithm to find a non-overlapping cut (S, T ), where
T = S̄, together with a cut improvement procedure that
includes vertices in the overlap S ∩ T as to minimize qG,λ.
A natural cut-improvement heuristic, which we refer to as
GreedyImprove, is to repeatedly loop over all vertices u
on the boundary of S and T and greedily include u ∈ S ∩T
if the inclusion decreases the value of the λ-HCUT objective.
This heuristic will serve as a competitor to our algorithm
in the empirical evaluation of Section 5. Unfortunately,
GreedyImprove does not yield any global approxima-
tion guarantees.

Our first significant algorithmic contribution is the design
and analysis of a novel cut-improvement method for the
λ-HCUT problem. Our algorithm HybridImprove gen-
eralizes previous flow-based improvement algorithms (An-
dersen & Lang, 2008; Lang & Rao, 2004) to the hybrid
cut setting. However, our approximation guarantees for
HybridImprove are much sharper, as previous results
cannot be directly deployed in the cut-matching game. Our

guarantees are more easily stated if we first extend the def-
inition of the non-overlapping ratio-cut objective ΨG,µ to
overlapping partitions [A,B] in the following natural way:

ΨG,µ([A,B]) = max
S⊆A,S̄⊆B

w
(
E(S, S̄)

)
min{µ(A), µ(B)}

(4)

Here the numerator in the ratio-cut ΨG,µ([A,B]) for an
overlapping partition [A,B] is the worst (maximum) edge-
cutset weight over all ways of splitting the overlap A ∩B
between S ⊆ A and S̄ ⊆ B.

Given an input non-overlapping partition (S0, S̄0),
HybridImprove outputs an improved overlapping parti-
tion [S, T ], together with a certificate that lower-bounds the
ratio-cut of partitions near [S, T ]. This dual certificate takes
the form of a bipartite µ-regular graph H between (S0, S̄0).
Indeed, the dual problem solved by HybridImprove is
exactly that of routing the largest possible multiple of a
bipartite µ-regular graph across the input partition (S0, S̄0)
into an edge- and vertex-capacitated version of G. The exe-
cution of HybridImprove only requires a small number
of s-t maxflow computations over a directed version on G.

Theorem 4. Let G = (V,E,w ∈ RE≥0, µ ∈ RV≥0) be
an undirected weighted graph and (S0, S̄0) be a non-
overlapping partition of G. Assume without loss of general-
ity that µ(S0) ≤ µ(S̄0) and define κ def

= µ(S0)/µ(S̄0) ∈ (0, 1].
On input (G, (S0, S̄0), λ ≥ 0), the HybridImprove al-
gorithm outputs:

• a weighted graphH = (V,EH , u ∈ REH≥0 , µ), with the
same vertex weights as G, such that

– H is bipartite across (S0, S̄0),
– the weighted degree of a vertex i in H is µi if
i ∈ S0 and κ · µi if i ∈ S̄0.

• an overlapping partition [S, T ] such that for all over-
lapping partitions [A,B],

qG,λ([A,B])

qG,λ([S, T ])
≥ ΨH,µ([A,B]) (5)

The running time of HybridImprove is
(Tf (O(|E|), O(|V |), O(WG)) + |E|) ·O(log(WG · |V |).

A crucial property of HybridImprove is the approxima-
tion result of Equation 5 for the output overlapping parti-
tion [S, T ]. In particular, it guarantees that for all overlap-
ping partitions [A,B], including ones potentially far from
(S0, S̄0), the objective of the output partition [S, T ] is within
a factor ΨH,µ([A,B]) of qG,λ([A,B]) , i.e., the more edges
of H cross [A,B], the better approximation to qG,λ([A,B])
we have. Applying this reasoning to the optimal cut for the
λ-HCUT objective yields the following corollary:
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Corollary 5. Let [A?, B?] be the overlapping partition
minimizing qG,λ. On input (S0, S̄0), HybridImprove
outputs an overlapping partition [S, T ] which is
a 1/ΨH,µ([A?,B?]) approximation to the optimum
qG,λ([A?, B?]).

Hence, we can obtain a good approximation ratio for the
λ-HCUT problem, if we use HybridImprove to query a
cut (S0, S̄0) that forces H to have many edges cross the
optimal overlapping partition [A?, B?]. The details of the
HybridImprove algorithm and a full proof of Theorem 4
can be found in the Appendix.

4.2. Cut Improvement for ε-ORC

Recall that it is not generally possible to reduce the ε-ORC
problem to a sequence of calls to an oracle for the HCUT
problem with different λ values. Fortunately, the same
reduction strategy works instead when applied at the cut
improvement level: we can obtain a cut improvement algo-
rithm OverlapImprove for the ε-ORC algorithm simply
via performing binary search on λ in the HybridImprove
algorithm. The full details of OverlapImprove and the
proof of the following analogue of Theorem 4 are described
in the Appendix. An exact analogue of Corollary 5 also
holds.

Theorem 6. Under the same assumptions of Theorem 4,
let R be the largest ratio between vertex weights, i.e., R =
maxi,j µi/µj . The algorithm OverlapImprove on input
(G, (S0, S̄0), ε ∈ (0, 1) outputs:

• a weighted graphH = (V,EH , u ∈ REH≥0 , µ), with the
same properties as in Theorem 4,

• an overlapping partition [S, T ], qV [S, T ] ≤ (R+ 1)ε,
such that for all overlapping partitions [A,B] with
qV [A,B] ≤ ε:

qE([A,B])

qE([S, T ])
≥ ΨH,µ([A,B]). (6)

4.3. Reduction to the Cut-Matching Game

The cut-matching game is an interactive game between a
cut player C and a matching player M over a vertex set
V with vertex measure µ. Starting with an empty graph
over V , at each iteration t, C plays a partition (St, S̄t) of V
with µ(St) ≤ µ(S̄t). The matching playerM responds by
placing a bipartite µ-regular graph Ht across (St, S̄t), i.e.,
a bipartite graph such that every vertex v ∈ St has degree
µv and every vertex u ∈ S̄t has degree µ(St)/µ(S̄t) · µu. Let
H̄T = 1

T ·
∑T
t=1Ht be the average of the graphs added

byM up to time T. As T goes to infinity, the goal of the
cut player is to maximize the minimum ratio-cut quotient
Ψ(H̄T , µ), while the matching player aims to minimize the

same quantity. In words, the cut player aims to select sparse
cuts to force the matching player to make H̄t more expander-
like. Conversely, the matching player will try to add edges
to H̄t while preserving some sparse cuts. The following
theorem (Orecchia et al., 2008; Orecchia, 2011) gives an
efficient strategy for the cut player, which is based on Matrix
Multiplicative Weight Updates (Tsuda et al., 2005).

Theorem 7. (Orecchia et al., 2008; Orecchia, 2011) There
exists a strategy for the cut player C such that, for any play of
the matching playerM, we have Ψ(H̄T , µ) ≥ Ω(1/log |V |)
for T = O(log2 |V |). At time t, the cut (St, S̄t) played by
this strategy can be computed as a function of H̄t in time
O(|E(H̄t)| · polylog(µ(V ))).

With this strategy in hand, we are ready to sketch the proof
of our main results on the approximation of λ-HCUT (The-
orem 2) and ε-ORC (Theorem 3). A learning interpreta-
tion of these results is that the cut player strategy is us-
ing Matrix Multiplicative Weight Updates to boost the lo-
cal approximation guarantees of HybridImprove and
OverlapImprove to a global guarantee by carefully
choosing which cut-improvement problems are solved. The
complete proof can be found in the Appendix.

Proof Sketch for Theorem 2 and Theorem 3. The cut-
improvement algorithm (HybridImprove or
OverlapImprove) takes the role of the matching
player in the cut-matching game, i.e., at every iteration t,
the matching player’s response to (St, S̄t) is the µ-regular
bipartite certificate Ht output by HybridImprove on
input (St, S̄t). By choosing input cuts (St, S̄t) using
the strategy of Theorem 7, we can guarantee that after
T = O(log2 |V |), we have that for any overlapping
partition [A,B]

max
1≤t≤T

ΨHt,µ([A,B]) ≥ 1

T

T∑
t=1

ΨHt,µ([A,B]) ≥

ΨH̄t,µ([A,B]) = Ω

(
1

log |V |

)
,

where the second inequality is a consequence of the def-
inition in Equation 5. Applying this statement to the op-
timal overlapping partition [A?, B?], it must be the case
for some t? that ΨHt,µ([A?, B?]) ≥ Ω(1/log |V |). Hence,
by Corollary 5, the overlapping partition output by the
cut-improvement algorithm at iteration t? is a O(log |V |)-
approximation to the optimum.

5. Empirical Evaluation
The main challenge in comparing cm+improve with ex-
isting algorithms is the lack of closely related methods for
OGP problems, as statistical methods are highly tuned to the
structure and parameters of the model. BIGCLAM (Yang
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& Leskovec, 2014), a popular method for detecting over-
lapping communities performs very poorly in our testbed,
likely because it optimizes a very different notion of objec-
tive, more akin to detecting smaller obvious clusters, rather
than partitioning the whole graph. This challenge is com-
pounded by the lack of other well-defined objective func-
tions for the task of overlapping clustering, which is actually
our motivation in defining the OGP objectives ε-ORC and
λ-HCUT. To overcome these obstacles, we post-process the
partitions output by our competitors via one of two HCUT-
based cut improvement procedures: the GreedyImprove
heuristic described in Section 4.1 or our HybridImprove
algorithm. Thanks to this post-processing, we can now ex-
pand our set of competitors to include popular algorithms
for non-overlapping clustering, such as spectral clustering
methods (Von Luxburg, 2007) and METIS, and use our OGP
objectives without arbitrarily skewing the playing field.

Our Implementation of cm+improve The cut-matching
strategy of Theorem 7 is implemented in MATLAB, while
the cut-improvement algorithm HybridImprove is a
single-threaded implementation in C++ , using Gold-
berg’s s-t-maxflow solver HIPR, which implements the
push-relabel algorithm (Goldberg; Cherkassky & Goldberg,
1997). Our implementation performs some numerical ap-
proximations to minimize the number of calls to HIPR and,
as a result, departs slightly from the theoretical description
of the HybridImprove algorithm. These optimizations
are described in the Appendix. Throughout our evaluation,
we set µ to be the degree measure of the graph, as other
methods are already tuned to minimize conductance. For
experiments requiring the output to be a balanced overlap-
ping partition, we implemented a simple heuristic modi-
fication of HybridImprove by only routing a fraction
of the maximum flow in HybridImprove, as suggested
by Khandekar et al. (2009). All assets are currently accessi-
ble (Author, 2021) and will become publicly available under
the BSD license after publication. All experiments were
conducted on an institutional cluster on machines with 24
Cores (2x 24 core Intel Xeon Silver 4116 CPU @ 2.10GHz),
48 threads and 128GB RAM.

Competitors The SweepCut algorithm is the classic spec-
tral approach to graph partitioning: it performs a sweep of
the second eigenvector of the Normalized Laplacian (Chung,
1997) and outputs the threshold cut with minimum conduc-
tance. This is then fed into our overlapping post-processor.
METIS (Karypis & Kumar, 1995) is a software suite for
solving edge-based graph-partitioning and producing fill
reducing orderings for sparse matrices. Its high-quality re-
sults, speed and over 25 years of support make it one of the
most widely used packages for these tasks. The multi-scale
graph-coarsening approach championed by METIS yields
an extremely fast algorithm, whose accuracy varies with the
choice of randomness used in the coarsening step. For a fair

comparison, we run METIS on many random seeds, for a
total time comparable to that of our cm+improve on the
same instance. The more sophisticated overlap-specific algo-
rithm BIGCLAM (Yang & Leskovec, 2013) solves the ERM
problem where there are many communities and each edge’s
likelihood depends on how many communities share both
endpoints. In essentially all cases, we found that BIGCLAM
fails to partition the whole graph, often leaving > 50%
nodes in no community. BIGCLAM also tends to output
small clusters, even when better, more balanced overlapping
partitions clearly exist. This probability reflect sa radical
difference between BIGCLAM’s objective function and stan-
dard isoperimetry-based definitions of graph partitioning.
We postpone the quantitative results on the comparison of
BIGCLAM to cm+improve to the Appendix.

5.1. Overlapping Stochastic Block Model

The first goal of our evaluation is to assess whether our
OGP objectives reflect meaningful overlapping clustering
structure on datasets where the ground-truth overlapping
clustering is known. To address this question, we study the
statistical performance of cm+improve in recovering over-
lapping partitions on graphs generated by the Overlapping
Stochastic Block Model (OSBM) of Abbe and Sandon (Abbe
& Sandon, 2015), the most generic statistical model of an
overlapping clustering. This is an instance of the general
stochastic block model in which the ground-truth partition
is a tripartition (L,C,R) corresponding to an overlapping
partition (S, T ) where L = S \ T,R = T \ S,C = S ∩ T.

Each pair of vertices {i, j} is added to the edge set inde-
pendently with probability p · logn/n if both belong vertices
both belong to either S or T . If neither S nor T contains
both i and j, they are connected with the smaller probability
ε · logn/n. The logn/n scaling is standard and ensures con-
nectednes of the resulting graph. Besides the values of p and
ε, our experiments varied the balance of the communities in
the generated graphs and the size of the overlap. We also
attempted to vary the probability assigned to pairs in the
overlap S ∩ T , but could not detect significant differences
in the behavior of the algorithm, A full description of all
settings is found in the Appendix.

Results The results were remarkably consistent across the
size of the graph. We display here highlights of the results
for the smallest graphs with n = 104. Figure 2(a) shows
how the recovery performance of cm+improve changes
as 1/λ increases and the size of the overlap grows. On
the same y-axis, we also show how the contribution of the
edge cutset to qG,λ([S, T )], i.e., the corresponding ε-ORC
value. The overlap starts empty for small 1/λ on the left. As
1/λ increases, cm+improve starts including in the overlap
S∩T vertices from the true C, boosting precision. Once the
overlap is large enough, the recall follows so that we obtain
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(a) (b) (c)

Figure 2: (a) Statistical performance of cm+improve in the recovery of the ground-truth overlap C on 5 samples
on balanced OSBM with parameters (|C|, p, ε) = (100, 4, 0.05). (b) Comparison on balanced OSBM with parameters
(|C|, p, q, ε) = (10, 4, 4, ε = 0.05). (c) Comparison on balanced OSBM with parameters (|C|, p, q, ε) = (10, 4, 4, ε = 0.05).

essentially perfect recovery at λ = 3. At the same time, the
edge cutset has significantly shrunk, as we have switched
from cutting edges incident to C to cutting vertices in C.

If we continue increasing the overlap after this point,
cm+improve will start adding vertices incident to edges
inE(S \T, T \S) to the overlap, until we reach a vertex cut.
In this last phase, the edge cutsets decreases slowly, as the
vertices added to the overlap do not belong to the C, but are
endpoints of the more rare edges in E(L,R). Indeed, the
sharp elbow in the ε-ORC objective coincides with perfect
recovery of the overlap, demonstrating that our method does
not require prior knowledge of the overlap size. By contrast,
all other algorithms in our test bed generally achieve poor re-
covery. We focus here on the comparison with SweepCut
as the spectral approach comes with strong guarantees in
stochastic block models. METIS performs entirely analo-
gously. The example of Figure 2(b) is typical of its behavior
when the overlap becomes large enough (u

√
n)). It shows

that cm+improve outperforms both post-processings of
SweepCut by an order of magnitude on the λ-HCUT ob-
jective. We do not show statistical information here because
the precision and recall of SweepCut are both 0 for all
values of λ, i.e., even after postprocessing SweepCut fails
to find any vertex in the true overlap C. This phenomenon
can be explained as follows: because of the sparsity of
the ground-truth L and R and the relative density higher
density of C, SweepCut finds outputs smaller cuts en-
tirely contained within L or R. As the overlap is large,
these cuts cannot be rounded to C by GreedyImprove
or HybridImprove.

Figure 2(c) shows the same setup for a smaller ground-
truth overlap |C| = Θ(log n). In this case, the output of
SweepCut is not too far from the optimal overlapping
partition. Indeed, the HybridImprove post-processing
matches the performance of cm+improve and achieves
the same statistical performance. On the other hand, the
heuristic GreedyImprove post-processing still fails to

recover any vertices of C.

Our results support the overall superiority of global algo-
rithms targeting overlapping measures of graph partitioning,
such as cm+improve, over algorithms based on local im-
provement of edge-based cuts. Such standard approaches ap-
pear to fail in detecting overlapping clusters, even in the sim-
ple case of OSBM and even when given access to a very pow-
erful overlapping cut-improvement in HybridImprove.
We believe that this makes a powerful case for the adoption
of OGP objective functions and algorithms in practice.

5.2. Information and Social Networks

In the next set of experiments, we evaluate the performance
and efficiency of different methods on the λ-cut objective
on a number of social and information networks from the
SNAP database (Yang & Leskovec, 2015; Leskovec &
Krevl, 2014). We now focus on finding balanced over-
lapping partitions for two reasons: i) our best competitor
METIS is biased towards outputting balanced cuts, and ii)
such partitions plausibly contain more interesting structural
information and could be used to recursively decompose
network. We find that cm+improve performs comparably
to METIS+HybridImprove, showing that overlapping
cuts in real networks tend to be somewhat correlated with
sparse edge-based cuts. Unfortunately, the running time
of cm+improve quickly becomes infeasible for networks
with over 107 edges. We are confident that an optimized
implementation taking greater advantage of parallelism and
randomness will allow cm+improve to scale to even larger
graphs. Due to space limitations, full quantitative results
appear in the Appendix.

Recursive Bisection: In Section E.4 of the Appendix, we
also highlight how recursive application of cm+improve
to the DBLP co-authorship graph yields multi-way partitions
that recover different areas of Computer Science and detect
overlap between different interest communities.
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A. Cut Improvement Algorithms
A.1. The HybridImprove Algorithm

Specification The HybridImprove algorithm takes the following inputs:

1. an undirected graph G = (V,E,w, µ) with non-negative integral edge weights {we}e∈E and non-negative integral
vertex weights {µi}i∈V .

2. a non-overlapping partition (S0, S̄0) of V .

3. a value λ ≥ 0 for which we seek to minimize qG,λ.

The HybridImprove algorithm returns the following outputs:

1. an overlapping partition [S, T ],

2. a weighted graph H = (V,EH , wH ∈ REH>0 ).

Assume without loss of generality that µ(S0) ≤ µ(S̄0) and define κ def
= µ(S0)/µ(S̄0) ∈ (0, 1).

The flow network Gα The algorithm starts by building an auxiliary flow network Gα, parametrized by α ≥ 0 from G. To
support vertex capacities, for each vertex v ∈ V, Gα contains two vertices labeled vIN and vOUT, together with a directed
edge (vIN, vOUT) with capacity α · λ · µi. Every edge {u, v} ∈ E yields two directed arcs (uOUT, vIN) and (vOUT, uIN) of
capacity α · wuv in Gα. Finally, Gα contains two auxiliary nodes, a source s and a sink t. They are connected to the rest of
graph based on the input partition (S0, S̄0) as follows:

• for all v ∈ S0, there is an arc (s, vIN) with capacity µi;

• for all v ∈ S̄0, there is an arc (vOUT, t) with capacity κ · µi.

The capacity on the S̄0-side are scaled down by κ to ensure that the total capacity of the trivial source cut equals the total
capacity of the trivial sink cut. As we aim to set α to be large enough such that both these cuts are saturated, these capacities
can also be interpreted as demands we want to concurrently route from S0 to S̄0. The construction of Gα is illustrated in
Figure 3.

Searching over the α parameter The HybridImprove algorithm aims to find the minimum value α = α∗ such that a
single-commodity flow can be routed from s to t while fully saturating the source cut and the sink cut, i.e., while routing
α · µ(S0) units of flow. To do so, it performs a binary search over α by testing, for each α whether the required flow can
be routed by solving the corresponding s-t maximum-flow. Assuming that the graph G is connected and that the edge-
and vertex-weights, together with the parameter λ are integral, α can range between 1/µ(V ) and w(E) + λµ(V ), so that
O(log(|V | ·WG) rounds suffice to compute α∗.

Returning the output Once the algorithm has identified the optimal value α∗, it extracts a non-trivial s-t mincut (A,B)
in Gα∗ . Such a mincut is guaranteed to exist by the variational definition of α∗. The output overlapping partition [S, T ] of
G is formed as following:

1. A vertex i ∈ V is placed in S if vIN ∈ A.

2. A vertex i ∈ V is placed in T if vOUT ∈ B.

In particularly, vertices for which both conditions hold are placed in the overlap S ∩ T .

Finally, the algorithm computes a flow-path decomposition of the flow routed into Gα using dynamic trees (Ahuja et al.,
1993; Khandekar et al., 2009), to obtain a list of flow paths routed from S0 to S̄0. The demands routed by these paths are
defined to be the graph H returned by HybridImprove.
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Figure 3: The flow network Gα for a path graph on 6 vertices, for a bisection (S, S̄0) into connected components.
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A.2. The OverlapImprove Algorithm

Specification The OverlapImprove algorithm takes the following inputs:

1. an undirected graph G = (V,E,w, µ) with non-negative integral edge weights {we}e∈E and non-negative integral
vertex weights {µi}i∈V .

2. a non-overlapping partition (S0, S̄0) of V .

3. a value ε ∈ [0, 1] for which we seek to minimize qG,λ.

The OverlapImprove algorithm returns the following outputs:

1. an overlapping partition [S, T ],

2. a weighted graph H = (V,EH , wH ∈ REH>0 ).

Assume without loss of generality that µ(S0) ≤ µ(S̄0) and define κ def
= µ(S0)/µ(S̄0) ∈ (0, 1).

Description The OverlapImprove algorithm is obtained by performing a binary search on the input λ of the
HybridImprove algorithm, starting at maxi

∑
j∼i wij/µi. If the output overlapping partition [S, T ] has qV [S, T ] ≥ ε, then

λ is reduced. Otherwise, it is increased. The process eventually stops in polylogarithmic iterations for λ∗ and α∗ such
that two s-t mincuts exists in Gα∗ , corresponding to overlapping partitions [S1, T1] with qV [S1, T1] ≤ ε and [S2, T2] with
qV [S2, T2] ≥ ε. The submodularity of the cut function implies that we must necessarily have δV [S1, T1] ⊆ δV [S2, T2].
Hence, adding a single vertex from the overlap δV [S2, T2] to the overlap δV [S1, T1] yields a new overlapping partition that
also corresponds to a s-t mincut in Gα∗ . By the bound R on the ratio of weights, we have that the resulting overlapping
partition [S, T ] has qV [S, T ] ≤ (R+ 1)ε.

B. Cut Improvement Analysis: Proof of Theorem 3
B.1. Valid s-t cuts and corresponding overlapping partitions

We start by proving some simple lemmata about the HybridImprove construction, which is essentially a reduction from
the overlapping improvement problem to a family of s− t minimum cut problems on bipartite flow networks Gα. To do this
end, we define a subset of s-t cuts in Gα that can be put in bijection with overlapping partitions of G.

Definition 2. An s-t cut (A′, B′) of Gα is valid if, for all vertices v, vIN ∈ B′ implies vOUT ∈ B′. Equivalently, for all v,
vOUT ∈ A′ implies vIN ∈ A′.

The relevance of this definition is shown by the following lemma.

Lemma 8. An s-t mincut (S′, T ′) in Gα is valid.

Proof. Suppose there exists v ∈ V such that vIN ∈ B′ and vOUT ∈ A′. Including v′OUT in B′ decreases the capacity of the s-t
cut as the only arc going into vOUT is the arc (vIN, vOUT), which has strictly positive capacity.

The bijection between valid s-t cuts in Gα and corresponding overlapping partitions of G is constructed as follows: a valid
s-t cut (A′, B′) maps to the overlapping partition [A,B] such that v ∈ A if vIN ∈ A′ and v ∈ B if vOUT ∈ B′. Notice that
both of these conditions will hold for a vertex in the overlap A∩B. By the validity of (A′, B′), we deduce that A∪B = V,
so that [A,B] is indeed an overlapping partition of s-t. Similarly, for an overlapping partition [A,B], with µ(A) ≤ µ(B)
we can construct a valid s-t cut (A′, B′) as follows: if v ∈ A \ B, let vIN, vOUT ∈ A′; if v ∈ B \ A, let vIN, vOUT ∈ B′; if
v ∈ A ∩B, let vIN ∈ A′ and vOUT ∈ B′.

The following lemma describes the relation between the capacity of a valid s-t cut (S′, T ′) in Gα and the edge- and
vertex-cutsets of the corresponding overlapping partition [S, T ]. For a subset C ′ of vertices in Gα, we denote by C ′IN its IN
vertices and by C ′OUT its OUT vertices.
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Figure 4: A valid s-t mincut (S′, T ′) of Gα, together with the corresponding overlapping partition.
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Lemma 9. Let (S′, T ′) be a valid s-t cut in Gα and let [S, T ] be the corresponding overlapping partition. Then:

capst(S
′, T ′) = α · w(δE [S, T ]) + α · λ · µ(δV [S, T ]) + µ(S̄ ∩ S0) + κµ(T̄ ∩ S̄0).

Proof. The capacity of (S′, T ′) can be written in terms of the capacities between different subsets ofGα. By the construction
of Gα (see also Figure 4), we obtain the following:

capst(S
′, T ′) = capst(S

′
IN, T

′
OUT) + capst(S

′
OUT, T

′
IN) + capst({s}, T ′IN) + capst(S

′
OUT, {t}).

Notice now that capst(S
′
IN, T

′
OUT) = α · λ · µ(δV [S, T ]), as the only arcs going from the IN-side to the OUT-side are the

internal edges of vertices included in the overlap. Similarly for the second term, capst(S
′
OUT, T

′
IN) = w(δE [S, T ]), as the

only arcs going the opposite way correspond to original edges in δE [S, T ]. Finally, the last two terms arise from vertices
in S0 that were moved directly to the opposite side S̄ and of vertices in S̄0 that were switched over to T̄ . An example of
such a vertex is vertex y in Figure 4. By the choice of capacities from s and to t, we have capst({s}, T ′IN) = µ(S̄ ∩ S0) and
capst(S

′
OUT, {t}) = κµ(T̄ ∩ S̄0), completing the proof.

B.2. Splits of overlapping partitions

Next, we discuss the notion of a non-overlapping split of an overlapping partition [A,B], formalizing the notion behind the
definition of ΨG,µ.

Definition 3. Let [A,B] be an overlapping partition of vertex set V. A non-overlapping split (C, C̄) of [A,B] is a non-
overlapping partition of V such thatC ⊆ A and C̄ ⊆ B. The non-overlapping split of [A,B] according to a non-overlapping
partition (S, S̄) is the non-overlapping split that assigns vertices in A ∩B to C or C̄ based on their location in (S, S̄), i.e.:

C = B̄ ∪ (A ∩ S) ⊆ A
C̄ = Ā ∪ (B ∩ S̄) ⊆ B

We will need the following fact about the relation between flows across [A,B] and splits of [A,B] in Gα.

Lemma 10. Let [A,B] be an overlapping partition of V and (C, C̄) be a split of [A,B]. Let (A′, B′) and (C ′, C̄ ′) denote
the corresponding s-t cuts in Gα. For an s-t maximum flow in Gα, the following holds:

netflowst(A
′, B′) ≥ netflowst(C

′, C̄ ′).

The same holds with equality if (A′, B′) is a non-trivial s-t mincut of Gα and (C, C̄) is the split according to (S0, S̄0).

Proof. Consider any v ∈ A ∩ B in the overlap of [A,B]. In the flow network Gα, we have vIN ∈ A′ and vOUT ∈ B′.
Because all the flow out of vIN and into vOUT runs along the internal arc (vIN, vOUT), shifting vIN or vOUT to the other side of
the s-t can only decrease the netflow. For the second part of the lemma, further assume the same v ∈ S0. Then equality
holds as long as there is no flow into vIN via arcs coming from B′. Similarly, for v ∈ S̄0, equality holds if there is no flow
from vOUT to vertices in A′. This is the case if (A′, B′) is an s-t mincut of Gα.

B.3. Flow and cuts in Gα∗ and their relation with the demand graph H

Next, we use the demand graph H , which has been routed from S0 to S̄0 in Gα∗ , to construct lower bounds on the hybrid
quotient-cut qG,λ([A,B]) of an overlapping partition [A,B]:

Lemma 11. For any overlapping partition [A,B] of G:

qG,λ([A,B]) ≥ ΨH,µ([A,B])

α∗

Equality is achieved for any overlapping partition [S, T ] corresponding to a non-trivial s-t mincut in Gα∗ , yielding the
stronger bound:

qG,λ([S, T ]) =
ΨH,µ([A,B])

α∗
≤ 1

α∗
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Proof. Consider an overlapping partition [A,B] of V and its corresponding s-t mincut (A′, B′) in Gα∗ . Take also any
non-overlapping split (C, C̄) of [A,B] and its corresponding s-t cut (C ′, C̄). By the s-t maxflow-mincut theorem and
Lemma 10, for an s-t maxflow on Gα∗ , we have:

capst(A
′, B′) ≥ netflowst(A

′, B′) ≥ netflowst(C
′, C̄ ′).

Now, we can easily relate netflowst(C
′, C̄ ′) to the cut (C, C̄) in H :

netflowst(C
′, C̄ ′) = wH(E(C, C̄)) + µ(C̄ ∩ S0) + κµ(C ∩ S̄0). (7)

Compare this lower bound on capst(A
′, B′) with the result of Lemma 9:

capst(A
′, B′) = α∗ · w(δE [A,B]) + α∗ · λ · µ(δV [A,B]) + µ(Ā ∩ S0) + κµ(B̄ ∩ S̄0). (8)

By the definition of (C, C̄), we have that Ā ⊆ C̄ and B̄ ⊆ C. Hence, the last two terms in Equation 7 dominate the last two
terms of Equation 8. Combining Equation 7 and Equation 8, we then get:

α∗ · w(δE [A,B]) + α∗ · λ · µ(δV [A,B]) ≥ wH(E(C ′, C̄ ′))

Dividing both sides by min{µ(A), µ(B)} completes the proof of the first part of the lemma as:

qG,λ([A,B]) ≥ ΨH,µ([A,B])

α∗

For the second part, the s-t maximum-flow minimum-cut theorem and Lemma 10 ensure that for a non-trivial s-t minimum
cut (S′, T ′) and its split (C, C̄) according to S0:

capst(S
′, T ′) = netflowst(S

′, T ′) = netflowst(C
′, C̄ ′).

Moreover, we have that C̄ ∩ S0 = Ā ∩ S0 and C ∩ S̄0 = B̄ ∩ S̄0, so that the last two terms in Equations 7 and 8 cancel
exactly, yielding:

α∗ · w(δE [S, T ]) + α∗ · λ · µ(δV [S, T ]) = wH(E(C, C̄)).

By construction of α∗, we also know that the capacity of any non-trivial s-t minimum cut in Gα∗ equals that of the trivial
s-t cut S, which is µ(S0). Hence:

wH(C, C̄) = µ(S0)− µ(Ā ∩ S0)− κµ(B̄ ∩ S̄0)

≤ min{µ(A ∩ S0), κµ(B ∩ S̄0)}
≤ min{µ(A), µ(B)}.

Equivalently, we have that ΨH,µ([S, T ]) ≤ 1. Together with the first part of the lemma, this yields:

qG,λ([S, T ]) =
qH(S, T )

α∗
≤ 1

α∗
.

B.4. Proof of Theorem 3

We are now ready to complete the proof of the main theorem:

Proof. By construction, the demand graph H is bipartite between S0 and S̄0. Moreover, H is induced by an s-t maximum
flow on Gα∗ , so that each vertex i ∈ S0 routes µi units of flow to S̄0 and each vertex j ∈ S̄0 routes κµj units of flow to S0.
Hence, the degree in H of i ∈ S0 is µi and the degree in H of j ∈ S̄0 is κµj , as required.

For any overlapping partition (A,B), combining the two part of Lemma 11 ensures that

qG,λ([A,B]) ≥ ΨH,µ([A,B])

α∗
≥ ΨH,µ([A,B]) · qG,λ([S, T ]),
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which is the required approximation guarantee. The proof for OverlapImprove is entirely analogous.

To bound the running time of HybridImprove, we notice that, for a connected 3, α∗ must lie in the interval[
1

|E|WG
, |V |WG

]
, or it is not possible to have the trivial s-t cut have the same capacity as a non-trivial s-t minimum

cut. Hence, performing binary search requires O(log |V | + logWG) s-t maxflow computations on graphs Gα in which
capacities can be rescaled to be integral and at most |E|W 2

G. This yields the first term in the promised running time. The
second term |E| log(WG|V |) accounts for the computation of graph H , which is achieved by a flow-path decomposition of
the s-t maximum flow in Gα∗ via dynamic trees (Goldberg & Rao, 1998).

The following simple corollary show that HybridImprove is indeed a cut-improvement algorithm, in that it always
improves the initial input partition.

Corollary 12.
qλ(S, T ) ≤ q(S0, S̄0),

Proof. Because H is bipartite across (S0, S̄0) and has degrees proportional to µ, we have qH(S0, S̄0) = 1. The result then
follows from the quotient cut guarantee of the main theorem.

C. Other Proofs
Lemma 13 (Lemma 1 in main body). For any λ ≥ 0, let (L,C,R) be an optimal solution for the λ-HCUT problem. Let
S

def
= L ∪ C and T def

= R ∪ C and define ε = µ(δV (S,T ))/min{µ(S),µ(T )}. Then, (S, T ) is an optimal solution to the ε-ORC
problem.

Proof. Suppose (S, T ) is not optimal. Then, there exists a different overlapping clustering (S′, T ′) of smaller objective
value with µ(S′ ∩ T ′) ≤ min{µ(S), µ(T )} ≤ ε. Let L′ def

= S′ \ T ′, R′ def
= T ′ \ S′ and C = S′ ∩ T ′. Hence, we have:

qλ(L′, C ′, R′) =
w(δE(S′, T ′)) + λ · µ(δV (S′, T ′))

min{µ(S′), µ(T ′)}
≤ ORC(S′, T ′) + λε < ORC(S, T ) + λε = qλ(L,C,R).

This contradicts the optimality of (L,C,R).

Proof of Theorem 2. It remains to prove the running time result. This is a simple consequence of Theorem 5 in the main
body. The total number of calls to HybridImprove is T = O(log2 |V |), which yields the polylog bound in the theorem.
The total cost of computing the cut strategy is at most O(log2 |V |) · log(|V |WG) · |E(H̄T )|, as |E(H̄t)| is monotonically
increasing. However, by construction |E(H̄T )| ≤

∑T
t=1 |E(Ht)| ≤ O(|E(G)| · log(WG|V |)) by the proof of Theorem 3 in

the main body.

D. Implementation Details
Our implementation is available online (Author, 2021). It departs in a small number of places from the theoretical description
of the HybridImprove algorithm. We highlight them here:

• Following other implementations of cut-improvement algorithms by a subset of co-authors for standard ratio-cut
objectives, rather than performing binary search over α, we initialize α to be the 1/qG,λ(S0,S̄0). After each maxflow
operation, we extract the overlapping partition [A,B]c from the s-t mincut in Gα and update α to be 1/qG,λ(A,B).

• We limit the precision of the value α, a rational number, by approximating it up to a 1.001-factor using Farey sequences.
When running the maximum flow operation, we scale all capacities in Gα by the denominator in our representation of
α to ensure all capacities become integral.

3The partitioning problem is trivial if the graph G is disconnected
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• For the results in this paper, we use a simpler DFS-based algorithm to compute the flow-path decomposition of the flow
routed on Gα. We are currently in the process of implementing dynamic trees to further speed up this operation.

E. Empirical Evaluation
E.1. Comparison with BIGCLAM

Communities Average community size Nodes absent

2 3591.5 75931

5 1881.4 78334

20 1030.15 69333

100 594.3 46549

Table 1: BIGCLAM node coverage statistics in cExtractedDblp graph with n = 83114 vertices

In order to evaluate our algorithm’s performance we considered BIGCLAM (Yang & Leskovec, 2013) and its predecessor
AGMFIT (Yang & Leskovec, 2012). The latter was disqualified because it required a quadratic number of iterations, which
is computationally infeasible for larger graphs. The successor BIGCLAM replaces the discrete step in the EM algorithm
with a continuous one, requiring far fewer iterations. While the running time is no longer a problem, the partitions output
by BIGCLAM do not cover the entire graph. A majority of the nodes belongs to no community, even when the algorithm
is allowed to output a large number of communities. This could ameliorated if only a few nodes were absent from the
communities. However, when a majority of the nodes are unclassified, there is no easy way to convert BIGCLAM’s output
into a partitioning scheme without radically changing the algorithm. The problem definition of BIGCLAM is very elegant,
but unfortunately the current implementation cannot be used as a comparison baseline. It is also conceivable that BIGCLAM
may optimize an objective that is inherently different from ratio-cut objectives. Indeed, BIGCLAM has no restriction against
including high degree nodes in the overlap, which is sub par in our problem definition, as the cost for a node to be included
is proportional to its degree. BIGCLAM may serve as a more useful benchmark when considering the problem of detecting
small overlapping communities in the periphery of a large information network . Indicatively, in Table 1, we present the
average community size and the total uncovered nodes for a number of settings of the parameter regulating the number of
communities output.

E.2. OSBM Experiments

Table 2a describes the coefficients applied to the scaling logn/n to define the probabilities of including edge between different
parts of the ground-truth tripartition in the OSBM model. Table 2b displays the different parameters choices for the graph
generation in our OSBM experiments.

L R C

L p ε p

R ε p p

C p p q

(a) Edge probability coefficients between two vertices in the
OSBM model.

Size L-R-C p-q

10,000 0.45 - 0.45 - 0.10 4-2

30,000 0.45-0.45-0.01 4-4

100,000 0.6-0.3-0.1 4-6

0.745-0.245-0.01 4-8

(b) Values used for generating OSBM graphs. ε = 0.05.

The results of the experiments on OSBM were remarkably consistent across the size of the graph and the choice of p and q.
Here and in the paper, we display results for the smallest graphs with n = 104. Further study is required to find interesting
settings of p and q where threshold phenomena may arise. Figure 5 shows the comparison between cm + improve and
SweepCut for the case when the partition is unbalanced, as given by the third and fourth entry of second column in Table 2b.
The main body of the paper includes the same results for the balanced choice (first and second entry of second column in
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Network n m time

DBLP 83,114 409,541 2-4min

Amazon 334,863 925,872 15-18min

Youtube 1,134,890 2,987,624 55-75min

LiveJournal 3,997,962 17,340,594 5-8h

Table 3: Social networks overlook and range of running times on 5 executions.

Table 2b). As in the balanced case, for large overlap size |C|, both versions of the SweepCut algorithm fail to detect the
ground-truth overlap and have much larger λ-HCUT values. However, in this case, SweepCut+HybridImprove actually
often achieves the same value of cm + improve when only looking for an edge partition, but is unable to maintain that
performance when looking for overlaps. Once again, this suggests the need for algorithms that explicitly target overlapping
clustering notions, rather than locally improving edge-based notions.

(a) Comparison on unbalanced OSBM with parameters
(|C|, p, q, ε) = (100, 4, 4, ε = 0.05).

(b) Comparison on unbalanced OSBM with parameters
(|C|, p, q, ε) = (10, 4, 4, ε = 0.05)

Figure 5: Performance of SweepCut against cm+improve on graphs from the OSBM model with n = 104. Each graph
displays the performance over 5 samples from the model. The shaded area shows the minimum and maximum values over
the samples, while the bold curve represents the average.

E.3. Large Social and Information Networks

We now describe the quantitative results of the comparison between cm+improve and METIS for the task of finding
balanced overlapping partitions on the large networks in the SNAP database (Leskovec & Krevl, 2014). Table 3 displays our
selection of graphs, together with their diverse sizes, and the running time required by cm+improve. Below, we focus on
the performance as measured by the λ-HCUT objective qG,λ.

We start with the Amazon graph in Figure 6. The left subfigure here includes data for SweepCut+GreedyImprove,
showing a performance that is two orders of magnitude worse than cm+improve or METIS. The right subfigure excludes
SweepCut+GreedyImprove allowing us to have a closer comparison with METIS. It shows that METIS, with either
post-processing, slightly outperforms cm+improve, especially for large λ, i.e., edge-based cuts. This is not surprising,
as METIS is highly optimized to find sparse balanced edge cuts. The fact that this advantage persists when searching for
overlapping clusters may be an indication of the lack of meaningful overlapping structure over balanced cuts for this network.
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(a) Balanced λ-HCUT on Amazon copurchasing graph.
(b) Balanced λ-HCUT on the Amazon co-purchasing graph with-
out Spectral + GreedyImprove.

Figure 6

It is also possible that cm+improve may require a larger number of iterations to achieve its optimal performance or that
our balanced heuristic needs to be refined.

The results for the Youtube and DBLP graphs are shown in Figure 7. For these graphs, cm+improve essentially matches
the performance of METIS which is a testament to the power of our algorithm framework, even in the non-overlapping
settings. The fact

(a) Balanced λ-HCUT on Youtube social graph. (b) Balanced λ-HCUT on DBLP co-authorship graph.

Figure 7

Future work should further address this comparison by relaxing the balanced constraint or using overlapping balanced
clustering recursively to produce overlapping decompositions of the network. Such decompositions may detect meaningful
overlapping structure at smaller sizes and in localized areas of the graph.

Visualization of Overlapping Clusters in DBLP co-authorship network The DBLP dataset for co-authorship in the
academic field of Computer Science gives us the opportunity to visualize the overlapping communities discovered by
cm+improve and compare them with the known clustering based on the venue of the each paper. Specifically, we built the
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co-authorship network creating for every paper p a weighted clique on the d-coauthors of paper p. The weight of this clique
is equal to 1

d to ensure that each paper carries the same amount of information, i.e., the resulting random walk on the graphs
consists of choosing a paper uniformly at random and sampling a co-author in this paper uniformly. The natural setting for
the measure weight µ is then the degree measure of the graph. The results of running the balanced version of cm+improve
as λ decreases are displayed below. We verified our results against METIS+HybridImprove, which outputs essentially
the same tripartitions.

(a) λ = 1. Edge-based partition. (b) λ = 1/10. Small overlap. (c) λ = 1/300. Large overlap.

Figure 8: Spider plots showing the composition of the tripartition (L,C,R) output by cm+improve. For each set
X ∈ {L,C,R} of this partition and each subarea Y of Computer Science represent, we show the total edge volume of X
coming from papers in area Y over the total edge volume of papers in Y.

The overlapping partitions found are very-well correlated with the edge-based partition capturing a clustering of subareas
corresponding to a left cluster {THEORY,NET, IDM} and a right cluster {DMW, IVC,ML}. As we saw above, this
is expected as the real-world networks in our testbed do not appear to exhibit an overlapping balanced clustering that is
different from the non-overlapping ones. As the first subfigure shows, a few papers from DMW and ML contribute to the
left cluster. Indeed, as the overlap grows nodes with large degree in DMW and ML are the first to be included.

E.4. Recursive Overlapping Bisections

Our algorithm cm+improve can be used as a black box to recursively bisection the graph and identify multiple overlapping
communities. When our algorithm is run without a balance constraint the successive cuts identify the “whiskers” around the
core of the graph (Leskovec et al., 2009). For example, running recursive bisectioning on the Amazon dataset requires 52
cuts before a cut of significant volume is returned. All cuts up to that point have hundreds of nodes, meaning less than 1% of
the graph.

Balanced multicuts are of greater interest as they partition the graph in more interpretable parts. For example, in the DBLP
co-authorship graph we can further refine the found communities and relate them more closely to specific areas.

(a) λ = 1/2. Edge-based partition. (b) λ = 1/10. Small overlap. (c) λ = 1/300. Large overlap.

Figure 9: Partitioning the DBLP co-authorship graph in four communities. The edge based partitions sharply correlate to
specific computing areas. As the overlap increases communities become more rounded, losing their clear definition.


