
THE UNIVERSITY OF CHICAGO

NONLINEAR RANDOM MATRICES AND APPLICATIONS TO THE SUM OF

SQUARES HIERARCHY

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTORATE OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

GOUTHAM RAJENDRAN

CHICAGO, ILLINOIS

Copyright © 2022 by Goutham Rajendran

All Rights Reserved

Dedication Text

Epigraph Text

TABLE OF CONTENTS

LIST OF FIGURES . viii

LIST OF TABLES . ix

ACKNOWLEDGMENTS . x

ABSTRACT . xi

1 INTRODUCTION . 1
1.1 Certification problems . 2
1.2 Average-case analysis . 4
1.3 Underlying theme of this work: Random matrices 5
1.4 The Sum of Squares Hierarchy . 7

1.4.1 Related Algorithmic Techniques . 9
1.5 Lower bounds against The Sum of Squares Hierarchy 10
1.6 A summary of our main results . 11

1.6.1 Nonlinear matrix concentration via Matrix Efron-Stein 11
1.6.2 Sum of Squares lower bounds . 12

1.7 Excluded work . 14
1.7.1 SoS Lower bounds for Sparse Independent Set 14
1.7.2 Causal Inference . 15

1.8 Organization of the thesis . 16

2 NONLINEAR MATRIX CONCENTRATION . 17
2.1 Introduction . 17
2.2 Preliminaries . 29
2.3 The basic framework for Rademacher random variables 32
2.4 Applications . 36

2.4.1 A simple tensor network . 36
2.4.2 Graph matrices . 38

2.5 Why a näıve application of [147] may fail for general product distributions . 48
2.6 The general recursion framework . 50
2.7 A generalization of [147] and proof of Lemma 2.6.8 54

2.7.1 Generalizing [147] via explicit inner kernels 54
2.7.2 Proof of Lemma 2.6.8 . 60
2.7.3 Bounding ∆

k,a,b
2 and Vk,a,b . 63

2.7.4 Bounding ∆
k,a,b
1 and ∆

k,a,b
3 . 67

2.8 Application: Sparse graph matrices . 73
2.8.1 Norm bounds on simple graph matrices 79

v

3 THE SUM OF SQUARES HIERARCHY . 86
3.1 The Sum of Squares hierarchy . 86

3.1.1 Polynomial optimization and convex relaxations 86
3.1.2 Sum of Squares relaxations . 88

3.2 Hypothesis testing . 94
3.2.1 Low degree likelihood ratio . 95

3.3 Pseudo-calibration . 97
3.3.1 Strategy to show SoS lower bounds 101
3.3.2 Connection to Low-degree distinguishers 102

4 OUR MAIN RESULTS ON SUM-OF-SQUARES LOWER BOUNDS 104
4.1 The Sherrington-Kirkpatrick Hamiltonian 104

4.1.1 Our approach . 106
4.1.2 Related work . 110

4.2 Planted Slightly Denser Subgraph . 111
4.2.1 Related work . 112

4.3 Tensor PCA . 113
4.3.1 Related work . 115

4.4 Sparse PCA . 115
4.4.1 Related work . 117

4.5 Our approach . 120
4.6 Related work on Sum-of-Squares Lower Bounds for Certification Problems . 125
4.7 Organization of the proofs . 126

5 THE SHERRINGTON-KIRKPATRICK HAMILTONIAN 127
5.1 Technical preliminaries . 127

5.1.1 Problem statements . 127
5.1.2 Graph matrices . 128
5.1.3 Norm bounds . 132

5.2 Proof Strategy . 133
5.3 Pseudocalibration . 137

5.3.1 PAP planted distribution . 138
5.3.2 Pseudocalibration technique . 138
5.3.3 Gaussian setting pseudocalibration 140
5.3.4 Boolean setting pseudocalibration . 144

5.4 Proving PSD-ness . 147
5.4.1 Non-spiders are negligible . 149
5.4.2 Killing a single spider . 156
5.4.3 Killing all the spiders . 168
5.4.4 Finishing the proof . 173

5.5 Sherrington-Kirkpatrick Lower Bounds . 180
5.6 Omitted technical details . 183

5.6.1 Norm Bounds . 183
5.6.2 Properties of e(k) . 185

vi

6 THE MACHINERY AND QUALITATIVE BOUNDS 192
6.1 Statement of the machinery . 192
6.2 Qualitative bounds for Planted slightly denser subgraph 192

6.2.1 Pseudo-calibration . 192
6.2.2 Proving positivity - Qualitative bounds 194

6.3 Qualitative bounds for Tensor PCA . 196
6.3.1 Pseudo-calibration . 196
6.3.2 Proving positivity - Qualitative bounds 199

6.4 Qualitative bounds for Sparse PCA . 206
6.4.1 Pseudo-calibration . 206
6.4.2 Proving positivity - Qualitative bounds 209
6.4.3 Intuition for quantitative bounds . 222

7 QUANTITATIVE BOUNDS . 224
7.1 Planted slightly denser subgraph: Full verification 224

7.1.1 Proof of Lemma 7.1.1 . 225
7.1.2 Proof of Lemma 7.1.2 . 227
7.1.3 Proof of Lemma 7.1.3 . 228

7.2 Tensor PCA: Full verification . 235
7.2.1 Proof of Lemma 7.2.1 . 237
7.2.2 Proof of Lemma 7.2.2 . 240
7.2.3 Proof of Lemma 7.2.3 . 242

7.3 Sparse PCA: Full verification . 249
7.3.1 Proof of Lemma 7.3.3 . 250
7.3.2 Proof of Lemma 7.3.4 . 255
7.3.3 Proof of Lemma 7.3.5 . 260

8 FOLLOWUP AND FUTURE WORK . 269
8.1 Nonlinear concentration for non-product distributions 269
8.2 Sum-of-Squares lower bounds . 269

8.2.1 Sparse independent set . 270
8.2.2 Planted Affine Planes and Maximum Cut 273
8.2.3 Unique Games . 275

8.3 Low degree likelihood ratio hypothesis . 275
8.4 Technical improvements . 276

8.4.1 Improving parameter dependences . 276
8.4.2 Satisfying constraints exactly . 277

REFERENCES . 278

vii

LIST OF FIGURES

1.1 An example graph on 5 vertices and two possible cuts. 1

2.1 Tensor networks for matrix multiplication and the algorithm in [87] 19
2.2 The graph τ and corresponding flattened tensor network 20
2.3 Left: Shape corresponding to adjacency matrix, Right: Example of a more com-

plicated shape . 40
2.4 An example illustrating how τP is defined. In this example, P constraints the

blue and red edges to go to α and β respectively. UτP , VτP have an ordering on
the vertices (not shown here). 45

2.5 Proof by picture that |S| ≥ |Sτ |. Green edges can occur in τ , orange edges
cannot, so S blocks all paths from Uτ to Vτ . 46

2.6 An example illustrating how τP is defined. In this example, P constraints the
blue and red edges to go to α1 and α2 respectively. Moreover, P indicates that
some edges are active in γ1, γ2 (indicated by a solid edge) and some are not active
(indicated by a dashed edge) in γ1, γ2. We keep the solid edges in τP . UτP , VτP
also have an ordering on the vertices (not shown here). 75

4.1 The computational barrier diagram when λ ≥ 1 118
4.2 The computational barrier diagram when λ < 1 119

5.1 The Fourier polynomial h3(du,i1)h1(du,i2)h2(du,w1)h1(du,j1)h1(du,j2) represented
as a graph. 129

5.2 Two examples of trivial shapes. 134
5.3 Picture of basic non-spider shape α. 134
5.4 Picture of basic spider shape α. 135
5.5 Picture of shapes β1 and β2. 135
5.6 Approximation β1 × β

ᵀ
1 ≈ α. 136

5.7 The five shapes that make up L4. 160
5.8 A surprising equality of graph matrices. 165

6.1 Shapes σ ◦ τ1 ◦ σT , σ ◦ τ2 ◦ σT and σ ◦ σT . All edges have label 1. 222

viii

LIST OF TABLES

ix

ACKNOWLEDGMENTS

x

ABSTRACT

We develop new tools in the theory of nonlinear random matrices and apply them to study

the performance of the Sum-of-Squares (SoS) hierarchy on average-case problems.

The SoS hierarchy is a powerful optimization technique that has achieved tremendous

success for various problems in combinatorial optimization, robust statistics and machine

learning. It’s a family of convex relaxations that lets us smoothly tradeoff running time for

approximation guarantees. In recent works, it’s been shown to be extremely useful to recover

structure in high dimensional noisy data. It also remains our best approach towards refuting

the notorious Unique Games Conjecture.

In this work, we analyze the performance of the SoS hierarchy on fundamental problems

stemming from statistics, theoretical computer science and statistical physics. In particu-

lar, we show subexponential-time SoS lower bounds for the problems of the Sherrington-

Kirkpatrick Hamiltonian, Planted Slightly Denser Subgraph, Tensor Principal Components

Analysis and Sparse Principal Components Analysis. These SoS lower bounds involve ana-

lyzing large random matrices, wherein lie our main contributions. These results offer strong

evidence for the truth of and insight into the low-degree likelihood ratio hypothesis, an

important conjecture that predicts the power of bounded-time algorithms for hypothesis

testing.

We also develop general-purpose tools for analyzing the behavior of random matrices

which are functions of independent random variables. Towards this, we build on and gener-

alize the matrix variant of the Efron-Stein inequalities. In particular, our general theorem

on matrix concentration recovers various results that have appeared in the literature. We

expect these random matrix theory ideas to have other significant applications.

xi

CHAPTER 1

INTRODUCTION

Algorithm design, mathematical optimization and computational complexity are close-knit

fields of computer science that have largely developed in parallel in the beginning. In recent

decades, there has been an explosion of research in these fields that often borrowed ideas

from the other ones, and there is no longer a discernible wall separating them. Indeed, these

fields of computer science can now be construed as trying to achieve the same goal - Which

problems are easy and which are hard?

Early researchers have mainly focused on search problems. Given an input, the objective

is to search for a desired hidden structure. Often, this can be equivalently restated as the

problem of optimizing an appropriate objective function under various constraints.

(a) (b) (c)

Figure 1.1: An example graph on 5 vertices and two possible cuts.

For example, consider the Maximum Cut problem, where the input is a graph and the

goal is to partition the set of vertices into two subsets that maximizes the number of edges

with endpoints in different parts. If we take for instance the graph (a) in Fig. 1.1, two

possible partitions are shown in (b) and (c) where blue colored vertices form a part and red

colored vertices form a part. Then, the partition in (b) cuts 3 edges and the partition in (c)

cuts 5 edges, namely the edges intersecting the green line. It’s easy to see via a simple parity

argument that we cannot do better than 5 edges.

1

In the search problem formulation, we would like our search algorithm to output a par-

tition that cuts the maximum possible number of edges. And in the optimization problem

formulation, we would like our optimization algorithm to output the maximum value cor-

rectly.

Another formulation of computational problems are decision problems. Given an input,

the objective is to decide whether there exists a hidden structure or if the objective value

satisfies some properties, with the restriction that the algorithm can only return a boolean

output - for example, true or false; or yes or no. In the above example of maximum cut, the

decision problem perspective could be to ask if the maximum cut in the given graph contains

at least 0.6 (say) fraction of the total number of edges.

These types of problems are all intimately related and in many cases, essentially boil down

to the search for algorithms. For practicality, we require various properties like efficiency,

accuracy, etc. This has led to the development of a rich theory of computability, complexity

theory and optimization. In this dissertation, we will also consider the viewpoints of related

types of problems, namely certification problems and hypothesis testing. As we will see,

these other formulations are related to the former and to each other but it’s not clear how

deep the connections go, and trying to understand this is an important pursuit in theoretical

computer science. That said, underlying all these formulations is the goal of searching for

efficient algorithms to detect and extract structure from data, or arguing that no such exist

unless we’re willing to compromise on other things like efficiency or accuracy.

1.1 Certification problems

As opposed to search or decision problems, certification problems, given an input, ask for

a bound on the objective value, that holds true with probability 1. And the quality of the

algorithm is usually measured in terms of how close the bound gets to the true optimum.

In the running example of maximum cut, given a graph, the task could be to output a

2

value that’s always an upper bound on the size of the maximum cut. A simple algorithm

could be to simply return the total number of edges in the graph. Indeed, this is a valid

certification algorithm and we could ask if one could do better.

This is fundamentally a different approach to algorithm design. Consider the scenario

when we are maximizing some objective function and so we desire an upper bound on the

optimal value. Then, designing a certification algorithm can be construed as attacking a

problem from above as opposed to from below, the latter of which is the more standard

notion of algorithm design.

The notion of linear programming relaxations already provide such certification algo-

rithms. Given a problem that can be formulated as an integer program (as many are), a

natural way to obtain a certification solution is to widen the search space from integral vari-

ables to real variables, adding other appropriate constraints as necessary. This is known as

relaxing the program. This enables a faster algorithm to attempt to compute the solution,

but comes at a loss of only obtaining an approximate solution. But importantly, the objec-

tive value obtained by the return solution is a definite bound bound on the optimal solution,

no matter the input. This is what a certification algorithm desires. Measuring the quality of

the returned output often depends on the type of relaxation considered and problem specific

structure.

In many cases, it’s possible to obtain an approximation algorithm to a problem by looking

at a relaxation of the program, obtaining a non-integral solution and rounding it to a valid

solution. For the maximum cut problem, this was done by Goemans and Williamson in their

seminal work [72] where they used a semidefinite programming relaxation, which is more

powerful than linear programming relaxations.

In this dissertation, we will focus on a specific class of such certification algorithms,

namely the Sum-of-Squares (SoS) hierarchy, sometimes referred to as the Lasserre hierarchy.

The SoS hierarchy is a series of convex relaxations to a given program. By virtue of being a

3

relaxation, they can be used for certification. Due to it’s tremendous success for various fun-

damental optimization problems such as maximum cut, constraint satisfaction, etc., the SoS

hierarchy has become a powerful optimization technique. This is further amplified by results

that say that the SoS hierarchy is the optimal relaxation among a broad class of semidefinite

programming relaxations [119], and assuming the famous unique games conjecture, it’s the

best approximation algorithm for every constraint satisfaction problem [152]. A chief goal of

this dissertation is to understand the limits of this powerful technique. We especially focus

on the so-called average-case setting, that we will define now.

1.2 Average-case analysis

An important theme in this work is the study of random instances of problems, which is

termed average-case analysis. As opposed to traditional worst-case algorithm design, where

we wish to design an algorithm that performs well on the worst possible input, there has

been an exciting development of research on problems where the input is randomly sampled

from a distribution. For instance, in the maximum cut problem, we could assume that the

input comes from the Erdős-Rényi family of random graphs, where the number of vertices

in the graph is chosen beforehand and each edge is present independently with probability

0.5.

In average-case algorithm design, we wish to design algorithms that perform well on

average-case inputs with high probability, as opposed to all inputs. This is important because

studying the worst case complexity of a problem may not shed light on the intrinsic hardness

of the problem. This happens because the worst-case instance input for an algorithm could

be highly artificial and contrived. Put another way, in real world scenarios, the inputs for

various optimization or search problems we encounter are unlikely to be such instances.

This is seen in practice as well. For example, the simplex method for linear programming

[47] is exponentially slow in the worst-case, as was shown by Klee and Minty [106], but

4

performs extremely well practically. Various works have tried to explain this behavior, e.g.

[26, 170, 27, 171]

Tremendous effort has been invested to understand the average-case complexity for a

wide variety of problems. And research towards designing average-case algorithms brings

about a deeper understanding of the core of the problem, enabling the design of worst-case

algorithms as well. This can be seen for example for the famous Densest k-subgraph problem

[22]. In this work, we will focus on average-case analysis.

In our pursuit, fundamental mathematical objectS that occur repeatedly are large random

matrices. And we often desire to understand their behavior.

1.3 Underlying theme of this work: Random matrices

Random matrices are abundant in computer science, especially in the fields of optimization

and statistics. Often, the analysis of an algorithm requires analyzing the behavior of certain

random matrices that can be constructed from the input. Even outside computer science,

random matrix theory is a fundamental field of it’s own right, having been studied since the

early 1900s, with applications also extending to many branches of mathematics and physics.

For a short survey, see [65].

There has been tremendous effort over the last few decades to develop the theory of

random matrices, see the book by Tropp [180]. For example, the matrix-Bernstein inequal-

ity studies the behavior of a random weighted sum of matrices; the Wigner semicircle law

studies the distribution of the eigenvalues of a random matrix sampled from the Gaussian

Orthogonal ensemble. On the other hand, fewer tools are available to understand the be-

havior of nonlinear random matrices, where each matrix entry is a nonlinear function of the

input, say for instance low-degree polynomials.

In our setting, this occurs frequently when trying to analyze the SoS hierarchy for various

problems. This is true both when trying to design algorithms via SoS as well as when trying

5

to study the limitations of SoS algorithms, for example, [11, 88, 165, 131, 95]. Therefore,

we begin with this important endeavor of understanding the behavior of nonlinear random

matrices. In the first part of this thesis, we are interested specifically in concentration

behavior. We emphasize that this is an important research direction in it’s own right.

To bound the fluctuations of a random matrix from its mean, measured in terms of

spectral or Schatten t-norm of the difference, a simple but powerful technique that has been

widely used (including in many of the works cited above) is the so-called trace method. In

this method, the (centered) random matrix is raised to a large power and the expected trace

of the resulting matrix is bounded. While this method gives satisfactory results, it often

requires ingenious observations and highly nontrivial combinatorics.

Another approach is as follows. Consider a random matrix that is a function of several

independent input variables. We can study it’s behavior by studying how much it deviates

when a single uniformly chosen input entry is resampled. By bounding these local fluctua-

tions, we can bound the global fluctuation of the random matrix. This technique gives rise

to the Efron-Stein inequalities. Originally, they were developed for scalar random variables

(which can be thought of as 1 × 1 matrix). And in this special case, they turned out to

be extremely powerful since they have been shown to recover many standard concentration

inequalities. And recently, the work [147] showed a matrix version of the Efron-Stein inequal-

ities. In this work, we build on this to obtain a general framework for proving concentration

of large random matrices.

In the second part of this thesis, in the analysis of SoS algorithms, the fundamental

difficulty that appears is to analyze the behavior of a large nonlinear random matrix. In

particular, we want to argue that this random matrix is positive semidefinite with high

probability over the choice of the input. For this, we exhibit an approximate Cholesky

decomposition of the matrix and the proof extensively builds on the concentration results

we develop above.

6

In conclusion, the motif in this work is the study of nonlinear random matrices, where

we both build a general framework for analyzing concentration and apply them to study

algorithms on fundamental problems.

1.4 The Sum of Squares Hierarchy

Given an optimization problem in the form of a program with polynomial inequality con-

straints, there have been many works proposing generic approaches to relax the program,

in order to obtain good solutions efficiently. Some of the more dominant approaches have

been the Lovász-Schrijver hierarchy [120] and the Sherali-Adams hierarchy [167]. Informally

speaking, these hierarchies of algorithms lift the program to a larger set of variables, tied

together via various constraints, relax and solve the larger program, and finally project the

solution down to the original variable space. They are parameterized by an integer known as

the degree, where larger degrees offer tighter relaxations at the cost of larger running times.

The Sum-of-Squares (SoS) hierarchy is a similar optimization technique that harnesses

the power of semidefinite programming. For polynomial optimization problems, the SoS hi-

erarchy, first independently investigated by Shor [169], Nesterov [135], Parillo [144], Lasserre

[117] and Grigoriev [73, 74], offers a sequence of convex relaxations parameterized by an

integer called the degree of the SoS hierarchy. As we increase the degree d of the hierarchy,

we get progressively stronger convex relaxations which are solvable in nO(d) time. This has

paved the way for the SoS hierarchy to be almost a blackbox tool for algorithm design. As

has been shown in multiple works, it serves as a strong algorithm for various problems, both

in the worst case and the average case settings.

Consider our running example of the Maximum Cut problem. The seminal Goemans-

Williamson algorithm [71] achieves an approximation factor of ≈ 0.878 for this problem via

a semidefinite programming relaxation. As it turns out, this algorithm is just the degree 2

SoS hierarchy. This approximation factor is conjectured to be optimal and there has been

7

increasing evidence that this is indeed the case. This highlights an example of why the SoS

hierarchy is powerful.

Indeed, there has been tremendous success in using the SoS hierarchy to obtain efficient

algorithms for combinatorial optimization problems (e.g., [72, 6, 76, 153]) as well as problems

stemming from Statistics and Machine Learning (e.g., [11, 15, 89, 150, 110]). In fact, SoS

achieves the state-of-the-art approximation guarantees for many fundamental problems such

as Sparsest Cut [6], Maximum Cut [72], Tensor PCA [89] and all Max-k-CSPs [152]. As

mentioned earlier, for a large class of problems, it’s been shown that SoS relaxations are the

most efficient among all semidefinite programming relaxations [119].

The term “Sum of Squares” comes from a dual view in proof complexity. Besides being

an algorithmic technique, SoS can be equivalently viewed as giving a proof or certificate of a

bound on the optimal value of a polynomial optimization problem. This work can be traced

back to Hilbert’s seventeeth problem which has led to work on a proof complexity result

known as the Positivstellensatz, which gives conditions under which polynomial systems can

be shown to have no solutions, see e.g. [174, 151, 159]. The algorithmic implications were

originally observed by Lasserre [117] and Parillo [144, 145] leading to the interpretation of

SoS as an optimization technique as we study in this work. This duality can be completely

formalized and has led to the so-called framework of “proofs to algorithms” that has achieved

tremendous success, especially recently in robust statistics, see e.g., [110, 96, 82, 8]. The

adage is that if we can find an “easy” proof of an identifiability result for a search problem,

then it can be automatized to give an algorithm. We will not explore this in detail here, and

we refer the reader to the monograph [64].

Next, we move onto SoS lower bounds but before that, we highlight some related tech-

niques that has gained traction in the community recently.

8

1.4.1 Related Algorithmic Techniques

Apart from search, decision and certification, researchers have also considered other related

types of problems. Consider a problem where the input is sampled from one of two known

distributions and we would like to identify which distribution it was sampled from. This is

known generally as hypothesis testing. For example, one distribution could be the distribu-

tion of Erdős-Rényi random graphs while the other could be the distribution of Erdős-Rényi

random graphs but with a large cut planted in them. It’s clear that this problem is a different

flavor of the maximum cut problem on random graphs. Beyond being interesting in their

own right, studying these related formulations offer alternate perspectives and interesting

insights into the search or certification variants as well. Another type of problem, known as

recovery problems, is to recover the planted structure when the input is sampled from the

latter distribution.

For all the type of problems considered so far, apart from SoS, there have also been several

other framework of algorithms that have been considered and in some cases, extensively

studied. Examples include

• Lovász-Schrijver and Sherali-Adams hierarchies - As discussed earlier, these hierarchies

lift a program to a larger set of variables and then relax any integrality constraints. The

resulting solution is then projected back to the original variables which may then be

rounded to an integral solution. These hierarchies are captured by the SoS hierarchy,

or in other words, the SoS hierarchy is at least as powerful as these hierarchies [64].

• Low degree polynomials - For hypothesis testing, low degree polynomials can be used

to try and distinguish the two distributions. More precisely, if there is a low degree

polynomial such that its expected value on the two distributions behave differently and

the variance isn’t too large, this can be used to distinguish the two distributions. This

is related to the SoS hierarchy and we will revisit this point in more detail later.

9

• Statistical query algorithms - For hypothesis testing, the statistical query model (SQ)

is another popular restricted class of algorithms introduced by [99]. In this model, for

an underlying distribution, we can access it indirectly by querying expected values of

functions, upto some error. Given access to this oracle, we would like to hypothesis test.

SQ algorithms capture a broad class of algorithmic techniques in statistics and machine

learning including spectral methods, moment and tensor methods (see e.g. [61, 62]).

SQ algorithms has also been used to study information-computation tradeoffs and more

broadly has been studied in other contexts [60]. There has also been significant work

trying to understand the limits of SQ algorithms (e.g. [61, 63, 51]). Recent work [32]

has shown that low degree polynomials and statistical query algorithms have equivalent

power under mild conditions.

• Approximate message passing and other statistical physics techniques such as belief

propagation, see e.g. the review [188].

• Local algorithms, see e.g. [55, 56, 92].

• Circuit models of computation of bounded size, see e.g. [161, 162].

1.5 Lower bounds against The Sum of Squares Hierarchy

Because of the incredible success of the SoS hierarchy for a variety of problems, it’s an

important research direction to study the limits of the SoS hierarchy, which we endeavour

in this dissertation. In particular, we will focus on average-case problems and as we will see,

most of the technical difficulty boils down to the analysis of nonlinear random matrices, to

handle which we develop various techniques.

There are many reasons for why studying lower bounds against the SoS hierarchy is

important. The SoS hierarchy is general enough to capture a broad class of algorithmic rea-

soning [64]. In particular, SoS captures the Lovász-Schrijver and Sherali-Adams hierarchies,

10

statistical query algorithms and algorithms based on low degree polynomials. Therefore, SoS

lower bounds indicate to the algorithm designer the intrinsic hardness of the problem and

suggest that if they want to break the algorithmic barrier, they need to search for algorithms

that are not captured by SoS. Secondly, in average case problem settings, standard com-

plexity theoretic assumptions such as P 6= NP have not been shown to give insight into the

limits of efficient algorithms. Instead, lower bounds against powerful techniques such as SoS

have served as strong evidence of computational hardness [85, 91]. Thus, understanding the

power of the SoS hierarchy on these problems is an important step towards understanding

the approximability of these problems. See also the surveys [17, 130] for more on this.

There have been relatively fewer works on SoS lower bounds, as opposed to some other

classes of algorithms we have discussed, which can be attributed to the sheer technical

difficulty of proving such lower bounds. For example, the works [74, 164, 107] studied SoS

lower bounds for random constraint satisfaction problems. A series of works [57, 127, 49,

13, 140] studied SoS lower bounds for maximum clique on random graphs. Some other SoS

lower bounds, not including the ones in this thesis, are the works [121, 109, 128, 113, 108].

1.6 A summary of our main results

In the first part of this work, we study concentration behavior of nonlinear random matrices.

In the second part, we study lower bounds against the SoS hierarchy for several fundamental

problems.

1.6.1 Nonlinear matrix concentration via Matrix Efron-Stein

We start by giving a general theorem on concentration of random matrices whose entries

are polynomials of independent random variables. The famous matrix-Bernstein inequality

answers this question when we only have linear polynomials. But understanding the setting

of non-linear polynomials is just as important yet it poses significant challenges. When they

11

arise in various applications in the literature, the usual way to handle such random matrices

has been the so-called trace method. While this method gives the desired results, sometimes

to great effect, applying it usually turns out to be highly nontrivial. In this work, we propose

an alternate way to prove matrix concentration via the Matrix Efron-Stein inequalities. We

propose a general matrix concentration inequality, the proof of which relies on the powerful

method of exchangeable pairs. We show some applications of this inequality and expect it

to have significant applications outside what we have explored here.

1.6.2 Sum of Squares lower bounds

We obtain strong sub-exponential time lower bounds against the SoS hierarchy for a variety

of fundamental problems in computer science. All our applications start with the so-called

pseudocalibration heuristic, reducing the problem to analyzing the behavior of a large random

matrix, known as the moment matrix. Our conceptual and technical innovations happen at

this step. The results we present are as follows.

Sherrington-Kirkpatrick Hamiltonian

An important problem in statistical physics, the Sherrington-Kirkpatrick problem is to op-

timize the quadratic form of a random matrix sampled from the Gaussian Orthogonal En-

semble, over boolean vectors. It’s been known for a long time that the true optimal value

concentrates at a particular constant, upto scaling. And recently, an efficient algorithm has

also been proposed for this optimization problem. Certification on the other hand was widely

believed to be hard beyond the simple spectral algorithm. We provide strong evidence for

this by exhibiting lower bounds against SoS for this problem. This work requires us to

understand the nullspace of the moment matrix and nullify it before applying our matrix

concentration tools. Conceptually, this work provides a lot of insight into the behavior of SoS

on other fundamental problems such as maximum cut and learning mixtures of Gaussians.

12

Sparse PCA

Sparse PCA is a variant of principal components analysis (PCA), a fundamental routine in

statistics and machine learning. We work with the spiked Wishart model, which is the most

natural version of this problem, but which has proved quite hard to analyze in SoS. Prior

works have predicted the computational barrier of the recovery of the sparse component, as

a tradeoff between the dimension, sparsity and number of samples. We confirm this barrier

by proving lower bounds, matching known algorithms, against sub-exponential time SoS.

This work involves splitting the random moment matrix into different matrices and using

innovative combinatorial charging arguments to study how these matrices interact with each

other. Conceptually, this work confirms the computational barrier diagram for this problem,

that has been predicted and believed to be true for a long time.

Planted Slightly Denser subgraph

Finding a dense subgraph in a given graph is an important problem that has received much

scrutiny over the years, both algorithmically as well as from the algorithmic hardness angle.

For random instances of the problem under certain parameter regimes, the difficulty of this

problem has been conjectured, usually referred to as the PDS conjecture, and this problem

has been used as a canonical hard problem to reduce to various other problems and study

their computational barriers. Moreover, these hard instances have also been used as a basis

for cryptographic schemes. Therefore, SoS lower bounds against this problem go a long

way towards confirming this conjecture. In this work, we exhibit such sub-exponential time

lower bounds for certain parameter regimes, where it has been widely believed to require

sub-exponential time.

13

Tensor PCA

Tensor PCA is the average-case version of the problem of optimizing homogeneous polyno-

mials over the sphere, which is a fundamental and important problem in optimization due

to it’s connections to a variety of fields. In this work, we prove SoS lower bounds matching

known algorithms for this problem, settling the computational barrier for SoS for this prob-

lem. It also offers insight on the approximability-inapproximability threshold for general

homogeneous polynomial optimization and suggests that random instances may not be the

hardest for this problem.

1.7 Excluded work

This dissertation contains the main body of my research conducted during my PhD but there

has also been other research directions that have been left out, regrettably. This includes

the following works.

1.7.1 SoS Lower bounds for Sparse Independent Set

In our work [95], we show SoS lower bounds for the maximum independent set problem

on sparse Erdős-Rényi random graphs, matching the Lovász theta function upto low order

terms. To do this, we build on the tools developed in this dissertation as well as develop

a variety of new techniques. In particular, this work is the first venture in the important

research direction of understanding the limitations of SoS on sparse random graphs. We

highlight that for this work, our nonlinear matrix concentration tools from Chapter 2 are

very useful. We will elaborate on this result in Chapter 8 since it builds on much of the work

we will develop in this dissertation.

14

1.7.2 Causal Inference

Causal inference is the study of discovering and understanding causal relationships in ob-

served data, with diverse applications in medicine, genetics, economics, epidemics, artificial

intelligence, etc. In [157], we focus on the problem of learning a class of causal models

known as Bayesian Networks (BN), from data. This is a classical and fundamental problem

since BNs are compact, modular and offer intuitive causal interpretation, which has made

them very useful in various fields. We propose and study a new practical algorithm for this

problem. It is efficient, provably differs from the widely used Greedy-Equivalence-Search

algorithm, and since the algorithm is a general-purpose score-based learning algorithm, it is

widely applicable. Also, under some statistical assumptions that are inspired from and which

generalize recent works, our algorithm provably recovers the true Bayesian Network, even

for non-parametric models making no assumptions on linearity, additivity, independent noise

or faithfulness. It also suggests interesting potential connections to other machine learning

fields such as clustering, forward-backward greedy methods, and kernel methods.

In [105], we study a relatively understudied but just as important setting, where we have

unobserved (sometimes even unmeasurable!) latent causes or confounders for the observed

variables. We focus on the setting of probabilistic mixture models, which naturally comes up

in machine learning, economics, finance, biology, etc. Under some natural assumptions on

the model, we develop an algorithm that takes the observed data and uncovers the hidden

variables and the underlying causal relationships. Prior works related to this problem have

usually focused on special settings such as linear models. We instead propose an algorithm

to this problem in the highly nonlinear mixture models setting which works atop existing

algorithms for mixture model order estimation (which is easier than density estimation).

15

1.8 Organization of the thesis

In Chapter 2, we develop our nonlinear matrix concentration results and show it’s appli-

cations towards various nonlinear random matrices that have arisen in the literature. We

then introduce the Sum of Squares hierarchy in Chapter 3, introduce the technique of pseu-

docalibration used for showing SoS lower bounds and show it’s connections to low-degree

algorithms. In Chapter 4, we formally state the main SoS lower bounds we show in this the-

sis and put them in context with known prior works. In Chapter 5, we prove the SoS lower

bound for the Sherrington-Kirkpatrick problem. And in the next two chapters, Chapter 6

and Chapter 7, we prove the SoS lower bounds for Planted Slightly Denser Subgraph, Tensor

PCA and Sparse PCA. We conclude with followup and potential future works in Chapter 8.

16

CHAPTER 2

NONLINEAR MATRIX CONCENTRATION

In this chapter, we will describe our techniques for nonlinear matrix concentration via Efron-

Stein inequalities. The material in this chapter is adapted from [158], which is joint work

with Madhur Tulsiani.

2.1 Introduction

In optimization, statistics, and spectral algorithms, we often want to understand the con-

centration of various random matrices. To do this, we can appeal to the powerful theory of

matrix-deviation inequalities [180]. For example, the matrix-Bernstein inequality addresses

random matrices of the form

M = x1 ·C1 + · · ·+ xn ·Cn

where x1, . . . , xn are independent scalar random variables, and C1, . . . ,Cn are fixed matri-

ces. A large selection of such inequalities are available when the random matrix (say) M is

a linear function of independent random variables. However, several recent works require us

to understand random matrices which are non-linear functions, and in particular low-degree

polynomial functions, of scalar random variables. This forms the focus of our work.

As a motivating example, consider the random matrix M ∈ R[n]2×[n]2 obtained as

M = A1 ⊗A1 + · · ·+ Am ⊗Am ,

where A1, . . . ,Am ∈ R[n]×[n] are independent random matrices, with i.i.d. entries uniformly

distributed in {−1, 1}. It is easy to see that the entries of the matrix M are degree-2 poly-

nomial functions of the independent random variables describing the entries of A1, . . . ,Am.

17

The concentration of such a matrix was analyzed by Hopkins et al. [88, 81], who use it to

design spectral algorithms for a variant of the principal components analysis (PCA). This

matrix is a special case of a more general setting that we study in this work.

Matrix-valued polynomial functions. In the example above, the entries of the matrices

are low-degree polynomials in independent (Rademacher) random variables. In this work,

we consider a general setting where we take an n-tuple Z = (Z1, . . . , Zn) of independent and

identically distributed random variables1 distributed in Ω. We consider random matrices

given by a matrix-valued function F(Z) taking values in RI×J for arbitrary index sets I,J ,

where each entry F[I, J](Z) is a polynomial in Z1, . . . , Zn. We develop a general framework to

analyze concentration of such matrices. Our matrix concentration results are simpler to state

in the case when Z1, . . . , Zn are independent Rademacher variables uniformly distributed in

{−1, 1}, but apply for the general case as well.

Special cases of such non-linear random matrices have been used in several applications

in spectral algorithms and lower bounds. We now briefly discuss a few examples below.

1. Tensor networks. Random matrices such as the above were viewed as a special case

of “flattened tensor networks” by Moitra and Wein [131], who also considered spectral

algorithms obtained via somewhat larger tensor networks. A tensor network is a graph

with nodes corresponding to tensors (see the figure below for an example). An edge

between two nodes corresponds to shared indices for one of the dimensions and the

degree of each node is equal to the order of the corresponding tensor (the number of

dimensions). Such networks indicate how tensors of different orders can be multiplied

to obtain larger ones. For example, the first network in the figure below illustrates

the network corresponding to simple multiplication A ·B of two matrices A ∈ Rm×n

and B ∈ Rn×m, where the red and blue edges indicate the row and column indices

1. Our framework also applies when the variables are not necessarily identically distributed, as long as
they are independent.

18

respectively. Similarly, the second network in the figure below illustrates the network

corresponding to the application by Hopkins et al. [87], where T ∈ Rn×n×m is a

random tensor with i.i.d. entries in {−1, 1}. While the latter network yields an order-

4 tensor, they obtain a matrix in Rn2×n2
by “flattening” it, where the row is indicated

by the indices in the red edges and the column is indicated by the indices in the blue

edges. In the figure, we also indicate the index sets corresponding to each of the edges

(though these are often supressed in the diagrams). Moitra and Wein [131] analyzed a

larger tensor network, with a graph consisting of 10 nodes, in their algorithm for the

continuous multi-reference alignment problem.

A B
[n][m] [m]

T T
[m]

[n]

[n]

[n]

[n]

Figure 2.1: Tensor networks for matrix multiplication and the algorithm in [87]

2. Graph matrices. Another setting of nonlinear concentration arises from the analysis

of the so-called “graph matrices” [126, 1]. Graph matrices play an important role in

lower bounds for average-case problems, against algorithms based on the powerful Sum-

of-Squares (SoS) SDP hierarchy running in polynomial time and even sub-exponential

time [127, 49, 84, 154, 13, 128? , 149, 95].

Let X be the {±1}-adjacency matrix of a random graph in Gn,1/2 i.e., X[i, j] is uni-

form {−1, 1} when i 6= j and 0 when i = j. Graph matrices are random matrices

corresponding to the occurences of a small graph pattern called a “shape”. A shape τ

is a small, fixed graph with two ordered subsets Uτ , Vτ of vertices. For simplicity, let

τ be a shape of a fixed size, where the vertex set V (τ) is partitioned into two ordered

sets V (τ) = Uτ t Vτ . For such a shape τ , the corresponding graph matrix Mτ has

rows and columns indexed by [n]|Uτ | and [n]|Vτ | respectively, and we view the row and

19

column indices I and J as defining a (unique in this case) map ϕ : Uτ tVτ → [n]. The

corresponding entry is given by

Mτ [I, J] = Mτ [ϕ(Uτ), ϕ(Vτ)] =


∏

(u,v)∈E(τ) X[ϕ(u), ϕ[v]] if ϕ is injective

0 otherwise

In the case of general graph matrices (defined formally in Section 2.4.2), Uτ , Vτ are

arbitrary ordered subsets of the vertex set of τ , and we sum over all feasible injective

maps ϕ. As an example, consider the case shown in Fig. 2.2, where τ is a triangle on

three vertices {u1, v1, v2} with Uτ = (u1) and Vτ = (v1, v2). Then, the corresponding

matrix is given by

Mτ [i1, (i2, i3)] = X[i1, i2] ·X[i2, i3] ·X[i3, i1] ,

where X automatically enforces injectivity.

Graph matrices are closely related to tensor networks (ignoring the injectivity con-

straint on ϕ). For instance, the above matrix can be viewed as the flattened tensor

network below, where the tensor I denotes the “diagonal” tensor of order 3 with entries

being 1 if all indices are equal and 0 otherwise.

u1

v1

v2

I

I

I

X

X

X

Figure 2.2: The graph τ and corresponding flattened tensor network

20

Analyzing concentration Recall that our objective is to analyze the concentration of

polynomial random matrices. To motivate our approach, consider first the problem of ob-

taining concentration bounds on a scalar polynomial f(Z) with mean zero. To obtain such

bounds, because of Markov’s inequality, it suffices to compute moment estimates

P [|f(Z)| ≥ λ] = P
[
(f(Z))2t ≥ λ2t

]
≤ λ−2t · E

[
(f(Z))2t

]

While in some cases E[(f(Z))2t] can be computed by direct expansion, it often involves

an intricate analysis of the structure of terms with degrees growing with t, and therefore

indirect methods may be more convenient. One such method is based on hypercontractive

inequalities. In particular for Rademacher variables, the hypercontractive inequality [136]

gives that for a polynomial f of degree dp, we have

E
[
(f(Z))2t

]
≤ (2t− 1)dp·t ·

(
E
[
(f(Z))2

])t
.

Thus, for (scalar) polynomial functions, the hypercontractive inequality gives moment esti-

mates using (f(Z))2, which is convenient because (f(Z))2 is a polynomial of fixed degree

and therefore is much easier to understand. In fact, it can often be conveniently analyzed

using the Fourier coefficients of f .

The matrix analog of the above argument involves the Schatten-2t norm ‖.‖2t, which is

defined for a matrix M with non-zero singular values σ1, . . . , σr as ‖M‖2t2t :=
∑
j∈[r] σ

2t
j .

For a function F with E[F(Z)] = 0, we have the following bound using Schatten norms.

P [σ1(F) ≥ λ] ≤ λ−2t · E ‖F‖2t2t = λ−2t · E tr
[
(F(Z)F(Z)ᵀ)t

]

Known norm bounds for tensor networks [131] (which involves Gaussian variables) and graph

matrices [1, 95] rely on direct expansion of the trace above. They analyze terms in the

21

expansion as being formed by 2t copies of the network/shape, which leads them to consider

graphs formed by 2t copies of the network/shape, with possibly overlapping vertex sets. To

analyze such graphs, they both rely on intricate combinatorics.

While hypercontractive inequalities are also known for matrix-valued functions of Rademacher

variables [18], their form involves Schatten-p norms for p ∈ [1, 2] and (to the best of our

knowledge) are not known to imply matrix concentration. To get around this, we consider

another indirect method based on Efron-Stein inequalities. In the scalar case, Efron-Stein

inequalities gives us a slight weakening of the above scalar bound. Interestingly, it turns out

that this can indeed be generalized to the matrix case.

Efron-Stein inequalities. Efron-Stein inequalities bound the global variance of a function

of independent random variables, in terms of local variance estimates obtained by changing

one variable at a time. For i ∈ [n] and tuple Z = (Z1, . . . , Zn), let Z(i) denote the tuple

(Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn), where Z̃i is an independent copy of Zi. For a scalar function

f(Z), the Efron-Stein inequality states that

Var [f(Z)] = E
[
(f(Z)− E f)2

]
≤ 1

2
·
∑
i∈[n]

E
[(
f(Z)− f

(
Z(i)

))2
]

= E [V (Z)] ,

where V (Z) :=
∑
i∈[n] E

[(
f(Z)− f

(
Z(i)

))2
|Z
]
. For Rademacher variables, E[V (Z)] is

equal to the total influence from boolean Fourier analysis and indeed, the above inequality

can also be observed via Fourier analysis. In fact, when f is a polynomial of degree dp, the

two sides are within a factor dp.

A moment version of the Efron-Stein inequality was developed by Boucheron et al. [28],

who obtain bounds in terms of V (Z) (in fact, in terms of more refined quantities V+(Z) and

V−(Z)) which serves as a proxy for the variance. Their results imply that for a function f ,

E
[
(f(Z)− E f)2t

]
≤ (C0 · t)t · E

[
(V (Z))t

]
.

22

A beautiful matrix generalization of the above inequality (Theorem 2.1.1 below) was obtained

by Paulin, Mackey and Tropp [147], via the method of exchangeable pairs (see also [93] for

a different proof). Their inequality is stated for Hermitian matrix valued functions H. But

we can also use it for non-Hermitian functions F, where we simply apply it to the Hermitian

dilation H =

 0 F

Fᵀ 0

 instead.

Theorem 2.1.1 ([147]). Let H(Z) be a Hermitian matrix valued function of independent

random variables Z = (Z1, . . . , Zn) with E ‖H‖ <∞. Then, for each natural number t ≥ 1,

E tr
[
(H− EH)2t

]
≤ (4t− 2)t · E tr

[
Vt
]
,

where V(Z) is the variance proxy defined as

V(Z) :=
1

2
·
n∑
i=1

E
[(

H(Z)−H
(
Z(i)

))2
| Z
]
.

A simple bound for Rademacher variables. The form of the variance proxy suggests

a recursive approach for polynomial functions (say of degree dp) of Rademacher variables.

Consider the scalar case again in particular the Efron-Stein inequality by Boucheron et

al. [28], where the variance proxy can be written as

V (Z) =
1

2
·
∑
i∈[n]

E
[(
f(Z)− f

(
Z(i)

))2
| Z
]

=
1

2
·
∑
i∈[n]

E

[
(Zi − Z̃i)2 ·

(
∂f(Z)

∂Zi

)2

| Z

]

=
∑
i∈[n]

(
∂f(Z)

∂Zi

)2

= ‖f1(Z)‖22 ,

where f1(Z) is a vector-valued function given by f1[i](Z) =
∂f(Z)
∂Zi

. Thus, to estimate

E (f(Z))2t, we just need to estimate E ‖f1(Z)‖2t2 , where f1(Z) is now a vector valued function.

The key observation is that f1(Z) has entries of degree at most dp−1. This suggests that we

23

can apply this inequality recursively until we end up with constant polynomials, which we

fully understand. We can do a similar computation for matrix-valued functions F(Z) using

Theorem 2.1.1. This yields two matrices F0,1 and F1,0 of partial derivatives, where an extra

index i is added either to the row or column indices. Iterating this yields the following result,

which we state in terms of the partial derivative operators ∇α(f) =
(∏

i:αi=1
∂
∂Zi

)
(f) for

α ∈ {0, 1}n (extended entry-wise to matrices).

Theorem 2.1.2 (Rademacher recursion). Let F : {−1, 1}n → RI×J be a matrix valued

polynomial function of degree at most dp. Then, for each natural number t ≥ 1,

E ‖F− EF‖2t2t ≤
∑

1≤a+b≤dp
(16tdp)

(a+b)·t ·
∥∥EFa,b

∥∥2t
2t
,

where Fa,b is a matrix of partial derivatives indexed by the sets I × {0, 1}n and J × {0, 1}n

with

Fa,b[(·, α), (·, β)] =


∇α+β(F) if |α| = a, |β| = b, α · β = 0

0 otherwise

Similar to the hypercontractive bound for the scalar case, the bound above is in terms of

a small number (O(d2
p)) of matrices that arise from polynomials of fixed degree (not growing

with t), but importantly, they are deterministic matrices. Because they are deterministic,

analyzing them is considerably easier. When we apply this theorem to the case F = Mτ ,

the graph matrix of a shape τ , we obtain bounds in terms of combinatorial objects known

as “vertex separators” of the shape τ . This recovers the bounds by Ahn et al. [1] and

perhaps surprisingly (to the authors), this gives an alternative and direct derivation of these

combinatorial structures such as vertex separators, compared to the ingenious observations

made in Ahn et al. [1]. We cover this and other applications of the Rademacher framework

in Section 2.4.

24

Extending the framework to general product distributions. A key contribution

of our work is to show how the above framework can be extended to arbitrary product

distributions (with bounded moments). A motivating example of this is norm bounds for

the so-called “sparse graph matrices”. In sparse graph matrices, the variables Zi can be

thought of as (normalized) edges of a Gn′,p graph, that is, Zi = −
√

1−p
p with probability p

and Zi =
√

p
1−p with probability 1 − p. These variables are standard in p-biased Fourier

analysis [?] and are chosen to satisfy EZi = 0 and EZ2
i = 1. Sparse graph matrices

naturally arise when analyzing average case problems on Gn,p graphs for p = o(1), as opposed

to Gn,1/2 graphs.

Until recently, little was known about norm bounds for sparse graph matrices. The

difficulty stems partly from the fact that when p = o(1), it is important that sparse graph

matrix norm bounds have the right dependence on p and not just on n. Such norm bounds

were obtained recently by Jones et al. [95], via the trace power method which involved

a delicate combinatorial counting argument. On the other hand, we obtain similar norm

bounds using our framework but in a more mechanical fashion. We can also readily apply

our framework in the even more general case of sub-Gaussian random variables and our

bounds will depend on the sub-Gaussian norm of the distributions.

To extend our framework to general product distributions, we could take inspiration

from the Rademacher case and could attempt to simply recursively apply the Efron-Stein

inequality. Unfortunately, this idea will fail. The issue can be observed by again considering

the scalar case. Assume that Z1, . . . , Zn are i.i.d. with EZi = 0 and EZ2
i = 1 for all i ∈ [n].

Also assume for simplicity that f(Z) is a multi-linear polynomial of degree dp. Analyzing

the variance proxy as before, we get

V (Z) =
1

2
·
∑
i∈[n]

E

[
(Zi − Z̃i)2 ·

(
∂f(Z)

∂Zi

)2

| Z

]
=

1

2

∑
i∈[n]

E
[
(Zi − Z̃i)2|Z

]
·
(
∂f(Z)

∂Zi

)2

.

25

In the Rademacher case, we had E[(Zi − Z̃i)
2|Z] = 2. This left us with the polynomials

corresponding to partial derivatives but which importantly had a strictly lower degree. How-

ever, for a general product distribution, we instead have E[(Zi−Z̃i)2|Z] = 1+Z2
i . This gives

back a term
(
Zi · ∂f∂Zi

)2
where the polynomial inside the square could have degree possibly

still equal to dp. This means that in the next step of the recursion, we may again have to

consider a derivative with respect to Zi and may again end up with the same polynomial f .

Therefore, the recursion is stalled! A similar issue occurs for matrices, which is elaborated

in Section 2.5. To get around this, we generalize the work of [147].

Generalizing [147] via explicit inner kernels. To resolve the above issue, we modify

the proof of [147] and our proof techniques may be of independent interest.

We first recall how the matrix Efron-Stein inequality, Theorem 2.1.1, was proved in

[147]. Their basic strategy is to utilize the theory of exchangeable pairs [172, 173, 38, 39], in

particular kernel Stein pairs. A kernel Stein pair is an exchangeable pair of random matrices

that has a “kernel”, a bivariate function that “reproduces” the matrices in the pair. More

concretely, consider an exchangeable pair of random variables (Z,Z ′) (which means (Z ′, Z)

has the same distribution). For this exchangeable pair, a bivariate matrix-valued function

K(z, z′) is said to be a kernel for a matrix-valued function F if it satisfies

• Anti-symmetry: K(z′, z) = −K(z, z′) for all inputs (z, z′).

• Reproducing property: E[K(Z,Z ′) | Z] = F(Z).

If such a kernel K exists, then the pair of random variables (F(Z),F(Z ′)) is said to be a

kernel Stein pair.

Building on ideas from [173, 38], Paulin, Mackey and Tropp [147] first show the existence

of a kernel, by exhibiting it as a limit of coupled Markov Chains. By studying the evolution

of this kernel coupling, they prove analytic properties of the kernel. Then, using this kernel,

26

they employ the powerful method of exchangeable pairs to evaluate moments of the random

matrix, which in turn will imply concentration.

For a Hermitian random matrix X, they introduce two matrices - the conditional variance

VX which measures the squared fluctuations of X when resampling a coordinate of Z; and

the kernel conditional variance VK which measures the squared fluctation of the kernel

when resampling a coordinate of Z. With these matrices in hand, they bound the Schatten

2t-norm of X by the Schatten t-norm of sVX + s−1VK for any parameter s > 0. Finally,

they choose s appropriately to make these two quantities approximately equal, in which case

it simplifies to the variance proxy V, proving Theorem 2.1.1.

In our setting, no such choice of s is feasible because for any choice of s, either the

conditional variance term sVX will dominate X2 or the kernel conditional variance term

s−1VK will dominate X2. This will make the main inequality Theorem 2.1.1 trivial.

To get around this, we will exploit the structure of the matrix we have, i.e. F = DGD

where D is a diagonal matrix that encodes all variables that have already been differentiated

on and G is a polynomial matrix of the remaining variables. Since D is a simple diagonal

matrix with low degrees, most of the deviations exhibited by F are in fact likely to be

exhibited by G. To capture this intuition, we consider a kernel for only the inner matrix G

instead of F as a whole. We call this an inner kernel.

This helps us avoid the root cause of the issue, i.e. differentiating on variables we have

already encountered (which correspond to entries in D). Therefore, the recursion will not

stall!

However, in general, this is not realizable since D and the kernel of G can interact in

unexpected ways. To study this interaction, we construct explicit polynomial kernels (The-

orem 2.7.3) (compared to [147] who show the existence of the kernel but for all functions).

We study how this explicit inner kernel interacts with D (see Lemma 2.7.6) and use it to

obtain a generalization of the inequalities by [147] (generalized because setting D = I will

27

give back their result) stated in Lemma 2.7.10.

A subtle issue is that the conditional variance of X may still have additional deviations

due to the diagonal matrices D (which still involve random variables). We control the addi-

tional deviations using Jensen’s operator trace inequality (for non-commuting averages) [78]

(stated in Lemma 2.2.4). Putting these ideas together lets us obtain a version of the Efron-

Stein inequality where the variance proxy only corresponds to the conditional variance of

the inner kernel. In the setting of polynomial functions, this inequality generalizes the work

of [147].

With the modified Efron-Stein inequality from above, we cannot guarantee that the

matrices F at intermediate steps are of lower degree, but on the other hand, the degree of

the inner matrix G reduces at each step. Therefore, we can recursively apply this inequality

to obtain our final bounds. The final bounds are then stated in terms of norm bounds for

the simplified matrices of the form DGD where G are deterministic matrices and D are

diagonal matrices which are still functions of Z. While random, these matrices can be easily

analyzed via simple scalar concentration tools.

The main theorem is stated in Section 2.6, in particular Theorem 2.6.6, with the proof

following in Section 2.7. While our proof builds on the work by [147], the argument here is

self-contained.

Applications. Our framework is suitable for many nonlinear concentration results ob-

tained in the literature [11, 69, 88, 126, 1, 87, 165, 81, 86, 131, 95]. We show a few of these

applications in Section 2.4 and Section 2.8. We expect similar future applications to bene-

fit from our framework because the task is mechanically reduced to analyzing considerably

simpler matrices.

In Section 2.4.2, we derive norm bounds on dense graph matrices. In earlier works,

dense graph matrices have been used extensively in analysis of semidefinite programming

hierarchies, especially the Sum-of-Squares (SoS) hierarchy [127, 49, 84, 154, 13, 128? , 149].

28

For more applications and a detailed treatment of graph matrices, see [1].

In Section 2.8, we derive norm bounds for sparse graph matrices. Sparse graph matrices

have been relatively less understood until recently, when [95] obtained norm bounds for such

matrices via the trace power method. They use these bounds to prove SoS lower bounds for

the maximum independent set problem on sparse graphs.

Potential extensions In this work, we assumed that the input forms a product distri-

bution. In other words, the variables Z1, . . . , Zn are independent. A natural extension is

the case when they are not independent. This has important applications for many prob-

lems such as when the input is a uniform d-regular graph, or when the input is sampled

from a distribution with a global constraint, etc. In such cases, the input variables are not

independent but it may be possible to use similar ideas to analyze concentration.

More concretely, to study concentration in the non-independent setting, one can use the

recent work of Huang and Tropp [93] on matrix concentration from Poincaré inequalities,

together with our framework. For this, we just need to exhibit a Markov process that

converges to our desired distribution.

Organization of the chapter We start with preliminaries in Section 2.2. In Section 2.3,

we state and prove the Rademacher recursion. We illustrate some applications of this frame-

work in Section 2.4. In Section 2.5, we explain why similar ideas may not be enough in

the general case. We then propose our general framework in Section 2.6 and prove it in

Section 2.7. We end with an application of the general framework to sparse graph matrices

in Section 2.8.

2.2 Preliminaries

Notation We use boldface letters such as I,M,X . . . , to denote matrices. Entries of a

matrix X ∈ RI×J will be denoted by X[I, J] for I ∈ I, J ∈ J . Let Hn denote the set of

29

n × n real symmetric matrices. The trace of a matrix X ∈ Hn equals
∑
i∈[n] X[i, i] and is

denoted by tr X.

Multi-index notation

For any pair of vectors α, β ∈ Nn and scalar c ∈ N, we define α+ β, α · β, cα entrywise. We

also define the orderings α ≤ β and α E β where we say α ≤ β if for each i, αi ≤ βi, and

αE β if for each i, αi is either 0 or βi. We denote by |α|0 the number of nonzero entries of

α and by |α|1, the sum of entries of α. For a boolean vector γ ∈ {0, 1}n, we define 1− γ the

vector with all its bits flipped.

Derivatives

For variables Z1, . . . , Zn and α ∈ Nn, define the monomial Zα :=
∏n
i=1 Z

αi
i . This forms a

standard basis for polynomials.

For α ∈ Nn, we define the linear operator ∇α that acts on polynomials by defining its

action on the elements Zβ as follows and then extend linearly to all polynomials.

∇α(Zβ) =


Zβ−α if αE β

0 o.w.

Informally, for a polynomial f written as a linear combination of the standard basis

polynomials Zβ , ∇α(f) isolates the terms that precisely contain the powers Zαii for all i

such that αi 6= 0 and then truncates these powers. In other words, it’s the coefficient of Zα

in f . In particular, observe that ∇α(f) does not depend on Zi for any i such that αi 6= 0.

Supose f is multilinear, as we can assume in the Rademacher case when we are working

with Zi ∈ {−1, 1}. For α ∈ {0, 1}n with nonzero indices i1, . . . , ik ∈ [n], we have ∇α(f) =

∂
∂Zi1

. . . ∂
∂Zik

f . So this linear operator generalizes the partial derivative operator. But note

that in general, ∇ is not simply the standard partial derivative operator.

30

Matrix Analysis

Linear operators that act on polynomials can also be naturally defined to act on matrices

by acting on each entry.

We define Im to be the m×m identity matrix. We drop the subscript when it’s clear. For

matrices F,G, define F⊕G to be the matrix

 0 F

G 0

. For a matrix F, define its Hermitian

dilation F as F⊕FT . Denote by � the Loewner order, that is, A � B for A,B ∈ Hn if and

only if B−A is positive semi-definite.

Definition 2.2.1. For a matrix F and an integer t ≥ 0, define the Schatten 2t-norm as

‖F‖2t2t = tr[(FFT)t]

Fact 2.2.2. For real symmetric matrices X1, . . . ,Xn, we have

(X1 + . . .+ Xn)2 � n(X2
1 + . . .+ X2

n)

Fact 2.2.3. For positive semidefinite matrices X,X1, . . . ,Xn such that X � X1 + . . .+ Xn

and for any integer t ≥ 1,

tr[Xt] ≤ nt−1(tr[Xt
1] + . . .+ tr[Xt

n])

Proof. By Hölder’s inequality, nt−1(tr[Xt
1] + . . . + tr[Xt

n]) ≥ (‖X1‖t + . . . + ‖Xn‖t)t. By

triangle inequality of Schatten norms, this is at least ‖X1 + . . .+ Xn‖tt. Finally, because

X1+ . . .+Xn � X � 0, we can use the monotonicity of trace functions (see [148, Proposition

1]) where we use the increasing function f(x) = xt on x ∈ [0,∞). This proves the result.

Lemma 2.2.4 (Jensen’s operator trace inequality). [78, Corollary 2.5] Let f be a convex,

continuous function defined on an interval I and suppose that 0 ∈ I and f(0) ≤ 0. Then,

31

for all integers m,n ≥ 1, for every tuple B1, . . . ,Bn of real symmetric m×m matrices with

spectra contained in I and every tuple A1, . . . ,An of m×m matrices with
∑n
i=1 AiA

T
i � I,

we have

tr[f(
n∑
i=1

AT
i BiAi)] ≤ tr[

n∑
i=1

AT
i f(Bi)Ai]

2.3 The basic framework for Rademacher random variables

Let Z = (Z1, . . . , Zn) be sampled uniformly from {−1, 1}n. We will consider matrix-valued

functions F : {−1, 1}n → RI×J , with rows and columns indexed by arbitrary sets I,J

respectively such that for all I ∈ I, J ∈ J ,

F[I, J] = fI,J (Z)

where fI,J are polynomials of Z1, . . . , Zn. Since Zi ∈ {−1, 1}, we can assume without loss of

generality that fI,J are multilinear. Let dp be the maximum degree of any fI,J in F. In this

section, we will give a general framework using which we can obtain bounds on E ‖F− EF‖2t2t

for any integer t ≥ 1.

Theorem 2.1.2 (Rademacher recursion). Let F : {−1, 1}n → RI×J be a matrix valued

polynomial function of degree at most dp. Then, for each natural number t ≥ 1,

E ‖F− EF‖2t2t ≤
∑

1≤a+b≤dp
(16tdp)

(a+b)·t ·
∥∥EFa,b

∥∥2t
2t
,

where Fa,b is a matrix of partial derivatives indexed by the sets I × {0, 1}n and J × {0, 1}n

with

Fa,b[(·, α), (·, β)] =


∇α+β(F) if |α| = a, |β| = b, α · β = 0

0 otherwise

Remark 2.3.1. Note that while the matrices Fa,b are stated above as having rows and

32

colmns indexed by I × {0, 1}n and J × {0, 1}n for convenience, we only need to consider

the submatrices with |I| ·
(n
a

)
rows and |J | ·

(n
b

)
columns, since all other entries will be zero

(when |α| 6= a or |β| 6= b).

Remark 2.3.2. To obtain high probability norm bounds from moment estimates, we can set

t = polylog(n) and invoke Markov’s inequality. Since we do not attempt to optimize the

dependence on the logarithmic factors, we do not attempt to optimize the exponent of t in

the main theorem.

To prove this, we will prove Lemma 2.3.3 and then recursively apply it.

For each i ≤ n, define the random vector

Z(i) := (Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn)

where Z̃i is an independent copy of Zi, that is, is independently resampled from {−1, 1}.

Let X := F−EF. When the input is Z, we denote the matrices as F,X, etc and when the

input is Z(i), denote the corresponding matrices as F(i),X(i), etc. That is, for I ∈ I, J ∈ J ,

we have F(i)[I, J] = fI,J (Z(i)). Define Xa,b = Fa,b − EFa,b.

Lemma 2.3.3. For integers a, b ≥ 0, we have

E
∥∥Xa,b

∥∥2t
2t
≤ (16tdp)

t(E
∥∥Xa,b+1

∥∥2t
2t

+ E
∥∥Xa+1,b

∥∥2t
2t

+
∥∥EFa,b+1

∥∥2t
2t

+
∥∥EFa+1,b

∥∥2t
2t

)

Using this lemma, we can complete the proof of the main theorem.

Proof of Theorem 2.1.2. Observing that X is a principal submatrix of X0,0 with all other

entries being 0, we can apply Lemma 2.3.3 repeatedly until Xa,b = 0, which will be the case

if a+ b > dp.

In the rest of this section, we will prove Lemma 2.3.3. We start with a basic fact. Let

ei ∈ {0, 1}n be the vector with a unique nonzero entry (ei)i = 1.

33

Proposition 2.3.4. For a multilinear polynomial f(Z) = f(Z1, . . . , Zn), we have

f(Z)− f(Z(i)) = (Zi − Z̃i) · ∇eif(Z)

Proof of Lemma 2.3.3. Consider the Hermitian dilation Fa,b = Fa,b ⊕ FTa,b. Define Xa,b =

Fa,b − EFa,b = Xa,b ⊕XT
a,b. By Theorem 2.1.1 applied to Xa,b,

E tr
[
X

2t
a,b

]
≤ (2(2t− 1))t E tr

[
Vt
a,b

]

where Va,b is the variance proxy

Va,b =
1

2

n∑
i=1

E[(Xa,b −X
(i)
a,b)

2|Z]

Firstly, by a simple computation,

E tr
[
X

2t
a,b

]
= E tr

[
(Xa,bX

ᵀ
a,b)

t
]

+ E tr
[
(X

ᵀ
a,bXa,b)

t
]

= 2E
∥∥Xa,b

∥∥2t
2t

and

Va,b =
1

2

n∑
i=1

E[(Xa,b −X
(i)
a,b)

2|Z]

=
1

2

n∑
i=1

E
[(Xa,b −X

(i)
a,b)(Xa,b −X

(i)
a,b)

ᵀ 0

0 (Xa,b −X
(i)
a,b)

ᵀ(Xa,b −X
(i)
a,b)

 |Z]

=
1

2

∑n
i=1 E[(Fa,b − F

(i)
a,b)(Fa,b − F

(i)
a,b)

ᵀ|Z] 0

0
∑n
i=1 E[(Fa,b − F

(i)
a,b)

ᵀ(Fa,b − F
(i)
a,b)|Z]


We will use the following claim that we will prove later.

34

Claim 2.3.5. We have the following relations.

n∑
i=1

E[(Fa,b − F
(i)
a,b)(Fa,b − F

(i)
a,b)

ᵀ|Z] = 2(b+ 1)Fa,b+1F
ᵀ
a,b+1

n∑
i=1

E[(Fa,b − F
(i)
a,b)

ᵀ(Fa,b − F
(i)
a,b)|Z] = 2(a+ 1)F

ᵀ
a+1,bFa+1,b

This gives E tr
[
Vt
a,b

]
= (b+ 1)t E

∥∥Fa,b+1

∥∥2t
2t

+ (a+ 1)t E
∥∥Fa+1,b

∥∥2t
2t

. Therefore, we get

2E ‖Xa,b‖2t2t = E tr
[
X

2t

a,b

]
≤ (2(2t− 1))t E tr

[
Vt
a,b

]
≤ (2(2t− 1))t((b+ 1)t E ‖Fa,b+1‖2t2t + (a+ 1)t E ‖Fa+1,b‖2t2t)

≤ (2(2t− 1))t((b+ 1)t E ‖Xa,b+1 + EFa,b+1‖2t2t + (a+ 1)t E ‖Xa+1,b + EFa+1,b‖2t2t)

≤ (16t)t((b+ 1)t(E ‖Xa,b+1‖2t2t + ‖EFa,b+1‖2t2t) + (a+ 1)t(E ‖Xa+1,b‖2t2t + ‖EFa+1,b‖2t2t)

≤ (16tdp)
t(E ‖Xa,b+1‖2t2t + ‖EFa,b+1‖2t2t + E ‖Xa+1,b‖2t2t + ‖EFa+1,b‖2t2t)

It remains to prove the claim.

Proof of Claim 2.3.5. We will prove the first equality. The second one is analogous. For

I ∈ I, J ∈ J , α, β ∈ {0, 1}n, we have

(Fa,b −F
(i)
a,b)[(I, α), (J, β)] =


∇α+β(fI,J (Z)− fI,J (Z(i))) if |α|0 = a, |β|0 = b, α · β = 0

0 o.w.

By Proposition 2.3.4, the first expression simplifies to (Zi− Z̃i)∇ei∇α+βfI,J (Z). Define the

matrix Fa,b,i to be the matrix with the same set of rows and columns as Fa,b and whose

35

only nonzero entries are given by

Fa,b,i[(I, α), (J, β + ei)] = ∇ei∇α+βfI,J (Z) if |α|0 = a, |β|0 = b, β · ei = 0, α · (β + ei) = 0

Then, it’s easy to see that
∑n
i=1 Fa,b,iF

ᵀ
a,b,i = (b+1)Fa,b+1FTa,b+1 and (Fa,b−F

(i)
a,b)(Fa,b−

F
(i)
a,b)

ᵀ = (Z − Z̃i)2Fa,b,iF
ᵀ
a,b,i. The latter equality implies

E[(Fa,b − F
(i)
a,b)(Fa,b − F

(i)
a,b)

ᵀ|Z] = E[(Zi − Z̃i)2Fa,b,iF
ᵀ
a,b,i|Z] = 2Fa,b,iF

ᵀ
a,b,i

Therefore,

n∑
i=1

E[(Fa,b − F
(i)
a,b)(Fa,b − F

(i)
a,b)

ᵀ|Z] = 2
n∑
i=1

Fa,b,iF
ᵀ
a,b,i = 2(b+ 1)Fa,b+1F

ᵀ
a,b+1

2.4 Applications

To illustrate our framework, we apply it to obtain concentration bounds for nonlinear random

matrices that have been considered in the literature before. The first one is a simple tensor

network that arose in the analysis of spectral algorithms for a variant of principal components

analysis (PCA) [88, 81]. The second application is to obtain norm bounds on dense graph

matrices [126, 1]. In the second application, the norm bounds are governed by a combinatorial

structure called the minimum vertex separator of a shape. We will see how this notion arises

naturally under our framework, while prior works that derived such bounds used the trace

power method and required nontrivial combinatorial insights.

2.4.1 A simple tensor network

We consider the following result from [88, 81].

36

Lemma 2.4.1 ([81], Theorem 6.7.1). Let c ∈ {1, 2} and let d ≥ 1 be an integer. Let

A1, . . . ,Anc be i.i.d. random matrices uniformly sampled from {−1, 1}nd×nd. Then, with

probability 1−O(n−100),

∥∥∥∥∥∥
∑
k≤nc

Ak ⊗Ak − E
∑
k≤nc

Ak ⊗Ak

∥∥∥∥∥∥ ≤ C
√
dn(2d+c)/2(log n)1/2

for an absolute constant C > 0.

Using our framework, we will prove a slightly relaxed version of the inequality where
√
d(log n)1/2 is replaced by log n. We remark that we have not attempted to optimize these

extra factors in front of the dominating term n(2d+c)/2, so it’s plausible that a more careful

analysis can obtain a slightly better bound.

Proof of the relaxed bound. Let the i, j-th entry of Ak be ak,i,j . Let F =
∑
i≤nc Ak ⊗Ak −

E
∑
i≤nc Ak ⊗ Ak be a random matrix on the variables ak,i,j for k ≤ nc, i, j ≤ nd. So

EF = 0 and we are looking for bounds on ‖F‖. The entries are given by

F[(i1, i2), (j1, j2)] =


∑
k≤nc

ak,i1,j1ak,i2,j2 if (i1, j1) 6= (i2, j2)

0 if (i1, j1) = (i2, j2)

The nonzero entries are homogeneous polynomials of degree 2. Using Theorem 2.1.2,

E ‖F‖2t2t ≤ (32t)2t(
∥∥EF2,0

∥∥2t
2t +

∥∥EF1,1

∥∥2t
2t +

∥∥EF0,2

∥∥2t
2t)

We will consider each of these terms. In the following arguments, we restrict attention

to indices i1, i2, j1, j2 such that (i1, j1) 6= (i2, j2).

1. EF2,0 has nonzero entries in row ((i1, i2), {(k, i1, j1), (k, i2, j2)}) and column (j1, j2)

and all these entries are 1. The Schatten norm does not change when we permute the

37

rows and columns. So, we can group the rows on k, i1, i2 and within each group, we can

sort j1, j2 in both rows and columns. We get a matrix having n2d+c identity matrices,

each of dimensions n2d × n2d, stacked on top of each other. Using the definition, the

Schatten-2t norm of this matrix is easily computed to be
∥∥EF2,0

∥∥2t
2t = nc+4dnt(2d+c).

2. EF1,1 has nonzero entries in either row ((i1, i2), {(k, i1, j1)}) and column ((j1, j2), {(k, i2, j2)});

or row ((i1, i2), {(k, i2, j2)}) and column ((j1, j2), {(k, i1, j1)}) and all these entries are

1. So we can write EF1,1 = A + B corresponding to the 2 sets of entries. Arguing

just as in the previous case, we can obtain ‖A‖2t2t = nc+4dnt(2d+c) where we group

the rows on k, i2, j1 and ‖B‖2t2t = nc+4dnt(2d+c) where we group the rows on k, i1, j2.

Therefore,
∥∥EF1,1

∥∥2t
2t ≤ 22t(‖A‖2t2t + ‖B‖2t2t) = 22t+1nc+4dnt(2d+c).

3. The case EF0,2 is identical to EF2,0.

Putting them together, E ‖F‖2t2t ≤ (C ′t)2tnc+4dnt(2d+c) for an absolute constant C ′ > 0.

Now, we apply Markov’s inequality to get

Pr[‖F− EF‖ ≥ θ] ≤ Pr[‖F− EF‖2t2t ≥ θ2t] ≤ θ−2t E ‖F− EF‖2t2t ≤ θ−2t(C ′t)2tnc+4dnt(2d+c)

We now set θ = ε−1/(2t)(C ′t)n(c+4d)/tn(2d+c)/2 to make this expression at most ε. Plug

in ε = n−100 and set t = log n to obtain that ‖F− EF‖ ≤ Cn(2d+c)/2 log n holds with

probability 1− n−100, where C > 0 is an absolute constant.

2.4.2 Graph matrices

In this section, we first define graph matrices and then show how to obtain norm bounds for

dense graph matrices, i.e. the case when G ∼ Gn,1/2, using our framework. Handling sparse

graph matrices, i.e. the case when G ∼ Gn,p for p = o(1), may not work well with our basic

framework as we will explain in Section 2.5. Instead, our general framework in Section 2.6

will handle this case well and we obtain sparse graph matrix norm bounds in Section 2.8.

38

Definitions

Define by Gn,p the Erdős-Rényi random graph on the vertex set [n] with n vertices, where

each edge is present independently with probability p. Let the graph be encoded by variables

Gi,j ∈ Ω = {−
√

1−p
p ,
√

p
1−p} where −

√
1−p
p indicates the presence of the edge {i, j} and√

p
1−p indicates absence, for all 1 ≤ i, j ≤ n.

So, each Gi,j for i < j is sampled from Ω where Gi,j takes the value −
√

1−p
p with

probability p and takes the value
√

p
1−p otherwise. Here, Ω has been normalized so that

Ex∼Ω[x] = 0,Ex∼Ω[x2] = 1. as is standard in p-biased Fourier analysis.

When p = 1/2, we are in the setting of dense graph matrices. Then, Gn,1/2 can be thought

of as a sampling of the Gi,j , i < j independently and uniformly from Ω = {−1, 1}.

For a set of edges E ⊆
([n]

2

)
, define GE :=

∏
e∈E Ge. When p = 1/2, the GE correspond

to the Fourier basis for functions of the graph.

Define I to be the set of sub-tuples of [n], including the empty tuple. Graph matrices

will have rows and columns indexed by I. Each graph matrix has a succinct representation

as a graph with some extra information, that is called a shape.

Definition 2.4.2 (Shape). A shape is a tuple τ = (V (τ), E(τ), Uτ , Vτ) where (V (τ), E(τ))

is a graph and Uτ , Vτ are ordered subsets of the vertices.

Definition 2.4.3 (Realization). Given a shape τ , a realization of τ is an injective map

ϕ : V (τ)→ [n].

Definition 2.4.4 (Graph matrices). Let τ be a shape. The graph matrix Mτ : {±1}(
n
2) →

RI×I is defined to be the matrix-valued function with I, J-th entry defined as follows.

Mτ [I, J] :=
∑

Realization ϕ
ϕ(Uτ)=I,ϕ(Vτ)=J

Gϕ(E(τ)) =
∑

Realization ϕ
ϕ(Uτ)=I,ϕ(Vτ)=J

∏
(u,v)∈E(τ)

Gϕ(u),ϕ(v)

In other words, we sum over all realizations of τ that map Uτ , Vτ to I, J respectively and

39

for each such realization, we have a term corresponding to the Fourier character that the

realization gives.

𝑉τ

𝑉τ

𝑢

𝑣

𝑈τ

𝑤1

𝑣1

𝑢2

𝑢1

 𝑈τ

Example shape 𝜏

Shape 𝜏 for adjacency matrix

Figure 2.3: Left: Shape corresponding to adjacency matrix, Right: Example of a more complicated
shape

The following examples illustrate some simple graph matrices.

Example 2.4.5 (Adjacency matrix). Let τ be the shape on the left in Fig. 2.3, with two

vertices V (τ) = {u, v} and a single edge E(τ) = {{u, v}}. Uτ , Vτ are (u), (v) respectively

where we use tuples to indicate ordering. Then Mτ has nonzero entries Mτ [(i), (j)](G) =

Gi,j for all i 6= j. If G ∈ {±1}(
n
2) is thought of as a graph, then Mτ has as principal

submatrix the ±1 adjacency matrix of G with zeros on the diagonal, and the other entries

are 0.

Example 2.4.6. In Fig. 2.3, consider the shape τ on the right. We have Uτ = (u1, u2), Vτ =

(v1), V (τ) = {u1, u2, v1, w1} and E(τ) = {{u1, w1}, {u2, w1}, {w1, v1}}. Mτ is a matrix with

rows and columns indexed by sub-tuples of [n]. Its nonzero entries are in rows I and columns

J with |I| = |Uτ | = 2 and |J | = |Vτ | = 1 respectively. Specifically, for all distinct a1, a2, b1,

the entry corresponding to row (a1, a2) and column (b1) is
∑
c1∈[n]\{a1,a2,b1}Ga1,c1Ga2,c1 , Gc1,b1.

Here, each term is obtained via the realization ϕ that maps u1, u2, w1, v1 to a1, a2, c1, b1 re-

40

spectively. Succinctly,

Mτ =

column (b1)

↓


...

row (a1, a2)→
∑
c1∈[n]\{a1,a2,b1}Ga1,c1Ga2,c1 , Gc1,b1

.

...

Intuitively, graph matrices are symmetrizations of the Fourier basis, where the symmetry

is incorporated by summing over all realizations of “free” vertices V (τ)\Uτ \Vτ of the shape

τ . For more examples of graph matrices and why they can be a useful tool to work with, see

[1].

Norm bounds for dense graph matrices

In this section, we study the concentration of the so-called “dense graph matrices” which is

a term that refers to graph matrices Mτ in the setting p = 1/2. Since the edges of a random

graph sampled from Gn,1/2 can be viewed as independent Rademacher random variables, we

can apply our framework in this setting.

In particular, we will obtain bounds on E ‖Mτ − EMτ‖2t2t. The Gi,j ∈ {−1, 1} corre-

spond to the Zis in Section 2.3 and for a fixed shape τ , Mτ will be the matrix F we are

interested in analyzing. For I, J ∈ I, Mτ [I, J] is a nonzero polynomial only when there

exists at least one realization of τ that maps Uτ , Vτ to I, J respectively. In particular, we

must have |I| = |Uτ | and |J | = |Vτ |. In this case, Mτ [I, J] is a homogenous polynomial of

degree |E(τ)|.

41

By Theorem 2.1.2, we have

E ‖Mτ − EMτ‖2t2t ≤
∑
a+b≥1
a,b≥0

(16t|E(τ)|)(a+b)t
∥∥EMτ,a,b

∥∥2t
2t

where for integers a, b ≥ 0, Mτ,a,b is defined to be the matrix with rows and columns each

indexed by I × {0, 1}(
n
2) such that for all I, J ∈ I, we have

Mτ,a,b[(I, α), (J, β)] =


∇α+βMτ [I, J] if |α|0 = a, |β|0 = b, α · β = 0

0 o.w.

For any multilinear homogenous polynomial f of degree d, since E[Gi,j] = 0 for all i, j,

we have ∇αf = 0 whenever |α|0 < d. Therefore, EMτ,a,b = 0 for all a + b < |E(G)|.

Moreover, EMτ,a,b = 0 whenever a + b 6= |E(G)| otherwise EMτ,a,b = Mτ,a,b. So, we can

further simplify the above expression to

E ‖Mτ − EMτ‖2t2t ≤
∑

a+b=|E(τ)|
a,b≥0

(16t|E(τ)|)|E(τ)|t ∥∥Mτ,a,b

∥∥2t
2t

It remains to analyze
∥∥Mτ,a,b

∥∥2t
2t

for a + b = |E(G)|. We will see that analyzing these

matrices is much simpler since they are deterministic matrices and simple computations

using the Frobenius norm bound will work well. To state our final bounds, we need to define

the notion of vertex separators of shapes.

Remark 2.4.7. As we will see, when analyzing the Frobenius norms for these deterministic

matrices, the notion of the minimum vertex separator arises naturally. In prior trace method

calculations (e.g. [126], [1]), this required ingenious combinatorial observations.

Definition 2.4.8 (Vertex separator). For a shape τ , define a vertex separator to be a subset

of vertices S ⊆ V (τ) such that there is no path from Uτ to Vτ in τ \ S, which is the shape

42

obtained by deleting all the vertices of S (including all edges they’re incident on).

For a shape τ , denote by Sτ a vertex separator of the smallest size. Also, let Iτ be the

set of isolated vertices (vertices with degree 0) in V (τ) \ Uτ \ Vτ , so the presence of these

vertices essentially scale the matrix by a scalar factor.

Theorem 2.4.9. For a shape τ and any integer t ≥ 1,

E ‖Mτ − EMτ‖2t2t ≤
(
Ct|E(τ)|n|V (τ)|tt|E(τ)||E(τ)|2t|E(τ)|

)
nt(|V (τ)|−|Sτ |+|Iτ |)

for an absolute constant C > 0.

Upto lower order terms, the same result has been shown before in [126, 1]. To interpret

this bound, assume that τ has a constant number of vertices. By setting t ≈ polylog(n), we

get

‖Mτ‖ = Õ
(√

n
|V (τ)|−|Sτ |+|Iτ |

)
with high probability, where Õ hides logarithmic factors. This is obtained by applying

Markov’s inequality on the bound on E ‖Mτ‖2t2t. If τ has at least one edge, then EMτ = 0

and Theorem 2.4.9 yields such bounds. If τ has no edges, then it’s quite simple to obtain such

a bound and we include it in Lemma 2.4.10 for the sake of completeness. Corollary 2.4.11

makes precise the high probability bound above. Therefore, this power of n is essentially

what controls the norm bound and this is utilized heavily in applications (e.g. [13? , 149]).

Proof of Theorem 2.4.9. We first argue that we can assume Iτ = ∅. This is because of the

following reason. Each distinct vertex in τ of degree 0 essentially scales the matrix by a factor

of at most n. And in the right hand side of the inequality, each vertex in Iτ contributes a

factor of n2t accordingly, from nt|V (τ)| and from nt|Iτ |, and the other changes only weaken

the inequality.

43

Now, fix a, b ≥ 0 such that a + b = |E(τ)| and consider Mτ,a,b. For I, J ∈ I, α, β ∈

{0, 1}(
n
2) such that |α|0 = a, |β|0 = b, α · β = 0, by definition,

Mτ,a,b[(I, α), (J, β)] = ∇α+β

 ∑
ϕ:ϕ(Uτ)=I,ϕ(Vτ)=J

∏
u,v∈E(τ)

Gϕ(u),ϕ(v)


= |{ϕ | ϕ(Uτ) = I, ϕ(Vτ) = J, ϕ(E(τ)) = Supp(α + β)}|

where Supp(.) denotes the support. We will now obtain norm bounds on these deterministic

matrices by reinterpreting them as graph matrices for different shapes.

Let P = (E1, E2) denote the partition of E(τ) = E1 t E2 into two ordered sets E1, E2,

where t denotes disjoint union. Then, we can write Mτ,a,b =
∑
P∈PMτ,a,b,P where

Mτ,a,b,P [(I, α), (J, β)] = |{ϕ | ϕ(Uτ) = I, ϕ(Vτ) = J, ϕ(E1) = Supp(α), ϕ(E2) = Supp(β)}|

Let the set of ordered partitions P be P . Then, |P| ≤ (4|E(τ)|)|E(τ)| and so, by

Fact 2.2.3, ∥∥Mτ,a,b

∥∥2t
2t
≤ (4|E(τ)|)t|E(τ)| ∑

P∈P

∥∥Mτ,a,b,P

∥∥2t
2t

Each Mτ,a,b,P can be interpreted as a graph matrix for a different shape τP , with the same

vertex set and no edges. Let V (τP) = V (τ), E(τP) = ∅ and set UτP = Uτ ∪ V (E1), V (τP) =

Vτ ∪ V (E2) using a canonical ordering. Then, Mτ,a,b is equal to MτP upto renaming of the

rows and columns. For an illustration, see Fig. 2.4.

This graph matrix has a block diagonal structure indexed by the realizations of the set

of common vertices S = UτP ∩ VτP . Indeed, for K ∈ [n]S , let MτP ,K be the block of MτP

44

𝑉𝜏𝑃

𝑈τ

𝑢1

𝑢2

𝑣2

𝑢2

𝑣2

𝑣1

𝑣1

 𝑤1

𝑤1

𝑣3

𝑣3

𝑈𝜏𝑃

𝑉τ

𝑢1

Figure 2.4: An example illustrating how τP is defined. In this example, P constraints the blue and
red edges to go to α and β respectively. UτP , VτP have an ordering on the vertices (not shown here).

with ϕ(S) = K. Then, MτP ,KM
ᵀ
τP ,K ′

= M
ᵀ
τP ,K

MτP ,K ′ = 0 for K 6= K ′ and so,

E
∥∥Mτ,a,b

∥∥2t
2t
≤ (4|E(τ)|)t|E(τ)| ∑

P∈P

∥∥MτP

∥∥2t
2t

= (4|E(τ)|)t|E(τ)| ∑
P∈P

∑
T∈[n]S

∥∥MτP ,T

∥∥2t
2t

≤ (4|E(τ)|)t|E(τ)| ∑
P∈P

∑
T∈[n]S

(∥∥MτP ,T

∥∥2
2

)t

where we bounded the Schatten norm by the appropriate power of the Frobenius norm.

For any fixed K ∈ [n]S , the entries of MτP ,K take values in {0, 1} and the number of

nonzero entries is at most n|V (τ)|−|S| because the realizations of vertices in S are fixed and

the other vertices have at most n choices each. Therefore,
∥∥MτP ,K

∥∥2
2
≤ n|V (τ)|−|S|.

Finally, we bound |S| to estimate how large this term can be over all possibilities of P .

We argue that S blocks all paths from Uτ to Vτ . To see this, consider any path from Uτ to

Vτ , it must contain an edge (u, v) ∈ E(τ) such that u ∈ UτP , v ∈ VτP . We must either have

(u, v) ∈ E1, in which case u, v ∈ UτP and v ∈ S, or (u, v) ∈ E2, in which case u, v ∈ VτP
and u ∈ S. In either case, S must contain either u or v. This argument implies S must be

a vertex separator of τ , giving |S| ≥ |Sτ |. For a proof by picture, see Fig. 2.5.

45

φ(S)

I ∪ V(α)

J ∪ V(β)

Figure 2.5: Proof by picture that |S| ≥ |Sτ |. Green edges can occur in τ , orange edges cannot, so
S blocks all paths from Uτ to Vτ .

We also have the trivial upper bound |S| ≤ |V (τ)|. Ultimately, this gives

∥∥Mτ,a,b

∥∥2t
2t
≤ (4|E(τ)|)t|E(τ)| ∑

P∈P

∑
T∈[n]S

nt(|V (τ)|−|Sτ |)

≤ (4|E(τ)|)t|E(τ)|(4|E(τ)|)|E(τ)|n|V (τ)|nt(|V (τ)|−|Sτ |)

Along with our prior discussion, we get

E ‖Mτ − EMτ‖2t2t ≤
∑

a+b=|E(τ)|
(16t|E(τ)|)|E(τ)|t ∥∥Mτ,a,b

∥∥2t
2t

≤
∑

a+b=|E(τ)|
(16t|E(τ)|)|E(τ)|t(4|E(τ)|)t|E(τ)|(4|E(τ)|)|E(τ)|n|V (τ)|nt(|V (τ)|−|Sτ |)

≤
(
Ct|E(τ)|n|V (τ)|tt|E(τ)||E(τ)|2t|E(τ)|

)
nt(|V (τ)|−|Sτ |)

for an absolute constant C > 0.

In the proof above, our analysis of the shape τP which has no edges, applies in general

to any shape τ with no edges. For the sake of completeness, we state it explicity in the

following lemma.

46

Lemma 2.4.10. For a shape τ with no edges and any integer t ≥ 1,

E ‖Mτ‖2t2t ≤ n|Uτ∩Vτ |nt(V (τ)−|Uτ∩Vτ |+|Iτ |)

Note that this has the same form as Theorem 2.4.9 because for a shape τ with no edges,

the minimum vertex separator Sτ is just Uτ ∩ Vτ .

The following corollary obtains high probability norm bounds for norms of graph matrices

via Markov’s inequality.

Corollary 2.4.11. For a shape τ , for any constant ε > 0, with probability 1− ε,

‖Mτ‖ ≤ (C|E(τ)| log(n|V (τ)|/ε))|E(τ)| ·
√
n
|V (τ)|−|Sτ |+|Iτ |

for an absolute constant C > 0.

Proof. If E(τ) = ∅, we invoke Lemma 2.4.10. Otherwise, EMτ = 0 and we invoke Theo-

rem 2.4.9. By an application of Markov’s inequality,

Pr[‖Mτ‖ ≥ θ] ≤ Pr[‖Mτ‖2t2t ≥ θ2t]

≤ θ−2t E ‖Mτ‖2t2t

≤ θ−2t
(

(C ′)t|E(τ)|n|V (τ)|tt|E(τ)||E(τ)|2t|E(τ)|
)
nt(|V (τ)|−|Sτ |+|Iτ |)

for an absolute constant C ′ > 0. We now set

θ =

(
ε−1/(2t)(C ′′)|E(τ)|n|V (τ)|/(2t)t|E(τ)|/2|E(τ)||E(τ)|

)√
n
|V (τ)|−|Sτ |+|Iτ |

for an absolute constant C ′′ > 0, to make this expression at most ε. Set t = 1
2 log(n|V (τ)|/ε)

to complete the proof.

47

2.5 Why a näıve application of [147] may fail for general product

distributions

In this section, we elaborate on the difficulties that arise when working with random variables

that are not necessarily Rademacher. In this case, note that we cannot assume that the

polynomial entries are multilinear as well.

To recall the setting, we are given a random matrix F whose entries are low degree

polynomials in random variables Z1, . . . , Zn which are independently sampled from arbitrary

distributions. And we wish to obtain concentration bounds on how much F can deviate from

its mean, by way of controlling E ‖F− EF‖2t2t.

Building on the ideas from Section 2.3, we could attempt to use matrix Efron-Stein,

Theorem 2.1.1 and hope to obtain a similar recursion framework. We now discuss what

happens if we do this. Assume E[Zi] = 0,E[Z2
i] = 1. We can proceed similar to the proof

of Theorem 2.1.2. So, we consider X as a principal submatrix of X0,0 and follow through

Lemma 2.3.3. The main change will happen in Claim 2.3.5. In particular, the equation

E[(Zi − Z̃i)2|Z] = 2 is no longer true. Instead, we will have E[(Zi − Z̃i)2|Z] = 1 + Z2
i . So,

we get the expression

n∑
i=1

(1 + Z2
i)Fa,b,iF

ᵀ
a,b,i =

n∑
i=1

Fa,b,iF
ᵀ
a,b,i +

n∑
i=1

Z2
i Fa,b,iF

ᵀ
a,b,i

The first term can been handled just as in the basic framework. Unfortunately, the

second term will be a source of difficulty. To get around this difficulty, we could attempt to

apply the matrix Efron-Stein inequality again on an appropriately constructed matrix. To

do this, we can interpret the second term as having been obtained after differentiating with

respect to the variable Zi and then putting the variable back. In contrast, we didn’t need to

put it back when working with Rademacher random variables. But after we do this, when

we recurse on these extra matrices, the new second term will contain the left hand side as a

48

sub-term, thereby giving a trivial inequality and stalling the recursion.

To see this more clearly, consider the simplest case a = b = 0. Then, the first term∑n
i=1 Fa,b,iF

ᵀ
a,b,i will be equal to F0,1F

ᵀ
0,1 as we saw earlier. To evaluate the second term∑n

i=1 Z
2
i Fa,b,iF

ᵀ
a,b,i in a similar manner, we define the matrix H to be the same as F0,1

except that each entry is now multiplied by Zi where i is the differentiated variable in the

column. That is, H[I, (J, ei)] = ZiF0,1[I, (J, ei)]. Observe that in the definition of H, Zi

has been put back after differentiating with respect to it. Then, the second term will be

HHᵀ and we can hope to use Efron-Stein again on this matrix H recursively.

We could do that and proceed similarly to the proof of Lemma 2.3.3 with appropriate

modifications as above. But since βi = 1 already, differentiating with respect to Zi and

putting it back, will return the same matrix H! So, we end up with an inequality of the form

E ‖H‖2t2t ≤ O(t)t(E ‖H‖2t2t + other nonnegative terms)

Indeed, this is a tautology and will not be useful to us.

For a quick and dirty bound, suppose we had a parameter L such that 1 + Z2
i ≤ L for

our distributions, then we will be able to obtain a similar framework while incurring a loss of
√
L at each step of the recursion. But unfortunately, this bound will be lossy. For example,

if we do this computation for the centered normalized adjacency matrix of G ∼ Gn,p, we will

obtain a norm bound of Õ(

√
n(1−p)√
p) where Õ hides logarithmic factors.. This bound is tight

for constant or even inverse polylogarithmic p. But for p = n−θ for some constant 0 < θ < 1,

this is not tight because in this regime, the true norm bound is known to be Õ(
√
n) (see the

early works of [67, 182] and for tighter bounds, see [19] and references therein).

If we dig into the details of what happened, this example illustrates that the matrix

Efron-Stein inequality Theorem 2.1.1 becomes a tautology for certain kinds of matrices, that

yield V = O(1)XXᵀ + other positive semidefinite matrices.

But in our framework in general, the aforementioned bad matrices occur when we differ-

49

entiate with respect to variables that have already been differentiated on. In other words,

the current definition of the variance proxy V doesn’t take into account whether we have

already differentiated with respect to some variable Zi. So, for the general recursion, we

dive into the proof due to [147] and modify it using structural properties of the intermediate

matrices we obtain in our framework.

2.6 The general recursion framework

We now assume Z1, . . . , Zn are i.i.d. random variables sampled from a distribution Ω with

finite moments. We assume that they are identically distributed for simplicity but our

technique easily extends even when they are not identically distributed, as long as they are

independent. For each i ≤ n, define Z̃i to be an independent copy of Zi and define the

vector Z(i) := (Z1, . . . , Zi−1, Z̃i, Zi+1, . . . , Zn). Define Z ′ to be the random vector defined

by sampling i from [n] uniformly at random and then setting Z ′ = Z(i).

Let F ∈ R[Z]I×J be a matrix with rows and columns indexed by arbitrary sets I,J

respectively such that for all I ∈ I, J ∈ J , F[I, J] are polynomials of Z1, . . . , Zn. Let dp

the maximum degree of F[I, J] over all entries I, J and let d be the maximum degree of Zi

over all entries F[I, J] and i ≤ n.

Similar to the Rademacher case, let X := F − EF. When the input is Z, we denote

the matrices as F,X, etc and when the input is Z(i), denote the corresponding matrices as

F(i),X(i), etc. In this section, we will give a general framework using which we can obtain

bounds on E ‖F− EF‖2t2t for any integer t ≥ 1.

We set up a few preliminaries in order to state the main theorem.

Definition 2.6.1 (Space S). Let S be the space of mean-zero polynomials in Z1, . . . , Zn of

degree at most dp.

50

For α 6= 0, we also define the centered monomials

χα(Z) =
∏
αi>0

(Zαii − E[Zαii])

By definition, χα ∈ S for all α 6= 0, |α|1 ≤ dp. The following proposition is straightfor-

ward.

Proposition 2.6.2. The set {χα(Z)|1 ≤ |α|1 ≤ dp} forms a basis for S.

For the general framework, we work over this basis because as we will see in Section 2.7,

the “inner kernel matrix” is convenient to state in this basis. The ∇ operator also works

nicely with our polynomials χβ . Indeed, observe that ∇α(χβ) =


χβ−α if αE β

0 o.w.

.

For a polynomial f(Z) in S, denote by f̂(α) the coefficient of χα(Z) in the expansion of

f , that is,

f(Z) =
∑

06=α∈Nn
f̂(α)χα(Z)

We can naturally extend this notation to matrices that have mean 0. So, we can

write X =
∑
α 6=0 X̂(α)χα(Z) where X̂(α) are deterministic matrices. In order to apply

our recursion framework, we group this sum into terms based on |α|0. For k ≥ 1, define

Xk =
∑
|α|0=k X̂(α)χα(Z). Then,

X =
∑
k≥1

Xk

Note that when k > dp, Xk = 0.

Definition 2.6.3 (Indexing set K). We define K ⊆ Nn×{0, 1}n to be the set of pairs (α, γ)

such that |α|1 ≤ dp, α ∈ Nn and γ ≤ α, γ ∈ {0, 1}n.

Define the diagonal matrix D1 ∈ R[Z]I×K × R[Z]I×K with nonzero entries

D1[(I, α, γ), (I, α, γ)] =

√
E[Z2α·(1−γ)]Zα·γ

51

Similarly, define the diagonal matrix D2 ∈ R[Z]J×K × R[Z]J×K with nonzero entries

D2[(J, α, γ), (J, α, γ)] =

√
E[Z2α·(1−γ)]Zα·γ

Definition 2.6.4 (Matrices Gk,a,b,Fk,a,b). For integers k, a, b such that k ≥ 1, a, b ≥ 0,

define the matrix Gk,a,b to have rows and columns indexed by I ×K and J ×K respectively

such that for all (I, α1, γ1) ∈ I × K, (J, α2, γ2) ∈ J ×K,

Gk,a,b[(I, α1, γ1), (J, α2, γ2)] =


∇α1+α2Xk[I, J] if |α1|0 = a, |α2|0 = b, α1 · α2 = 0

0 o.w.

Also, define Fk,a,b := D1Gk,a,bD2.

Note that when k > dp, Fk,a,b = 0.

Proposition 2.6.5. For integers k, a, b such that k ≥ 1, a, b ≥ 0, suppose a + b < k. Then

each nonzero entry f of Gk,a,b has the property that f̂(α) is nonzero only when |α|0 = k−a−b

Proof. The nonzero entries of Xk only has terms containing exactly k variables and ∇α1+α2

either zeroes out the term, or it truncates exactly |α1 +α2|0 = |α1|0 + |α2|0 = a+b variables.

This also immediately implies that E[Gk,a,b] = 0 whenever a + b < k. Finally, when

k = a + b, we have that Gk,a,b is a deterministic matrix independent of the Zi. These give

rise to the matrices Fa+b,a,b that appears in our main theorem.

We are now ready to state the main theorem.

Theorem 2.6.6 (General recursion). Let the tuple of random variables Z and the function

F be as above. Then, for all integers t ≥ 1,

E ‖F− EF‖2t2t ≤
∑

a,b≥0,a+b≥1

(Ct2dd4
p)

(a+b)t E
∥∥Fa+b,a,b

∥∥2t
2t

52

for an absolute constant C > 0.

Note that Fa+b,a,b = D1Ga+b,a,bD2 where D1,D2 are diagonal matrices and Ga+b,a,b

is a deterministic matrix that’s independent of Z. To analyze the expected Schatten norm

of such matrices, we can resort to far simpler techniques. For instance, we can obtain a

simple bound using an appropriate power of the Frobenius norm, and apply standard scalar

concentration tools. We will see an example of this in Section 2.8.

Remark 2.6.7. We have made no attempts to optimize the factors in front of the expectation

in Theorem 2.6.6, which we suspect can be improved.

We prove the main theorem by repeatedly applying the following technical lemma, the

proof of which we defer to the next section.

Lemma 2.6.8. For all integers t ≥ 1, integers k ≥ 1, a, b ≥ 0 such that a+ b < k,

E
∥∥Fk,a,b∥∥2t

2t
≤ (Ct2dd2

p)
t(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

for an absolute constant C > 0.

Using this lemma, we can complete the proof of the main theorem.

Proof of Theorem 2.6.6. Using Fact 2.2.3, we have E ‖X‖2t2t ≤ d2t
p
∑dp
k=1 E ‖Xk‖2t2t. Note

that for any k ≥ 1, the matrix Xk is a principal submatrix of Fk,0,0 with all other entries

being 0, so E ‖Xk‖2t2t = E
∥∥Fk,0,0∥∥2t

2t
= 1

2 E
∥∥Fk,0,0∥∥2t

2t
. Therefore,

E ‖X‖2t2t ≤
1

2
d2t
p

dp∑
k=1

E
∥∥Fk,0,0∥∥2t

2t

We now apply Lemma 2.6.8 repeatedly to all our terms until k = a+ b, ultimately giving

E ‖X‖2t2t ≤
1

2
d2t
p (Ct2dd2

p)
(a+b)t

∑
a,b≥0,a+b≥1

E
∥∥Fa+b,a,b

∥∥2t
2t

53

Observing that E
∥∥Fa+b,a,b

∥∥2t
2t

= 2E
∥∥Fa+b,a,b

∥∥2t
2t

completes the proof.

2.7 A generalization of [147] and proof of Lemma 2.6.8

In this section, we will prove Lemma 2.6.8 using the high level strategy described in Sec-

tion 2.1. This requires generalizing the results in [147], and the proof techniques may be of

independent interest.

2.7.1 Generalizing [147] via explicit inner kernels

In our setting, observe that (Z,Z ′) has the same distribution as (Z ′, Z). This is what is

known as an exchangeable pair of variables, that will be extremely useful for our analysis. In

particular, Z,Z ′ have the same distribution and E f(Z,Z ′) = E f(Z ′, Z) for every integrable

function f .

Definition 2.7.1 (Laplacian operator L). Define the operator L on the space S as

L(f)(Z) = E[f(Z)− f(Z ′)|Z]

for all polynomials f ∈ S.

Note that this operator is well-defined since for any f ∈ S, E[L(f)] = E[E[f(Z) −

f(Z ′)|Z]] = E[f(Z)− f(Z ′)] = 0 and hence, L(f) ∈ S.

Lemma 2.7.2. For all α ∈ Nn, χα is an eigenvector of L with eigenvalue
|α|0
n .

Proof. Recall that Z ′ is obtained by choosing i ∈ [n] uniformly at random and then setting

Z ′ = Z(i). Therefore,

L(χα)(Z) = E[χα(Z)− χα(Z ′)|Z]

=
1

n

∑
i≤n

E[χα(Z)− χα(Z(i))|Z]

54

When αi = 0, χα(Z)−χα(Z(i)) = 0. Otherwise, E[χα(Z)−χα(Z(i))|Z] = χα(Z). Therefore,

the above expression simplifies to
|α|0
n χα(Z).

Theorem 2.7.3 (Explicit Kernel). For any mean-centered polynomial f ∈ S, there exists a

polynomial Kf on 2n variables z1, . . . , zn, z
′
1, . . . , z

′
n, denoted collectively as (z, z′), with the

following properties

1. Kf (z′, z) = −Kf (z, z′)

2. E[Kf (Z,Z ′)|Z] = f(Z) where (Z,Z ′) is the exchangeable pair we consider above.

Proof. Using Proposition 2.6.2 and Lemma 2.7.2, under the basis of polynomials χα, the

operator L is a diagonal matrix with nonzero diagonal entries and therefore, L−1 exists and

is explicitly given by

L−1(f)(Z) =
∑
α

n

|α|0
f̂(α)χα(Z)

We then take Kf (z, z′) = L−1(f)(z) − L−1(f)(z′). The first condition is obvious and for

the second condition, we have

E[Kf (Z,Z ′)|Z] = E[L−1(f)(Z)− L−1(f)(Z ′)|Z] = L(L−1(f)) = f

As seen in the proof of Theorem 2.7.3, L has a well-defined inverse L−1. We now define

the matrix Kk,a,b that we call the inner kernel.

Definition 2.7.4 (The inner kernel matrix Kk,a,b). For integers k ≥ 1, a, b ≥ 0 such that

a + b < k, define the matrix Kk,a,b ∈ R[Z]I×K × R[Z]J×K taking 2n variables (z, z′) =

(z1, . . . , zn, z
′
1, . . . , z

′
n) as input as follows

Kk,a,b(z, z
′) = L−1(Gk,a,b)(z)− L−1(Gk,a,b)(z

′)

55

In the rest of this section except where explicitly stated, fix integers k ≥ 1, a, b ≥ 0 such

that a+ b < k. Then, the inner kernel Kk,a,b is well-defined.

Lemma 2.7.5. Kk,a,b(Z,Z
′) = n

k−a−b(Gk,a,b(Z)−Gk,a,b(Z
′))

Proof.

Kk,a,b(Z,Z
′) = L−1(Gk,a,b)(Z)− L−1(Gk,a,b)(Z

′)

=
∑

|α|0=k−a−b
Ĝk,a,b(α)(L−1(χα)(Z)− L−1(χα)(Z ′))

=
n

k − a− b
∑

|α|0=k−a−b
Ĝk,a,b(α)(χα(Z)− χα(Z ′))

=
n

k − a− b
(Gk,a,b(Z)−Gk,a,b(Z

′))

The following lemma postulates important properties of the the inner kernel, including

how it interacts with D1 and D2.

Lemma 2.7.6. Kk,a,b satisfies the following properties

1. Kk,a,b(z
′, z) = −Kk,a,b(z, z

′)

2. E[Kk,a,b(Z,Z
′)|Z] = Gk,a,b(Z)

3. (D1(Z)−D1(Z ′))Kk,a,b(Z,Z
′) = Kk,a,b(Z,Z

′)(D2(Z)−D2(Z ′)) = 0.

Proof. The first equality is obvious from the definition. For the second equality, note that

E[Gk,a,b] = 0 and Kk,a,b is defined by replacing each entry f of Gk,a,b by the kernel poly-

nomial Kf as exhibited in Theorem 2.7.3. Now, we prove the third equality.

56

Consider the matrix (D1(Z)−D1(Z ′))Kk,a,b(Z,Z
′) whose [(I, α1, γ1), (J, α2, γ2)] entry

is given by

n

k − a− b

√
E[Z2α1·(1−γ1)](Zα1·γ1 − (Z ′)α1·γ1)(∇α1+α2Xk[I, J](Z)−∇α1+α2Xk[I, J](Z ′))

where we have used Lemma 2.7.5. We will argue that this term is identically 0. We must

have Z ′ = Z(i) for some i ≤ n. If (α1 · γ1)i = 0, then Zα1·γ1 = (Z ′)α1·γ1 and the above term

is 0. Otherwise, (α1 + α2)i 6= 0 and so ∇α1+α2 on any polynomial f will only contain the

terms independent of Zi, in which case ∇α1+α2Xk[I, J](Z) = ∇α1+α2Xk[I, J](Z ′). In this

case was well, the above term is 0. The proof of the other equality is analogous.

The reason we call Kk,a,b the inner kernel is because, as seen above, it serves as a kernel

for the inner matrix G in the decomposition F = DGD.

Since we will need to work with Hermitian dilations, we define

D =

D1 0

0 D2


We will use the following basic fact extensively in our manipulations.

Fact 2.7.7. For any matrix A ∈ R[Z]I×K × R[Z]J×K, DAD = D1AD2.

Proof. We have

DAD =

D1 0

0 D2


 0 A

Aᵀ 0


D1 0

0 D2

 =

 0 D1A

D2Aᵀ 0


D1 0

0 D2


=

 0 D1AD2

D2AᵀD1 0


= D1AD2

57

We start with a generalized version of a result from [147].

Lemma 2.7.8. Let K = Kk,a,b. For any symmetric matrix valued function R on the

variables Z of the same dimensions as K, such that E
∥∥K(Z,Z ′)R(Z)

∥∥ <∞, we have

E[Fk,a,b(Z)R(Z)] =
1

2
E[D(Z)K(Z,Z ′)D(Z)(R(Z)−R(Z ′))]

Proof. By Lemma 2.7.6, we have

E[Fk,a,b(Z)R(Z)] = E[D(Z)Gk,a,b(Z)D(Z)R(Z)]

= E[D(Z)E[K(Z,Z ′)|Z]D(Z)R(Z)]

= E[D(Z)K(Z,Z ′)D(Z)R(Z)]

where the first equality follow from condition 2 of Lemma 2.7.6 and the second follows from

the pull-through property of expectations. Continuing,

E[Fk,a,b(Z)R(Z)] = E[D(Z)K(Z,Z ′)D(Z)R(Z)]

= E[D(Z ′)K(Z ′, Z)D(Z ′)R(Z ′)]

= −E[D(Z ′)K(Z,Z ′)D(Z ′)R(Z ′)]

= −E[D(Z)K(Z,Z ′)D(Z ′)R(Z ′)]

= −E[D(Z)K(Z,Z ′)D(Z)R(Z ′)]

Here, the second equality follows from the fact that (Z,Z ′) has the same distribution as

(Z ′, Z), so we can exchange them. The third, fourth and fifth equalities follow from condi-

tions 1, 3, 3 of Lemma 2.7.6 respectively. Adding the two displays, we get the result.

58

Definition 2.7.9 (Matrices Uk,a,b,Vk,a,b). We define the following matrices

Uk,a,b = E[(Fk,a,b(Z)− Fk,a,b(Z
′))2|Z]

Vk,a,b = E[(D(Z)Kk,a,b(Z,Z
′)D(Z))2|Z]

The definition of Uk,a,b is essentially unchanged from [147], where it is called the con-

ditional variance. The definition of Vk,a,b is slightly different in our setting. This lets us

exploit the specific product structure exhibited by Fk,a,b and the special properties of the

inner kernel from Lemma 2.7.6.

We will now prove a lemma which is similar to a lemma shown in [147].

Lemma 2.7.10. For any s > 0 and for any integer t ≥ 1,

E
∥∥Fk,a,b∥∥2t

2t
≤
(

2t− 1

4

)t
E
∥∥∥sUk,a,b + s−1Vk,a,b

∥∥∥t
t

To prove this, we will need the following inequality.

Lemma 2.7.11 (Polynomial mean value trace inequality, [147]). For all matrices A,B,C ∈

Hd, all integers q ≥ 1 and all s > 0,

tr[C(Aq −Bq)]| ≤ q

4
tr[(s(A−B)2 + s−1C2)(Aq−1 + Bq−1)]

Proof of Lemma 2.7.10. We start by invoking Lemma 2.7.8 by setting R(Z) = F
2t−1
k,a,b(Z).

E
∥∥Fk,a,b∥∥2t

2t
= E tr[Fk,a,b · F

2t−1
k,a,b]

=
1

2
E[D(Z)Kk,a,b(Z,Z

′)D(Z)(F
2t−1
k,a,b(Z)− F

2t−1
k,a,b(Z

′))]

59

Applying Lemma 2.7.11,

E
∥∥Fk,a,b∥∥2t

2t

≤ (
2t− 1

8
)E tr[(s(Fk,a,b(Z)− Fk,a,b(Z

′))2 + s−1(D(Z)Kk,a,b(Z,Z
′)D(Z))2)(F

2t−2

k,a,b(Z) + F
2t−2

k,a,b(Z
′))]

= (
2t− 1

4
)E tr[(s(Fk,a,b(Z)− Fk,a,b(Z

′))2 + s−1(D(Z)Kk,a,b(Z,Z
′)D(Z))2)F

2t−2

k,a,b(Z)]

where the last line used the fact that (Z,Z ′) has the same distribution as (Z ′, Z) and applied

condition 3 of Lemma 2.7.6. Using the definitions of Uk,a,b and Vk,a,b, we get

E
∥∥Fk,a,b∥∥2t

2t
≤ 2t− 1

4
E tr[(sUk,a,b + s−1Vk,a,b)F

2t−2
k,a,b]

≤ 2t− 1

4

(
E
∥∥∥sUk,a,b + s−1Vk,a,b

∥∥∥t
t

)1/t

(E
∥∥Fk,a,b∥∥2t

2t
)(t−1)/t

where we used Hölder’s inequality for the trace and Hölder’s inequality for the expectation.

Rearranging gives the result.

2.7.2 Proof of Lemma 2.6.8

Lemma 2.7.10 suggests that in order to bound E
∥∥Fk,a,b∥∥2t

2t
, it suffices to bound E

∥∥Uk,a,b

∥∥t
t

and E
∥∥Vk,a,b

∥∥t
t
. Indeed, this will be our strategy. To bound E

∥∥Uk,a,b

∥∥t
t
, we will bound it

via the matrices that we define below.

Definition 2.7.12 (Matrices ∆
k,a,b
1 ,∆

k,a,b
2 ,∆

k,a,b
3). Define the matrices

∆
k,a,b
1 = E[((D(Z)−D(Z ′))Gk,a,b(Z)D(Z))2|Z]

∆
k,a,b
2 = E[(D(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))D(Z))2|Z]

∆
k,a,b
3 = E[(D(Z)Gk,a,b(Z)(D(Z)−D(Z ′)))2|Z]

Lemma 2.7.13. Uk,a,b � 3(∆
k,a,b
1 + ∆

k,a,b
2 + ∆

k,a,b
3).

60

To prove this lemma, we will use the following lemma.

Lemma 2.7.14. We have the relations

(D(Z)−D(Z ′))(Gk,a,b(Z)D(Z)−Gk,a,b(Z
′)D(Z ′)) = 0

(Gk,a,b(Z)−Gk,a,b(Z
′))(D(Z)−D(Z ′)) = 0

Proof sketch. The proof is similar to the proof of third equality in Lemma 2.7.6. When Z ′

is set to Z(i) for some i ≤ n, when a diagonal entry of D(Z) −D(Z ′) is nonzero, then the

corresponding row of Gk,a,b(Z)D(Z) −Gk,a,b(Z
′)D(Z ′) will be 0. The second equality is

analogous.

Proof of Lemma 2.7.13. We have

(Fk,a,b(Z)− Fk,a,b(Z
′))2

= (D(Z)Gk,a,b(Z)D(Z)−D(Z ′)Gk,a,b(Z
′)D(Z ′))2

=

(
D(Z)Gk,a,b(Z)(D(Z)−D(Z ′)) + D(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))D(Z ′) + (D(Z)−D(Z ′))Gk,a,b(Z
′)D(Z ′)

)2

=

(
D(Z)Gk,a,b(Z)(D(Z)−D(Z ′)) + D(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))D(Z) + (D(Z)−D(Z ′))Gk,a,b(Z)D(Z)

)2

where the last equality follows from Lemma 2.7.14. Taking expectations conditioned on Z

and applying Fact 2.2.2, we immediately get Uk,a,b � 3(∆
k,a,b
1 + ∆

k,a,b
2 + ∆

k,a,b
3).

In subsequent sections, we will prove the following technical bounds on the matrices we

have considered so far.

Lemma 2.7.15. For all integers t ≥ 1, E
∥∥∥∆k,a,b

2

∥∥∥t
t
≤ (2dp)

t

nt
(E
∥∥Fk,a,b+1

∥∥2t
2t

+E
∥∥Fk,a+1,b

∥∥2t
2t

).

Lemma 2.7.16. For all integers t ≥ 1, E
∥∥Vk,a,b

∥∥t
t
≤ (2dp)

tnt(E
∥∥Fk,a,b+1

∥∥2t
2t

+E
∥∥Fk,a+1,b

∥∥2t
2t

).

Lemma 2.7.17. For all integers t ≥ 1, E
∥∥∥∆k,a,b

1

∥∥∥t
t
≤ (8ddp)

t

nt E
∥∥Fk,a,b∥∥2t

2t
.

61

Lemma 2.7.18. For all integers t ≥ 1, E
∥∥∥∆k,a,b

3

∥∥∥t
t
≤ (4dp)

t

nt E
∥∥Fk,a,b∥∥2t

2t
.

Assuming the above lemmas, we can complete the proof of Lemma 2.6.8, which we restate

for convenience.

Lemma 2.6.8. For all integers t ≥ 1, integers k ≥ 1, a, b ≥ 0 such that a+ b < k,

E
∥∥Fk,a,b∥∥2t

2t
≤ (Ct2dd2

p)
t(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

for an absolute constant C > 0.

Proof of Lemma 2.6.8. Using Lemma 2.7.10, Lemma 2.7.13, we get that for any s > 0,

E
∥∥Fk,a,b∥∥2t

2t
≤ (

2t− 1

4
)t E

∥∥∥sUk,a,b + s−1Vk,a,b

∥∥∥t
t

≤ tt(st E
∥∥Uk,a,b

∥∥t
t

+ s−t E
∥∥Vk,a,b

∥∥t
t
)

≤ (9st)t(E
∥∥∥∆k,a,b

1

∥∥∥t
t

+ E
∥∥∥∆k,a,b

2

∥∥∥t
t

+ E
∥∥∥∆k,a,b

3

∥∥∥t
t
) + tts−t E

∥∥Vk,a,b

∥∥t
t

Let ρ = s/n. Since the inequality is true for any choice of s > 0, it is true for any choice of

ρ > 0. Now, using Lemma 2.7.17, Lemma 2.7.18,

(9st)t(E
∥∥∥∆k,a,b

1

∥∥∥t
t

+ E
∥∥∥∆k,a,b

3

∥∥∥t
t
) ≤ (9st)t

(
(8ddp)

t

nt
+

(4dp)
t

nt

)
E
∥∥Fk,a,b∥∥2t

2t

= ρt(C1tddp)
t E
∥∥Fk,a,b∥∥2t

2t

for an absolute constant C1 > 0. Using Lemma 2.7.15, Lemma 2.7.16,

(9st)t E
∥∥∥∆k,a,b

2

∥∥∥t
t

+ tts−t E ‖Vk,a,b‖tt ≤
(

(9st)t
(2dp)

t

nt
+ tts−t(2dp)

tnt
)

(E
∥∥Fk,a,b+1

∥∥2t

2t
+ E

∥∥Fk,a+1,b

∥∥2t

2t
)

≤ (ρtCt2 + ρ−tCt3)(tdp)
t(E
∥∥Fk,a,b+1

∥∥2t

2t
+ E

∥∥Fk,a+1,b

∥∥2t

2t
)

62

for absolute constants C2, C3 > 0. Therefore,

E
∥∥Fk,a,b∥∥2t

2t
≤ ρt(C1tddp)

t E
∥∥Fk,a,b∥∥2t

2t
+ (ρtCt2 + ρ−tCt3)(tdp)

t(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

We choose ρ > 0 so that ρt(C1tddp)
t = 1

2 to get

E
∥∥Fk,a,b∥∥2t

2t
≤ 1

2
E
∥∥Fk,a,b∥∥2t

2t
+

1

2
(Ct2dd2

p)
t(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

for an absolute constant C > 0. Rearranging yields the result.

2.7.3 Bounding ∆k,a,b
2 and Vk,a,b

The next lemma relates Vk,a,b to ∆
k,a,b
2 upto a factor of n2 which will be enough for us. We

can then focus on bounding ∆
k,a,b
2 .

Lemma 2.7.19. Vk,a,b � n2∆
k,a,b
2

Proof. Using Lemma 2.7.5,

Vk,a,b = E[(D(Z)Kk,a,b(Z,Z
′)D(Z))2|Z]

= E[(D(Z)

(
n

k − a− b
(Gk,a,b(Z)−Gk,a,b(Z

′))
)

D(Z))2|Z]

� n2 E[(D(Z)(Gk,a,b(Z)−Gk,a,b(Z
′))D(Z))2|Z]

= n2∆
k,a,b
2

For 1 ≤ i ≤ n and 1 ≤ l ≤ d, let ei,l ∈ Nn denote the vector α with αi = l and αj = 0

for j 6= i. We note the following simple proposition.

63

Proposition 2.7.20. For any polynomial f such that the degree of Zi is at most d,

f(Z)− f(Z(i)) =
∑

1≤l≤d
(Zli − Z̃i

l
)∇ei,l(f)

We now restate and prove Lemma 2.7.15.

Lemma 2.7.15. For all integers t ≥ 1, E
∥∥∥∆k,a,b

2

∥∥∥t
t
≤ (2dp)

t

nt
(E
∥∥Fk,a,b+1

∥∥2t
2t

+E
∥∥Fk,a+1,b

∥∥2t
2t

).

Proof. Consider

∆
k,a,b
2 = E[(D(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))D(Z))2|Z]

= E
[MMᵀ 0

0 MᵀM

 |Z]

=

E[MMᵀ|Z] 0

0 E[MᵀM|Z]


where M = D1(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))D2(Z). Using Proposition 2.7.20,

E[MMT |Z] = E[D1(Z)(Gk,a,b(Z)−Gk,a,b(Z
′))D2(Z) ·D2(Z)(Gk,a,b(Z)−Gk,a,b(Z

′))ᵀD1(Z)|Z]

=
1

n

n∑
i=1

E[D1(Z)(Gk,a,b(Z)−Gk,a,b(Z
(i)))D2(Z) ·D2(Z)(Gk,a,b(Z)−Gk,a,b(Z

(i)))ᵀD1(Z)|Z]

=
1

n

n∑
i=1

d∑
l=1

E[(Zli − Z̃i
l
)2|Z] ·D1(Z)(∇ei,lGk,a,b)(Z)D2(Z) ·D2(Z)(∇ei,lGk,a,b)(Z)ᵀD1(Z)

Define Ni,l(Z) := D1(Z)(∇ei,lGk,a,b)(Z)D2(Z). Then,

E[MMT |Z] =
1

n

n∑
i=1

d∑
l=1

E[(Zli − Z̃i
l
)2|Z] ·Ni,l(Z)Ni,l(Z)ᵀ

� 2

n

n∑
i=1

d∑
l=1

(Z2l
i + E[Z2l

i]) ·Ni,l(Z)Ni,l(Z)ᵀ

64

Similarly,

E[MᵀM|Z] � 2

n

n∑
i=1

d∑
l=1

(Z2l
i + E[Z2l

i]) ·Ni,l(Z)ᵀNi,l(Z)

Claim 2.7.21. We have the relations

n∑
i=1

d∑
l=1

(Z2l
i + E[Z2l

i]) ·Ni,l(Z)Ni,l(Z)ᵀ = (b+ 1)Fk,a,b+1F
ᵀ
k,a,b+1

n∑
i=1

d∑
l=1

(Z2l
i + E[Z2l

i]) ·Ni,l(Z)ᵀNi,l(Z) = (a+ 1)F
ᵀ
k,a+1,bFk,a+1,b

Using this claim, we have

E[MMT |Z] � 2(b+ 1)

n
Fk,a,b+1F

ᵀ
k,a,b+1 �

2dp
n

Fk,a,b+1F
ᵀ
k,a,b+1

E[MᵀM|Z] � 2(a+ 1)

n
F
ᵀ
k,a+1,bFk,a+1,b �

2dp
n

F
ᵀ
k,a+1,bFk,a+1,b

Therefore,

E
∥∥∥∆k,a,b

2

∥∥∥t
t

= E ‖E[MMᵀ|Z]‖tt + E ‖E[MᵀM|Z]‖tt

≤
(2dp)

t

nt
(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

≤
(2dp)

t

nt
(E
∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

It remains to prove the claim.

Proof of Claim 2.7.21. We will prove the first relation, the second is analogous. For a fixed

i ≤ n, l ≤ d, consider any nonzero entry [(I1, α1, γ1), (I2, α2, γ2)] of
∑n
i=1

∑d
l=1(Z2l

i +

E[Z2l
i])Ni,l(Z)Ni,l(Z)ᵀ, where I1, I2 ∈ I, (α1, γ1), (α2, γ2) ∈ K. We must have |α1|0 =

65

|α2|0 = a, in which case the entry is equal to

∑
(J,α3,γ3)∈J×K

|α3|=b
α1α3=α2α3=0

(Z2l
i + E[Z2l

i]) · (
√
E[Z2α1·(1−γ1)+2α3·(1−γ3)]Zα1·γ1+α3·γ3∇ei,l∇α1+α3Xk[I1, J])

· (
√

E[Z2α2·(1−γ2)+2α3·(1−γ3)]Zα2·γ2+α3·γ3∇ei,l∇α2+α3Xk[I2, J])

Note that the term inside the summation is nonzero only when ei,l·(α1+α3) = ei,l·(α2+α3) =

0. Hence, this sum can be written as

∑
(J,α3,γ3)∈J×K
|α3|=b+1

ei,lEα3,α1α3=α2α3=0

(

√
E[Z2α1·(1−γ1)+2α3·(1−γ3)]Zα1·γ1+α3·γ3∇α1+α3Xk[I1, J])

· (
√

E[Z2α2·(1−γ2)+2α3·(1−γ3)]Zα2·γ2+α3·γ3∇α2+α3Xk[I2, J])

When we add this entry over all i ≤ n, l ≤ d, this simplifies to

(b+ 1) ·
∑

(J,α3,γ3)∈J×K
|α3|=b+1

α1α3=α2α3=0

(

√
E[Z2α1·(1−γ1)+2α3·(1−γ3)]Zα1·γ1+α3·γ3∇α1+α3Xk[I1, J])

· (
√

E[Z2α2·(1−γ2)+2α3·(1−γ3)]Zα2·γ2+α3·γ3∇α2+α3Xk[I2, J])

The factor of (b + 1) came because the index i could have been chosen from among all

the active indices in α3. But this is precisely the [(I1, α1, γ1), (I2, α2, γ2)] entry of (b +

1)Fk,a,b+1F
ᵀ
k,a,b+1, proving the claim.

We restate and prove Lemma 2.7.16.

Lemma 2.7.16. For all integers t ≥ 1, E
∥∥Vk,a,b

∥∥t
t
≤ (2dp)

tnt(E
∥∥Fk,a,b+1

∥∥2t
2t

+E
∥∥Fk,a+1,b

∥∥2t
2t

).

66

Proof. Using Lemma 2.7.19 and Lemma 2.7.15, we get

E
∥∥Vk,a,b

∥∥t
t
≤ n2t E

∥∥∥∆k,a,b
2

∥∥∥t
t

≤ (2dp)
tnt(E

∥∥Fk,a,b+1

∥∥2t
2t

+ E
∥∥Fk,a+1,b

∥∥2t
2t

)

2.7.4 Bounding ∆k,a,b
1 and ∆k,a,b

3

Define t to be the disjoint union of sets. For 1 ≤ i ≤ n and 1 ≤ l ≤ d, define the diagonal

matrices Πi,l,Π
′
i,l,Πi,Π

′
i ∈ R(I×K)t(J×K) × R(I×K)t(J×K) (the same dimensions as D)

as

Πi,l[(I, α, β), (I, α, β)] =


1 if (α · γ)i 6= 0 and αi = l

0 o.w.

Πi[(I, α, β), (I, α, β)] =


1 if (α · γ)i 6= 0

0 o.w.

Π′i,l[(I, α, β), (I, α, β)] =


1 if αi 6= 0 and αi = l

0 o.w.

Π′i[(I, α, β), (I, α, β)] =


1 if αi 6= 0

0 o.w.

for all I ∈ I t J . Note that for all i ≤ n, Πi =
∑d
l=1 Πi,l.

Also, for all 1 ≤ i ≤ n, we define the permutation matrices Σi ∈ R(I×K)t(J×K) ×

R(I×K)t(J×K) as follows. Consider the permutation σ1 on I × K that transposes (I, α, γ)

and (I, α, γ + ei) for all (I, α, γ) ∈ I × K such that αi 6= 0. Here, ei ∈ {0, 1}n has exactly

one nonzero entry, which is in the ith position, and γ + ei is the usual addition over F2. σ1

leaves other positions fixed. Let Σ
(1)
i be the permutation matrix for σ. Similarly, let Σ

(2)
i

be the permutation matrix of the permutation σ2 on J × K that transposes (J, α, γ) and

(J, α, γ + ei) for all (J, α, γ) ∈ J × K such that αi 6= 0, and leaves all other positions fixed.

Then, we define Σi =

Σ
(1)
i 0

0 Σ
(2)
i

. The following fact is easy to verify.

Fact 2.7.22. Π′i,lΣi = ΣiΠ
′
i,l and Π′iΣi = ΣiΠ

′
i.

67

We are now ready to prove Lemma 2.7.17 which we restate for convenience.

Lemma 2.7.17. For all integers t ≥ 1, E
∥∥∥∆k,a,b

1

∥∥∥t
t
≤ (8ddp)

t

nt E
∥∥Fk,a,b∥∥2t

2t
.

Proof. Firstly,

∆
k,a,b
1 = E[((D(Z)−D(Z ′))Gk,a,b(Z)D(Z))2|Z]

= E[(D(Z)−D(Z ′))Gk,a,b(Z)D(Z) ·D(Z)Gk,a,b(Z)(D(Z)−D(Z ′))|Z]

= E[(D(Z)−D(Z ′))M(Z)(D(Z)−D(Z ′))|Z]

where we define M(Z) = Gk,a,b(Z)D(Z) ·D(Z)Gk,a,b(Z). Recall that Z ′ = Z(i) for some i

randomly chosen from [n] uniformly. Observing that D(Z)−D(Z(i)) = Πi(D(Z)−D(Z(i)))

for all i, we get

∆
k,a,b
1 = E[E

i∈[n]
[(D(Z)−D(Z(i)))M(Z)(D(Z)−D(Z(i)))]|Z]

= E[E
i∈[n]

[Πi(D(Z)−D(Z(i)))M(Z)(D(Z)−D(Z(i)))Πi]|Z]

� 2

(
E[E
i∈[n]

[ΠiD(Z)M(Z)D(Z)Πi]|Z] + E[E
i∈[n]

[ΠiD(Z(i))M(Z)D(Z(i))Πi]|Z]

)
� 2

(
E

i∈[n]
[ΠiF

2
k,a,bΠi] + E[E

i∈[n]
[ΠiD(Z(i))M(Z)D(Z(i))Πi]|Z]

)
� 2(∆10 + ∆11)

where we define

∆10 = E
i∈[n]

[ΠiF
2
k,a,bΠi], ∆11 = E[E

i∈[n]
[ΠiD(Z(i))M(Z)D(Z(i))Πi]|Z]

Invoking Lemma 2.2.4 over the interval [0,∞) with the convex continuous function f(x) = xt,

68

Bi = F
2
k,a,b,Ai = 1√

dp
Πi where we observe that

∑n
i=1 AiA

T
i = 1

dp

∑n
i=1 Π2

i � I, we get

E ‖∆10‖tt = E tr[∆t
10] = E tr[

(
E

i∈[n]
[ΠiF

2
k,a,bΠi]

)t
] =

1

nt
E tr[

(n∑
i=1

ΠiF
2
k,a,bΠi

)t
]

≤
dt−1
p

nt
E tr[

(n∑
i=1

ΠiF
2t
k,a,bΠi

)
]

≤
dt−1
p

nt
E tr[

(n∑
i=1

Π2
i

)
F

2t
k,a,b]

≤
dtp
nt

E tr[F
2t
k,a,b]

=
dtp
nt

E
∥∥Fk,a,b∥∥2t

2t

Now, consider

∆11 = E[E
i∈[n]

[ΠiD(Z(i))M(Z)D(Z(i))Πi]|Z]

= E[E
i∈[n]

[(
d∑
l=1

Πi,l)D(Z(i))M(Z)D(Z(i))(
d∑
l=1

Πi,l)]|Z]

� d · E[E
i∈[n]

[
d∑
l=1

Πi,lD(Z(i))M(Z)D(Z(i))Πi,l]|Z]

= d · E
i∈[n]

[
d∑
l=1

E[Z2l
i]

Z2l
i

Πi,lD(Z)M(Z)D(Z)Πi,l]

=
d

n

n∑
i=1

d∑
l=1

E[Z2l
i]

Z2l
i

Πi,lD(Z)M(Z)D(Z)Πi,l

=
d

n

n∑
i=1

d∑
l=1

Πi,lΣiD(Z)M(Z)D(Z)Σ
ᵀ
i Πi,l

=
d

n

n∑
i=1

d∑
l=1

Πi,lΣiF
2
k,a,bΣ

ᵀ
i Πi,l

We now invoke Lemma 2.2.4 on ddp terms with Bi,l = F
2
k,a,b and Ai,l = 1√

dp
Πi,lΣi where

69

we observe that

n∑
i=1

d∑
l=1

Ai,lA
T
i,l =

1

dp

n∑
i=1

d∑
l=1

Πi,lΣiΣ
ᵀ
i Π

ᵀ
i,l =

1

dp

n∑
i=1

d∑
l=1

Π2
i,l � I

to get

E ‖∆11‖tt = E tr[∆t
11] ≤ dt

nt
E tr[(

n∑
i=1

d∑
l=1

Πi,lΣiF
2
k,a,bΣ

ᵀ
i Πi,l)

t]

≤
(ddp)

t

nt
E tr[

(
1

dp

n∑
i=1

d∑
l=1

Πi,lΣiF
2t
k,a,bΣ

ᵀ
i Πi,l

)
]

=
(ddp)

t

nt
E tr[

(
1

dp

n∑
i=1

d∑
l=1

Σ
ᵀ
i Πi,lΠi,lΣiF

2t
k,a,b

)
]

To simplify this, we use Fact 2.7.22 to get

n∑
i=1

d∑
l=1

Σ
ᵀ
i (Πi,l)

2Σi �
n∑
i=1

d∑
l=1

Σ
ᵀ
i (Π′i,l)

2Σi =
n∑
i=1

d∑
l=1

Π′i,lΣ
ᵀ
i ΣiΠ

′
i,l =

n∑
i=1

d∑
l=1

Π′i,lΠ
′
i,l � dpI

Therefore,

E ‖∆11‖tt ≤
(ddp)

t

nt
E tr[F

2t
k,a,b] =

(ddp)
t

nt
E
∥∥Fk,a,b∥∥2t

2t

Putting them together, using Fact 2.2.3,

E
∥∥∥∆k,a,b

1

∥∥∥t
t
≤ 4t(E ‖∆10‖tt + E ‖∆11‖tt)

≤
(8ddp)

t

nt
E
∥∥Fk,a,b∥∥2t

2t

We now restate and prove Lemma 2.7.18.

Lemma 2.7.18. For all integers t ≥ 1, E
∥∥∥∆k,a,b

3

∥∥∥t
t
≤ (4dp)

t

nt E
∥∥Fk,a,b∥∥2t

2t
.

70

Proof. Recall that Z ′ = Z(i) for i sampled uniformly from [n]. Then,

∆
k,a,b
3 = E[(D(Z)Gk,a,b(Z)(D(Z)−D(Z ′)))2|Z]

= E[E
i∈[n]

[(D(Z)Gk,a,b(Z)(D(Z)−D(Z(i))))2]|Z]

= E[E
i∈[n]

[(D(Z)Gk,a,b(Z)Πi(D(Z)−D(Z(i))))2]|Z]

where we use the fact that D(Z)−D(Z(i)) = Πi(D(Z)−D(Z(i))) for all i. Define M(Z) =

D(Z)Gk,a,b to get

∆
k,a,b
3 = E[E

i∈[n]
[M(Z)Πi(D(Z)−D(Z(i)))2ΠiM(Z)ᵀ]|Z]

� 2(E[E
i∈[n]

[M(Z)ΠiD(Z)2ΠiM(Z)ᵀ]|Z] + E[E
i∈[n]

[M(Z)ΠiD(Z(i))2ΠiM(Z)ᵀ]|Z])

= 2(E
i∈[n]

[M(Z)ΠiD(Z)2ΠiM(Z)ᵀ] + E[E
i∈[n]

[M(Z)ΠiD(Z(i))2ΠiM(Z)ᵀ]|Z])

= 2(∆30 + ∆31)

where we define

∆30 = E
i∈[n]

[M(Z)ΠiD(Z)2ΠiM(Z)ᵀ], ∆31 = E[E
i∈[n]

[M(Z)ΠiD(Z(i))2ΠiM(Z)ᵀ]|Z]

We have

∆30 = E
i∈[n]

[M(Z)ΠiD(Z)2ΠiM(Z)ᵀ] = E
i∈[n]

[M(Z)D(Z)ΠiΠiD(Z)M(Z)ᵀ]

= M(Z)D(Z)(
1

n

n∑
i=1

Π2
i)D(Z)M(Z)ᵀ

�
dp
n

M(Z)D(Z)D(Z)M(Z)ᵀ

=
dp
n

F
2
k,a,b

71

For the other term, using Fact 2.7.22,

∆31 = E[E
i∈[n]

[M(Z)ΠiD(Z(i))2ΠiM(Z)ᵀ]|Z]

= E
i∈[n]

[M(Z)ΠiΣiD(Z)2ΣiΠiM(Z)ᵀ]

� E
i∈[n]

[M(Z)Π′iΣiD(Z)2ΣiΠ
′
iM(Z)ᵀ]

= E
i∈[n]

[M(Z)ΣiΠ
′
iD(Z)2Π′iΣiM(Z)ᵀ]

= E
i∈[n]

[D(Z)Gk,a,bΣiΠ
′
iD(Z)2Π′iΣiGk,a,bD(Z)]

Observe that Gk,a,bΣi = Gk,a,b because the entries of G only depend on α and not on γ,

so permuting the γs will not have any effect on the matrix. Therefore,

∆31 � E
i∈[n]

[D(Z)Gk,a,bΠ
′
iD(Z)2Π′iGk,a,bD(Z)]

� E
i∈[n]

[D(Z)Gk,a,bD(Z)Π′iΠ
′
iD(Z)Gk,a,bD(Z)]

= E
i∈[n]

Fk,a,bΠ
′
iΠ
′
iFk,a,b

=
1

n

n∑
i=1

Fk,a,bΠ
′
iΠ
′
iFk,a,b

�
dp
n

F
2
k,a,b

where we used the fact that
∑n
i=1 Π′iΠ

′
i � dpI. Putting them together,

E
∥∥∥∆k,a,b

3

∥∥∥t
t
≤ 2t(E ‖∆30‖tt + E ‖∆31‖tt) ≤ 2t · 2

dtp
nt

E
∥∥Fk,a,b∥∥2t

2t
≤

(4dp)
t

nt
E
∥∥Fk,a,b∥∥2t

2t

72

2.8 Application: Sparse graph matrices

We now consider sparse graph matrices, i.e., the setting G ∼ Gn,p for p ≤ 1
2 . The main

difference from dense graph matrices is the contribution of the edge factors. Näıvely bounding

the contribution of each edge by it’s absolute value, as explained in Section 2.5, each edge

in the shape contributes a factor of
√

1−p
p . But in many cases, these bounds are not tight.

In fact, they are not tight even in the basic case of the adjacency matrix. In this section, we

obtain tighter bounds using our general recursion. As we will see, the improved bound will

contain the edge factors only for edges within the vertex separator.

Let Mτ be the graph matrix corresponding to shape τ where we use p-biased Fourier

characters Gi,j . In this section, we obtain bounds on E ‖Mτ − EMτ‖2t2t and use it to obtain

high probability bounds on ‖Mτ‖. Since many of the details are similar to Section 2.4.2 and

the proof of Theorem 2.4.9, we will pass lightly over some details. We recommend the reader

to read that section first.

The Gi,j correspond to the Zis in Section 2.6 and F corresponds to Mτ . Let I denote

the set of sub-tuples of [n]. Each nonzero entry of Mτ is a homogenous polynomial of degree

|E(τ)|. If E(τ) = ∅, then, Mτ − EMτ = 0 so we can focus on the case when τ has at least

one edge. Moreover, since degree-0 vertices in V (τ) \ Uτ \ Vτ simply scale the matrix by a

factor of at most n, we can handle them separately and for our main analysis, we assume

there are no such vertices in τ .

We will use Theorem 2.6.6 but the matrices and the statement can be drastically sim-

plified in our application. Instate the notation of Section 2.6. Since we are dealing with

multilinear polynomials, in the definition of K, we can restrict our attention to α ∈ {0, 1}(
n
2)

because for any other α ∈ Nn, the corresponding row or column of Ga+b,a,b and hence

Fa+b,a,b, will be 0. So, we can accordingly redefine K to only contain these (α, γ), hence

K ⊆ {0, 1}n × {0, 1}n.

Next, the diagonal matrices D1,D2 will both be equal to the diagonal matrix D ∈

73

R[Z]I×K × R[Z]I×K with nonzero entries

D[(I, α, γ), (I, α, γ)] =

√
E[
∏
i,j

G
2αij(1−γ)ij
ij]

∏
i,j

G
αijγij
i =

∏
i,j

G
αijγij
i

where we used the fact that for any i, j, E[G2
ij] = 1.

For integers a, b ≥ 0 such that a+ b = |E(τ)|, define the matrix Mτ,a,b to be the matrix

Ga+b,a,b. We use this notation in order to be streamlined with Section 2.4.2. That is, Mτ,a,b

has rows and columns indexed by I × K such that for all (I, α1, γ1), (J, α2, γ2) ∈ I × K,

Mτ,a,b[(I, α1, γ1), (J, α2, γ2)] =


∇α1+α2Mτ [I, J] if |α1|0 = a, |α2|0 = b, α1 · α2 = 0

0 o.w.

This is almost identical to the Mτ,a,b matrix defined in Section 2.4.2, with the dif-

ference being that the row and column indices now have γ in them. Therefore, for I, J ∈

I, (α1, γ1), (α2, γ2) ∈ K such that |α1|0 = a, |α2|0 = b, α1 ·α2 = 0, the entry in row (I, α1, γ1)

and column (J, α2, γ2) is the number of realizations ϕ of τ such that

• Uτ , Vτ map to I, J respectively under ϕ, and

• Under ϕ, the edges of τ map to the edges in α1 and α2 viewed as a set.

By Theorem 2.6.6, for integers t ≥ 1,

E ‖Mτ − EMτ‖2t2t ≤
∑

a,b≥0,a+b≥1

(Ct2dd4
p)

(a+b)t E
∥∥Fa+b,a,b

∥∥2t
2t

=
∑

a,b≥0,a+b=|E(τ)|
(Ct2|E(τ)|4)t|E(τ)| E

∥∥DMτ,a,bD
∥∥2t

2t

for an absolute constant C > 0.

Now, we would like to analyze E
∥∥DMτ,a,bD

∥∥2t
2t

. Just as in the proof of Theorem 2.4.9,

let P specify which edges of E(τ) go to α1, α2 respectively and in what order. Moreover, we

74

now store extra information in P that indicates which entries of γ1, γ2 (relative to α1, α2) are

set to 1. Let the set of such information P be denoted P , then |P| ≤ (4|E(τ)|)t|E(τ)|2|E(τ)|.

Thus,

E
∥∥DMτ,a,bD

∥∥2t
2t
≤ (8|E(τ)|)t|E(τ)| ∑

P∈P
E
∥∥DMτ,a,b,PD

∥∥2t
2t

where we define Mτ,a,b,P similar to Mτ,a,b with the extra condition that ϕ, α1, α2, γ1, γ2

must respect P .

At this point, in contrast to the proof of Theorem 2.4.9, note that the matrices Mτ,a,b,P

here have rows and columns indexed by I × K. We will again define the shape τP that

is equal to the nonzero block of the matrix DMτ,a,b,PD, upto renaming of the rows and

columns. V (τP), UτP , VτP are defined the same way as in Section 2.4.2 but to incorporate

the action of D on these entries, we simply keep the edges that are active in γ1 or γ2, as

prescribed by P . For an illustration, see Fig. 2.6.

𝑉τ𝑃

𝑈τ

𝑢1

𝑢2

𝑣2

𝑢2

𝑣2

𝑣1

𝑣1

 𝑤1

𝑤1

𝑣3

𝑣3

𝑈τ𝑃

𝑉τ

𝑢1

Figure 2.6: An example illustrating how τP is defined. In this example, P constraints the blue and
red edges to go to α1 and α2 respectively. Moreover, P indicates that some edges are active in
γ1, γ2 (indicated by a solid edge) and some are not active (indicated by a dashed edge) in γ1, γ2.
We keep the solid edges in τP . UτP , VτP also have an ordering on the vertices (not shown here).

Then, by similar renaming of the rows and columns of DMτ,a,b,PD and dropping the γs,

75

we obtain MτP . We therefore obtain the bound

E
∥∥DMτ,a,bD

∥∥2t
2t
≤ (8|E(τ)|)t|E(τ)| ∑

P∈P
E
∥∥MτP

∥∥2t
2t

We would like to analyze norm bounds on the matrices MτP . Observe that τP are shapes

with the properties

• there are no vertices in V (τP) \ UτP \ VτP

• each edge is either entirely contained in UτP or entirely contained in VτP

Call such shapes simple.

In the following lemma, whose proof is deferred to the next section, we prove norm

bounds on simple shapes. Recall that in Lemma 2.4.10, we analyzed the norm bounds of

simple shapes with no edges (because in this case, the graph distribution doesn’t matter).

The analysis for simple shapes is very similar but this time, we use scalar concentration tools

to bound the Frobenius norm.

For a set S of vertices, denote by E(S) the set of edges with both endpoints in S.

Lemma 2.8.1. For all even integers t ≥ 2, if τ is a simple shape,

E ‖Mτ‖2t2t ≤
(
n|V (τ)|(Ct)t|E(τ)||V (τ)|t|V (τ)|

)
max

Uτ∩Vτ⊆S⊆V (τ)

(
1− p
p

)t|E(S)|
nt(|V (τ)|−|S|)

for an absolute constant C > 0.

For simple shapes, the main difference from norm bounds on corresponding dense graph

matrices is that each edge within S contributes a factor of
√

1−p
p . Edge contributions are

unavoidable when handling sparse graph matrices, but we have identified that we need not

consider all edges in the shape but only a subset of it.

Using this lemma, we can obtain norm bounds on general graph matrices. We recall the

definition of a vertex separator.

76

Definition 2.4.8 (Vertex separator). For a shape τ , define a vertex separator to be a subset

of vertices S ⊆ V (τ) such that there is no path from Uτ to Vτ in τ \ S, which is the shape

obtained by deleting all the vertices of S (including all edges they’re incident on).

Let Iτ be the set of isolated vertices (vertices of degree 0) in V (τ) \ Uτ \ Vτ , so they

essentially scale the matrix by a scalar factor. We now state the main theorem of this

section.

Theorem 2.8.2. For all even integers t ≥ 2, for any shape τ ,

E ‖Mτ − EMτ‖2t2t ≤
(
n|V (τ)||V (τ)|t|V (τ)|(Ct3|E(τ)|5)t|E(τ)|

)
max

vertex separator S

(
1− p
p

)t|E(S)|

nt(|V (τ)|−|S|+|Iτ |)

where the maximum is over all vertex separators S.

To interpret this bound, if we assume that there are a constant number of vertices in τ ,

then by choosing t ≈ polylog(n), we get

‖Mτ‖ = Õ

(
max

vertex separator S

(√
1− p
p

)|E(S)|√
n
|V (τ)−|S|+|Iτ |

)

with high probability, where Õ hides logarithmic factors. This result follows from Theo-

rem 2.8.2 if τ has at least one edge, but also applies if τ has no edges, in which case we can

directly use the far simpler Lemma 2.4.10. A precise form of the above characterization is

given in Corollary 2.8.3.

Theorem 2.8.2 gives us the right dependence on p, n for norm bounds in the case of sparse

graph matrices. The same bound, upto lower order terms, was also obtained in [95] via the

trace power method, where they use these bounds to prove semidefinite-programming lower

bounds for the maximum independent set problem on sparse graphs.

Proof of Theorem 2.8.2. If E(τ) = ∅, then Mτ = EMτ and we are done. So, assume

E(τ) 6= ∅. Since vertices in Iτ only scale the matrix by a factor of at most n, we can

77

handle them separately and our bound has the appropriate power of n coming from these.

Therefore, we can assume Iτ = ∅. Continuing our prior discussions, for an absolute constant

C1 > 0,

E ‖Mτ − EMτ‖2t2t ≤
∑

a,b≥0,a+b=|E(τ)|
(C1t

2|E(τ)|4)t|E(τ)| E
∥∥DMτ,a,bD

∥∥2t
2t

≤
∑

a,b≥0,a+b=|E(τ)|
(C1t

2|E(τ)|4)t|E(τ)|(8|E(τ)|)t|E(τ)| ∑
ψ∈Γa,b

E
∥∥Mψ

∥∥2t
2t

where Γa,b are the set of simple shapes we obtain for DMτ,a,bD, as per our discussion above.

Using Lemma 2.8.1, for an absolute constant C2 > 0, we have

E ‖Mτ − EMτ‖2t2t

≤
(
n|V (τ)||V (τ)|t|V (τ)|(C2t

3|E(τ)|5)t|E(τ)|
) ∑
a,b≥0,a+b=|E(τ)|

∑
ψ∈Γa,b

max
Uψ∩Vψ⊆S⊆V (ψ)

(
1− p
p

)t|E(S)|

nt(|V (ψ)|−|S|)

For any a, b, consider any simple shape ψ ∈ Γa,b that can be obtained. As observed in the

proof of Theorem 2.4.9 (see in particular Fig. 2.5), Uψ ∩ Vψ must be a vertex separator of

τ . Therefore, any S ⊇ Uψ ∩ Vψ must be a vertex separator of τ . It’s easy to see that as S

ranges over all sets such that Uψ ∩ Vψ ⊆ S ⊆ V (ψ), it ranges over all vertex separators of τ .

Also, the number of different ψ is at most 4|E(τ)| since each edge can go either to Uψ or

Vψ and for each such choice, it can either be active in γ or not. Therefore,

E ‖Mτ − EMτ‖2t2t

≤
(
n|V (τ)||V (τ)|t|V (τ)|(C2t

3|E(τ)|5)t|E(τ)|
)

4|E(τ)| max
vertex separator S

(
1− p
p

)t|E(S)|
nt(|V (τ)|−|S|)

≤
(
n|V (τ)||V (τ)|t|V (τ)|(Ct3|E(τ)|5)t|E(τ)|

)
max

vertex separator S

(
1− p
p

)t|E(S)|
nt(|V (τ)|−|S|)

for an absolute constant C > 0.

The following corollary obtains high probability norm bounds for norms of graph ma-

78

trices via Markov’s inequality. We assume the graph has at least one edge, otherwise it is

deterministic and its norm bound was already analyzed in Lemma 2.4.10, Corollary 2.4.11,

where we observe that the distinction between sparse and dense graph matrices does not

matter if the random matrix is deterministic.

Corollary 2.8.3. For a shape τ with at least one edge, for any constant ε > 0, with proba-

bility 1− ε,

‖Mτ‖ ≤
(
|V (τ)||V (τ)|/2(C|E(τ)|5 log3(n|V (τ)|/ε))|E(τ)|/2

)
· max
vertex separator S

(√
1− p
p

)|E(S)|√
n
|V (τ)−|S|+|Iτ |

for an absolute constant C > 0.

Proof. Since |E(τ)| ≥ 1, EMτ = 0. By an application of Markov’s inequality,

Pr[‖Mτ‖ ≥ θ] ≤ Pr[‖Mτ‖2t2t ≥ θ
2t]

≤ θ−2t E ‖Mτ‖2t2t

≤ θ−2t

(
n|V (τ)||V (τ)|t|V (τ)|(C ′t3|E(τ)|5)t|E(τ)|

)
max

vertex separator S

(
1− p
p

)t|E(S)|

nt(|V (τ)|−|S|+|Iτ |)

for an absolute constant C ′ > 0. We now set

θ =

(
ε−1/(2t)(C ′′)|E(τ)|n|V (τ)|/(2t)|V (τ)||V (τ)|/2t3|E(τ)|/2|E(τ)|5|E(τ)|/2

)
· max

vertex separator S

(√
1− p
p

)|E(S)|√
n
|V (τ)−|S|+|Iτ |

for an absolute constant C ′′ > 0, to make this expression at most ε. Set t = 1
2 log(n|V (τ)|/ε)

to complete the proof.

2.8.1 Norm bounds on simple graph matrices

In this section, we will prove Lemma 2.8.1. First, we recall the following scalar concentration

result from [166].

79

Schudy-Sviridenko moment bound

The definitions and main bound in this section are from [166].

Definition 2.8.4. A random variable Z is central moment bounded with real parameter

L > 0 if for any integer i ≥ 1,

E[|Z − E[Z]|i] ≤ i · L · E[|Z − E[Z]|i−1]

Proposition 2.8.5. The p-biased Bernoulli random variable Z is central moment bounded

with real parameter L =
√

1−p
p .

Proof. We have E[Z] = 0 and for p ≤ 1
2 , |Z| ≤

√
1−p
p , therefore,

E[|Z − E[Z]|i] = p

√
p

1− p

i

+ (1− p)
√

1− p
p

i

≤
√

1− p
p

(
p

√
p

1− p

i−1

+ (1− p)
√

1− p
p

i−1)
=

√
1− p
p

E[|Z − E[Z]|i−1]

therefore, we can take L =
√

1−p
p .

For a given multilinear polynomial f(x) on variables x1, . . . , xn, we can naturally as-

sociate with it a hypergraph H on vertices [n] and weighted hyperedges E(H) where each

h ∈ E(H) corresponds to a distinct term of f(x). Each hyperedge h is a subset V (h) of

vertices and has a real valued weight wh which is the coefficient of that monomial in f .

Therefore,

f(x) =
∑

h∈E(H)

wh
∏

v∈V (h)

xv

Assume f has degree dp, then each hyperedge of H has at most dp vertices.

80

Now, for a given collection of independent random variables Y1, . . . , Yn, a multilinear

poynomial f with associated hypergraph H and weights w, and an integer r ≥ 0, define

µr(f, Y) = max
S⊆[n],|S|=r

(∑
h∈E(H),S⊆V (h)

|wh|
∏

v∈V (h)\S
E[|Yv|]

)

Lemma 2.8.6 ([166], Lemma 5.1). Given n independent central moment bounded random

variables Y1, . . . , Yn with the same parameter L > 0 and a degree dp multilinear polynomial

f(x). Let t ≥ 2 be an even integer, then

E[|f(Y)− E[f(Y)]|t] ≤ max

{(√
tR

dp
4 Var[f(Y)]

)t
, max
r∈[dp]

(trR
dp
4 Lrµr(f, Y))t

}

where R4 ≥ 1 is some absolute constant.

In our setting, we can also bound the variance in terms of the µr as was shown in [166],

which will simplify our calculations.

Lemma 2.8.7 ([166], Lemma 1.5). For the same setting as in Lemma 2.8.6,

Var[f(Y)] ≤ 2dp4
dp max
r∈[dp]

(µ0(f, Y)µr(f, Y)4rLr)

Proof of Lemma 2.8.1

We are ready to prove Lemma 2.8.1 which we restate for convenience.

Lemma 2.8.1. For all even integers t ≥ 2, if τ is a simple shape,

E ‖Mτ‖2t2t ≤
(
n|V (τ)|(Ct)t|E(τ)||V (τ)|t|V (τ)|

)
max

Uτ∩Vτ⊆S⊆V (τ)

(
1− p
p

)t|E(S)|
nt(|V (τ)|−|S|)

for an absolute constant C > 0.

We will prove it the same way as Lemma 2.4.10, by bounding the schatten norm of each

81

diagonal block by an appropriate power of its Frobenius norm. In this case, to bound the

expected power of the Frobenius norm, we use the scalar concentration inequality from the

previous section.

Proof of Lemma 2.8.1. First, we note that Mτ has a block diagonal structure indexed by

the realizations of the set of common vertices S0 = UτP ∩ VτP . For T ∈ [n]S0 , let Mτ,T be

the block of Mτ with ϕ(S0) = T . Then, Mτ,TM
ᵀ
τ,T ′ = M

ᵀ
τ,TMτ,T ′ = 0 for T 6= T ′ and so,

E ‖Mτ‖2t2t =
∑

T∈[n]S0

E
∥∥Mτ,T

∥∥2t
2t
≤

∑
T∈[n]S0

E(
∥∥Mτ,T

∥∥2
2
)t

where we bounded the Schatten norm by a power of the Frobenius norm.

Fix T ∈ [n]S0 and consider E
∥∥Mτ,T

∥∥2
2
. Let R be the set of realizations ϕ of τ such that

ϕ(S0) = T . Then, for ϕ ∈ R and e ∈ E(S0), the value of ϕ(e) is fixed. Using this,

∥∥Mτ,T

∥∥2
2

=
∑
ϕ∈R

∏
e∈E(τ)

G2
ϕ(e)

=
∏

e∈E(S0)

G2
ϕ(e)

∑
ϕ∈R

∏
e∈E(τ)\E(S0)

G2
ϕ(e)

≤ L|E(S0)|∑
ϕ∈R

∏
e∈E(τ)\E(S0)

G2
ϕ(e)

where L = 1−p
p is an upper bound on G2

ij for p ≤ 1
2 . Define the quantity

A = max
S0⊆S⊆V (τ)

L|E(S)|n|V (τ)|−|S|

Claim 2.8.8. E(
∥∥Mτ,T

∥∥
2
)t ≤ (Ct)t|E(τ)||V (τ)|t|V (τ)|At for an absolute constant C > 0.

82

Using this claim, we have

E ‖Mτ‖2t2t ≤
∑

T∈[n]S0

E(
∥∥Mτ,T

∥∥
2
)t

≤ n|S0|(Ct)t|E(τ)||V (τ)|t|V (τ)|At

= n|V (τ)|(Ct)t|E(τ)||V (τ)|t|V (τ)| max
Uτ∩Vτ⊆S⊆V (τ)

(
1− p
p

)t|E(S)|
nt(|V (τ)|−|S|)

as required.

It remains to prove the claim.

Proof of Claim 2.8.8. For 1 ≤ i, j ≤ n, define the variables Yij = G2
ij with E[|Yij |] = 1.

Let f(Y) be the polynomial L|E(S0)|∑
ϕ∈R

∏
e∈E(τ)\E(S0) Yϕ(e). It suffices to prove that

E[f(Y)t] ≤ (Ct)t|E1|At.

We will first prove that E[(f(Y)−E[f(Y)])t] ≤ (C ′t)t|E(τ)||V (τ)|t|V (τ)|At for a sufficiently

large constant C ′ > 0.

f is a homogeneous multilinear polynomial of degree |E(τ) \ E(S0)|. If we had E(τ) \
E(S0) = ∅, then f is a constant and so, the inequality is obvious because f(Y) = E[f(Y)].

Now, assume E(τ) \E(S0) 6= ∅. We invoke Lemma 2.8.6. Let f have associated hypergraph

H and weights w. Then,

E[|f(Y)− E[f(Y)]|t] ≤ max

{(√
tR
|E(τ)\E(S0)|
4 Var[f(Y)]

)t
, max
r∈[|E(τ)\E(S0)|]

(trR
|E(τ)\E(S0)|
4 Lrµr(f, Y))t

}

For all r ≥ 0, we will prove that Lrµr(f, Y) ≤ |V (τ)||V (τ)|A. By definition,

µr(f, Y) = max
F⊆([n]

2),|F |=r

∑
h∈E(H),F⊆V (h)

|wh|

Consider any set of edge labels F ⊆
([n]

2

)
, |F | = r. Then,

∑
h∈E(H),F⊆V (h) |wh| is at most

L|E(S0)|c where c is the number of realizations ϕ ∈ R such that ϕ(E(τ)) contains F . Suppose

83

F contains v new labels apart from ϕ(S0) = T . Then c ≤ |V (τ)|vn|V (τ)|−|S0|−v because

we can first choose and label the set of vertices that get these v labels and then label the

remaining vertices freely, each of which has at most n choices.

Observe that L|E(S0)|Lrn|V (τ)|−|S0|−v ≤ A because in the definition of S, we can set S

to be the union of S and any valid choice of these v vertices. Putting this together, we get

Lrµr(f, Y) ≤ Lr max
F⊆([n]

2),|F |=r

∑
h∈E(H),F⊆V (h)

|wh|

≤ |V (τ)||V (τ)|A

which implies

max
r∈[|E(τ)\E(S0)|]

(trR
|E(τ)\E(S0)|
4 Lrµr(f, Y))t ≤ |V (τ)|t|V (τ)|(R4t)

t|E(τ)|At

and using Lemma 2.8.7,

Var[f(Y)] ≤ 2|E(τ)|4|E(τ)| max
r∈[|E(τ)\E(S0)|]

(µ0(f, Y)µr(f, Y)4rLr)

≤ 2|E(τ)|16|E(τ)||V (τ)|2|V (τ)|A2

Putting them together, we get

E[(f(Y)− E[f(Y)])t] ≤ max

{(√
2tR

|E(τ)|
4 |E(τ)|16|E(τ)||V (τ)|2|V (τ)|A2

)t
, |V (τ)|t|V (τ)|(R4t)

t|E(τ)|At
}

≤ (C ′t)t|E(τ)||V (τ)|t|V (τ)|At

for an absolute constant C ′ > 0.

84

Finally, E[f(Y)] ≤ L|E(S0)||R| ≤ L|E(S0)|n|V (τ)\S0| ≤ A which gives

E[f(Y)t] ≤ 2t(E[(f(Y)− E[f(Y)])t] + E[f(Y)]t)

≤ 2t((C ′t)t|E(τ)||V (τ)|t|V (τ)|At + At)

≤ (Ct)t|E(τ)||V (τ)|t|V (τ)|At

for an absolute constant C > 0.

85

CHAPTER 3

THE SUM OF SQUARES HIERARCHY

In this chapter, we formally introduce the Sum of Squares (SoS) hierarchy. Then, we take

a minor detour and define low-degree distinguishers and related concepts for hypothesis

testing, which will set the stage for us to discuss SoS lower bounds. We then go back to SoS

and discuss the heuristic known as pseudo-calibration, that will be a basic ingredient we use

in our SoS lower bounds. We finally show a formal connection between pseudo-calibration

and low-degree distinguishers.

3.1 The Sum of Squares hierarchy

We start by defining convex relaxations for polynomial optimization problems. The SoS

hierarchy will then be a special family of convex relaxations. For a more detailed treatment,

see e.g. [118, 17, 64].

3.1.1 Polynomial optimization and convex relaxations

In polynomial optimization, we are given multivariate polynomials p, g1, . . . , gm on n vari-

ables x1, . . . , xn taking real values, denoted collectively by x, and the task is to:

maximize p(x) such that g1(x) = 0, . . . , gm(x) = 0

In general, we could also allow inequality constraints, e.g., gi(x) ≥ 0. For technical

convenience in our setup, we work only with equality constraints but much of the theory

generalizes, with some modifications, when we have inequality constraints instead. An alter-

nate approach is to replace each inequality gi(x) ≥ 0 by gi(x) = y2 where y is a new variable

that we can introduce.

86

In this formulation, many optimization problems can be formulated as polynomial opti-

mization problems.

Example 3.1.1 (Maximum Cut). Given a graph G = (V,E), we would like to partition

the set of vertices into two subsets such that the number of edges with endpoints in different

subsets is maximized. To formulate this as a polynomial optimization problem, let the graph

have n vertices and let x1, . . . , xn be variables, one for each vertex. We wish to enforce

xi ∈ {−1, 1} where all vertices i with xi = −1 form one subset and the rest form the other

subset. We can enforce this set containment constraint via the polynomial constraint x2
i = 1.

For any edge (i, j) ∈ E, it is cut if and only if xixj = −1. Therefore, the total number of

edges cut is
∑

(i,j)∈E
1
2(1− xixj). The polynomial formulation therefore becomes

max
x∈Rn

∑
(i,j)∈E

1

2
(1− xixj) such that

x2
i = 1 for all i ≤ n

Example 3.1.2 (Maximum Clique). Given a graph G = (V,E), we would like to find the

maximize size subset of vertices that form a clique. Again, let x1, . . . , xn be variables, one

for each vertex. This time, we wish to enforce xi ∈ {0, 1}, which we can easily do so using

the polynomial constraint x2
i = xi, with the intent being that all vertices i with xi = 1 form

a clique. To enforce this clique constraint, we can add the polynomial constraint xixj = 0

for all non-edges (i, j) 6∈ E. Finally, to maximize the size of the subset, we simply maximize∑
i≤n xi. Therefore, the polynomial optimization is

max
x∈Rn

∑
i≤n

xi such that

xixj = 0 for all (i, j) 6∈ E

x2
i = xi for all i ≤ n

87

There can be other equivalent formulations for these problems. In general, many opti-

mization problems can be stated in this manner, therefore generic polynomial optimization

contains a large class of fundamental problems that appear in computer science.

Since exactly solving maximum cut or maximum clique is NP-hard [97], exactly solving

these polynomial optimization problems is also NP-hard. Therefore, we turn to convex

relaxations.

A convex relaxation of a polynomial optimization problem widens the search space of

solution vectors x into a larger space that one can efficiently optimize over. We will describe

one way to do this. We identify a convex space C that contains the space S = {g1(x) =

0, . . . , gm(x) = 0} upto a map, that is, for each x ∈ S, there exists a corresponding y ∈ C

such that y is a representative of x. We also identify a convex function p̃(y) such that if y

is a representative of x, then p̃(y) = p(x). Then, we simply optimize p̃(y) over C. There

has been significant work on efficiently optimizing a convex function over a convex body,

which is possible under reasonable assumptions (see e.g. [141]). It’s clear that from the

above properties, the solution we get is at least as large as the optimal solution (in the case

of maximization), but it comes with the advantage that it is efficiently computable. It is

desirable to design convex relaxations for problems that yield good approximations. The

SoS hierarchy is a family of such convex relaxations.

3.1.2 Sum of Squares relaxations

The SoS hierarchy, sometimes referred to as the Lasserre hierarchy, was first independently

studied by [144, 117, 169] and has been studied in other contexts by [135, 73, 74]. It is

a family of convex relaxations for polynomial optimization, parameterized by an integer

known as it’s degree. As we increase the degree, we get progressively tighter relaxations, but

requiring longer times to optimize over.

We now formally describe the Sum of Squares hierarchy, via the so-called pseudo-expectation

88

operator view.

Definition 3.1.3 (Pseudo-expectation values). Given multivariate polynomial constraints

g1 = 0,. . . ,gm = 0 on n variables x1, . . . , xn, degree d pseudo-expectation values are a linear

map Ẽ from polynomials of x1, . . . , xn of degree at most d to R satisfying the following

conditions:

1. Ẽ[1] = 1,

2. Ẽ[f · gi] = 0 for every i ∈ [m] and polynomial f such that deg(f · gi) ≤ d.

3. Ẽ[f2] ≥ 0 for every polynomial f such that deg(f2) ≤ d.

Any linear map Ẽ satisfying the above properties is known as a degree d pseudoexpecta-

tion operator satisfying the constraints g1 = 0, . . . , gm = 0.

Definition 3.1.4 (Degree d SoS). The degree d SoS relaxation for the polynomial optimiza-

tion problem

maximize p(x) such that g1(x) = 0, . . . , gm(x) = 0

is the program that maximizes Ẽ[p(x)] over all degree d pseudoexpectation operators Ẽ satis-

fying the constraints g1 = 0, . . . , gm = 0.

The intuition behind pseudo-expectation values is that the conditions on the pseudo-

expectation values are conditions that would be satisfied by any actual expected values over

a distribution of solutions, so optimizing over pseudo-expectation values gives a relaxation

of the problem.

The main observation is that the SoS relaxation can be efficiently solved! This is because

the conditions on pseudo-expectation values can be captured by a semidefinite program. In

particular, Item 3 in Definition 3.1.3 can be reexpressed in terms of a matrix called the

moment matrix.

89

Definition 3.1.5 (Moment Matrix of Ẽ). Given a degree d pseudo-expectation operator Ẽ,

define the associated moment matrix Λ to be a matrix with rows and columns indexed by

monomials p and q such that the entry corresponding to row p and column q is

Λ[p, q] := Ẽ [pq] .

It is easy to verify that Item 3 in Definition 3.1.3 equivalent to Λ � 0. Therefore, solving

the degree d SoS relaxation can be done via semidefinite programming, see for e.g. [181].

In general, for degree-d SoS, we can solve it in nO(d) time1. Therefore, constant degree SoS

can be solved in polynomial time.

Analyzing degree 2 SoS for maximum clique

To illustrate the use of this technique, let’s analyze the degree 2 SoS relaxation for the

maximum clique problem on Erdős-Rényi random graphs Gn,1/2. We use the program from

Example 3.1.2.

Let A be the adjacency matrix of a graph G sampled from Gn,1/2 and let J be the matrix

with all 1s. Then, with high probability over the choice of G, from random matrix theory,

we have λmax(A−J/2) = O(
√
n) where λmax(.) denotes the maximum singular value. Now,

suppose a set S of vertices form a clique and let 1S denote the indicator vector of the set S,

then

k(k − 1)

2
= 〈1S , (A− J/2)1S〉

≤ ‖1S‖2 · λmax(A− J/2)

≤ k ·O(
√
n)

1. This is not completely accurate due to issues of bit complexity [137] but this doesn’t occur for most
problems of interest [155]

90

which shows k ≤ O(
√
n).

The crux of this simple argument is that this is a low-degree proof, more specifically

degree 2 proof, that SoS can capture. That is, if we solve the degree 2 SoS relaxation, we

will be able to show that Ẽ[
∑
xi] = O(

√
n) whp.

To see this formally, we start with the following inequality: O(
√
n)I − (A − J/2) � 0

whp. This implies

xᵀ(O(
√
n)I − (A− J/2))x =

∑
pi(x)2

is a sum of squares of polynomials of degree at most 1. A simple computation yields

xᵀ(A− J/2)x =
1

2
(
n∑
i=1

xi)
2 −

∑
i,j

xixj1(i,j)6∈E(G)

For our program variables x, we have x2
i = xi and xixj1(i,j) 6∈E(G) = 0. Therefore,

∑
pi(x)2 = O(

√
n)(

n∑
i=1

xi)−
1

2
(
n∑
i=1

xi)
2

Apply Ẽ both sides. We finally use the fact that for a polynomial p(x), we have Ẽ[p(x)2] ≥

Ẽ[p(x)]2, which is true because this rearranges to Ẽ[(p(x) − Ẽ[p(x)])2] ≥ 0, which is true

because the left hand side is the the pseudo-expectation of a square polynomial, which is

nonnegative by definition. This simple fact is essentially saying that the pseudo-variance is

91

nonnegative. Using the linearity of Ẽ, we finally get

O(
√
n)Ẽ[

n∑
i=1

xi]−
1

2
(Ẽ[

n∑
i=1

xi])
2 ≥ O(

√
n)Ẽ[

n∑
i=1

xi]−
1

2
Ẽ[(

n∑
i=1

xi)
2]

= Ẽ[O(
√
n)(

n∑
i=1

xi)−
1

2
(
n∑
i=1

xi)
2]

= Ẽ[
∑

pi(x)2]

=
∑

Ẽ[pi(x)2]

≥ 0

Therefore, Ẽ[
∑n
i=1 xi] = O(

√
n) like we wanted to show.

This shows that the degree 2 SoS relaxation certifies an upper bound of O(
√
n) whp on

the size of the maximum clique of an Erdős-Rényi random graph. In contrast, the size of

the true maximum clique is (2 + o(1)) log n [125]. And despite intense effort, polynomial

time algorithms can only detect a planted k-clique when k = Ω(
√
n). Therefore, SoS already

achieves the best known guarantees for this problem upto constant factors. It was shown in

[13] that higher degree SoS (upto degree O(log n)) doesn’t necessarily do much better, which

is a SoS lower bound of the type we will study in this work.

Alternate viewpoints of SoS

In the polynomial optimization problem of maximizing p(x) subject to the constraints

g1(x) = 0, . . . , gm(x) = 0, if there does not exist any degree d pseudo-expectation oper-

ator Ẽ satisfying g1 = 0, . . . , gm = 0 such that Ẽ[p] > c, then we say that degree d SoS

certifies that Ẽ[p(x)] ≤ c.

A degree d SoS proof that p(x) ≤ c given g1(x) = 0, . . . , gm(x) = 0 is an expression of

92

the form

−1 =
∑
i≤m

gi(x)qi(x) +
∑
i≤a

si(x)2 + (p(x)− c)
∑
i≤b

ti(x)2

where q1, . . . , qm, s1, . . . , sa, t1, . . . , tb are polynomials in x such that each term on the right

hand side of the above expression has degree at most d. Indeed, the existence of such an

expression automatically implies that p(x) ≤ c whenever g1(x) = 0, . . . , gm(x) = 0.

When degree d SoS certifies that Ẽ[p(x)] ≤ c, by duality, this will imply that there

exists a degree d SoS proof that p(x) ≤ c given g1(x), . . . , gm(x) = 0. The Positivstel-

lensatz of Krivine and Stengle [112, 174] says that for any c, either there exists x such

that p(x) > c, g1(x) = 0, . . . , gm(x) = 0, or there is an SoS proof that p(x) ≤ c given

g1(x) = 0, . . . , gm(x) = 0.

For a fixed d, degree d SoS can indeed be construed as finding the best c so that there

is a degree d SoS proof of Ẽ[p(x)] ≤ c. This also intuitively explains why higher degree

SoS gives tighter relaxations. For most programs stemming from combinatorial optimization

problems, degree n SoS usually finds the optimal bound, where n is the number of variables.

So, for instance, degree n SoS exactly outputs the size of the maximum clique of a graph.

For efficient algorithms, we usually want constant degree SoS. For showing lower bounds, we

would like to show for higher degrees. In this work, all our lower bounds are for degree nε

SoS, which corresponds to subexponential time!

The viewpoint we have studied here is the dual view aka the search for simple proofs,

which will suit our purposes. There is also the primal viewpoint where SoS can be viewed

directly as a semi-definite programming relaxation of the program. This is sometimes useful

for algorithm design.

Similar to the maximum clique application shown above, the SoS hierarchy has been

shown formally to obtain the state-of-the art approximation guarantees for many fundamen-

tal problems both in the worst case and the average case setting. This includes constraint

satisfaction problems [152], maximum cut [72], sparsest cut [6], tensor PCA [88], etc. There-

93

fore, it’s natural to study the limits of SoS by studying SoS lower bounds.

Before we discuss SoS lower bounds, we introduce the framework of hypothesis testing

problem in more detail, suited to our purposes.

3.2 Hypothesis testing

Let Ω be a sample space. Let ν, µ be probability distributions on Ωn. The hypothesis

testing problem is the problem of distinguishing ν, µ given access to a sample. Formally,

input x ∼ Ωn is sampled from either

• H0: x ∼ µ

• H1: x ∼ ν.

Our objective is to determine which distribution it came from, with high probability. This

is the hypothesis testing problem in general, where traditionally, H0 is known as the null

hypothesis and H1 the alternate hypothesis. We abuse notation and use H0, H1 to also

denote the probability distributions µ, ν respectively as well.

For example, H0 could be the distribution of Erdős-Rényi random graphs and H1 could

be the distribution of Erdős-Rényi random graphs with a large planted clique. Given the

graph, we would like to determine which of the two distributions it came from, or in other

words, whether it contains a large clique.

A hypothesis test f is a function f : Ωn → {0, 1}. Given the input x, if f(x) = 0, then

we report that x came from the null distribution H0 otherwise we report that x came from

the alternate distribution H1.

A successful hypothesis test is a test f such that when b is chosen uniformly at random

from {0, 1} and x is sampled from Hb, we have Eb Prx∼Hb [f(x) 6= b] ≤ o(1). That is, test f

has success probability 1 − o(1). Here, for simplicity, we don’t distinguish type 1 and type

2 errors.

94

Indeed, for a test to be useful, it should be computable efficiently. But when computa-

tional efficiency is disregarded, the famous Neyman-Pearson lemma precisely characterizes

the best hypothesis test. To define this test, we need the following standard definition.

Definition 3.2.1 (Likelihood ratio). For a given hypothesis testing problem, define the like-

lihood ratio of an input x to be LR(x) =
PrH1

(x)

PrH0
(x)

.

Lemma 3.2.2 (Neyman-Pearson Lemma). For a given hypothesis testing problem, the test

f that minimizes Eb Prx∼Hb [f(x) 6= b] is the likelihood ratio test

f(x) =


1 if LR(x) > 1

0 o.w.

In this work, our focus will be on efficiently computable tests f .

3.2.1 Low degree likelihood ratio

Given a hypothesis testing problem. We focus on a special class of efficiently computable

hypothesis tests involving low degree multivariate polynomials. These are termed low-degree

distinguishers. We give a brief treatment in this section and refer the readers to [91, 114] for

a more detailed treatment.

In this section, for polynomials to be well-defined, assume Ω ⊆ R. Moreover, assume H0

has finite moments. We will consider distinguishers that arise from multivariate polynomials

f : Rn → R. We say that the distinguisher has degree D if the degree of f is at most D.

Since the output of a polynomial need not be boolean, we need an alternate definition of the

success of this distinguisher. We use the following definition from [91].

Definition 3.2.3 (Degree D distinguisher). For a hypothesis testing problem, the multivari-

ate polynomial f is a successful degree D distinguisher if

• (Low degree) f is a multivariate polynomial of degree at most D.

95

• (Normalization) Ex∼H0
[f(x)] = 0,Ex∼H0

[f(x)2] = 1

• (Distinguishability) limn→∞ Ex∼H1
[f(x)]→∞.

The normalization ensures appropriate scaling for the polynomial. Note that the normal-

ization is over the null distribution. Informally, normalized f is a successful distinguisher if

it attains unbounded values on the alternate distribution in the limit. Indeed, in applica-

tions, a hypothesis test may be obtained by appropriately thresholding on the value of the

polynomial.

The limit on the degree imposes the kind of computational restrictions we wish to impose

on our distinguishing algorithm. It’s an active area of research trying to understand the

power of such low-degree distinguishers for hypothesis testing problems. For instance, we

could ask: If degree O(log n) distinguishers fail for a hypothesis testing problem with input

size nO(1), is the problem hard for all polynomial time algorithms?

The first natural question is to ask what’s the best degree D distinguisher for a given hy-

pothesis testing problem. This has been answered in prior works and is simply the projection

of the likelihood ratio LR(x) =
PrH1

(x)

PrH0
(x)

to degree D polynomials.

To make this precise, for f, g : Rn → R, define the inner product 〈f, g〉 = Ex∼H0
f(x)g(x).

Then, we can canonically define the projection f≤D of a function f to degree D poly-

nomials via this inner product. Take an orthonormal basis χ0 = 1, χ1, . . . , χt of multi-

variate polynomials of degree at most D where χ0 = 1 is the constant function. Then,

f≤D(x) =
∑
i≤t〈f, χt〉χt(x).

The following lemma is implicit in prior works (e.g. [90, 83]). We include a proof for

completeness.

Lemma 3.2.4. For a hypothesis testing problem, the optimal degree D test f that maxi-

mizes Ex∼H1
f(x) is the normalized low-degree likelihood ratio LR≤D−1

‖LR≤D−1‖ . And it’s value is

Ex∼H1
[f(x)] =

∥∥∥LR≤D − 1
∥∥∥.

96

Proof. Let f be a normalized degree D polynomial with f =
∑t
i=0 ctχt. Then, c0 = E[f] = 0

and
∑
c2i = E[f2] = 1. Then,

E
x∼H1

f(x) =
∑

1≤i≤t
ci E
x∼H1

χi ≤
√

(
∑

1≤i≤t
c2i)(

∑
1≤i≤t

(E
x∼H1

χi)2) =

√ ∑
1≤i≤t

(E
x∼H1

χi)2

On the other hand, equality is attained by the polynomial g = LR≤D−1
‖LR≤D−1‖ . Indeed, we have

Ex∼H0
[g] = 0 because Ex∼H0

[LR≤D(x)] = Ex∼H0
[LR(x)] = 1 and trivially, Ex∼H0

[g(x)2] =

1 since we scaled by the norm. Finally,

E
x∼H1

g(x) =
1∥∥LR≤D − 1

∥∥ ∑
1≤i≤t

〈LR(x), χi〉2

We complete the proof by observing that 〈LR(x), χi〉 = Ex∼H0
[LR(x)χi(x)] = Ex∼H1

[χi(x)].

Computing the value is straightforward.

The low-degree likelihood ratio hypothesis [85, 91, 116] hypothesizes that if H0, H1 are

sufficiently nice distributions, then there is a successful hypothesis test with running itme

nO(D) if and only if there exists a successful degree D distinguisher. In particular, based on

the above discussion, if
∥∥∥LR≤D − 1

∥∥∥ = O(1), then we expect that there is no nO(D) time

successful hypothesis test.

A main contribution of this work is to provide strong evidence that this conjecture is

true for many fundamental problems, by exhibiting strong SoS lower bounds. To see this

connection a bit more formally, we will introduce pseudo-calibration and connect it with

low-degree distinguishers.

3.3 Pseudo-calibration

Given an optimization problem we are trying to show SoS lower bounds for. To obtain SoS

integrality gaps on random instances, we need to construct valid pseudo-expectation values

97

for a random input instance of the problem. Naturally, these pseudo-expectation values will

depend on the input.

Psuedo-calibration is a heuristic introduced by [10] to construct such candidate pseudo-

expectation values almost mechanically by considering a planted distribution supported on

instances of the problem with large objective value and using this planted distribution as a

guide to construct the pseudo-expectation values. Note here that, for historic reasons, we use

the term random distribution instead of null distribution and the term planted distribution

instead of alternative distribution.

Unfortunately, psuedo-calibration doesn’t guarantee feasibility of these candidate pseudo-

expectation values and the corresponding moment matrix and this has to be verified sepa-

rately for different problems. This verification of feasibility is relatively easy except for the

PSDness condition. This is where the main contribution of this work lies, where we analyze

the behavior of the constructed random moment matrix.

Indeed for our applications, psuedocalibration is used to obtain a candidate pseudoexpec-

tation operator Ẽ and a corresponding moment matrix Λ from the random vs planted prob-

lem. This will be the starting point for all our applications. Pseudo-calibration gives lower

bounds for many problems, such as the ones considered in the works [74, 164, 107, 41, 129],

making it an intriguing but poorly understood technique.

Here, we do not attempt to motivate and describe pseudo-calibration in great detail.

Instead, we will briefly describe the heuristic, the intuition behind it and show an example

of how to use it. A detailed treatment can be found in [10].

Let ν denote the random distribution and µ denote the planted distribution. Let v denote

the input and x denote the variables for our SoS relaxation. The main idea is that, for an

input v sampled from ν and any polynomial f(x) of degree at most the SoS degree, pseudo-

calibration proposes that for any low-degree test g(v), the correlation of Ẽ[f] should match

98

in the planted and random distributions. That is,

E
v∼ν

[Ẽ[f(x)]g(v)] = E
(x,v)∼µ

[f(x)g(v)]

Here, the notation (x, v) ∼ µ means that in the planted distribution µ, the input is v and

x denotes the planted structure in that instance. For example, in planted clique, x would be

the indicator vector of the clique. If there are multiple, pick an arbitrary one.

Let F denote the Fourier basis of polynomials for the input v. By choosing different

basis functions from F as choices for g such that the degree is at most some truncation

parameter D, we get all lower order Fourier coefficients for Ẽ[f(x)] when considered as a

function of v. Furthermore, the higher order coefficients are set to be 0 so that the candidate

pseudoexpectation operator can be written as

Ẽf(x) =
∑
g∈F

deg(g)≤nε

E
v∼ν

[Ẽ[f(x)]g(v)]g(v) =
∑
g∈F

deg(g)≤nε

E
(x,v)∼µ

[[f(x)]g(v)]g(v)

The coefficients E(x,v)∼µ[[f(x)]g(v)] can be explicitly computed in many settings, which

therefore gives an explicit pseudoexpectation operator Ẽ.

One intuition for pseudo-calibration is as follows. The planted distribution is usually

chosen to be a maximum entropy distribution which still has the planted structure. This

conforms to the philosophy that random instances are hard for SoS, such as the uniform

Bernoulli distribution for planted clique or the Gaussian distribution for Tensor PCA. By

conditioning on the lower order moments matching such a planted distribution, pseudo-

calibration can be interpreted as sort of interpolating between the random and planted

distributions by only looking at lower order Fourier characters. This intuition has proven

to be successful, since pseudo-calibration been successfully exploited to construct SoS lower

bounds for a wide variety of dense as well as sparse problems.

99

An advantage of pseudo-calibration is that this construction automatically satisfies some

nice properties that the pseudoexpectation Ẽ should satisfy. It’s linear in v by construction.

For all polynomial equalities of the form f(x) = 0 that is satisfied in the planted distribution,

it’s true that Ẽ[f(x)] = 0. For other polynomial equalities of the form f(x, v) = 0 that are

satisfied in the planted distribution, the equality Ẽ[f(x, v)] = 0 is approximately satisfied.

In most cases, Ẽ can be mildly adjusted to satisfy these exactly.

The condition Ẽ[1] = 1 is not automatically satisfied but in most applications, we usually

require that Ẽ[1] = 1 ± o(1). Indeed, this has been the case for all known successful appli-

cations of pseudo-calibration. Once we have this, we simply set our final pseudoexpectation

operator to be Ẽ′ defined as Ẽ′[f(x)] = Ẽ[f(x)]/Ẽ[1].

We remark that the condition Ẽ[1] = 1± o(1) has been quite successful in predicting the

right thresholds between approximability and inapproximability[85, 91, 116]. This will be

crucial when we connect pseudo-calibration to low degree distinguishers.

Example: Planted Clique As an warmup, we review the pseudo-calibration calculation

for planted clique. Here, the random distribution ν is G(n, 1
2).

The planted distribution µ is as follows. For a given integer k, first sample G′ from

G(n, 1
2), then choose a random subset S of the vertices where each vertex is picked indepen-

dently with probability k
n . For all pairs i, j of distinct vertices in S, add the edge (i, j) to

the graph if not already present. Set G to be the resulting graph.

The input is given by G ∈ {−1, 1}(
[n]
2) where Gi,j is 1 if the edge (i, j) is present and

−1 otherwise. Let x1, . . . , xn be the boolean variables for our SoS program such that xi

indicates if i is in the clique.

Given a set of vertices V ⊆ [n], define xV =
∏
v∈V xv. Given a set of possible edges

E ⊆
([n]

2

)
, define χE = (−1)|E\E(G)| =

∏
(i,j)∈E Gi,j .

100

Pseudo-calibration says that for all small V and E,

E
G∼ν

[
Ẽ[xV]χE

]
= E

µ
[xV χE]

Using standard Fourier analysis, this implies that if we take

cE = E
µ

[xV χE] =

(
k

n

)|V ∪V (E)|

where V (E) is the set of the endpoints of the edges in E, then for all small V ,

Ẽ[xV] =
∑

E:E is small

cEχE =
∑

E:E is small

(
k

n

)|V ∪V (E)|
χE

Since the values of Ẽ[xV] are known, by multi-linearity, this can be naturally extended

to obtain values Ẽ[f(x)] for any polynomial f of degree at most the SoS degree.

Here, we only set the Fourier coefficients for small E and set the other larger Fourier

coefficients to 0. Usually, the choice of the truncation parameter is problem specific but

there are some basic requirements [85]. We now outline our general strategy to show SoS

lower bounds. We employ this in all our results.

3.3.1 Strategy to show SoS lower bounds

In this work, the general strategy to show SoS lower bounds can be summarized as follows.

• Given a random distribution, identify a suitable planted distribution

• Pseudocalibrate with respect the two distributions and obtain a candidate pseudoex-

pectation operator

• Show that the moment matrix satisfies the constraints

101

The most technically challenging part of this approach usually is to show that the mo-

ment matrix is positive semidefinite. Much of our contributions lies in this step, where

we analyze the behavior of the random moment matrix thus obtained. Now, we connect

pseudo-calibration to low-degree distinguishers.

3.3.2 Connection to Low-degree distinguishers

We are ready to connect psuedo-calibration to low-degree tests. Recall that in pseudo-

calibration, we set the higher order Fourier coefficients to 0. This is known as truncation.

In particular, we truncate so that the resulting pseudoexpectation has degree at most D in

the input. By construction, E[Ẽ[1]] = 1 and we would like to understand how much Ẽ[1]

deviates from 1. The following lemma says that the variance of Ẽ[1] behaves like the squared

value of the optimal degree-D distinguisher.

Lemma 3.3.1. The pseudo-calibrated pseudo-expectation Ẽ, truncated to degree D, satisfies

var(Ẽ[1]) =
∥∥∥LR≤D − 1

∥∥∥2

Proof. Pseudocalibration sets Ex∼H0
[Ẽ[1]χi] = Ex∼H1

[χi] for all i ≤ t. Therefore, Ẽ[1] =

1 +
∑

1≤i≤t Ex∼H1
[χi]χi giving var(Ẽ[1]) =

∑
1≤i≤t(Ex∼H1

χi)
2 =

∥∥∥LR≤D − 1
∥∥∥2

.

One of the essential steps in our SoS lower bound proofs is to verify, after pseudo-

calibration, that Ẽ[1] is well-behaved. In particular, for strong SoS lower bounds, we expect

Ẽ[1] = 1 + o(1). Although this is not formally necessary, it has often been the case in our

applications and we expect it to be necessary for obtaining strong SoS lower bounds via this

approach.

But when this is indeed the case and we exhibit SoS lower bounds, note that this is already

strong evidence towards the low-degree likelihood ratio hypothesis. In more detail, because

of Lemma 3.2.4 and Lemma 3.3.1, the best degree D distinguisher does not distinguish the

102

two distributions µ, ν. And our lower bounds affirm that the powerful SoS hierarchy cannot

distinguish the two distributions as well, which is an important step towards the general

hypothesis.

It’s a fundamentally important open problem in this field to prove that for sufficiently

nice distributions µ, ν, after pseudo-calibrating, Ẽ[1] = 1 + o(1) implies the existence of

strong SoS lower bounds.

103

CHAPTER 4

OUR MAIN RESULTS ON SUM-OF-SQUARES LOWER

BOUNDS

In this chapter, we state formally the main Sum of Squares lower bounds that we prove

in this thesis and put them in the context of prior works. The material in this chapter is

adapted from [70, 149], where the results originally appeared.

4.1 The Sherrington-Kirkpatrick Hamiltonian

We first define the Gaussian Orthogonal Ensemble, GOE(n), a random matrix model for

n× n matrices.

Definition 4.1.1. The Gaussian Orthogonal Ensemble, denoted GOE(n), is the distribution

of 1√
2
(A+ Aᵀ) where A is a random n× n matrix with i.i.d. standard Gaussian entries.

Equivalently, we could define GOE(n) to be a probability distribution over symmetric

matrices W such that Wii ∼ N (0, 2) for i ≤ n and for i 6= j, Wij = Wji ∼ N (0, 1)

independently.

We consider the main optimization task

OPT(W) := max
x∈{±1}n

xᵀWx, (4.1)

where W is a random symmetric matrix in Rn×n. This is an important task that arises in

computer science and statistical physics.

In computer science, a natural choice of W is to take it to be the Laplacian of a graph [80,

Section 4]. Then, the problem is equivalent to the Maximum Cut problem, a well-known

NP-hard problem in the worst case [98]. The equivalence is immediate by observing that

x ∈ {±1}n can be thought of as encoding a bipartition of [n] = {1, 2, . . . , n}.
104

In particular, an interesting special case is when we consider sparse random graphs,

sampled either from the Erdős-Rényi graphs G(n, dn) with average degree d or a uniformly

chosen d-regular graph, where d ≥ 3 is a fixed integer. In this case, it is known that the true

size of the maximum cut is asymptotically n(d4 + f(d)
√
d). Moreover, it was shown in [48]

(originally conjectured in [187]) that limd→∞ f(d) = 1
2P
∗ ≈ 0.382, where

P ∗ :=
1

2
lim
n→∞

EW∼GOE(n)[
1

n3/2
OPT(W)] ≈ 0.7632

is referred to as the Parisi constant. This already strongly motivates the problem of studying

Eq. (4.1) when W ∼ GOE(n). But this problem is motivated for another fantastic reason.

In statistical physics, when W ∼ GOE(n), our objective, upto scaling, is the Hamiltonian

of the famous Sherrington-Kirkpatrick model. Here, x can be thought of as encoding spin

values in a spin-glass model. −Wi,j models the interaction between spin xi and xj (with

−Wi,j ≥ 0 being ferromagnetic and −Wi,j < 0 being anti-ferromagnetic). Then, the optimal

value corresponds to the minimum-energy, or ground state of the system, upto sign. The

works [142, 143, 45] predicted, using non-rigorous means, that P ∗ ≈ 0.7632. This was

eventually formalized in the works [176, 139, 75].

In this work, we will focus on this average case optimization problem when W ∼ GOE(n).

The first natural question is whether there exists a polynomial-time algorithm that given

W ∼ GOE(n) computes an x achieving close to OPT(W)?” In a recent breakthrough work,

Montanari [132] showed that, for any ε > 0, there exists a polynomial time algorithm that

with high probability achieves a value of (2P ∗−ε)n3/2, assuming a widely believed conjecture.

Now we move onto certification: Is there an efficient algorithm to certify an upper bound

on OPT(W) for any input W?

A simple algorithm will be the spectral algorithm where we just output the largest eigen-

value of W , upto scaling, for an upper bound. Note that GOE(n) is a particular kind of

Wigner matrix ensemble, thereby satisfying the semicircle law, which in this case establishes

105

that the largest eigenvalue of W is (2+on(1)) ·
√
n with probability 1−on(1). Thus, a trivial

spectral bound establishes OPT(W) ≤ (2 + on(1)) · n3/2 with probability 1− on(1).

Now, we can ask if it’s possible to beat this spectral algorithm for certification. In

particular, we can ask how well SoS does as a certification algorithm. The natural upper

bound of (2+on(1))·n3/2 obtained via the spectral norm of W is also the value of the degree-

2 SoS relaxation [133]. Two independent recent works of Mohanty–Raghavendra–Xu [129]

and Kunisky–Bandeira [115] show that degree-4 SoS does not perform much better, and a

heuristic argument from [9] suggests that even degree-(n/ log n) SoS cannot certify anything

stronger than the trivial spectral bound. Thus we ask,

Can higher-degree SoS certify better upper bounds for the Sherrington–Kirkpatrick problem,

hopefully closer to the true bound 2 · P ∗ · n3/2?

In this work, we answer the question above negatively by showing that even at degree as

large as nδ, SoS cannot improve upon the basic spectral algorithm.

Theorem 4.1.2. There exists a constant δ > 0 such that, w.h.p. for W ∼ GOE(n), there

is a degree-nδ SoS solution for the Sherrington–Kirkpatrick problem with value at least (2−

on(1)) · n3/2.

An independent and concurrent work by Kunisky [113] also showed a special case of the

above theorem for degree-6 SoS, using different techniques.

We will present the proof of this theorem in Chapter 5. The above theorem and it’s proof

originally appeared in [70], from where the material here is adapted from. We now present

the high level ideas behind the proof of this theorem.

4.1.1 Our approach

In order to prove Theorem 4.1.2, we first introduce a new average-case problem we call

Planted Affine Planes (PAP) for which we directly prove a SoS lower bound. We then use

106

the PAP lower bound to prove a lower bound on the Sherrington–Kirkpatrick problem. The

PAP problem can be informally described as follows (see Definition 5.1.1 for the formal

definition).

Definition 4.1.3 (Informal statement of PAP). Given m random vectors d1, . . . , dm in Rn,

can we prove that there is no vector v ∈ Rn such that for all u ∈ [m], 〈v, du〉2 = 1? In other

words, can we prove that m random vectors are not all contained in two parallel hyperplanes

at equal distance from the origin?

This problem, when we restrict v to a Boolean vector in {± 1√
n
}n, can be encoded as the

feasibility of the polynomial system

∃v ∈ Rn s.t. ∀i ∈ [n], v2
i =

1

n
,

∀u ∈ [m], 〈v, du〉2 = 1.

Hence it is a ripe candidate for SoS. However, we show that SoS fails to refute a random

instance. The Boolean restriction on v actually makes the lower bound result stronger since

SoS cannot refute even a smaller subset of vectors in Rn. In this work, we will consider two

different random distributions, namely when d1, . . . , dm are independent samples from the

multivariate normal distribution and when they are independent samples from the uniform

distribution on the boolean hypercube.

Theorem 4.1.4. For both the Gaussian and Boolean settings, there exists a constant c > 0

such that for all ε > 0 and δ ≤ cε, for m ≤ n3/2−ε, w.h.p. there is a feasible degree-nδ SoS

solution for Planted Affine Planes.

It turns out that the Planted Affine Plane problem introduced above is closely related

to the following “Boolean vector in a random subspace” problem, which we call the Planted

Boolean Vector problem, introduced by [129] in the context of studying the performance of

SoS on computing the Sherrington–Kirkpatrick Hamiltonian.

107

The Planted Boolean Vector problem is to certify that a random subspace of Rn is far

from containing a boolean vector. Specifically, we want to certify an upper bound for

OPT(V) :=
1

n
max

b∈{±1}n
bᵀΠV b,

where V is a uniformly random p-dimensional subspace1 of Rn, and ΠV is the projector onto

V . In brief, the relationship to the Planted Affine Plane problem is that the PAP vector v

represents the coefficients on a linear combination for the vector b in the span of a basis of

V .

An argument of [129] shows that, when p� n, w.h.p., OPT(V) ≈ 2
π , whereas they also

show that w.h.p. assuming p ≥ n0.99, there is a degree-4 SoS solution with value 1− on(1).

They ask whether or not there is a polynomial time algorithm that can certify a tighter

bound; we rule out SoS-based algorithms for a larger regime both in terms of SoS degree

and the dimension p of the random subspace.

Theorem 4.1.5. There exists a constant c > 0 such that, for all ε > 0 and δ ≤ cε, for

p ≥ n2/3+ε, w.h.p. over V there is a degree-nδ SoS solution for Planted Boolean Vector of

value 1.

The bulk of our technical contribution lies in the SoS lower bound for the Planted

Affine Planes problem, Theorem 4.1.4. We then show that Planted Affine Planes in the

Gaussian setting is equivalent to the Planted Boolean Vector problem. The reduction

from Sherrington-Kirkpatrick to the Planted Boolean Vector problem is due to Mohanty–

Raghavendra–Xu [129].

As a starting point to the PAP lower bound, we employ pseudocalibration to produce a

good candidate SoS solution Ẽ. The operator Ẽ unfortunately does not exactly satisfy the

PAP constraints “〈v, du〉2 = 1”, it only satisfies them up to a tiny error. In the original work,

1. V can be specified by a basis, which consists of p i.i.d. samples from N (0, I).

108

we use an interesting and rather generic approach to round Ẽ to a nearby pseudoexpectation

operator Ẽ′ which does exactly satisfy the constraints, We have omitted this in this thesis

for the sake of brevity, but it can be found in the original work [70].

For degree D, the candidate SoS solution can be viewed as a (pseudo) moment matrix

M with rows and columns indexed by subsets I, J ⊂ [n] with size bounded by D/2 and with

entries

M[I, J] := Ẽ[vIvJ].

The matrix M is a random function of the inputs d1, . . . , dm, and the most challenging

part of the analysis consists of showing that M is positive semi-definite (PSD) with high

probability.

Similarly to [10], we decomposeM as a linear combination of graph matrices, i.e.,M =∑
α λα ·Mα, where Mα is the graph matrix associated with shape α. In brief, each graph

matrix aggregates all terms with shape α in the Fourier expansions of the entries of M

– the shape α is informally a graph with labeled edges with size bounded by poly(D).

A graph matrix decomposition of M is particularly handy in the PSD analysis since the

operator norm of individual graph matrices Mα is (with high probability) determined by

simple combinatorial properties of the graph α. One technical difference from [10] is that

our graph matrices have two types of vertices t and i ; these graph matrices fall into the

general framework developed by Ahn et al. in [2].

To show that the matrix M is PSD, we need to study the graph matrices that appear

with nonzero coefficients in the decomposition. The matrix M can be split into blocks and

each diagonal block contains in the decomposition a (scaled) identity matrix. From the graph

matrix perspective, this means that certain “trivial” shapes appear in the decomposition,

with appropriate coefficients. If we could bound the norms of all other graph matrices

that appear against these trivial shapes and show that, together, they have negligible norm

compared to the sum of these scaled identity blocks, then we would be in good shape.

109

Unfortunately, this approach will not work. The kernel of the matrixM is nontrivial, as

a consequence of satisfying the PAP constraints “〈v, du〉2 = 1”, and hence there is no hope

of showing that the contribution of all nontrivial shapes in the decomposition of M has

small norm. Indeed, certain shapes α appearing in the decomposition of M are such that

‖λα ·Mα‖ is large. As it turns out, all such shapes have a simple graphical substructure,

and so we call these shapes spiders.

To get around the null space issue, we restrict ourselves to Null(M)⊥, which is the

complement of the nullspace ofM. We show that the substructure present in a spider implies

that the spider is close to the zero matrix in Null(M)⊥. Because of this, we can almost freely

add and subtract Mα for spiders α while preserving the action of M on Null(M)⊥. Our

strategy is to “kill” the spiders by subtracting off λα ·Mα for each spider α. But because

Mα is only approximately in Null(M)⊥, this strategy could potentially introduce new graph

matrix terms, and in particular it could introduce new spiders. To handle this, we recursively

kill them while carefully analyzing how the coefficients of all the graph matrices change. After

all spiders are killed, the resulting moment matrix becomes

∑
0≤k≤D/2

1

nk
· Ik +

∑
γ : non-spiders

λ′γ ·Mγ ,

for some new coefficients λ′γ . Here, Ik is the matrix which has an identity in the kth block

and the remaining entries 0. Using a novel charging argument, we finally show that the

latter term is negligible compared to the former term, thus establishing M� 0.

4.1.2 Related work

Degree-4 SoS lower bounds on the Sherrington-Kirkpatrick Hamiltonian problem were proved

independently by Mohanty–Raghavendra–Xu [129] and Kunisky–Bandeira [115]. The con-

current and independent work by Kunisky [113] obtained degree 6 SoS lower bounds. In this

110

work, we prove an improved degree-nδ SoS lower bound for some constant δ > 0. Our result

is obtained by reducing the Sherrington-Kirkpatrick problem to the “Boolean Vector in a

Random Subspace” problem which is equivalent to our new Planted Affine Planes problem

on the normal distribution. The reduction from Sherrington-Kirkpatrick problem to the

“Boolean Vector in a Random Subspace” is due to Mohanty–Raghavendra–Xu [129]. The

results of Mohanty–Raghavendra–Xu [129] and Kunisky–Bandeira [115] build on a degree-2

SoS lower bounds of Montanari and Sen [133].

Degree-4 SoS lower bounds on the “Boolean Vector in a Random Subspace” problem

for p ≥ n0.99 were proved by Mohanty–Raghavendra–Xu in [129] where this problem was

introduced. We improve the dependence on p to p ≥ n2/3+ε for any ε > 0 and obtain a

stronger degree-ncε SoS lower bound for some absolute constant c > 0.

Interestingly, the recent work [186] exhibited a polynomial-time algorithm for the search

variant of Planted Affine Planes for m ≥ n+1, achieving statistical optimality. In particular,

they beat prior known polynomial time algorithms, including SoS based ones, all of which

required m� n2. Their algorithm is a lattice-based method that uses the specific algebraic

structure present in this problem. It’s not clear if this algorithm can be used for certification.

4.2 Planted Slightly Denser Subgraph

In the planted dense subgraph problem, we are given a random graph G where a dense

subgraph of size k has been planted and we are asked to find this planted dense subgraph.

This is a natural generalization of the k-clique problem [97] and has been subject to a long

line of work over the years (e.g. [59, 58, 101, 22, 23, 30, 124]). In this work, we consider the

following certification variant of planted dense subgraph.

Given a random graph G sampled from the Erdős-Rényi model G(n, 1
2), certify

an upper bound on the edge density of the densest subgraph on k vertices.

111

To apply the strategy from Section 3.3.1, we use the following distributions.

• Random distribution: Sample G from G(n, 1
2)

• Planted distribution: Let k be an integer and let p > 1
2 . Sample a graph G′ from

G(n, 1
2). Choose a random subset S of the vertices, where each vertex is picked in-

dependently with probability k
n . For all pairs i, j of vertices in S, rerandomize the

edge (i, j) where the probability of (i, j) being in the graph is now p. Set G to be the

resulting graph.

In Section 6.2, we compute the candidate moment matrix Λ obtained via pseudo-calibration.

Our main theorem is as follows.

Theorem 4.2.1. Let Cp > 0. There exists a constant C > 0 such that for all sufficiently

small constants ε > 0, if k ≤ n
1
2−ε and p = 1

2 + n−Cpε
2 , then with high probability, the

candidate moment matrix Λ given by pseudo-calibraton for degree nCε Sum-of-Squares is

PSD.

Corollary 4.2.2. Let Cp > 0. There exists a constant C > 0 such that for all sufficiently

small constants ε > 0, if k ≤ n
1
2−ε and p = 1

2 + n−Cpε
2 , then with high probability, degree nCε

Sum-of-Squares cannot certify that a random graph G from G(n, 1
2) does not have a subgraph

of size ≈ k with edge density ≈ p.

4.2.1 Related work

For many different parameter regimes of the random and planted distributions (an example

being planting Gk,q in Gn,p for constants p < q), and when k = o(
√
n), the hardness

of the easier distinguishing version of planted dense subgraph problem has been posed as

formal conjecture (often referred to as the PDS conjecture) before in the literature (see e.g.,

[77, 40, 33, 34]). This has also led to many reductions to other problems [31], although it’s

112

not clear if these reductions can be made in the SoS framework without loss in the parameter

dependence.

In our case, we consider the slightly planted denser subgraph version where for k ≤ n
1
2−ε,

we plant a subgraph of density 1
2 + 1

nO(ε) , i.e. p = 1
2 , q = 1

2 + 1
nO(ε) . This has been widely

believed to require sub-exponential time. Our work provides strong evidence towards this

by exhibiting unconditional lower bounds against the powerful SoS hierarchy, even if we

consider nO(ε) levels, which corresponds to nn
O(ε)

running time! We expect this to lead to

this problem being used as a natural starting point for reductions to show sub-exponential

time hardness for various problems.

Within the SoS literature, [10] show that for k ≤ n
1
2−ε for a constant ε > 0, the degree

o(log n) Sum-of-Squares cannot distinguish between a fully random graph sampled from

G(n, 1
2) from a random graph which has a planted k-clique. This implies that degree o(log n)

SoS cannot certify an edge density better than 1 for the densest k-subgraph if k ≤ n
1
2−ε.

In Corollary 4.2.2, we show that for k ≤ n
1
2−ε for a constant ε > 0, degree nΩ(ε) SoS

cannot certify an edge density better than 1
2 + 1

nO(ε) . The degree of SoS in our setting, nΩ(ε)

is vastly higher than the earlier known result which uses degree o(log n). To the best of our

knowledge, this is the first result that proves such a high degree lower bound.

We remark that when we take k = n
1
2−ε, the true edge density of the densest k-subgraph

is 1
2 +

√
log(n/k)√

k
+ o(1√

k
) ≈ 1

2 + 1
n1/4−ε/2 as was shown in [68, Corollary 2] whereas, by

Corollary 4.2.2, the SoS optimum is as large as 1
2 + 1

nε . This highlights a significant difference

in the optimum value.

4.3 Tensor PCA

The Tensor Principal Component Analysis problem, originally proposed by [160], is a variant

of the PCA problem from machine learning to higher order tensors. Given an order k tensor

of the form λu⊗k+B where u ∈ Rn is a unit vector and B ∈ R[n]k has independent Gaussian

113

entries, we would like to recover u. Here, λ is known as the signal-to-noise ratio.

This can be equivalently considered to be the problem of optimizing a homogenous degree

k polynomial f(x), with random Gaussian coefficients over the unit sphere ‖x‖ = 1. In

general, polynomial optimization over the unit sphere is a fundamental primitive with a lot

of connections to other areas of optimization (e.g. [66, 36, 29, 14, 15, 24]). Tensor PCA is

an average case version of the above problem and has been studied before in the literature

[160, 89, 25, 85]. In this work, we consider the certification version of this average case

problem.

For an integer k ≥ 2, given a random tensor A ∈ R[n]k with entries sampled

independently from N (0, 1), certify an upper bound on 〈A, x⊗k〉 over unit vectors

x.

Let k ≥ 2 be an integer. We apply the strategy from Section 3.3.1 using the following

distributions.

• Random distribution: Sample A from N (0, I[n]k).

• Planted distribution: Let λ,∆ > 0. Sample u from {− 1√
∆n

, 0, 1√
∆n
}n where the values

are taken with probabilites ∆
2 , 1−∆, ∆

2 respectively. Then sample B from N (0, I[n]k).

Set A = B + λu⊗k.

In Section 6.3, we compute the candidate moment matrix Λ obtained by using pseudo-

calibration on this planted distribution. Our main theorem is as follows.

Theorem 4.3.1. Let k ≥ 2 be an integer. There exist constants C,C∆ > 0 such that for all

sufficiently small constants ε > 0, if λ ≤ n
k
4−ε and ∆ = n−C∆ε then with high probability,

the candidate moment matrix Λ given by pseudo-calibration for degree nCε Sum-of-Squares

is PSD.

114

Corollary 4.3.2. Let k ≥ 2 be an integer. There exists a constant C > 0 such that for

all sufficiently small constants ε > 0, if λ ≤ n
k
4−ε, then with high probability, degree nCε

Sum-of-Squares cannot certify that for a random tensor A from N (0, I[n]k), there is no vector

u such that ‖u‖ ≈ 1 and 〈A, x⊗ . . .⊗ x︸ ︷︷ ︸
k times

〉 ≈ λ.

4.3.1 Related work

In [25], it was shown that q ≤ n levels of SoS certifies an upper bound of
2O(k)(n·polylog(n))k/4

qk/4−1/2

for the Tensor PCA problem. When q = nε for sufficiently small ε, this gives an upper bound

of n
k
4−O(ε). Corollary 4.3.2 shows that this is tight.

In [85], they state a theorem similar to Corollary 4.3.2 and observe that it can be proved

by applying the techniques used to prove the SoS lower bounds for planted clique. However,

they do not give an explicit proof. Also, while they consider the setting where the random

distribution has entries from {−1, 1}, we work with the more natural setting where the

distribution is N (0, 1).

When k = 2, the maximum value of 〈x⊗k, A〉 over the unit sphere ‖x‖2 = 1 is precisely

the largest eigenvalue of (A+AT)/2 which is Θ(
√
n) with high probability. For any integer

k ≥ 2, the true maximum of 〈x⊗k, A〉 over ‖x‖2 = 1 is O(
√
n) with high probability [178]. In

contrast, by Corollary 4.3.2, the optimum value of the degree nε SoS is as large as n
k
4−O(ε).

This exhibits an integrality gap of n
k
4−

1
2−O(ε).

4.4 Sparse PCA

The Wishart model of Sparse PCA, also known as the Spiked Covariance model, was orig-

inally proposed by [94]. In this problem, we observe m vectors v1, . . . , vm ∈ Rd from the

distribution N (0, Id + λuuT) where u is a k-sparse unit vector, and we would like to recover

u. Here, the sparsity of a vector is the number of nonzero entries and λ is known as the

signal-to-noise ratio.

115

Sparse PCA is a fundamental problem that has applications in a diverse range of fields

(e.g. [183, 134, 123, 177, 42, 3]). It’s known that vanilla PCA does not yield good estimators

in high dimensional settings [7, 146, 94]. A large volume of work has gone into studying

Sparse PCA and it’s variants, both from an algorithmic perspective (e.g. [4, 122, 111, 50,

184]) as well as from an inapproximability perspective (e.g. [20, 121, 51, 85, 31]).

Given the decades of research on this problem and how fundamental it is for a multitude

of applications and disciplines, understanding the computational threshold behavior of the

Wishart model of Sparse PCA is an extremely important research topic in statistics. In

particular, prior works have explored statistical query lower bounds, SDP lower bounds,

lower bounds by reductions from widely believed conjectures, etc. On the other hand, there

have only been two prior works on lower bounds against SoS, specifically only for degree 2

and degree 4 SoS, which can be attributed to the difficulty in proving such lower bounds.

In this paper, we vastly strengthen these lower bounds and show almost-tight lower bounds

for the SoS hierarchy of degree dε which corresponds to a running time of dd
O(ε)

.

To apply the strategy from Section 3.3.1, we use the following distributions.

• Random distribution: v1, . . . , vm are sampled from N (0, Id) and we take S to be the

m× d matrix with rows v1, . . . , vm.

• Planted distribution: Sample u from {− 1√
k
, 0, 1√

k
}d where the values are taken with

probabilites k
2d , 1 −

k
d ,

k
2d respectively. Then sample v1, . . . , vm as follows. For each

i ∈ [m], with probability ∆, sample vi from N (0, Id + λuuT) and with probability

1 − ∆, sample vi from N (0, Id). Finally, take S to be the m × d matrix with rows

v1, . . . , vm.

In Section 6.4, we compute the candidate moment matrix Λ obtained by using pseudo-

calibration on this planted distribution. We now state our main theorem.

Theorem 4.4.1. There exists a constant C > 0 such that for all sufficiently small constants

ε > 0, if m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 , and there exists a constant A such that 0 < A < 1
4 ,

116

d4A ≤ k ≤ d1−Aε, and
√
λ√
k
≤ d−Aε, then with high probability, the candidate moment matrix

Λ given by pseudo-calibration for degree dCε Sum-of-Squares is PSD.

Corollary 4.4.2. There exists a constant C > 0 such that for all sufficiently small constants

ε > 0, if m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 , and there exists a constant A such that 0 < A < 1
4 ,

d4A ≤ k ≤ d1−Aε, and
√
λ√
k
≤ d−Aε, then with high probability, the degree dCε degree Sum-

of-Squares cannot certify that for a random m× d matrix S with Gaussian entries, there is

no vector u such that u has ≈ k nonzero entries, ‖u‖ ≈ 1, and ‖Su‖2 ≈ m+m∆λ.

4.4.1 Related work

Between this work and prior works, we completely understand the parameter regimes where

sparse PCA is easy or conjectured to be hard up to polylogarithmic factors. In Fig. 4.1 and

Fig. 4.2, we assign the different parameter regimes into the following categories.

• Diagonal thresholding: In this regime, Diagonal thresholding [94, 4] recovers the sparse

vector. Covariance thresholding [111, 50] and SoS [54] can also be used in this regime.

Covariance thresholding has better dependence on logarithmic factors and SoS works

in the presence of adversarial errors.

• Vanilla PCA: Vanilla PCA can recover the vector, i.e. we do not need to use the fact

that the vector is sparse (see e.g. [21, 54]).

• Spectral: An efficient spectral algorithm recovers the sparse vector (see e.g. [54]).

• Spectral*: A simple spectral algorithm distinguishes the planted distribution from the

random distribution but it is information theoretically impossible to recover the sparse

vector [54, Appendix E].

• Hard: A regime where it is conjectured to be hard to distinguish between the random

and the planted distributions. We discuss this in more detail below.

117

In Fig. 4.1 and Fig. 4.2, the regimes corresponding to Diagonal thresholding, Vanilla

PCA and Spectral are dark green, while the regimes corresponding to Spectral* and Hard

are light green and red respectively. The hard regime is the one studied in this work.

Figure 4.1: The computational barrier diagram when λ ≥ 1

In the Hard parameter regime where m � k2

λ2 and m � d
λ2 , degree 2 and degree 4 SoS

lower bounds have been shown in prior works, while we handle degree dO(ε). In particular,

the works [111, 21] obtain degree 2 SoS lower bounds. [121] obtain degree 4 SoS lower

bounds using an ad-hoc construction. It’s not clear if their construction can be generalized

for higher degrees. Moreover, the bounds they obtain are tight up to polylogarithmic factors

when λ is a constant but are not tight when λ is not a constant, so we improve their bounds

even in the degree 4 case. We subsume all these earlier known results in this work with

Corollary 4.4.2. This is a vast improvement over prior known sum of squares lower bounds

and provides compelling evidence for the hardness of Sparse PCA in this parameter range.

The work [85] considers the related but qualitatively different Wigner model of Sparse

118

Figure 4.2: The computational barrier diagram when λ < 1

PCA and they state degree dε SoS lower bounds, without explicitly proving these bounds.

The techniques in that work do not recover our results because the matrix formed by the

random samples in the Wishart model is asymmetric, and handling it correctly is far from

being a mere technicality. On the other hand, the machinery can recover the results on the

Wigner model as well, though we only analyze the Wishart model in this paper.

In [54], they prove that if m ≤ d
λ2 and m ≤

(
k2

λ2

)1−Ω(ε)
, then degree nε polynomials can-

not distinguish the random and planted distributions. Corollary 4.4.2 says that under mildly

stronger assumptions, degree nε Sum-of-Squares cannot distinguish the random and planted

distributions, so we confirm that SoS is no more powerful than low degree polynomials in

this setting.

There have also been direct reductions from planted clique to Sparse PCA [31], and it’s

natural to ask if these reductions can obtain SoS lower bounds on Sparse PCA from the

119

known SoS lower bounds on planted clique [10]. To the best of our knowledge, no such

reduction is known and constructing such a reduction would be challenging as it would have

to be captured by SoS and avoid losing too much in the parameters. Still, it may well be

possible to construct such a reduction.

4.5 Our approach

Theorem 4.2.1, Theorem 4.3.1 and Theorem 4.4.1 all essentially boil down to showing that

a large moment matrix Λ is PSD. All three results are obtained via applications of one

main theorem, which we call the machinery. In this work, we state and use the machinery,

whose proof can be found in the original work where it appeared [149]. To show PSDness,

the machinery constructs certain coefficient matrices from Λ and gives conditions on these

coefficient matrices which are sufficient to guarantee that Λ is PSD with high probability.

In this section, we give an informal sketch of the machinery and how it generalizes the

techniques used to prove the SoS lower bound for planted clique [10]. We also motivate some

of the conditions that arise in the machinery.

Shapes and graph matrices

Before we can describe how the machinery works, we need to describe shapes and graph

matrices, which were originally introduced by [10, 126] and later generalized in [2]. Both the

planted clique analysis and our analysis use shapes and graph matrices.

Shapes α are graphs that contain extra information about the vertices. Corresponding

to each shape α, there is a matrix-valued function (i.e. a matrix whose entries depend on

the input) Mα that we call a graph matrix. Graph matrices are analogous to a Fourier basis,

but for matrix-valued functions that exhibit a certain kind of symmetry. In our setting, Λ

will be such a matrix-valued function, so we can decompose Λ as a linear combination of

graph matrices.

120

Shapes and graph matrices have several properties which make them very useful to work

with. First, ‖Mα‖ can be bounded with high probability in terms of simple combinatorial

properties of the shape α. Second, if two shapes α and β match up in a certain way, we

can combine them to form a larger shape α ◦ β. We call this operation shape composition.

Third, each shape α has a canonical decomposition into three shapes, the left, middle and

right parts of α, which we call σ, τ , and σ′T . For this canonical decomposition, we have

that α = σ ◦ τ ◦ σ′T and Mα ≈ MσMτMσ′T
2. This decomposition turns out to be crucial

for both the planted clique analysis and our analysis.

Summary of the SoS lower bound for planted clique and the machinery

We now give a brief summary of the techniques for the SoS lower bound for planted clique

and for the machinery.

For planted clique, the SoS lower bound analysis works as follows

1. Using the technique of pseudo-calibration, construct a candidate moment matrix Λ.

2. Decompose the moment matrix Λ as a linear combination Λ =
∑

shapes α λαMα of

graph matrices Mα.

3. For each shape α, decompose α into a left part σ, a middle part τ , and a right part

σ′T . We then have that Mα ≈MσMτMσ′T
.

4. Using the approximate decompositions Mα ≈ MσMτMσ′T
, give an approximate de-

composition Λ ≈ LQLT of M where Q � 0 with high probability.

5. Show that with high probability, Λ = LQLT −(LQLT −M) � 0 by carefully analyzing

the difference LQLT −M using similar techniques.

2. Actually, due to a technical issue related to automorphism groups, this equation is off by a multiplicative
constant. For details, see [149].

121

The machinery uses a similar framework. The key innovation of the machinery is that it

introduces coefficient matrices (step 4) and carry out the analysis in terms of these coefficient

matrices.

1. Construct a candidate moment matrix Λ. This can be done either using pseudo-

calibration or in a more ad-hoc manner.

2. Decompose the moment matrix Λ as a linear combination Λ =
∑

shapes α λαMα of

graph matrices Mα.

3. For each shape α, decompose α into a left part σ, a middle part τ , and a right part

σ′T .

4. Based on the coefficients λα and the decompositions of the shapes α into left, middle,

and right parts, construct coefficient matrices HIdU and Hτ .

5. Based on the coefficient matrices HIdU and Hτ , obtain an approximate PSD decom-

position of Λ.

6. Show that the error terms (which we call intersection terms) can be bounded by the

approximate PSD decomposition of Λ.

We show that this analysis will succeed as long as three conditions on the coefficient matrices

are satisfied. Thus, in order to use the machinery to prove sum of squares lower bounds, it

is sufficient to do the following.

1. Construct a candidate moment matrix Λ.

2. Decompose the moment matrix Λ as a linear combination Λ =
∑

shapes α λαMα of

graph matrices Mα (akin to Fourier decomposition) and find the corresponding coeffi-

cient matrices.

3. Verify the required conditions on the coefficient matrices.

122

A sketch of the intuition behind the machinery conditions

Giving an approximate PSD factorization As discussed above, we decompose the

moment matrix Λ as a linear combination Λ =
∑

shapes α λαMα of graph matrices Mα. We

then decompose each α into left, middle, and right parts σ, τ , and σ′T . We now have that

Λ =
∑

α=σ◦τ◦σ′T
λ
σ◦τ◦σ′TMσ◦τ◦σ′T

We first consider the terms
∑
σ,σ′ λσ◦σ′TMσ◦σ′T ≈

∑
σ,σ′ λσ◦σ′TMσMσ′T where τ corre-

sponds to an identity matrix and can be ignored.

If there existed real numbers vσ for all left shapes σ such that λσ◦σ′T = vσvσ′ , then we

would have

∑
σ,σ′

λσ◦σ′TMσMσ′T =
∑
σ,σ′

vσvσ′MσMσ′T = (
∑
σ

vσMσ)(
∑
σ

vσMσ)T � 0

which shows that the contribution from these terms is positive semidefinite. In fact, this

turns out to be the case for the planted clique analysis. However, this may not hold in

general. To handle this, we note that the existence of vσ can be relaxed as follows: Let H

be the matrix with rows and columns indexed by left shapes σ such that H(σ, σ′) = λσ◦σ′T .

Up to scaling, H will be one of our coefficient matrices. If H is positive semidefinite then

the contribution from these terms will also be positive semidefinite. In fact, this will be the

first condition of the main theorem in the machinery.

Handling terms with a non-trivial middle part Unfortunately, we also have terms

λσ◦τ◦σ′TMσ◦τ◦σ′T where τ is non-trivial. Our strategy will be to charge these terms to other

terms.

For the sake of simplicity, we will describe how to handle one term. A starting point is

the following inequality. For a left shape σ, a middle shape τ , a right shape σ′T , and real

123

numbers a, b,

(aMσ − bMσ′MτT)(aMσ − bMσ′MτT)T � 0

which rearranges to

ab(MσMτMσ′T + (MσMτMσ′T)T) � a2MσMσT + b2Mσ′MτTMτMσ′T

� a2MσMσT + b2 ‖Mτ‖2Mσ′Mσ′T

If λ2
σ◦τ◦σ′T ‖Mτ‖2 ≤ λσ◦σT λσ′◦σ′T , then we can choose a, b such that a2 ≤ λσ◦σT , b

2 ‖Mτ‖2 ≤

λσ′◦σ′T and ab = λσ◦τ◦σ′T . This will approximately imply

λσ◦τ◦σ′T (Mσ◦τ◦σ′T +MT
σ◦τ◦σ′T) � λσ◦σTMσ◦σT + λσ′◦σ′TMσ′◦σ′T

which will give us a way to charge terms with a nontrivial middle part against terms with a

trivial middle part.

While we could try to apply this inequality term by term, it is not strong enough. Instead,

the machinery generalizes this inequality to work with the entire set of shapes σ, σ′ for a

fixed τ . This will lead us to the second condition of the main theorem of the machinery.

Handing intersection terms There’s one important technicality in the above heuristic

calculations. Whenever we decompose α into left, middle, and right parts σ, τ , and σ′T ,

MσMτMσ′T
is only approximately equal to Mα = M

σ◦τ◦σ′T . All the other error terms have

to be carefully handled in the analysis. We call these terms intersection terms.

These intersection terms themselves turn out to be graph matrices and the strategy is to

now recursively decompose them into σ2 ◦ τ2 ◦ σ′T2 and apply the previous ideas. To do this

methodically, the machinery employs several ideas such as the notion of intersection patterns

and the generalized intersection tradeoff lemma. Properly handling the intersection terms

is one of the most technically intensive parts of [149]. This analysis leads us to the third

124

condition of the main theorem of the machinery.

Applying the machinery To apply the machinery to our problems of interest, we verify

the spectral conditions that our coefficients should satisfy and then we can use the main

theorem. The Planted slightly denser subgraph application is straightforward and will serve

as a good warmup to understand the machinery. In the applications to Tensor PCA and

Sparse PCA, the shapes corresponding to the graph matrices with nonzero coefficients have

nice structural properties that will be crucial for our analysis. We exploit this structure and

use novel charging arguments to verify the conditions of the machinery. We do this in this

work.

4.6 Related work on Sum-of-Squares Lower Bounds for

Certification Problems

[107] proved that for random constraint satisfaction problems (CSPs) where the predicate

has a balanced pairwise independent distribution of solutions, with high probability, degree

Ω(n) SoS is required to certify that these CSPs do not have a solution. While they don’t

state it in this manner, the pseudo-expectation values used by [107] can also be derived

using pseudo-calibration [156, 35]. The analysis for showing that the moment matrix is PSD

is very different. It is an interesting question whether or not it is possible to unify these

analyses.

[129] showed that it’s possible to lift degree 2 SoS solutions to degree 4 SoS solutions

under suitable conditions, and used it to obtain degree 4 SoS lower bounds for average case

d-regular Max-Cut and the Sherrington Kirkpatrick problem. Their construction is inspired

by pseudo-calibration and their analysis also goes via graph matrices.

[113] recently proposed a technique to lift degree 2 SoS lower bounds to higher levels

and applied it to construct degree 6 lower bounds for the Sherrington-Kirkpatrick problem.

125

Interestingly, their construction does not go via pseudo-calibration.

4.7 Organization of the proofs

We prove the Sherrington-Kirkpatrick lower bound, Theorem 4.1.2, in Chapter 5. The proofs

for planted slightly denser subgraph, tensor PCA and sparse PCA, namely Theorem 4.2.1,

Theorem 4.3.1 and Theorem 4.4.1, are split between Chapter 6 and Chapter 7. The latter

proofs are split into qualitative and quantitative versions. Qualitative theorem statements

capture the essence of the inequalities we prove, and serve to illustrate the main forms of the

bounds we desire, without getting lost in the details. Quantitative theorems on the other

hand build on their qualitative counterparts by stating the precise bounds that are needed.

In Chapter 6, we introduce the machinery and and in Section 6.2, Section 6.3 and Section 6.4,

we qualitatively verify the conditions of the machinery for planted slightly denser subgraph,

tensor PCA, and sparse PCA respectively. While these sections only verify the qualitative

conditions, the results in these sections are precise and will be reused in Chapter 7, where

we fully verify the conditions of the machinery in Section 7.1, Section 7.2 and Section 7.3.

126

CHAPTER 5

THE SHERRINGTON-KIRKPATRICK HAMILTONIAN

In this chapter, we will prove SoS lower bounds for the certification problem of the Sherrington-

Kirkpatrick Hamiltonian, in particular Theorem 4.1.2. The material in this chapter is

adapted from [70], where this work originally appeared.

5.1 Technical preliminaries

In this section we record formal problem statements, then define and discuss one of the main

objects in our SoS lower bound: graph matrices.

For a vector or variable v ∈ Rn, and I ⊆ [n], we use the notation vI :=
∏
i∈I vi. When a

statement holds with high probability (w.h.p.), it means it holds with probability 1− on(1).

In particular, there is no requirement for small n.

5.1.1 Problem statements

We introduce the Planted Affine Planes problem over a distribution D.

Definition 5.1.1 (Planted Affine Planes (PAP) problem). Given d1, . . . , dm ∼ D where

each du is a vector in Rn, determine whether there exists v ∈ {± 1√
n
}n such that

〈v, du〉2 = 1,

for every u ∈ [m].

Our results hold for the Gaussian setting D = N (0, I) and the boolean setting where D

is uniformly sampled from {±1}n, though we conjecture in Section 8.2.2 that similar SoS

bounds hold under more general conditions on D.

127

Observe that in both settings the solution vector v is restricted to be Boolean (in the

sense that the entries are either 1√
n

or −1√
n

) and an SoS lower bound for this restricted version

of the problem is stronger than when v can be an arbitrary vector from Rn.

As we saw in Chapter 4, the Sherrington–Kirkpatrick (SK) problem comes from the

spin-glass model in statistical physics [168].

Definition 5.1.2 (Sherrington-Kirkpatrick problem). Given W ∼ GOE(n), compute

OPT(W) := max
x∈{±1}n

xᵀWx.

The Planted Boolean Vector problem was introduced by Mohanty–Raghavendra–Xu [129],

where it was called the “Boolean Vector in a Random Subspace”.

Definition 5.1.3 (Planted Boolean Vector problem). Given a uniformly random p-dimensional

subspace V of Rn in the form of a projector ΠV onto V , compute

OPT(V) :=
1

n
max

b∈{±1}n
bᵀΠV b.

5.1.2 Graph matrices

To study M, we decompose it using the framework of graph matrices. Originally developed

in the context of the planted clique problem, graph matrices are random matrices whose

entries are symmetric functions of an underlying random object – in our case, the set of

vectors d1, . . . , dm. We take the general presentation and results from [2]. For our purposes,

the following definitions are sufficient.

The graphs that we study have two types of vertices, circles i and squares t . We let Cm

be a set of m circles labeled 1 through m, which we denote by 1 , 2 , . . . , m , and let Sn be

a set of n squares labeled 1 through n, which we denote by 1 , 2 , . . . , n . We will work with

bipartite graphs with edges between circles and squares, which have positive integer labels on

128

the edges. When there are no multiedges (the graph is simple), such graphs are in one-to-one

correspondence with Fourier characters on the vectors du. An edge between u and i with

label l represents hl(du,i) where {hk} is the Fourier basis (e.g. Hermite polynomials).

simple graph with labeled edges ⇐⇒
∏

u ∈Cm,
i ∈Sn

hl(u , i)(du,i)

An example of a Fourier polynomial as a graph with labeled edges is given in Fig. 5.1.

Unlabeled edges are implicitly labeled 1.

i1
u

j1

i2 j2

3

w1

2

Figure 5.1: The Fourier polynomial h3(du,i1)h1(du,i2)h2(du,w1)h1(du,j1)h1(du,j2) represented as a
graph.

Define the degree of a vertex v, denoted deg(v), to be the sum of the labels incident to

v, and |E| to be the sum of all labels. For intuition it is mostly enough to work with simple

graphs, in which case these quantities make sense as the edge multiplicities in an implicit

multigraph.

Definition 5.1.4 (Proper). We say an edge-labeled graph is proper if it has no multiedges.

The definitions allow for “improper” edge-labeled multigraphs which simplify multiplying

graph matrices (Section 5.4.2).

Definition 5.1.5 (Matrix indices). A matrix index is a set A of elements from Cm ∪ Sn.

We let A(i) or A(u) be 0 or 1 to indicate if the vertex is in A.

129

Definition 5.1.6 (Ribbons). A ribbon is an undirected, edge-labeled graph R = (V (R), E(R), AR, BR),

where V (R) ⊆ Cm ∪ Sn and AR, BR are two matrix indices (possibly not disjoint) with

AR, BR ⊆ V (R), representing two distinguished sets of vertices. Furthermore, all edges in

E(R) go between squares and circles.

We think of AR and BR as being the “left” and “right” sides of R, respectively. We also

define the set of “middle vertices” CR := V (R) \ (AR ∪BR). If e 6∈ E(R), then we define its

label l(e) = 0. We also abuse notation and write l(i , u) instead of l({ i , u }).

Akin to the picture above, each ribbon corresponds to a Fourier polynomial. This Fourier

polynomial lives inside a single entry of the matrix MR. In the definition below, the hk(x)

are the Fourier basis corresponding to the respective setting. In the Gaussian case, they are

the (unnormalized) Hermite polynomials, and in the boolean case, they are just the parity

function, represented by

h0(x) = 1, h1(x) = x, hk(x) = 0 (k ≥ 2)

Definition 5.1.7 (Matrix for a ribbon). The matrix MR has rows and columns indexed by

subsets of Cm ∪ Sn, with a single nonzero entry defined by

MR[I, J] =



∏
e∈E(R),
e={ i , u }

hl(e)(du,i) I = AR, J = BR

0 Otherwise

Next we describe the shape of a ribbon, which is essentially the ribbon when we have

forgotten all the vertex labels and retained only the graph structure and the distinguished

sets of vertices.

Definition 5.1.8 (Index shapes). An index shape is a set U of formal variables. Further-

more, each variable is labeled as either a “circle” or a “square”.

130

We let U(i) and U(u) be either 0 or 1 for whether i or u , respectively, is in U .

Definition 5.1.9 (Shapes). A shape is an undirected, edge-labeled graph α = (V (α), E(α), Uα, Vα)

where V (α) is a set of formal variables, each of which is labeled as either a “circle” or

a “square”. Uα and Vα are index shapes (possibly with variables in common) such that

Uα, Vα ⊆ V (α). The edge set E(α) must only contain edges between the circle variables and

the square variables.

We’ll also use Wα := V (α) \ (Uα ∪ Vα) to denote the “middle vertices” of the shape.

Remark 5.1.10. We will abuse notation and use i , j , u , v , . . . for both the vertices of

ribbons and the vertices of shapes. If they are ribbon vertices, then the vertices are elements

of Cm ∪ Sn and if they are shape vertices, then they correspond to formal variables with the

appropriate type.

Definition 5.1.11 (Trivial shape). Define a shape α to be trivial if Uα = Vα, Wα = ∅ and

E(α) = ∅.

Definition 5.1.12 (Transpose of a shape). The transpose of a shape α = (V (α), E(α), Uα, Vα)

is defined to be the shape αᵀ = (V (α), E(α), Vα, Uα).

For a shape α and an injective map σ : V (α)→ Cm ∪ Sn, we define the realization σ(α)

as a ribbon in the natural way, by labeling all the variables using the map σ. We also require

σ to be type-preserving i.e. it takes square variables to Sn and circle variables to Cm. The

ribbons that result are referred to as ribbons of shape α; notice that this partitions the set

of all ribbons according to their shape12.

Finally, given a shape α, the graph matrix Mα consists of all Fourier characters for

ribbons of shape α.

1. Partitions up to equality of shapes, where two shapes are equal if there is a type-preserving bijection
between their variables that converts one shape to the other. When we operate on sets of shapes below, we
implicitly use each distinct shape only once.

2. Note that in our definition two realizations of a shape may give the same ribbon.

131

Definition 5.1.13 (Graph matrices). Given a shape α = (V (α), E(α), Uα, Vα), the graph

matrix Mα is

Mα =
∑

R is a ribbon of shape α

MR

The moment matrix for PAP will turn out to be defined using graph matrices Mα whose

left and right sides only have square vertices, and no circles. However, in the course of the

analysis we will factor and multiply graph matrices with circle vertices in the left or right.

5.1.3 Norm bounds

Similar to the norm bounds for graph matrices with only a single type of vertex (see Chap-

ter 2), the spectral norm of a graph matrix in our setting is determined, up to logarithmic

factors, by relatively simple combinatorial properties of the graph. For a subset S ⊆ Cm∪Sn,

we define the weight w(S) := (# circles in S) · logn(m) + (# squares in S). Observe that

nw(S) = m# circles in S · n# squares in S .

Definition 5.1.14 (Minimum vertex separator). For a shape α, a set Smin is a minimum

vertex separator if all paths from Uα to Vα pass through Smin and w(Smin) is minimized over

all such separating sets.

Let Wiso denote the set of isolated vertices in Wα. Then essentially the following norm

bound holds for all shapes α with high probability (a formal statement can be found in Sec-

tion 5.6.1):

‖Mα‖ ≤ Õ

(
n
w(V (α))−w(Smin)+w(Wiso)

2

)
In fact, the only probabilistic property required of the inputs d1, . . . , dm by our proof is

that the above norm bounds hold for all shapes that arise in the analysis. We henceforth

assume that the norm bounds in Lemma 5.6.3 (for the Gaussian case) and Lemma 5.6.1 (for

the boolean case) hold.

132

5.2 Proof Strategy

Now we explain in more detail the ideas for the Planted Affine Planes lower bound. Towards

the proof of Theorem 4.1.4, fix a constant ε > 0 and a random instance d1, . . . , dm with

n ≤ m ≤ n3/2−ε. We will construct a pseudoexpectation operator and show that it is PSD

up to degree D = 2 · nδ with high probability.

We start by pseudocalibrating to obtain a pseudoexpectation operator Ẽ. The operator Ẽ

will exactly satisfy the “booleanity” constraints “v2
i = 1

n” though it may not exactly satisfy

the constraints “〈v, du〉2 = 1” due to truncation error in the pseudocalibration. Taking the

truncation parameter nτ to be larger than the degree D of the SoS solution, i.e., δ � τ , the

truncation error is small enough that we can round Ẽ to a nearby Ẽ′ that exactly satisfies the

constraints. This is formally accomplished by viewing Ẽ ∈ R([n]
≤D) as a vector and expressing

the constraints as a matrix Q such that Ẽ satisfies the constraints iff it lies in the null space

of Q. The choice of Ẽ′ is then the projection of Ẽ to Null(Q). The end result is that we

construct a moment matrix Mfix =M+ E that exactly satisfies the constraints such that

‖E‖ is tiny. For the sake of brevity, we omit this technicality in this work, see [70] for the

details.

After performing pseudocalibration, in both settings, we will have essentially the graph

matrix decomposition

M =
∑

shapes α

λαMα =
∑

shapes α:
deg(i)+U(i)+V (i) even,

deg(u) even

1

n
|Uα|+|Vα|

2

·

 ∏
u ∈V (α)

hdeg(u)(1)

· Mα

n|E(α)|/2

Here hk(1) is in both settings the k-th Hermite polynomial, evaluated on 1.

In this decomposition of M, the trivial shapes will be the dominant terms which we

will use to bound the other terms. Recall that a shape α = (V (α), E(α), Uα, Vα) is trivial

if Uα = Vα, Wα = ∅ and E(α) = ∅. These shapes contribute scaled identity matrices on

133

different blocks of the main diagonal of M, with trivial shape α contributing an identity

matrix with coefficient n−|Uα|. Two trivial shapes are illustrated in Fig. 5.2.

u1

Uα ∩ Vα

1
n

u1

u2

1
n2

Uα ∩ Vα

Figure 5.2: Two examples of trivial shapes.

Let Mtriv be this diagonal matrix of trivial shapes in the above decomposition of M.

To prove thatM� 0, we attempt the simple strategy of showing that the norm of all other

terms can be “charged” against this diagonal matrixMtriv. For several shapes this strategy

is indeed viable. To illustrate, let’s consider one such shape α depicted in Fig. 5.3.

u1

w1

v1

w3

w2u u′

Uα Vα

Figure 5.3: Picture of basic non-spider shape α.

This graph matrix has |λα| = Θ(1
n5). Using the graph matrix norm bounds, with high

probability the norm of this graph matrix is Õ(n2m): there are four square vertices and two

circle vertices which are not in the minimum vertex separator. Thus, for this shape α, with

high probability |λα| ‖Mα‖ is Õ
(
m
n3

)
and thus λαMα � 1

nId (which is the multiple of the

identity appearing in the corresponding block of Mtriv).

Unfortunately, some shapes α that appear in the decomposition have ‖λαMα‖ too large to

be charged against Mtriv. These are shapes with a certain substructure (actually the same

structure that appears in the matrix Q used to project the pseudoexpectation operator!)

134

whose norms cannot be handled by the preceding argument, and which we denote spiders.

The following graph depicts one such spider shape (and also motivates this terminology):

u1

u2

v1

v2

u

Uα Vα

Figure 5.4: Picture of basic spider shape α.

The norm ‖λαMα‖ of this graph is Ω̃(1
n2), as can be easily estimated through the norm

bounds (the coefficient is λα = −2
n4 , the minimum vertex separator is u , and there are no

isolated vertices). This is too large to bound against 1
n2 Id, which is the coefficient of Mtriv

on this spider’s block.

To skirt this and other spiders, we restrict ourselves to vectors x ⊥ Null(M), and observe

that this spider α satisfies xᵀMα ≈ 0. To be more precise, consider the following argument.

Consider the two shapes in Fig. 5.5, β1 and β2 (take note of the label 2 on the edge in β2).

u1

u2

u u

Uβ1

Vβ1

Vβ2

w

Uβ2 = ∅

2

Figure 5.5: Picture of shapes β1 and β2.

We claim that every column of the matrix 2Mβ1
+ 1

nMβ2
is in the null space of M.

There are m nonzero columns indexed by assignments to V , which can be a single circle

135

1 , 2 , . . . , m . The nonzero rows are ∅ in β2 and { i , j } for i 6= j in β1. Fixing I ⊆ [n],

entry (I, u) of the product matrix M(2Mβ1
+ 1
nMβ2

) is

2
∑
i<j

Ẽ[vIvivj] · duiduj +
1

n
Ẽ[vI] ·

∑
i

(d2
ui − 1)

= 2
∑
i<j

Ẽ[vIvivj] · duiduj + Ẽ[vIv2
i] ·
∑
i

d2
ui − Ẽ[vI] (Ẽ satisfies “v2

i =
1

n
”)

=
∑
i,j

Ẽ[vIvivj]duiduj − Ẽ[vI]

= Ẽ[vI(〈v, du〉2 − 1)]

= 0 (Ẽ satisfies “〈v, du〉2 = 1”)

In words, the constraint “〈v, du〉2 = 1” creates a shape 2β1 + 1
nβ2 that lies in the null space

of the moment matrix. On the other hand, we can approximately factor the spider α across

its central vertex, and when we do so, the shape β1 appears on the left side. Therefore

u1

u2

u u

Uβ1

u1

u2

Uβ1

× ≈

u1

u2

v1

v2

u

Uα Vα

Vβ1 Vβ1

Figure 5.6: Approximation β1 × βᵀ1 ≈ α.

Mα ≈Mβ1
M

ᵀ
β1
≈ (Mβ1

+ 1
2nMβ2

)M
ᵀ
β1

. The columns of the matrix Mβ1
+ 1

2nMβ2
are in the

null space ofM, so for x ⊥ Null(M) we have xᵀMα ≈ 0. More formally, we are able to find

coefficients cβ so that all columns of the matrix

A = Mα +
∑
β

cβMβ

136

are in Null(M). We then observe the following fact:

Fact 5.2.1. If x ⊥ Null(M) andMA = 0, then xᵀ(AB+M)x = xᵀ(BᵀAᵀ+M)x = xᵀMx.

Using the fact, we can freely add multiples of A toM without changing the action ofM

on Null(M)⊥. A judicious choice is to subtract λαA which will “kill” the spider from M.

Doing this for all spiders, we produce a matrix whose action is equivalent on Null(M)⊥, and

which has high minimum eigenvalue by virtue of the fact that it has no spiders, showing that

M is PSD. The catch is two-fold: first, the coefficients cβ may contribute to the coefficients

on the non-spiders; second, the further intersection terms Mβ may themselves be spiders (

though they will always have fewer square vertices than α). Thus we must recursively kill

these spiders, until there are no spiders remaining in the decomposition ofM. The resulting

matrix has some new coefficients on the non-spiders

M′ =
∑

non-spiders β

λ′βMβ .

We must bound the accumulation on the coefficients λ′β . We do this by considering the

web of spiders and non-spiders created by each spider and using bounds on the cβ and λα to

argue that the contributions do not blow up, via an interesting charging scheme that exploits

the structure of these graphs.

5.3 Pseudocalibration

As we saw in Chapter 3, to be able to apply the pseudocalibration technique to an average-

case feasibility problem, in our case the PAP problem, one needs to design a planted dis-

tribution supported on feasible instances. This is done in Section 5.3.1. In Section 5.3.2,

we recall the precise details in applying pseudocalibration. Then we pseudocalibrate in the

Gaussian (Section 5.3.3) and boolean (Section 5.3.4) settings.

137

5.3.1 PAP planted distribution

We formally define the random and the planted distributions for the Planted Affine Planes

problem in the Gaussian and boolean settings. These two (families of) distributions are re-

quired by the pseudocalibration machinery in order to define a candidate pseudoexpectation

operator Ẽ. For the Gaussian setting, we have the following distributions.

Definition 5.3.1 (Gaussian PAP distributions). The Gaussian PAP distributions are as

follows.

1. (Random distribution) m i.i.d. vectors du ∼ N (0, I).

2. (Planted distribution) A vector v is sampled uniformly from
{
± 1√

n

}n
, as well as signs

bu ∈R {±1}, and m vectors du are drawn from N (0, I) conditioned on 〈du, v〉 = bu.

For the boolean setting, we have the following distributions.

Definition 5.3.2 (Boolean PAP distributions). The boolean PAP distributions are as follows

1. (Random distribution) m i.i.d. vectors du ∈R {−1,+1}n.

2. (Planted distribution) A vector v is sampled uniformly from
{
± 1√

n

}n
, as well as signs

bu ∈R {±1}, and m vectors du are drawn from {±1}n conditioned on 〈du, v〉 = bu.

5.3.2 Pseudocalibration technique

We will use the shorthand Era and Epl for the expectation under the random and planted

distributions. Pseudocalibration gives a method for constructing a candidate pseudoexpec-

tation operator Ẽ. The idea behind pseudocalibration is that EraẼf(v) should match with

Eplf(v) for every low-degree test of the data t = t(d) = t(d1, . . . , dm),

Erat(d)Ẽf(v) = Eplt(d)f(v).

138

When pseudocalibrating, one can freely choose the “outer” basis in which to express the

polynomial f(v), as well as the “inner” basis of low-degree tests which should agree with the

planted distribution. Though we attempted to use alternate bases to simplify the analysis,

ultimately we opted for the standard choice of bases: a Fourier basis for the inner basis in

each setting (Hermite functions for the Gaussian setting, parity functions for the boolean

setting), and the coordinate basis vI for the outer basis.

When the inner basis is orthonormal under the random distribution (as a Fourier ba-

sis is), the pseudocalibration condition gives a formula for the coefficients of Ẽf(v) in the

orthonormal basis (though it only gives the coefficients of the low-degree functions t(d)).

Concretely, letting the inner basis be indexed by α ∈ F , as a function of d the pseudocali-

bration condition enforces

Ẽf(v) =
∑
α∈F :
|α|≤nτ

(
Epltα(d)f(v)

)
tα(d).

Here we use “|α| ≤ nτ” to describe the set of low-degree tests. The pseudocalibration condi-

tion does not prescribe any coefficients for functions tα(d) with |α| > nτ and an economical

choice is to set these coefficients to zero.

When pseudocalibrating, our pseudoexpectation operator is guaranteed to be linear, as

the expression above is linear in f . It is guaranteed to satisfy all constraints of the form

“f(v) = 0”. It will approximately satisfy constraints of the form “f(v, d) = 0”, though only

up to truncation error.

Fact 5.3.3 (Proof in [70]). If p(v) is a polynomial which is uniformly zero on the planted

distribution, then Ẽ[p] is the zero function. If p(v, d) is a polynomial which is uniformly zero

on the planted distribution, then the only nonzero Fourier coefficients of Ẽ[p] are those with

size between nτ ± degd(p).

Truncation introduces a tiny error in the constraints, which we are able to handle in [70],

139

omitted in this work for brevity.

For the pseudocalibration we truncate to only Fourier coefficients of size at most nτ . The

relationship between the parameters is δ ≤ cτ ≤ c′ε where c′ < c < 1 are absolute constants.

We will assume that they are sufficiently small for all our proofs to go through.

Pseudocalibration also by default does not enforce the condition Ẽ[1] = 1. However, this

is easily fixed by dividing the operator by Ẽ[1]. As will be pointed out in Remark 5.4.9,

w.h.p. in the unnormalized pseudocalibration, Ẽ[1] = 1 + on(1) and so the error introduced

does not impact the statement of any lemmas.

5.3.3 Gaussian setting pseudocalibration

We start by computing the pseudocalibration for the Gaussian setting. Here the natural

choice of Fourier basis is the Hermite polynomials. Let α ∈ (Nn)m denote a Hermite poly-

nomial index. Define α! :=
∏
u,i αu,i! and |α| :=

∑
u,i αu,i and |αu| :=

∑
i αu,i. We let

hα(d1, . . . , dm) denote an unnormalized Hermite polynomial, so that hα/
√
α! forms an or-

thonormal basis for polynomials in the entries of the vectors d1, . . . , dm, under the inner

product 〈p, q〉 = Ed1,...,dm∼N (0,I)[p · q].

We can view α as an m×n matrix of natural numbers, and with this view we also define

αᵀ ∈ (Nm)n.

Lemma 5.3.4. For any I ⊆ [n], the pseudocalibration value is

ẼvI =
∑

α:|α|≤nτ ,
|αu| even,

|(αᵀ)i|≡Ii (mod 2)

(
m∏
u=1

h|αu|(1)

)
· 1

n|I|/2+|α|/2 ·
hα(d1, . . . , dm)

α!
.

In words, the nonzero Fourier coefficients are those which have even row sums, and whose

column sums match the parity of I.

140

Proof. The truncated pseudocalibrated value is defined to be

ẼvI =
∑

α:|α|≤nτ

hα(d1, . . . , dm)

α!
· Epl[hα(d1, . . . , dm) · vI]

So we set about to compute the planted moments. For this computation, the following

lemma is crucial. Here, we give a short proof of this lemma using generating functions. For

a different combinatorial proof, see [70].

Lemma 5.3.5. Let α ∈ Nn. When v is fixed and b is fixed (not necessarily ±1) and

d ∼ N(0, I) conditioned on 〈v, d〉 = b ‖v‖,

Ed[hα(d)] =
vα

‖v‖|α|
· h|α|(b).

Proof. It suffices to prove the claim when ‖v‖ = 1 since the left-hand side is independent of

‖v‖. Express d = bv+ (I − vvᵀ)x where x ∼ N(0, I) is a standard normal variable. Now we

want

Ex∼N(0,I)hα (bv + (I − vvᵀ)x) .

The Hermite polynomial generating function is

∑
α∈Nn

Ex∼N(0,I)hα (bv + (I − vvᵀ)x)
tα

α!
= Ex exp

(
〈bv + (I − vvᵀ)x, t〉 − ‖t‖

2
2

2

)

=

∫
Rn

1

(2π)
n
2
· exp

(
〈bv + (I − vvᵀ)x, t〉 − ‖t‖

2
2

2
− ‖x‖

2
2

2

)
dx.

141

Completing the square,

=

∫
Rn

1

(2π)
n
2
· exp

(
〈bv, t〉 − 〈v, t〉

2

2
− 1

2
· ‖x− (t− 〈v, t〉v)‖22

)
dx

= exp

(
〈bv, t〉 − 〈v, t〉

2

2

)
= exp

(
b〈v, t〉 − 1

2
· 〈v, t〉2

)
.

How can we Taylor expand this in terms of t? The Taylor expansion of exp(by − y2

2) is∑∞
i=0 hi(b)

yi

i! . That is, the i-th derivative in y of exp(by − y2

2), evaluated at 0, is hi(b).

Using the chain rule with y = 〈v, t〉, the α-derivative in t of our expression, evaluated at

0, is vα · h|α|(b). This is the expression we wanted when ‖v‖ = 1, and along with the

aforementioned remark about homogeneity in ‖v‖ this completes the proof.

Now we can finish the calculation. To compute Epl[hα(d1, . . . , dm) · vI], marginalize v

and the bu and factor the conditionally independent bu and du.

Epl[hα(d1, . . . , dm)vI] = Ev,buv
I
m∏
u=1

Ed [hαu(du) | v, bu]

= Ev,buv
I ·

m∏
u=1

vαu

‖v‖|αu|
· h|αu|(bu) (Lemma 5.3.5)

=

(
Ev

vI+
∑m
u=1 αu

‖v‖
∑m
u=1|αu|

)
·

(
m∏
u=1

Ebuh|αu|(bu)

)

The Hermite polynomial expectations will be zero in expectation over bu if the degree is odd,

and otherwise bu is raised to an even power and can be replaced by 1. This requires that

|αu| is even for all u. The norm ‖v‖ is constantly 1 and can be dropped. The numerator

will be 1
n|I|/2+|α|/2 if the parity of every |(αᵀ)i| matches Ii, and 0 otherwise. This completes

the pseudocalibration calculation.

We can now write M in terms of graph matrices.

142

Definition 5.3.6. Let L be the set of all proper shapes α with the following properties

• Uα and Vα only contain square vertices and |Uα|, |Vα| ≤ nδ

• Wα has no degree 0 vertices

• deg(i) + Uα(i) + Vα(i) is even for all i ∈ V (α)

• deg(u) is even and deg(u) ≥ 4 for all u ∈ V (α)

• |E(α)| ≤ nτ

Remark 5.3.7. Note that the shapes in L can have isolated vertices in Uα ∩ Vα.

Remark 5.3.8. L captures all the shapes that have nonzero coefficient when we write M in

terms of graph matrices. The constraint deg(u) ≥ 4 arises because pseudocalibration gives

us that deg(u) is even, u cannot be isolated, and h2(1) = 0.

For a shape α, we define

α! :=
∏

e∈E(α)

l(e)!

Note that this equals the factorial of the corresponding index of the Hermite polynomial for

this shape.

Definition 5.3.9. For any shape α, if α ∈ L, define

λα :=

 ∏
u ∈V (α)

hdeg(u)(1)

 · 1

n(|Uα|+|Vα|+|E(α)|)/2 ·
1

α!

Otherwise, define λα := 0.

Corollary 5.3.10. Modulo the footnote3, M =
∑

shapes α

λαMα.

3. Technically, the graph matrices Mα have rows and columns indexed by all subsets of Cm ∪ Sn. The
submatrix with rows and columns from

(Sn
≤D/2

)
equals the moment matrix for Ẽ.

143

5.3.4 Boolean setting pseudocalibration

We now present the pseudocalibration for the boolean setting. For the sequel, we need

notation for vectors on a slice of the boolean cube.

Definition 5.3.11 (Slice). Let v ∈ {±1}n and θ ∈ Z. The slice Sv(θ) is defined as

Sv(θ) := {d ∈ {±1}n | 〈v, d〉 = θ}.

We use Sv(±θ) to denote Sv(θ) ∪ Sv(−θ) and S(θ) to denote Sv(θ) when v is the all-ones

vector.

Remark 5.3.12. With our notation for the slice, the planted distribution in the boolean

setting can be equivalently described as

1. Sample v ∈ {±1√
n
}n uniformly, and then

2. Sample d1, . . . , dm independently and uniformly from S√n·v(±
√
n).

The planted distribution doesn’t actually exist for every n, but this is immaterial, as we

can still define the pseudoexpectation via the same formula.

We will also need the expectation of monomials over the slice S(
√
n) since they will

appear in the description of the pseudocalibrated Fourier coefficients.

Definition 5.3.13. e(k) := Ex∈RS(
√
n) [x1 · · ·xk] .

We now compute the Fourier coefficients of Ẽvβ , where β ∈ Fn2 . The Fourier basis when

d1, . . . , dm ∈R {±1}n is the set of parity functions. Thus a character can be specified by

α ∈ (Fn2)m, where α is composed of m vectors α1, . . . , αm ∈ Fn2 . More precisely, the character

χα associated to α is defined as

χα(d1, . . . , dm) :=
m∏
u=1

dαuu

144

We denote by |α| the number of non-zero entries of α and define |αu| similarly. Thinking of

α as an m× n matrix with entries in F2, we also define αᵀ ∈ (Fn2)m.

Lemma 5.3.14. We have

Ẽvβ =
1

n|β|/2

∑
α : |α|≤nτ ,
|αu| even,

|αᵀi |≡βi (mod 2)

m∏
u=1

e(|αu|) · χαu(du).

The set of nonzero coefficients has a similar structure as in the Gaussian case: the rows

of α must have an even number of entries, and the i-th column must have parity matching

βi.

Proof. Given α ∈ (Fn2)m with |α| ≤ nτ , the pseudocalibration equation enforces by con-

struction that

Ed1,...,dm∈{±1}n(Ẽvβ)(d1, . . . , dm) · χα(d1, . . . , dm) = Eplv
β · χα(d1, . . . , dm).

Computing the RHS above yields

Ev∈{±1}nEd1,...,dm∈RSv(±
√
n)

[
vβ

m∏
u=1

χαu(du)

]
= Ev∈{±1}nEd1,...,dm∈RS(±

√
n)

[
vβ

m∏
u=1

χαu(v)χαu(du)

]

= Ev∈{±1}nχα1+···+αm+β(v)Ed1,...,dm∈S(±
√
n)

[
m∏
i=1

χαi(di)

]

= 1[α1+···+αm=β] ·
m∏
i=1

Edi∈S(±
√
n) [χαi(di)]

= 1[α1+···+αm=β] ·
m∏
i=1

1[|αi|≡0 (mod 2)] ·
m∏
i=1

e(|αi|).

Since we have a general expression for the Fourier coefficient of each character, applying

Fourier inversion concludes the proof.

We can now express the moment matrix in terms of graph matrices.

145

Definition 5.3.15. Let Lbool be the set of shapes in L from Definition 5.3.6 in which the

edge labels are all 1.

Remark 5.3.16. Lbool captures all the shapes that have nonzero coefficient when we write

M in terms of graph matrices. Similar to Remark 5.3.8, since e(2) = 0 (see Claim 5.6.5),

we have the same condition deg(u) ≥ 4 for shapes in Lbool.

Definition 5.3.17. For all shapes α, if α ∈ Lbool define

λα :=
1

n(|Uα|+|Vα|)/2

∏
u ∈V (α)

e(deg(u))

Otherwise, let λα := 0.

Corollary 5.3.18. M =
∑

shapes α

λαMα

Unifying the analysis

It turns out that the analysis of the boolean setting mostly follows from the analysis in the

Gaussian setting. Initially, the boolean pseudocalibration is essentially equal to the Gaussian

pseudocalibration in which we have removed all shapes containing at least one edge with a

label k ≥ 2. The coefficients on the graph matrices will actually be slightly different, but

they both admit an upper bound that is sufficient for our purposes (see Proposition 5.4.13

for the precise statement).

To unify the notation in our analysis, we conveniently set the edge functions of the graphs

in the boolean case to be

hk(x) =


1 if k = 0

x if k = 1

0 if k ≥ 2

This choice of hk(x) preserves the fact that {h0(x) = 1, h1(x) = x} is an orthogonal poly-

nomial basis in the boolean setting, while zeroing out graphs with larger labels.

146

During the course of the analysis, we may multiply two graph matrices and produce graph

matrices with improper parallel edges (so-called “intersections terms”). For a fixed pair u, i

of vertices, parallel edges between u and i with labels l1, . . . , ls correspond to the product of

orthogonal polynomials
∏s
j=1 hlj (du,i) =: q(du,i). We will re-express this product as a linear

combination of polynomials in the orthogonal family, i.e., q(du,i) =
∑deg(q)
i=0 λi · hi(du,i)

for some coefficients λi ∈ R. For the boolean case, the polynomial q(du,i) will be either

h0(du,i) = 1 or h1(du,i) = du,i. However, for the Gaussian setting there may be up to deg(q)

non-zero, potentially larger coefficients λi for the corresponding Hermite polynomials hi. For

the graphs that arise in this way, we will always bound their contributions toM by applying

the triangle inequality and norm bounds. Since we show bounds using the larger coefficients

λi from the Gaussian case, the same bounds apply when using the 0/1 coefficients in the

boolean case.

We will consider separate cases at any point where the analysis differs between the two

settings.

5.4 Proving PSD-ness

Looking at the shapes that make upM, the trivial shape with k square vertices contributes

an identity matrix on the degree-2k submatrix of M. Our ultimate goal will be to bound

all shapes against these identity matrices.

Definition 5.4.1 (Block). For k, l ∈ {0, 1, . . . , D/2}, the (k, l) block of M is the submatrix

with rows from
([n]
k

)
and columns from

([n]
l

)
. Note that when M is expressed as a sum of

graph matrices, this exactly restricts M to shapes α with |Uα| = k and |Vα| = l.

We define the parameter η := 1/
√
n. The trivial shapes live in the diagonal blocks of

M, and on the (k, k) block contribute a factor of 1
nk

= η2k on the diagonal. In principle, we

147

could make η as small as we like4 by considering the moments of a rescaling of v rather than

v itself. Counterintuitively, it will turn out that the scaling helps us prove PSD-ness (see

[70] for more details). It turns out that pseudocalibrating v as a unit vector (equivalently,

using η = 1/
√
n) is sufficient for our analysis.

Towards the goal of bounding M by the identity terms, we will bound the norm of

matrices on each block of M, and invoke the following lemma to conclude PSD-ness.

Lemma 5.4.2. Suppose a symmetric matrix A ∈ R([n]
≤D)×([n]

≤D) satisfies, for some parameter

η ∈ (0, 1),

1. For each k ∈ {0, 1, . . . , D}, the (k, k) block has minimum singular value at least η2k(1−
1

D+1)

2. For each k, l ∈ {0, 1, . . . , D} such that k 6= l, the (k, l) block has norm at most ηk+l

D+1 .

Then A � 0.

Proof. We need to show that for all vectors x, xᵀAx ≥ 0. Given a vector x, let x0, . . . , xD

be its components in blocks 0, . . . , D. Observe that

xᵀAx ≥
∑

k∈[0,D]

η2k
(

1− 1

D + 1

)
‖xk‖2 −

∑
k 6=l∈[0,D]

ηk+l

D + 1
‖xk‖ ‖xl‖

= (‖x0‖ , η ‖x1‖ , . . . , ηD ‖xD‖)



1− 1
D+1 − 1

D+1 · · · − 1
D+1

− 1
D+1 1− 1

D+1 · · · − 1
D+1

...
...

. . .
...

− 1
D+1 − 1

D+1 · · · 1− 1
D+1





‖x0‖

η ‖x1‖
...

ηD ‖xD‖


≥ 0.

We start by defining spiders, which are special shapes α that we will handle separately in

the decomposition of M. Informally, these contain special substructures which allow their

4. Though pseudocalibration truncation errors may become nonnegligible for extremely tiny η.

148

norm bounds not to be negligible with respect to the identity matrix. We then show that

shapes which are not spiders have bounded norms.

Definition 5.4.3 (Left Spider). A left spider is a proper shape α = (V (α), E(α), Uα, Vα)

with the property that there exist two distinct square vertices i , j ∈ Uα of degree 1 and

a circle vertex u ∈ V (α) such that E(α) contains the edges (i , u) and (j , u) (these are

necessarily the only edges incident to i and j).

The vertices i and j are called the end vertices of α. Because of degree parity, the end

vertices must lie in Uα \ (Uα ∩ Vα).

Definition 5.4.4 (Right spider). A shape α = (V (α), E(α), Uα, Vα) is a right spider if

αᵀ = (V (α), E(α), Vα, Uα) is a left spider. The end vertices of αᵀ are also called the end

vertices of α.

Definition 5.4.5 (Spider). A shape α is a spider if it is either a left spider or a right spider.

Remark 5.4.6. A spider can have many pairs of end vertices. For each possible spider

shape, we single out a pair of end vertices, so that in what follows we can discuss “the” end

vertices of the spider.

5.4.1 Non-spiders are negligible

For non-spiders, we will now show that their norm is small. We point out that this norm

bound on non-spiders critically relies on the assumption m ≤ n3/2−ε.

Lemma 5.4.7. If α ∈ L is not a trivial shape and not a spider, then

1

n|E(α)|/2n
w(V (α))−w(Smin)

2 ≤ 1

nΩ(ε|E(α)|)

where Smin is the minimum vertex separator of α.

149

Proof. The idea behind the proof is as follows. Each square vertex which is not in the

minimum vertex separator contributes
√
n to the norm bound while each circle vertex which

is not in the minimum vertex separator contributes
√
m. To compensate for this, we will try

and take the factor of 1√
n

from each edge and distribute it among its two endpoints so that

each square vertex which is not in the minimum vertex separator is assigned a factor of 1√
n

or smaller and each circle vertex which is not in the minimum vertex separator is assigned

a factor of 1√
m

or smaller.

Remark 5.4.8. Instead of using the minimum vertex separator, we will actually use a set S

of square vertices such that w(S) ≤ w(Smin). For details, see the actual distribution scheme

below.

To motivate the distribution scheme which we use, we first give two attempts which

don’t quite work. For simplicity, for these first two attempts we assume that Uα ∩ Vα = ∅

as vertices in Uα ∩ Vα can essentially be ignored.

Attempt 1: Take each edge and assign a factor of 1
4√n to its square endpoint and a

factor of 1
8√m to its circle endpoint.

With this distribution scheme, since each circle vertex has degree at least 4, each circle

vertex is assigned a factor of 1√
m

or smaller. Since each square vertex in Wα has degree

at least 2, each square vertex in Wα is assigned a factor of 1√
n

or smaller. However,

square vertices in Uα ∪ Vα may only have degree 1 in which case they are assigned a

factor of 1
4√n which is not small enough.

To fix this issue, we can have all of the edges which are incident to a square vertex in

Uα ∪ Vα give their entire factor of 1√
n

to the square vertex.

Remark 5.4.9. For analyzing Ẽ[1], this first attempt works as Uα = Vα = ∅. Thus,

as long as m ≤ n2−ε, with high probability Ẽ[1] = 1± on(1) .

150

Attempt 2: For each edge which is between a square vertex in Uα ∪ Vα and a circle

vertex, we assign a factor of 1√
n

to the square vertex and nothing to the circle vertex.

For all other edges, we assign a factor of 1
4√n to its square endpoint and a factor of

1
6√m to its circle endpoint (which we can do because m ≤ n

3
2−ε).

With this distribution scheme, each square vertex is assigned a factor of 1√
n

. Since

α is not a spider, no circle vertex is adjacent to two vertices in Uα or Vα. Thus, any

circle vertex which is not adjacent to both a square vertex in Uα and a square vertex

in Vα must be adjacent to at least 3 square vertices in Wα and is thus assigned a factor

of 1√
m

or smaller. However, we can have circle vertices which are adjacent to both a

square vertex in Uα and a square vertex in Vα. These circle vertices may be assigned

a factor of 1
3√m , which is not small enough.

To fix this, observe that whenever we have a circle vertex which is adjacent to both a

square vertex in Uα and a square vertex in Vα, this gives a path of length 2 from Uα

to Vα. Any vertex separator must contain one of the vertices in this path, so we can

put one of these two square vertices in S and not assign it a factor of 1√
n

.

Actual distribution scheme: Based on these observations, we use the following distri-

bution scheme. Here we are no longer assuming that Uα ∩ Vα is empty.

1. Choose a set of square vertices S ⊆ Uα ∪ Vα as follows. Start with S = Uα ∩ Vα.

Whenever we have a circle vertex which is adjacent to both a square vertex in

Uα \ Vα and a square vertex in Vα \Uα, put one of these two square vertices in S

(this choice is arbitrary). Observe that w(S) ≤ w(Smin)

2. For each edge which is incident to a square vertex in S, assign a factor of 1
3√m to

its circle endpoint and nothing to this square.

3. For each edge which is incident to a square vertex in (Uα∪Vα)\S, assign a factor

of 1√
n

to the square vertex and nothing to the circle vertex.

151

4. For all other edges, assign a factor of 1
4√n to its square endpoint and a factor of

1
6√m to its circle endpoint.

Now each square vertex which is not in S is assigned a factor of 1√
n

and since α is not

a spider, all circle vertices are assigned a factor of 1√
m

or smaller.

We now make this argument formal.

Let Cα and Sα be the set of circle vertices and the set of square vertices in α respectively.

We have n
w(V (α))−w(Smin)

2 ≤ n0.5|Sα\Smin|+(0.75− ε2)|Cα\Smin|. So, it suffices to prove that

|E(α)| − |Sα \ Smin| − (1.5− ε)|Cα \ Smin| ≥ Ω(ε|E(α)|)

Let Q = Uα∩Vα, P = (Uα∪Vα)\Q and let P ′ be the set of vertices of P that have degree

1 and are not in Smin. Let E1 be the set of edges incident to P ′ and let E2 = E(α) \ E1.

For each vertex i (resp. u), let the number of edges of E2 incident to it be deg′(i) (resp.

deg′(u)). Since α is bipartite, we have that |E2| =
∑

i ∈Sα deg′(i) =
∑

u ∈Cα deg′(u). We

get that

|E(α)| = |E1|+ |E2| = |P ′|+
1

2
(
∑
i ∈Sα

deg′(i) +
∑
u ∈Cα

deg′(u))

We also have |Sα \Smin| ≤ |P ′|+ |Sα ∩Wα|+ |Sα ∩ (P \P ′)| ≤ |P ′|+ 1
2

∑
i ∈Sα deg′(i)

because each square vertex outside P ′ ∪ Q has degree at least 2 and is not incident to any

edge in E1. So, it suffices to prove

1

2

∑
u ∈Cα

deg′(u)− (1.5− ε)|Cα \ Smin| ≥ Ω(ε|E(α)|)

Now, observe that each u ∈ Cα is incident to at most two edges in E1. This is because if

it were adjacent to at least 3 edges in E1, then either u is adjacent to at least two vertices

of degree 1 in Uα or u is adjacent to at least two vertices of degree 1 in Vα. However, this

cannot happen since α is not a spider. This implies that deg′(u) ≥ deg(u)− 2.

152

Note moreover that if u ∈ Cα \ Smin, we have that deg′(u) ≥ deg(u) − 1. This is

because, building on the preceding argument, deg′(u) = deg(u) − 2 can only happen if

there exist i ∈ Uα, j ∈ Vα such that (i , u), (j , u) ∈ E1. But then, note that we have

i , j 6∈ Smin by definition of P ′ and also, u 6∈ Smin by assumption. This means that there

is a path from Uα to Vα which does not pass through Smin, which is a contradiction.

Finally, we set ε small enough such that the following inequalities are true, both of which

follow from the fact that deg(u) ≥ 4 for all u ∈ Cα.

1. For any u ∈ Cα ∩ Smin, we have
deg(u)−2

2 ≥ ε
10 deg(u).

2. For any u ∈ Cα \ Smin, we have
deg(u)−1

2 − 1.5 + ε ≥ ε
10 deg(u).

Using this, we get

1

2

∑
u ∈Cα

deg′(u)− (1.5− ε)|Cα \ Smin| ≥
∑

u ∈Cα∩Smin

deg(u)− 2

2
+

∑
u ∈Cα\Smin

deg(u)− 1

2
− (1.5− ε)|Cα \ Smin|

≥
∑

u ∈Cα∩Smin

ε

10
deg(u) +

∑
u ∈Cα\Smin

(
deg(u)− 1

2
− 1.5 + ε

)

≥
∑

u ∈Cα∩Smin

ε

10
deg(u) +

∑
u ∈Cα\Smin

ε

10
deg(u)

=
∑
u ∈Cα

ε

10
deg(u) = Ω(ε|E(α)|)

Since Lbool ⊆ L, the above result extends to non-trivial non spider shapes in Lbool too.

Corollary 5.4.10. If α ∈ Lbool is not a trivial shape and not a spider, then

1

n|E(α)|/2n
w(V (α))−w(Smin)

2 ≤ 1

nΩ(ε|E(α)|)

Corollary 5.4.11. If α ∈ L is not a trivial shape and not a spider, then w.h.p.

1

n|E(α)|/2 ‖Mα‖ ≤
1

nΩ(ε|E(α)|)
153

Proof. Using the norm bounds in Lemma 5.6.3, we have

‖Mα‖ ≤ 2·(|V (α)| · (1 + |E(α)|) · log(n))C·(|Vrel(α)|+|E(α)|)·nqw(V (α))− w(Smin) + w(Wiso)

2

We have Wiso = ∅. Observe that since there are no degree 0 vertices in Vrel(α), we have

that |Vrel(α)| ≤ 2|E(α)| and since we also have |V (α)| · (1 + |E(α)|) · log n ≤ nO(τ), the

factor 2 · (|V (α)| · (1 + |E(α)|) · log(n))C·(|Vrel(α)|+|E(α)|) can be absorbed into 1
nΩ(ε|E(α)|) .

The result follows from Lemma 5.4.7.

This says that nontrivial non-spider shapes have on(1) norm (ignoring the extra factor η

for the moment). We now demonstrate how to use this norm bound to control the total norm

of all non-spiders in a block ofM, Corollary 5.4.14. We will first need a couple propositions

which will also be of use to us later after we kill the spiders.

Proposition 5.4.12. The number of proper shapes with at most L vertices and exactly k

edges is at most L8(k+1).

Proof. The following process captures all shapes (though many will be constructed multiple

times):

• Choose the number of square and circle variables in each of the four sets U ∩ V, U \

(U ∩ V), V \ (U ∩ V),W . This contributes a factor of L8.

• Place each edge between two of the vertices. This contributes a factor of L2k.

Proposition 5.4.13. |λα| ≤ η|Uα|+|Vα| · |E(α)|3·|E(α)|

n|E(α)|/2 where we assume by convention that

00 = 1.

Proof. (Gaussian setting) Recall that the coefficients λα are either zero or are defined by

the formula

λα = η|Uα|+|Vα| ·

 ∏
u ∈V (α)

hdeg(u)(1)

 · 1

n|E(α)|/2 ·
1

α!

154

The sequence hk(1) satisfies the recurrence h0(1) = h1(1) = 1, hk+1(1) = hk(1) −

khk−1(1). We can prove by induction that |hk(1)| ≤ kk and hence,

∏
u ∈V (α)

∣∣∣hdeg(u)(1)
∣∣∣ ≤ ∏

u ∈V (α)

(deg(u))deg(u) ≤ |E(α)||E(α)| .

(Boolean setting) In the boolean setting the coefficients λα are defined by

λα = η|Uα|+|Vα| ·

 ∏
u ∈V (α)

e(deg(u))


Using Corollary 5.6.16, we have that |e(k)| ≤ k3k · n−k/2. Thus,

|λα| = η|Uα|+|Vα| ·
∏

u ∈V (α)

|e(deg(u))| ≤ η|Uα|+|Vα| · |E(α)|3|E(α)|

n|E(α)|/2 .

Corollary 5.4.14. For k, l ∈ {0, 1, . . . , D/2}, let Bk,l ⊆ L denote the set of nontrivial, non-

spiders α ∈ L on the (k, l) block i.e. |Uα| = k, |Vα| = l. The total norm of the non-spiders

in Bk,l satisfies ∑
α∈Bk,l

|λα| ‖Mα‖ = ηk+l · 1

nΩ(ε)

155

Proof.

∑
α∈Bk,l

|λα| ‖Mα‖ ≤
∑
α∈Bk,l

ηk+l · |E(α)|3|E(α)|

n|E(α)|/2 ‖Mα‖ (Proposition 5.4.13)

≤ ηk+l ·
∑
α∈Bk,l

(
|E(α)|3

nΩ(ε)

)|E(α)|

(Corollary 5.4.11)

≤ ηk+l ·
∑
α∈Bk,l

(
n3τ

nΩ(ε)

)|E(α)|
(α ∈ L)

≤ ηk+l ·
∑
α∈Bk,l

1

nΩ(ε|E(α)|)

≤ ηk+l ·
∞∑
i=1

nO(τi)

nΩ(εi)
(Proposition 5.4.12 and |E(α)| ≥ 1 for α ∈ Bk,l)

= ηk+l · 1

nΩ(ε)

5.4.2 Killing a single spider

We saw in the Proof Strategy section that the shape 2β1 + 1
nβ2 lies in the nullspace of a

moment matrix which satisfies the constraints “〈v, du〉2 = 1”. The shape β1 is exactly the

kind of substructure that appears in a spider! Therefore it is natural to hope that if α is a

left spider, then MfixMα = 0. This doesn’t quite hold because 〈v, du〉2 is “missing” some

terms: in realizations of α, the end vertices are required to be distinct from the other squares

in α, which prevents terms for all pairs i, j from appearing in the product MfixMα. There

are smaller “intersection terms” (which we call collapses of α) that we can add so that the

end vertices are permitted to take on all pairs i, j. After adding in these terms, we will

produce a matrix L with MfixL = 0.

We first define what it means to collapse a shape into another shape by merging two

vertices. Here, we only define it for merging two square vertices, since these are the only

kind of merges that will happen in our analysis of intersection terms.

156

Definition 5.4.15 (Improper collapse). Let α be a shape and let i , j be two distinct square

vertices in V (α). We define the improper collapse of i , j by:

• Remove i , j from V (α) and replace them by a single new vertex k .

• Replace each edge { i , u } and { j , u }, if present, by { k , u }, keeping the same labels

(note that there may be multiedges and so the new shape may not be proper).

• Set U(k) = U(i) + U(j)(mod 2) and V (k) = V (i) + V (j)(mod 2).

Improper collapses have parallel edges, but we can convert them back to a sum of proper

shapes. This is done by, for each set of parallel edges, expanding the product of Fourier

characters in the Fourier basis. For example, two parallel edges with label 1 should be

expanded as

h1(z)2 = (z2 − 1) + 1 = h2(z) + h0(z)

Definition 5.4.16 (Collapsing a shape). Let α be a shape with two distinct square vertices

i , j . We say that β is a (proper) collapse of i , j if β appears in the expansion of the

improper collapse of i , j .

Remark 5.4.17. If l1, . . . , lk are the labels of a set of parallel edges, then the product

hl1(z) · · ·hlk(z) is even/odd depending on the parity of l1 + · · · + lk. Thus the nonzero

Fourier coefficients will be the terms of matching parity. Therefore, in both the boolean and

Gaussian cases, the shapes that are proper collapses of a given improper collapse are formed

by replacing each set of parallel edges by a single edge e such that l(e) ≤ l1 + . . . + lk and

l(e) ≡ l1 + · · ·+ lk (mod 2).

Remark 5.4.18. Looking at the definition and in light of the previous remark, we have the

following.

1. The number of circle vertices does not change by collapsing a shape but the number of

square vertices decreases by 1.

157

2. α ∈ L has the property that the vertices have odd degree if and only if they are in

(Uα ∪ Vα) \ (Uα ∩ Vα). When α collapses, this property is preserved.

We now define the desired shapes Lk which lie in the null space of Mfix.

Definition 5.4.19. For k ≥ 2 define the shape `k on { 1 , . . . , k , 1 } with two edges {{ 1 , 1 }, { 2 , 1 }}.

The left side of `k consists of U`k = { 1 , . . . , k }. The right side consists of V`k = { 3 , . . . , k , 1 }.

Definition 5.4.20. Define the “completed” version Lk of `k to be the matrix which is the

sum of cβMβ for β being the following shapes with coefficients:

• (Lk,1): `k, with coefficient 2.

• (Lk,2): If k ≥ 3, collapse 1 and 3 in `k with coefficient 2
n

• (Lk,3): If k ≥ 4, collapse 1 and 3 , and collapse 2 and 4 in `k with coefficient 2
n2

• (Lk,4): Collapse 1 and 2 , replacing the edges by an edge with label 2, with coefficient

1
n

• (Lk,5): If k ≥ 3, collapse 1 , 2 , and 3 , replacing the edges by an edge with label 2,

with coefficient 1
n .

For a pictorial representation of the ribbons/shapes, see Fig. 5.7 below.

Lemma 5.4.21. MfixLk = 0

Proof. These shapes are constructed so that if we fix a partial realization of the vertices 1

and 3 , . . . , k as u ∈ Cm and S ∈
(Sn
k−2

)
, the squares 1 and 2 can still be realized as any

158

j1, j2 ∈ [n]. That is, exactly the following equality holds,

(MfixLk)I =
∑
u ∈Cm,
S∈(Snk−2)

 ∑
j1,j2∈[n]:
j1 6=j2

Ẽ[vIvSvj1vj2]duj1duj2 +
∑
j1∈[n]

Ẽ[vIvSv2
j1

](d2
uj1
− 1)


=

∑
u ∈Cm,
S∈(Snk−2)

Ẽ[vIvS(〈v, du〉2 − 1)]

= 0

To demonstrate how the coefficients arise, we analyze the ribbons R which Lk is composed

of and see how they contribute to the output. For pictures of the ribbons/shapes, see Fig. 5.7

below. Let the ribbon be partially realized as u and S = { j3 , . . . , jk }. Let (MfixLk)I(u,S)

denote the terms in (MfixLk)I with this partial realization. In this notation we want to

show

(MfixLk)I(u,S) =
∑

j1,j2∈[n]:
j1 6=j2

Ẽ[vIvSvj1vj2]duj1duj2 +
∑
j1∈[n]

Ẽ[vIvSv2
j1

](d2
uj1
− 1).

1. If we take a ribbon R with AR = { j1 , . . . , jk }, BR = { j3 , . . . , jk } ∪ { u } and E(R) =

{{ j1 , u }, { j2 , u }} where j1 6= j2 and j1, j2 /∈ S then

(MfixMR)I(u,S) = Ẽ[vIvSvj1vj2]duj1duj2 .

This ribbon must “cover” both ordered pairs (j1, j2) and (j2, j1), so we want each such

ribbon R to appear with a coefficient of 2 in Lk.

2. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j3 }, BR = { j3 , . . . , jk } ∪ { u }

159

2

j1

j2

j3

j4

u

Uα1 ∩ Vα1

Uα1 \ Vα1
Vα1 \ Uα1

+2
n

j3
j2

j4

u

Uα2 ∩ Vα2

Uα2 \ Vα2 Vα2 \ Uα2 + 2
n2

j3
∅

j4

u

Uα3 ∩ Vα3

Uα3 \ Vα3

Vα3 \ Uα3

+1
n

j1

j3

j4

u

Uα4 ∩ Vα4

Vα4 \ Uα4

∅

Uα4 \ Vα4

2

+1
n

j3

j4

u

Uα5 ∩ Vα5

Vα5 \ Uα5

∅

Uα5 \ Vα5
2

∅

Figure 5.7: The five shapes that make up L4.

and E(R) = {{ j3 , u }, { j2 , u }} where j1 = j3 ∈ S then

(MfixMR)I(u,S) = Ẽ[vIvS\{j3}vj2]duj3duj2 = nẼ[vIvSvj1vj2]duj1duj2 .

Taking a coefficient of 2
n in Lk covers the two pairs (j1, j2) and (j2, j1) for this case of

overlap with S.

3. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 , j3 , j4 }, BR = { j3 , . . . , jk } ∪

{ u } and E(R) = {{ j3 , u }, { j4 , u }} where j1 = j3 ∈ S and j2 = j4 ∈ S then

(MfixMR)I(u,S) = Ẽ[vIvS\{j3,j4}]duj3duj4 = n2Ẽ[vIvSvj1vj2]duj1duj2 .

Taking a coefficient of 2
n2 in Lk covers the two pairs (j1, j2) and (j2, j1) for this case

of overlap with S.

160

4. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 }, BR = { j3 , . . . , jk } ∪ { u }

and E(R) = {{ j1 , u }2} where j1 = j2 /∈ S then

(MfixMR)I(u,S) = Ẽ[vIvS](d2
uj1
− 1) = nẼ[vIvSv2

j1
](d2

uj1
− 1).

Taking a coefficient of 1
n in Lk covers these terms.

5. If we take a ribbon R with AR = { j1 , . . . , jk } \ { j1 , j2 }, BR = { j3 , . . . , jk } ∪ { u }

and E(R) = {{ j3 , u }2} where j1 = j2 = j3 ∈ S then

(MfixMR)I(u,S) = Ẽ[vIvS](d2
uj3
− 1) = nẼ[vIvSv2

j1
](d2

uj1
− 1).

Taking a coefficient of 1
n in Lk covers these terms.

One of the key facts about graph matrices is that multiplication of graph matrices ap-

proximately equals a new graph matrix, Mα ·Mβ ≈ Mγ , where γ is the result of gluing Vα

with Uβ (and if Vα, Uβ do not have the same number of vertices of each type, the product is

zero). The error terms in the approximation are intersection terms (collapses) between the

variables in α and β.

Definition 5.4.22. Say that shapes α and β are composable if Vα and Uβ have the same

number of square and circle vertices. We say a shape γ is a gluing of α and β, if the graph

of γ is the disjoint union of the graphs of α and β, followed by identifying Vα and Uβ under

some type-preserving bijection, and if Uγ = Uα and Vγ = Vβ.

Proposition 5.4.23. Let α, β be composable shapes. Assume that V (α)\Vα has only square

vertices. Let {γi} be the distinct gluings of α and β, and let Ĩ be the set of improper collapses

of any number of squares (possibly zero) in V (α) \ Vα with distinct squares in V (β) \ Uβ in

161

any gluing γi. Then there are coefficients cγ for γ ∈ Ĩ such that

Mα ·Mβ =
∑
γ∈Ĩ

cγMγ .

Furthermore, the coefficients satisfy
∣∣cγ∣∣ ≤ 2|V (α)\Vα| |V (γ)||V (α)\Uα|.

Proof. The product Mα · Mβ is a matrix which is a symmetric function of the inputs

(d1, . . . , dm), the space of which is spanned by the Mγ over all possible shapes γ (not re-

stricted to Ĩ), so there exist coefficients cγ if we allow all shapes γ. We need to check that

Mα ·Mβ actually lies in the span of shapes in Ĩ by showing that all ribbons in Mα ·Mβ have

shapes in Ĩ. Expanding the definition,

Mα ·Mβ =

 ∑
R is a ribbon of shape α

MR

 ∑
S is a ribbon of shape β

MS

 =
∑

R is a ribbon of shape α,
S is a ribbon of shape β

MRMS .

In order for MRMS to be nonzero, we require BR = AS as sets; R may assign the labels

arbitrarily inside BR, resulting in different gluings of α and β. Fix R and S, and let γ be

the corresponding gluing of α and β for this R and S.

The matrix MRMS has one nonzero entry; we claim that it is a Fourier character for a

ribbon T which is a collapse of γ. The labels of R outside of BR can possibly overlap with

the labels of S outside of AS , and naturally the shape of T is the result of collapsing vertices

in γ with the same label.

To bound the coefficients cγ that appear, it suffices to bound the coefficient on a ribbon

MT , which is bounded by the number of contributing ribbons R, S, where we say ribbons R

of shape α and S of shape β contribute to T if MRMS = MT . From T , we can completely

recover the sets AR and BS . The labels of V (R)\AR must be among the labels of T ; choose

them in at most |V (γ)||V (α)\Uα| ways. This also determines BR = AS . All that remains

is to determine the graph structure of S. Since improper collapsing doesn’t lose any edges,

knowing the labels of R we know exactly which edges of T must come from R and S. The

162

vertices V (T) \V (R) must come from S, as must BR; pick a subset of V (R) \BR to include

in 2|V (α)\Vα| ways.

Let α be a left spider with end vertices i , j which are adjacent to a circle u . Recall

that our goal is to argue thatMMα ≈ 0. To get there, we can try and factor Mα across the

vertex separator S = Uα ∪ { u } \ { i , j } which separates α into

Mα ≈ L|Uα| ·Mbody(α)

where we have defined,

Definition 5.4.24. Let α be a left spider with end vertices i , j . Define body(α) as the

shape whose graph is α with i and j deleted and with Ubody(α) = Uα∪{ u }\{ i , j }, Vbody(α) =

Vα. The definition is analogous for right spiders.

Due to Lemma 5.4.21, the right-hand side of the approximation is in the null space of

M. We now formalize this approximate factorization.

Definition 5.4.25. Let α be a spider with end vertices i , j . Define Ĩα to be the set of

shapes that can be obtained from α by performing at least one of the following steps:

• Improperly collapse i with a square vertex in α

• Improperly collapse j with a square vertex in α

Let Iα be the set of proper shapes that can be obtained via the same process but using proper

collapses.

In the above definition, we allow i , j to collapse with two distinct squares, or to collapse

together, or to both collapse with a common third vertex. For technical reasons we need to

work with a refinement of Iα into two sets of shapes and use tighter bounds on coefficients

of one set.

163

Definition 5.4.26. Let I(1)
α be the set of shapes that can be obtained from α by performing

at least one of the following steps:

• Collapse i with a square vertex in body(α) \ Uα

• Collapse j with a square vertex in body(α) \ Uα (distinct from i ’s collapse if it

happened)

Let I(2)
α := Iα \ I

(1)
α and define the improper versions Ĩ(1)

α , Ĩ(2)
α analogously.

Lemma 5.4.27. Let α be a left spider with end vertices i , j . There are coefficients cβ for

β ∈ Ĩα such that

L|Uα| ·Mbody(α) = 2Mα +
∑
β∈Ĩα

cβMβ ,

∣∣cβ∣∣ ≤


40 |V (α)|3 β ∈ Ĩ(1)
α

40|V (α)|3
n β ∈ Ĩ(2)

α

.

Proof. First, we can check that the coefficient of Mα is 2. Only the `k term of Lk has the

full number of squares, and it has a factor of 2 in Lk.

The shapes in Ĩα are definitionally the intersection terms that appear in this graph

matrix product, and furthermore the shapes in Ĩα are definitionally the intersection terms

for the `k term. Using Proposition 5.4.23, for each of the five shapes in L|Uα| the coefficient

it contributes is bounded by 4 |V (α)|3. The coefficient on `k is 2, so the coefficients for Ĩ(1)
α

are at most 8 |V (α)|3. The maximum coefficient of the other four shapes in L|Uα| is 2
n , so

their total contribution to coefficients on Ĩ(2)
α is at most

32|V (α)|3
n .

We now want to turn our improper shapes into proper ones from Iα. Unfortunately it is

not quite true that to expand an improper shape, one can just expand each edge individually

(though this is true for improper ribbons). There is an additional difficulty that arises due

to ribbon symmetries. To see the difficulty, consider the example given in Fig. 5.8 below.

164

u1 v2

w1

w2
Uα Vα

1

1

2

2

2

u1 v2

w1

w2Uγ2 Vγ2

2

2

2

2

u1 v2

w1

w2Uγ1 Vγ1

2

2

2

=
+

2×

Figure 5.8: A surprising equality of graph matrices.

One would expect both coefficients on the right shapes to be 1 since h1(z)2 = h2(z) +

h0(z). However, in the left shape, the two circles are distinguishable, hence summing over

all ribbons includes one with w1 = i, w2 = j and a second with w1 = j, w2 = i. On the top

right shape, the circles are indistinguishable, hence the graph/ribbon where the circles are

assigned {i, j} is counted twice. On the bottom right shape, the circles are distinguishable,

so all ribbons are summed once. To bound the new coefficients, we use the concept of shape

automorphisms.

Definition 5.4.28. An automorphism of a shape α is a function ϕ : V (α) → V (α) that

preserves the sets Uα, Vα and is an automorphism of the underlying edge-labeled graph. Let

Aut(α) denote the automorphism group of α.

Proposition 5.4.29. Let α be an improper shape, and let P be the set of proper shapes that

can be obtained by expanding α. Then there are coefficients
∣∣cγ∣∣ ≤ CFourier ·CAut such that

Mα =
∑
γ∈P

cγMγ

where CFourier is a bound on the magnitude of Fourier coefficients in the expansion and

165

CAut = maxγ∈P
|Aut(γ)|
|Aut(α)| .

Proof. The number of realizations of a graph matrix giving a particular ribbon is exactly

the number of automorphisms, therefore

Mα =
1

|Aut(α)|
∑

realizations σ

Mσ(α)

Expand each improper ribbon Mσ(α) into proper ribbons with coefficients at most CFourier.

Because the realizations of α and any γ are the same, this exactly sums over all γ and all

realizations of γ. The Fourier coefficient on each realization of γ is the same; let it be c′γ

with
∣∣c′γ∣∣ ≤ CFourier. Continuing,

=
1

|Aut(α)|
∑
γ∈P

c′γ
∑

realizations σ

Mσ(γ)

=
∑
γ∈P

c′γ
|Aut(γ)|
|Aut(α)|

Mγ

Proposition 5.4.30. Let l1 ≤ · · · ≤ lk ∈ N and let L = l1 + · · · + lk. Assume L ≥ 1. In

the Fourier expansion of hl1(z) · · ·hlk(z), the maximum coefficient is bounded in magnitude

by (2L)L−lk .

Proof. In the boolean case, the coefficient is 1. In the Gaussian case, the “linearization

coefficient” of hp(z) in this product is given by orthogonality to be

Ez∼N (0,1)[hl1(z) · · ·hlk(z) · hp(z)]

Ez∼N (0,1)[h
2
p(z)]

=
Ez∼N (0,1)[hl1(z) · · ·hlk(z) · hp(z)]

p!

A formula from, e.g., [163, Example G (Continued)] shows that E[hl1 · · ·hlk · hp] equals the

number of “block perfect matchings”: perfect matchings on l1 + · · ·+ lk+p elements divided

166

into blocks of size li or p such that no two elements from the same block are matched. Bound

the number of block perfect matchings by:

• Pick a partial function from blocks l1, . . . , lk−1 to [L] in at most (L+ 1)L−lk ways.

• If this forms a valid partial matching and there are p unmatched elements remaining,

match them with the elements from the block of size p in p! ways.

Therefore the coefficient is bounded by (L+ 1)L−lk ≤ (2L)L−lk .

Proposition 5.4.31. For a shape α, let α±e denote the shape with edge e added or deleted.

Then

|Aut(α± e)|
|Aut(α)|

≤ |V (α)|2 .

Proof. We show that the two groups have a large subgroup which are equal. Consider

Aut(α± e) and Aut(α) as group actions on the set
(V (α)

2

)
. Letting Ge denote the stabilizer

of edge e, observe that Aut(α ± e)e = Aut(α)e. By the orbit-stabilizer lemma, the index

|G : Ge| is equal to the size of the orbit of e, which is at least 1 and at most |V (α)|2. So,

|Aut(α± e)|
|Aut(α)|

=
|Aut(α± e) : Aut(α± e)e|
|Aut(α) : Aut(α)e|

≤ |V (α)|2 .

Lemma 5.4.32. If α is a left spider, there are coefficients cβ for each β ∈ Iα such that

L|Uα| ·Mbody(α) = 2Mα +
∑
β∈Iα

cβMβ ,

∣∣cβ∣∣ ≤


160 |V (α)|7 |E(α)|2 β ∈ I(1)
α

160|V (α)|7|E(α)|2
n β ∈ I(2)

α

.

Proof. We express each Mβ , β ∈ Ĩα in Lemma 5.4.27 in terms of proper shapes. We ap-

ply Proposition 5.4.29 using the following bounds on CFourier and CAut. The only improper-

ness in β comes from collapsing (at most) the two end vertices, which have a single incident

167

edge each. Therefore the set of labels of any parallel edges is either {1, k} or {1, 1, k}, for

some k ≤ |E(α)|. By Proposition 5.4.30, we have CFourier ≤ 4 |E(α)|2. There are at most

two extra parallel edges in β, so we have CAut ≤ |V (α)|4 using Proposition 5.4.31. Therefore

the coefficients increase by at most CFourier · CAut ≤ 4 |E(α)|2 |V (α)|4.

Corollary 5.4.33. If α is a right spider, there are coefficients cβ with the same bounds given

in Lemma 5.4.32 such that

Mbody(α) · L
ᵀ
|Uα| = 2Mα +

∑
β∈Iα

cβMβ .

Corollary 5.4.34. If x ⊥ Null(Mfix) and α is a spider, then for some cβ with the same

bounds given in Lemma 5.4.32,

x>(Mα −
∑
β∈Iα

cβMβ)x = 0

Proof. For a left spider, since

Mfix(2Mα +
∑
β∈Iα

cβMβ) =Mfix · L|Uα| ·Mα′ = 0

we are in position to use Fact 5.2.1. For a right spider, the proof is analogous.

5.4.3 Killing all the spiders

The strategy is to start with the moment matrix M and apply Corollary 5.4.34 repeatedly

until we end up with no spiders in our decomposition. For each spider, killing it via Corol-

lary 5.4.34 leaves only intersection terms. Some of those intersection terms may themselves

be smaller spiders, in which case we will apply the corollary again and again until only

non-spiders remain. The difficulty during this procedure is to bound the total coefficient

168

accumulated on each non-spider. To capture this process, we define the web of a spider α,

which will be a directed acyclic graph that will capture the spider killing process. For the

sake of distinction, we will call the vertices of this graph “nodes”.

Definition 5.4.35 (Web of α). The web W (α) of a spider α is a rooted directed acyclic

graph (DAG) whose nodes are shapes and whose root is α. Each spider node γ has edges to

nodes β for each shape β ∈ Iγ. The non-spider nodes are leaves/sinks of the DAG.

Remark 5.4.36. The DAG structure arises because each shape in Iγ has strictly fewer

square vertices than γ for any spider γ. As a consequence, the height of a web W (α) is at

most |V (α)|.

Each node γ of W (α) also has an associated value vγ , which is defined by the following

process:

• Initially, set vα = 1 and for all other γ, set vγ = 0.

• Starting from the root and in topological order, each spider node γ adds vγcβ to vβ

for each child β ∈ Iγ , where the cβ are the coefficients from Corollary 5.4.34.

Proposition 5.4.37. If x ⊥ Null(Mfix), then

xᵀ(Mα −
∑

leaves γ of W (α)

vγMγ)x = 0.

Proof. Start with the equation xᵀMαx = xᵀvαMαx. In each step, we take the topologically

first spider γ, which in this case means the spider closest to the root of W (α), that is

present in the right hand side of our equation and using Corollary 5.4.34, we replace vγMγ

by
∑
β∈children(γ) vγcβMβ . Precisely by the definition of the vγ , this process ends with the

equation

xᵀMαx = xᵀ(
∑

leaves γ of W (α)

vγMγ)x

169

Proposition 5.4.38. For any node β in W (α), |parents(β)| ≤ 4 |V (α)|3 · |E(α)|2 where

parents(β) is the set of nodes γ in W (α) such that β ∈ Iγ.

Proof. The following process covers all parent left spiders γ which could possibly collapse

their end vertices to form β. Starting from γ = β,

• Pick a circle vertex u ∈ V (γ) to be the neighbor of the end vertices.

• Pick a square vertex i ∈ V (γ) to be the collapse of the first end vertex. “Uncollapse”

it by adding a new square to Uγ with a single edge to u with label 1. Flip the value

of Uγ(i). Modify the label of { i , u } to any number up to |E(α)|.

• Pick a square vertex j ∈ V (γ) to be the second end vertex. Optionally uncollapse it

by adding a new square to γ in the same way as above.

The process can be carried out in at most |V (α)|3 |E(α)| (|E(α)| + 1) ≤ 2 |V (α)|3 |E(α)|2

ways. We multiply by 2 to accommodate right spiders.

Let us label each parent-child edge (γ, β) as either a “type 1” edge if β ∈ I(1)
γ or a “type

2” edge if β ∈ I(2)
γ .

Proposition 5.4.39. Let p be a path in W (α) with #1(p) type 1 edges and #2(p) type 2

edges. Then #1(p) ≤ |E(α)| + 2#2(p).

Proof. For a shape γ, let Sγ be the set of square vertices in γ. Then, Sγ ∩ Wγ will be

the set of middle vertices of γ which are squares. We claim that the quantity
∣∣Sγ ∩Wγ

∣∣ +∣∣Uγ \ (Uγ ∩ Vγ)
∣∣+
∣∣Vγ \ (Uγ ∩ Vγ)

∣∣ decreases during a collapse.

Fix a pair of consecutive shapes (γ, β) which form a type 1 edge. Looking at the definition

of I(1)
γ , each end vertex either collapses with (1) nothing, or (2) a vertex of Wγ , or (3) a

vertex from Vγ \ Uγ (if γ is a left spider; for a right spider, Uγ \ Vγ). Furthermore, case (2)

or (3) must occur for at least one of the end vertices and also, they do not collapse together.

170

If case (2) occurs, then
∣∣Sβ ∩Wβ

∣∣ < ∣∣Sγ ∩Wγ
∣∣ while

∣∣Uβ \ (Uβ ∩ Vβ)
∣∣ =

∣∣Uγ \ (Uγ ∩ Vγ)
∣∣

and
∣∣Vβ \ (Uβ ∩ Vβ)

∣∣ =
∣∣Vγ \ (Uγ ∩ Vγ)

∣∣. If case (3) occurs, thenWβ = Wγ while
∣∣Uβ \ (Uβ ∩ Vβ)

∣∣ <∣∣Uγ \ (Uγ ∩ Vγ)
∣∣ and

∣∣Vβ \ (Uβ ∩ Vβ)
∣∣ < ∣∣Vγ \ (Uγ ∩ Vγ)

∣∣. In all cases,
∣∣Sβ ∩Wβ

∣∣+∣∣Uβ \ (Uβ ∩ Vβ)
∣∣+∣∣Vβ \ (Uβ ∩ Vβ)

∣∣ < ∣∣Sγ ∩Wγ
∣∣+
∣∣Uγ \ (Uγ ∩ Vγ)

∣∣+
∣∣Vγ \ (Uγ ∩ Vγ)

∣∣ as desired.

Now we bound this expression for α. From the definition of L, Definition 5.3.6, for

spiders appearing in the pseudocalibration, the square vertices in Wα, Uα \ (Uα ∩ Vα) and

Vα \ (Uα ∩ Vα) have degree at least 1 and can only be connected to circle vertices. There-

fore their number is bounded by |E(α)|. Hence, initially |Sα ∩Wα| + |Uα \ (Uα ∩ Vα)| +

|Vα \ (Uα ∩ Vα)| ≤ |E(α)|.

Finally, each type 2 edge in p can only increase
∣∣Sγ ∩Wγ

∣∣+∣∣Uγ \ (Uγ ∩ Vγ)
∣∣+∣∣Vγ \ (Uγ ∩ Vγ)

∣∣
by at most 2. Therefore, we have the desired inequality #1(p) ≤ |E(α)|+ 2#2(p).

Corollary 5.4.40. #2(p) ≥ |p|3 −
|E(α)|

3 .

Proof. Plug in |p| = #1(p) + #2(p) and rearrange.

Finally, we can bound the accumulation on each non-spider by a term which only depends

on the parameters of the spider α.

Lemma 5.4.41. There are absolute constants C1, C2 so that for all leaves γ of W (α),

∣∣vγ∣∣ ≤ (C1 · |V (α)| · |E(α)|)C2|E(α)|.

Proof. To bound
∣∣vγ∣∣ we will sum the contributions of all paths p = (β0 = α, . . . , βr = γ) in

W (α) starting from α and ending at γ. This path contributes a product of coefficients cβ

towards vγ .

Remark 5.4.42. Here it is important that type 2 edges have stronger bounds on their coef-

ficients
∣∣cβ∣∣ ≤ C · (|V (α)| |E(α)|)O(1)/n� 1.

171

Before we proceed with the proof we establish some convenient notation and recall some

facts. For consecutive shapes βi−1, βi (i.e., βi is a child of βi−1), we denote by cβi the

coefficient from Corollary 5.4.34 applied on βi−1. By Proposition 5.4.38, the in-degree of

W (α) can be bounded asB1 · (|V (α)| |E(α)|)B2 for some constantsB1, B2. Thus, the number

of paths of length r ending at γ is at most (B1 |V (α)| |E(α)|)B2r. Using Corollary 5.4.34,

set B1, B2 large enough so that cβi is at most B1 · (|V (α)| |E(α)|)B2 for a type 1 edge (resp.

B1 · (|V (α)| |E(α)|)B2/n for a type 2 edge).

|vγ | ≤
∞∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W (α)

r∏
i=1

|cβi |

≤
∞∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W (α)

(
B1 · (|V (α)| |E(α)|)B2

)#1(p) (
B1 · (|V (α)| |E(α)|)B2/n

)#2(p)
(Corollary 5.4.34)

≤
∞∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W (α)

(
B1 · (|V (α)| |E(α)|)B2

)|E(α)|+2#2(p) (
B1 · (|V (α)| |E(α)|)B2/n

)#2(p)
(Proposition 5.4.39)

=

∞∑
r=0

∑
p=(β0=α,...,βr=γ)

path from α to γ in W (α)

(
B1 · (|V (α)| |E(α)|)B2

)|E(α)| (
B′1 · (|V (α)| |E(α)|)B

′
2/n
)#2(p)

for some constants B′1, B
′
2. We split the above sum into two sums, r ≤ 3|E(α)| and

r > 3|E(α)|. For r ≤ 3 |E(α)|, upper bounding the #2(p) term by 1 and upper bounding

the number of paths by (B1 |V (α)| |E(α)|)B2r gives a bound of (B′′1 |V (α)| |E(α)|)B′′2 |E(α)| for

some constants B′′1 , B
′′
2 . For larger r, we lower bound #2(p) ≥ r/9 = |E(α)| /3 using Corol-

lary 5.4.40. Applying the same bound on the number of paths, the total contribution of the

terms corresponding to larger r is bounded by 1 using the power of n in the denominator

(assuming δ, τ are small enough).

We define the result of all this spider killing to be a new matrix M+.

172

Definition 5.4.43. Define the matrix M+ as the result of killing all the spiders,

M+ :=M−
∑

spiders α

λα

Mα −
∑

leaves γ of W (α)

vγMγ


5.4.4 Finishing the proof

The final step of the proof is to argue that, after the spider killing process is completed, the

newly created non-spider terms in M+ also have small norm. Towards this, we would like

to prove a statement similar to Corollary 5.4.11. In that proof, we used special structural

properties of the non-spiders in L to prove that non-spiders in the pseudocalibration were

negligible. But now, the non-spiders inM+ need not have the properties of L – for instance,

there could be circle vertices of degree 2 or isolated vertices. To handle the potentially larger

norms, we will use that the coefficients of these new non-spider terms β come with the

coefficients λα of the spider terms α in whose web they lie. Since α has more vertices/edges

than β, the power of 1
n in λα is larger than the “expected pseudocalibration” coefficient of

η|Uβ|+|Vβ| · 1
n|E(β)|/2 . We prove that these extra factors of 1

n are enough to overpower isolated

vertices or a smaller vertex separator using a careful charging argument.

Lemma 5.4.44. If β is a nontrivial non-spider and β ∈ W (α) for some spider α ∈ L, then

η|Uα|+|Vα| · 1

n|E(α)|/2 · n
w(V (β))−w(Smin)+w(Wiso)

2 ≤ η|Uβ|+|Vβ| · 1

nΩ(ε|E(α)|)

where Smin and Wiso are the minimum vertex separator of β and the set of isolated vertices

of V (β) \ (Uβ ∪ Vβ) respectively.

Proof. We start by giving the idea of the proof. Suppose we try to use the same distribution

scheme as in the proof of Lemma 5.4.7. It doesn’t work for two reasons. Firstly, the circle

vertices in β still have even degree, which follows from Remark 5.4.18, but now, they could

have degrees 0 or 2. For the previous distribution scheme to go through, we needed them

173

to have degree at least 4 which gave the necessary edge decay to handle the norm bounds.

Secondly, the square vertices can now have degree 0 hence getting no decay from the edges.

The first issue is relatively easy to handle. Since β was obtained by collapsing α, the

circle vertices of degrees 0 or 2 in β must have had degree at least 4 in α to begin with.

Hence, we can fix a particular sequence of collapses from α to β and then assume for the sake

of analysis that the removed edges are still present. In this case, the same charging argument

as in Lemma 5.4.7 would go through. This is made formal by looking at the sequence of

improper collapses of this chain of collapses.

To handle the second issue, let’s analyze more carefully how degree 0 square vertices

appear. Fix a sequence of collapses from α to β and consider a specific step where γ collapsed

to γ′ and a square vertex of degree 0 was formed. Let the two square vertices that collapsed

in γ be i , j and let the square vertex of degree 0 that formed in γ′ be k . In light of

Remark 5.4.18, since k has degree 0, it must not be in (Uγ′ ∪ Vγ′) \ (Uγ′ ∩ Vγ′) and hence,

Uγ′(k) = Vγ′(k) = 0 or Uγ′(k) = Vγ′(k) = 1. But in the latter case, this vertex does not

contribute to norm bounds since it’s in Uγ′ ∩ Vγ′ so it can be safely disregarded. Note that

it doesn’t have to stay in this set since future collapses might collapse this vertex, but this

is not a problem as we can charge for this collapse if it happens.

So, assume we have Uγ′(k) = Vγ′(k) = 0. But by the definition of collapse, at least one

of i or j must have been in Uγ \ (Uγ ∩ Vγ) or Vγ \ (Uγ ∩ Vγ). Also from the definition

of collapse, we have Uγ′(k) = Uγ(i) + Uγ(j)(mod 2) and Vγ′(k) = Vγ(i) + Vγ(j)(

mod 2). Putting these together, we immediately get that the only way this could have

happened is if either i , j ∈ Uγ \ (Uγ ∩ Vγ) or if i , j ∈ Vγ \ (Uγ ∩ Vγ).

When such a collapse happens, observe that |Uγ | + |Vγ | ≥ |Uγ′| + |Vγ′ | + 2. This is

precisely where the decay from our normalization factor η = 1√
n

kicks in. This inequality

means that an extra decay factor of η2 = 1
n is available to us when we compare to the

”expected pseudocalibration” coefficient of β. We will use this factor to charge the new

174

square vertex of degree 0.

We now make these ideas formal.

Let Q = Uβ ∩ Vβ , P = (Uβ ∪ Vβ) \Q and let P ′ be the set of degree 1 square vertices in

β that are not in Smin. Let s0 be the number of degree 0 square vertices in V (β) \ Q. All

the square vertices outside P ′ ∪Q ∪ Smin have degree at least 2, let there be s≥2 of them.

Because of parity constraints, Remark 5.4.18, and because there are no circle vertices in

Uβ ∪ Vβ , all circle vertices have even degree in β. Let c0 be the number of degree 0 circle

vertices in β. Let c2, c≥4 be the number of degree 2 circle vertices and the number of circle

vertices of degree at least 4 in V (β) \ Smin respectively. Then, we have

n
w(V (β))−w(Smin)+w(Wiso)

2 ≤ n
|P ′|+s≥2+(1.5−ε)(c2+c≥4)

2 · ns0+(1.5−ε)c0

Using η = 1√
n

, it suffices to show

|E(α)|+(|Uα|+|Vα|−|Uβ |−|Vβ |) ≥ |P ′|+s≥2+(1.5−ε)(c2+c≥4)+2s0+2(1.5−ε)c0+Ω(ε |E(α)|)

There can be many ways to collapse α to β, fix any one. We first use a charging argument

for the degree 0 square vertices.

Lemma 5.4.45. |Uα|+ |Vα| − |Uβ | − |Vβ | ≥ 2s0

Proof. In the collapse process, in each step, a vertex i ∈ Uγ \(Uγ∩Vγ) or i ∈ Vγ \(Uγ∩Vγ)

of degree 1 in an intermediate shape γ collapses with another square vertex k . We have that

|Uγ |+ |Vγ | decreases precisely when i collapses with k ∈ Uγ (resp. k ∈ Vγ). In either case,

the quantity decreases by exactly 2 which we allocate to this new merged vertex. Each degree

0 square vertex in V (β) \ Q must have arisen from a collapse, and hence must have had at

least an additive quantity of 2 allocated to it. This proves that |Uα|+|Vα|−|Uβ |−|Vβ | ≥ 2s0.

175

We will now prove a structural lemma.

Lemma 5.4.46. Any vertex u that has degree at least 2 in V (β) \ Smin is adjacent to at

most 1 vertex of P ′.

Proof. Observe that u cannot be adjacent to 3 vertices in P ′ because otherwise, at least

2 of them would be in Uβ \ Q or in Vβ \ Q which means β would be a spider which is a

contradiction. If u is adjacent to 2 vertices in P ′, then one of them is in Uβ \ Q and the

other is in Vβ \ Q respectively. Since both of these vertices are not in Smin, it follows that

u is in Smin since there is no path from Uβ to Vβ that doesn’t pass through Smin. This is

a contradiction. Therefore, u is adjacent to at most 1 vertex in P ′.

This lemma immediately implies |P ′| ≤ c2 + c≥4.

To account for edges of α that are not in β, we let β̃ be the result of improperly collapsing

α to β; note that |E(α)| =
∣∣∣E(β̃)

∣∣∣. We call the edges that disappeared when properly

collapsing “phantom” edges. Let deg
β̃

(i) (resp. deg
β̃

(u)) denote the degree of vertex i

(resp. u) in β̃. Observe that any circle vertex u in V (β) has deg
β̃

(u) ≥ 4.

Lemma 5.4.47. |E(α)| ≥ |P ′|+ s≥2 + (1.5− ε)(c2 + c≥4) + 2(1.5− ε)c0 + Ω(ε |E(α)|)

Proof. We will use the following charging scheme. Each edge of β incident on P ′ allocates

1 to the incident square vertex, which is in P ′. Every other edge of β allocates 1
2 to the

incident square vertex and 1
2 −

ε
10 to the incident circle vertex. Each phantom edge allocates

1− ε
10 to the incident circle vertex u . So, a total of ε

10(|E(α)|− |P ′|) has not been allocated.

All square vertices in P ′ have been allocated a value of 1. And observe that all square

vertices of degree at least 2 in β have been allocated at least 1 from the incident edges of β,

for a total value of s≥2. So, the square vertices get a total allocation of at least |P ′|+ s≥2.

Consider any degree-0 circle vertex u in V (β). It must be incident to at least 4 phantom

edges and hence, must be allocated at least a value of 4(1 − ε
10) > 2(1.5 − ε). Hence, the

degree-0 circle vertices in V (β) have a total allocation of at least 2(1.5− ε)c0.

176

Suppose the degree of u in V (β) is 2. Then, it is incident on at least 2 phantom edges.

By Lemma 5.4.46, it is also adjacent to at most one vertex of P ′ and so, must have been

allocated a value of at least 2(1− ε
10) + (deg

β̃
(u)− 3)(1

2 −
ε
10). This is at least 1.5− ε+ ε

10 .

Suppose the degree of u in V (β) is at least 4. By Lemma 5.4.46, it is adjacent to at most

one vertex of P ′. Then it must have been allocated a value of at least (deg
β̃

(u)−1)(1
2−

ε
10).

Using deg
β̃

(u) ≥ 4, this is at least 1.5− ε+ ε
10 .

This implies

|E(α)| ≥ |P ′|+ s≥2 + 2(1.5− ε)c0 + (1.5− ε+
ε

10
)(c2 + c≥4) +

ε

10
(|E(α)| − |P ′|)

Using |P ′| ≤ c2 + c≥4 completes the proof.

Adding Lemma 5.4.45 and Lemma 5.4.47, we get the result.

Corollary 5.4.48. If β is a nontrivial non-spider and β ∈ W (α) for some spider α ∈ L,

then

η|Uα|+|Vα| · 1

n|E(α)|/2
∥∥Mβ

∥∥ ≤ η|Uβ|+|Vβ| · 1

nΩ(ε|E(α)|)

Proof. From Lemma 5.6.3, we have

∥∥Mβ

∥∥ ≤ 2 · (|V (β)| · (1 + |E(β)|) · log(n))C·(|Vrel(β)|+|E(β)|) · n
w(V (β))−w(Smin)+w(Wiso)

2

We have |V (β)|·(1+|E(β)|)·log(n) ≤ nO(τ). Also, |Vrel(β)| ≤ 2(|E(α)|+|E(β)|) since all

the degree 0 vertices in Vrel(β) would have had vertices of Vrel(α) collapse into it in the chain

of collapses and there are no degree 0 vertices in Vrel(α). Finally, since |E(α)| ≥ |E(β)|,

the factor 2 · (|V (β)| · (1 + |E(β)|) · log(n))C·(|Vrel(β)|+|E(β)|) can be absorbed into 1
nΩ(ε|E(α)|) .

The result follows from Lemma 5.4.44.

Proposition 5.4.49. If β is a trivial shape, λ+
β = λβ.

177

Proof. A trivial shape cannot appear in W (α) for any α, since every collapse of a spider

always keeps its circle vertices around.

Lemma 5.4.50. For k, l ∈ {0, 1, . . . , D/2}, let Bk,l denote the set of nontrivial non-spiders

on block (k, l). Then ∑
β∈Bk,l

∣∣∣λ+
β

∣∣∣ ∥∥Mβ

∥∥ ≤ ηk+l · 1

nΩ(ε)

Proof.

∑
β∈Bk,l

∥∥∥λ+
βMβ

∥∥∥ ≤ ∑
β∈Bk,l

∣∣λβ∣∣ ∥∥Mβ

∥∥+
∑
β∈Bk,l

∑
spiders α:
β∈W (α)

∣∣vβ∣∣ |λα|∥∥Mβ

∥∥

To bound the first term, we checked previously in Corollary 5.4.14 that the total norm of

nontrivial non-spiders appearing in the pseudocalibration (i.e. this term) is ηk+lon(1). For

the second term, via Lemma 5.4.41 we have a bound on the accumulations vγ of one spider

on one non-spider, so it is at most

≤
∑
β∈Bk,l

∑
spiders α:
β∈W (α)

(C1 |V (α)| · |E(α)|)C2|E(α)| · |λα|
∥∥Mβ

∥∥ .

Use the bound on the coefficients |λα|, Proposition 5.4.13,

≤
∑
β∈Bk,l

∑
spiders α:
β∈W (α)

(C1 |V (α)| · |E(α)|)C2|E(α)| · η|Uα|+|Vα| · |E(α)|3|E(α)|

n|E(α)|/2 ·
∥∥Mβ

∥∥

178

Invoking the norm bound for non-spiders which are collapses, Corollary 5.4.48,

≤ ηk+l ·
∑
β∈Bk,l

∑
spiders α:
β∈W (α)

(
C1 |V (α)| · |E(α)|

nΩ(ε)

)C ′2|E(α)|

≤ ηk+l ·
∑
β∈Bk,l

∑
spiders α:
β∈W (α)

(
C1n

τ · nτ

nΩ(ε)

)C ′2|E(α)|
.

Bound the sum over all spiders by the sum over all shapes. By Proposition 5.4.12, the

number of shapes with i edges is nO(τ(i+1)). Summing by the number of edges, observe that

|E(α)| ≥ max(|E(β)| , 2) since spiders always have at least 2 edges.

≤ ηk+l
∑
β∈Bk,l

∞∑
i=max(|E(β)|,2)

nO(τ(i+1)) ·
(
C1n

τ · nτ

nΩ(ε)

)C ′2i
≤ ηk+l

∑
β∈Bk,l

1

nΩ(εmax(|E(β)|,2))

≤ ηk+l
∞∑
i=0

nO(δ(i+1))

nΩ(εmax(i,2))

= ηk+l · 1

nΩ(ε)

Corollary 5.4.51. For k ∈ {0, . . . , D/2}, the (k, k) block of M+ has minimum singular

value at least η2k(1 − 1
nΩ(ε)), and for k, l ∈ {0, . . . , D/2}, l 6= k, the (k, l) off-diagonal block

has norm at most ηk+l · 1
nΩ(ε) .

Proof. By Proposition 5.4.49 the identity matrix appears on the (k, k) blocks with coefficient

η2k. By construction, M+ has no spider shapes. By Lemma 5.4.50, the total norm of the

non-spider shapes on the (k, l) block is at most ηk+l · 1
nΩ(ε) .

Theorem 5.4.52. W.h.p. Mfix � 0.

Proof. For any x ∈ Null(Mfix), we of course have xᵀMfixx = 0. For any x ⊥ Null(Mfix)

179

with ‖x‖2 = 1,

xᵀMfixx = xᵀ(M+ E)x

= xᵀM+x+ xᵀ

 ∑
spiders α

λα

Mα −
∑

leaves γ of W (α)

vγMγ

x

+ xᵀEx

= xᵀ(M+ + E)x (Proposition 5.4.37)

Because the norm bound on E is significantly less than ηD = n−n
δ

(see [70]), the bound on

the norm of each block of M+ in Corollary 5.4.51 also applies to the blocks of M+ + E .

Therefore, we use Lemma 5.4.2 to conclude M+ + E � 0 and the above expression is

nonnegative.

5.5 Sherrington-Kirkpatrick Lower Bounds

Here, we prove Theorem 4.1.5 and Theorem 4.1.2.

Recall that in the Planted Boolean Vector problem, we wish to optimize

OPT(V) :=
1

n
max

b∈{±1}n
bᵀΠV b,

where V is a uniformly random p-dimensional subspace of Rn.

Theorem 4.1.5. There exists a constant c > 0 such that, for all ε > 0 and δ ≤ cε, for

p ≥ n2/3+ε, w.h.p. over V there is a degree-nδ SoS solution for Planted Boolean Vector of

value 1.

Proof. We wish to produce an SoS solution Ẽ on boolean variables b1, . . . , bn such that

Ẽ[bᵀΠV b] = n. Instead of sampling a uniformly random p-dimensional subspace V of Rn,

we first sample d1, . . . , dn i.i.d. p-dimensional Gaussian vectors from N (0, I), then form an

180

n-by-p matrix A with rows d1, . . . , dn, and finally take V to be the span of the columns of

A. Since the columns of A are isotropic i.i.d. random Gaussian vectors, we have that V is a

uniform p-dimensional subspace5 of Rn.

We will consider V as the input for the Planted Boolean Vector problem while the vectors

d1, . . . , dn will be used to construct a pseudoexpectation operator for the Planted Affine

Planes problem6. Since n ≤ p3/2−Ω(ε), by Theorem 4.1.4, for all δ ≤ cε for a constant

c > 0, w.h.p., there exists a degree-nδ pseudoexpectation operator Ẽ′ on formal variables

v = (v1, . . . , vp) such that Ẽ′[〈v, du〉2] = 1 for every u ∈ [n].

Define Ẽ by Ẽ[bu] := Ẽ′[〈v, du〉] for all u ∈ [n] and extending it to all polynomials on

{bu} by multilinearity. This is well defined because Ẽ′[〈v, du〉2] = 1. Note that Ẽ is a valid

pseudoexpectation operator of the same degree as Ẽ′. Finally, observe that

1

n
Ẽ[bᵀΠV b] =

1

n
Ẽ′[vᵀAᵀΠV Av] =

1

n
Ẽ′[vᵀAᵀAv] = 1.

Now we prove lower bounds for the Sherrington-Kirkpatrick problem, using a reduction

and proof due to [129]. We include it here for completeness. Recall that the SK problem is

to compute

OPT(W) := max
x∈{±1}n

xᵀWx,

where W is sampled from GOE(n).

Theorem 4.1.2. There exists a constant δ > 0 such that, w.h.p. for W ∼ GOE(n), there

is a degree-nδ SoS solution for the Sherrington–Kirkpatrick problem with value at least (2−

on(1)) · n3/2.

5. Except for a zero measure event.

6. Note that the vectors du are not “given” in the Planted Boolean Vector problem, though the construc-
tion of Ẽ is not required to be algorithmic in any sense anyway.

181

We will use the following standard results from random matrix theory of GOE(n).

Fact 5.5.1. Let λ1 ≥ . . . ≥ λn be the eigenvalues of W ∼ GOE(n) with corresponding

normalized eigenvectors w1, . . . , wn. Then,

1. For every p ∈ [n], the span of w1, . . . , wp is a uniformly random p-dimensional subspace

of Rn (see e.g. [138, Section 2]).

2. W.h.p., λn0.67 ≥ (2− o(1))
√
n (Corollary of Wigner’s semicircle law [185])

Proof of Theorem 4.1.2: Let p = n0.67 and W ∼ GOE(n). Let λ1 ≥ . . . ≥ λn

be the eigenvalues of W with corresponding orthonormal set of eigenvectors w1, . . . , wn.

By Fact 5.5.1, we have that λp ≥ (2 − o(1))
√
n and that w1, . . . , wp span a uniformly

random p-dimensional subspace V of Rn.

We consider V as the input of the Boolean Planted Vector problem and by Theorem 4.1.5,

for some constant δ > 0, w.h.p. there exists a degree-nδ pseudoexpectation operator Ẽ such

that Ẽ[x2
i] = 1 and Ẽ[

∑p
i=1〈x,wi〉

2] = Ẽ[xᵀΠV x] = n. Now,

Ẽ[xᵀWx] = Ẽ[
n∑
i=1

λi〈x,wi〉2]

≥ λpẼ[xᵀΠV x]− |λn| Ẽ[
n∑

i=p+1

〈x,wi〉2]

≥ (2− o(1))n3/2 − |λn| Ẽ[〈x, x〉 −
p∑
i=1

〈x,wi〉2]

= (2− o(1))n3/2.

Remark 5.5.2. Using the same proof as above, we can obtain Theorem 4.1.2 even if we

were only able to prove SoS lower bounds for Planted Affine Planes for some m = ω(n).

182

So, pushing the value of m up to n3/2−ε, which is Theorem 4.1.4, offers only a modest

improvement.

5.6 Omitted technical details

5.6.1 Norm Bounds

The precise norm bounds we use come from applying the trace power method in [2], but

qualitatively, the bounds from Chapter 2 also work. The paper [2] uses a slightly different

definition of matrix index. They define a matrix index piece as a tuple of distinct elements

from either Cm or Sn along with a fixed integer denoting multiplicity. A matrix index is

then a set of matrix index pieces. Our graph matrix Mα appears as a submatrix of those

matrices: for a given set of square vertices, order the squares in increasing order in a tuple,

and assign it multiplicity 1. Hence the same norm bounds apply.

Boolean norm bounds:

Lemma 5.6.1. Let Vrel(α) := V (α) \ (Uα ∩ Vα). There is a universal constant C such that

the following norm bound holds for all proper shapes α w.h.p.:

‖Mα‖ ≤ 2 · (|V (α)| · log(n))C·|Vrel(α)| · n
w(V (α))−w(Smin)+w(Wiso)

2

Proof. From Corollary 8.13 of [2], with probability at least 1− ε for a fixed shape α,

‖Mα‖ ≤ 2 |V (α)||Vrel(α)| ·

6e


log
(
nw(Smin)

ε

)
6 |Vrel(α)|


|Vrel(α)|

· n
w(V (α))−w(Smin)+w(Wiso)

2

Letting Nk be the number of distinct shapes on k vertices (either circles or squares), we

apply the corollary with ε = 1/(mnN|V (α)|). Union bounding, the failure probability across

all shapes of size k is at most 1/mn, and since the number of vertices in a shape is at most

183

m+ n ≤ 2m, we have a bound that holds with high probability for all shapes. It remains to

simplify the exact bound.

Proposition 5.6.2. Nk ≤ 8k2k
2

Proof. The following process forms all shapes on k vertices: starting from k formal variables,

assign each variable to be either a circle or a square, decide whether each variable is in Uα

and/or Vα, then among the k2 variable pairs put any number of edges.

We also bound nw(Smin) ≤ (mn)|V (α)|.

‖Mα‖ ≤ 2 |V (α)||Vrel(α)| ·

(
6e

⌈
log
(
nw(Smin) ·mnN|V (α)|

)
6 |Vrel(α)|

⌉)|Vrel(α)|

· n
w(V (α))−w(Smin)+w(Wiso)

2

≤ 2 |V (α)||Vrel(α)| ·
(

12e log
(
nw(Smin) ·mnN|V (α)|

))|Vrel(α)|
· n

w(V (α))−w(Smin)+w(Wiso)

2

≤ 2 |V (α)||Vrel(α)| ·
(

12e log
(

(mn)|V (α)| ·mn · 8|V (α)|2|V (α)|2
))|Vrel(α)|

· n
w(V (α))−w(Smin)+w(Wiso)

2

≤ 2 |V (α)||Vrel(α)| ·
(

100e |V (α)|2 log (mn)
)|Vrel(α)|

· n
w(V (α))−w(Smin)+w(Wiso)

2

≤ 2 · (|V (α)| · log(mn))
3·|Vrel(α)| · n

w(V (α))−w(Smin)+w(Wiso)

2

Note that we now assume m ≤ n2.

We have the following norm bound for Hermite shapes. For a Hermite shape α, define

the total size to be |Uα|+ |Vα|+ |Wα|+ |E(α)|.

Lemma 5.6.3. Let Vrel(α) := V (α) \ (Uα ∩ Vα) as sets. There is a universal constant C

such that the following norm bound holds for all proper shapes α with total size at most n

w.h.p.:

‖Mα‖ ≤ 2 · (|V (α)| · (1 + |E(α)|) · log(n))C·(|Vrel(α)|+|E(α)|) · n
w(V (α))−w(Smin)+w(Wiso)

2

The proof performs the same calculation starting from [2, Corollary 8.15]. Note that in

our notation, l(α) = |E(α)|. There is a further difference which is that [2] uses normalized

Hermite polynomials whereas we use unnormalized Hermite polynomials; this contributes

184

the additional term
∏
e∈E(α) l(e)! ≤ (1 + |E(α)|)|E(α)|. We must replace Proposition 5.6.2

with the following:

Proposition 5.6.4. The number of Hermite shapes with total size k is at most k2k(k +

1)2k+k2
.

Proof. Such a shape has at most k distinct variable vertices. Each of these is either a circle

or a square. Each variable can be in Uα with multiplicity between 0 and (at most) k, and

also in Vα with multiplicity between 0 and k. The k2 possible pairs of vertices can have edge

multiplicity in E(α) between 0 and k.

5.6.2 Properties of e(k)

We establish some properties of the e(k) used in the analysis. Recall that e(k) = Ex∈S(
√
n) [x1 . . . xk]

where S(
√
n) := {x ∈ {±1}n |

∑n
i=1 xi =

√
n}.

Claim 5.6.5. e(2) = 0.

Proof. Fix y ∈ S(
√
n). Note that (

∑n
i=1 yi)

2 = n implying
∑
i<j yiyj = 0. Using this fact,

we get

Ex∈S(
√
n) [x1x2] = Eσ∈Snyσ(1)yσ(2) = 0,

concluding the proof.

Definition 5.6.6. We say that a tuple λ = (λ1, . . . , λk) of non-negative integers is a partition

of k provided
∑k
i=1 λi = k and λ1 ≥ · · · ≥ λk. We use the notation λ ` k to denote a

partition of k. We refer to λi as a row/part of λ.

In the following, we will dealing with polynomials that can be indexed by integer parti-

tions. For this reason, we now fix a notation for partitions and some associated objects.

Definition 5.6.7. The transpose of partition λ = (λ1, . . . , λk) is denoted λt and defined as

λti =
∣∣{j ∈ [k] | λj ≥ i}

∣∣.
185

Remark 5.6.8. For a partition λ ` k, λt1 is the number of rows/parts of λ.

Definition 5.6.9. The automorphism group of a partition Aut(λ) ≤ Sλt1
is the group gen-

erated by transpositions (i, j) of rows λi = λj.

Remark 5.6.10. Let λ ` k and p1(λ), . . . , pk(λ) be such that pi(λ) =
∣∣{j ∈ [λt1] | λj = i}

∣∣.
Then Aut(λ) ' Sp1 × · · · × Spk .

Lemma 5.6.11. We have

∑
λ`k

λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

· Ex∈S(
√
n)

[
xλ1

1 . . . x
λk
k

]
= nk/2.

Proof. For x ∈ S(
√
n), we have (

∑n
i=1 xi)

k = nk/2. Then expanding (
∑n
i=1 xi)

k in the

previous equations and taking the expectation over S(
√
n) on both sides yields the result of

the lemma (after appropriately collecting terms).

Claim 5.6.12. Let λ ` k. We have

(n)λt1
·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣ ≤ 3k
3
· nk/2.

Proof. We induct on k. For k = 1, we have n ·
∣∣∣Ex∈S(

√
n) [x1]

∣∣∣ =
√
n ≤ 3 · n1/2. Now,

suppose k ≥ 2. We consider three cases:

1. Case λ1 ≥ 3: Let λ′ be the partition obtained from λ by removing two boxes from λ1.

Note that λt1 = (λ′)t1 ≤ k−2 and Ex∈S(
√
n)

[
x
λ′1
1 . . . x

λ′k−2
k−2

]
= Ex∈S(

√
n)

[
xλ1

1 . . . x
λk−2
k−2

]
.

By the induction hypothesis, we have (n)(λ′)t1
·
∣∣∣∣Ex∈S(

√
n)

[
x
λ′1
1 . . . x

λ′k−2
k−2

]∣∣∣∣ ≤ 3(k−2)2 ·

n(k−2)/2.

2. Case λ1 = 2: Let λ′ be the partition obtained from λ by removing λ1. Note that

186

λt1 = (λ′)t1 + 1 ≤ k − 2. By the induction hypothesis, we have

(n)λt1
·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk−2
k−2

]∣∣∣ ≤ n·(n)(λ′)t1
·
∣∣∣∣Ex∈S(

√
n)

[
x
λ′1
1 . . . x

λ′k−2
k−2

]∣∣∣∣ ≤ 3(k−2)3
·nk/2.

3. Case λ1 = 1: To bound (n)k · Ex∈S(
√
n)

[
xλ1

1 . . . x
λk
k

]
, we use Lemma 5.6.11 and the

two preceding cases. Let p(k) be the partition function, i.e., p(k) = |{λ ` k}|. We

deduce that

(n)k ·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . xλkk

]∣∣∣ ≤ nk/2 +
∑

λ`k : λ1≥2

λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . xλkk

]∣∣∣
≤ nk/2 + k!

∑
λ`k : λ1≥2

(n)λt1 ·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . xλkk

]∣∣∣
≤ nk/2 + k!

∑
λ`k : λ1≥3

(n)λt1 ·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . xλkk

]∣∣∣+
k!

∑
λ`k : λ1=2

(n)λt1 ·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . xλkk

]∣∣∣
≤ 3(k−2)3

· k! · (1 + p(k) + k) · nk/2 ≤ 3k
3

· nk/2,

as desired.

Claim 5.6.13. Suppose k <
√
n/2. We have

∣∣∣Ex∈S(
√
n) [x1 . . . xk]

∣∣∣ ≤ 2 · 3k
3
· n−k/2.

Proof. Follows from Claim 5.6.12 and the bound on k.

Remark 5.6.14. In Claim 5.6.13, the factor 3k
3

is too lossy to allow a meaningful bound

with k = nε, where ε > 0 is a constant.

Refining the ideas of Claim 5.6.12, we prove a stronger lemma below which will imply a

tighter bound on e(k) sufficient for our application.

187

Lemma 5.6.15. There exists an universal constant C ≥ 1 such that

∑
λ`k

λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣ ≤ kC·k · nk/2. (5.1)

In particular, for n ≥ 6, Eq. (5.1) holds with C = 2.

Proof. We induct on k. For k = 1, we have n·
∣∣∣Ex∈S(

√
n)x1

∣∣∣ ≤ √n as desired. Using e(2) = 0

from Claim 5.6.5 and the case k = 1 of Eq. (5.1), we get that Lemma 5.6.15 also holds for

k = 2. Now, consider k ≥ 3. Let Λ1 = {λ ` k | λ1 = 1}, Λ2 = {λ ` k | λ1 = 2} and

Λ≥3 = {λ ` k | λ1 = 3}. Note that Λ1 t Λ2 t Λ≥3 = {λ ` k} and |Λ1| = 1.

For convenience define aλ to be the term associated to λ ` k on the LHS of Eq. (5.1),

i.e.,

aλ =
λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣ .
First we bound the contribution of the terms associated to partitions from Λ≥3 in the

LHS of Eq. (5.1). Let λ′ be the partition obtained from λ by removing two boxes from λ1.

Note that λt1 = (λ′)t1 ≤ k − 2 and Ex∈S(
√
n)

[
x
λ′1
1 . . . x

λ′k−2
k−2

]
= Ex∈S(

√
n)

[
xλ1

1 . . . x
λk−2
k−2

]
.

Thus,

aλ =
λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣
=

k(k − 1)

λ1(λ1 − 1)
·
∣∣Aut(λ′)

∣∣
|Aut(λ)|

λ′!
λ′1! · · ·λ′k!

·
(n)(λ′)t1
|Aut(λ′)|

·
∣∣∣∣Ex∈S(

√
n)

[
x
λ′1
1 . . . x

λ′k−2
k−2

]∣∣∣∣
= k2 ·

∣∣Aut(λ′)
∣∣

|Aut(λ)|
· aλ′ ≤ k3 · aλ′ ,

since
∣∣Aut(λ′)

∣∣ / |Aut(λ)| ≤ k − 2 ≤ k. For each λ′ ` k − 2, we can form a partition λ ` k

in k − 2 ≤ k ways by adding two blocks to a single row of λ′. Hence, we have

∑
λ∈Λ≥3

aλ ≤ k ·
∑

λ′`k−2

k3 · aλ′ ≤ k4 · kC·(k−2) · n(k−2)/2, (5.2)

188

where the last equality follows from the induction hypothesis.

Now we bound the contribution of the terms aλ associated to partitions λ from Λ2 in the

LHS of Eq. (5.1). Let i ≥ 1 be the number of parts of size two of λ and let λ′ be the partition

obtained from λ by removing these i parts of size two. Note that λt1 = (λ′)t1 + i ≤ k− 1. We

have

aλ =
λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣
≤ ni · (k)i

2i
·
∣∣Aut(λ′)

∣∣
|Aut(λ)|

· λ′!
λ′1! · · ·λ′k!

·
(n)(λ′)t1
|Aut(λ′)|

·
∣∣∣Ex∈S(

√
n) [x1 . . . xk−2i]

∣∣∣
= ni · (k)i

2i
· 1

i!
· λ′!
λ′1! · · ·λ′k!

·
(n)(λ′)t1
|Aut(λ′)|

·
∣∣∣Ex∈S(

√
n) [x1 . . . xk−2i]

∣∣∣ ,

where in the last equality we used
∣∣Aut(λ′)

∣∣ / |Aut(λ)| = 1/(i!). Since λ ∈ Λ2 is uniquely

specified by its number of parts of size two, applying the induction hypothesis we have

∑
λ∈Λ2

aλ ≤
bk/2c∑
i=1

ni · (k)i
2i
· 1

i!
·

(
λ′!

λ′1! · · ·λ′k!
·

(n)(λ′)t1
|Aut(λ′)|

·
∣∣∣Ex∈S(

√
n) [x1 . . . xk−2i]

∣∣∣)

≤
bk/2c∑
i=1

ni · (k)i
2i
· 1

i!
· kC·(k−2i) · n(k−2i)/2

≤ kC·(k−1) · nk/2 ·
∞∑
i=0

k−C·i ≤ 3

2
· kC·(k−1) · nk/2,

where in the last inequality we used k ≥ 3 and C ≥ 1.

Finally, we consider the case λ1 = 1. To bound aλ, we use Lemma 5.6.11 and the two

189

preceding cases. We deduce that

aλ ≤ nk/2 +
∑
µ∈Λ2

aµ +
∑

µ∈Λ≥3

aµ ≤ nk/2 + k4 · kC·(k−2) · n(k−2)/2 +
3

2
· kC·(k−1) · nk/2

= kC·k · nk/2
(

1

kC·k
+

k4

n · k2·C +
3

2 · kC

)
.

We can bound the LHS of Eq. (5.1) as

∑
µ∈Λ1

aµ +
∑
µ∈Λ2

aµ +
∑

µ∈Λ≥3

aµ ≤ kC·k · nk/2
(

1

kC·k
+

2 · k4

n · k2·C +
3

kC

)

≤ kC·k · nk/2,

provided C > 0 is a sufficiently large constant. In particular, the constant C can be taken

to be 2 for n ≥ 6.

Corollary 5.6.16. We have

∣∣∣Ex∈S(
√
n) [x1 . . . xk]

∣∣∣ ≤ k3·k · n−k/2.

Proof. Suppose k ≤
√
n. Note that Lemma 5.6.15 implies that for λ ` k with λ1 there exists

a constant C > 0 such that

λ!

λ1! · · ·λk!
·

(n)λt1
|Aut(λ)|

·
∣∣∣Ex∈S(

√
n)

[
xλ1

1 . . . x
λk
k

]∣∣∣ = (n)k ·
∣∣∣Ex∈S(

√
n) [x1 . . . xk]

∣∣∣
≤ kC·k · nk/2.

Simplifying and using the assumption k ≤
√
n, we obtain

∣∣∣Ex∈S(
√
n) [x1 . . . xk]

∣∣∣ ≤ kC·k · n−k/2∏k−1
i=1

(
1− i

n

) ≤ 2 · kC·k · n−k/2.

190

Furthermore, for n ≥ 6, Lemma 5.6.15 allows us to choose C = 2. Since
∣∣∣Ex∈S(

√
n) [x1]

∣∣∣ =

1/
√
n, the simpler bound applies for all values of k

∣∣∣Ex∈S(
√
n) [x1 . . . xk]

∣∣∣ ≤ k3·k · n−k/2,

Now the assumption n ≥ 6 can be removed since, for k ≥ 2, we have(k3/
√
n)k ≥ 1, where 1

is the trivial bound. Similarly, our initial assumption of k ≤
√
n can also be removed as the

bound also becomes trivial in the regime k >
√
n.

191

CHAPTER 6

THE MACHINERY AND QUALITATIVE BOUNDS

In this chapter, we state the main machinery that we use to prove our results. The complete

proof of the machinery can be found in [149]. After that, we exhibit the qualitiative bounds

for applying the machinery to our problems of interest. The material in this chapter is

adapted from [149].

6.1 Statement of the machinery

6.2 Qualitative bounds for Planted slightly denser subgraph

6.2.1 Pseudo-calibration

We will pseudo-calibrate with respect to the following pair of random and planted distribu-

tions which we denote ν and µ respectively.

• Random distribution: Sample G from G(n, 1
2)

• Planted distribution: Let k be an integer and let p > 1
2 . Sample a graph G′ from

G(n, 1
2). Choose a random subset S of the vertices, where each vertex is picked in-

dependently with probability k
n . For all pairs i, j of vertices in S, rerandomize the

edge (i, j) where the probability of (i, j) being in the graph is now p. Set G to be the

resulting graph.

We assume that the input is given as Gi,j for i, j ∈
([n]

2

)
where Gi,j is 1 if the edge (i, j)

is present in the graph and −1 otherwise. We work with the Fourier basis χE defined as

χE(G) :=
∏

(i,j)∈E Gi,j . For a subset I ⊆ [n], define xI :=
∏
i∈I xI .

192

Lemma 6.2.1. Let I ⊆ [n], E ⊆
([n]

2

)
. Then,

E
µ

[xIχE(G)] =

(
k

n

)|I∪V (E)|
(2p− 1)|E|

Proof. When we sample (G,S) from µ, we condition on whether I ∪ V (E) ⊆ S.

E
(G,S)∼µ

[xIχE(G)] = Pr(G,S)∼µ[I ∪ V (E) ⊆ S] E
(G,S)∼µ

[xIχE(G)|I ∪ V (E) ⊆ S]

+ Pr(G,S)∼µ[I ∪ V (E) 6⊆ S] E
(G,S)∼µ

[xIχE(G)|I ∪ V (E) 6⊆ S]

We claim that the second term is 0. In particular, E(G,S)∼µ[xIχE(G)|I ∪ V (E) 6⊆ S] = 0

because when I ∪ V (E) 6⊆ S, either S doesn’t contain a vertex in I or an edge (i, j) ∈ E is

outside S. If S doesn’t contain a vertex in I, then xI = 0 and hence, the quantity is 0. And

if an edge (i, j) ∈ E is outside S, since this edge is sampled with probability 1
2 , by taking

expectations, the quantity E(G,S)∼µ[xIχE(G)|I ∪ V (E) 6⊆ S] is 0.

Finally, note that Pr(G,S)∼µ[I ∪ V (E) ⊆ S] =
(
k
n

)|I∪V (E)|
and

E
(G,S)∼µ

[xIχE(G)|I ∪ V (E) ⊆ S] = E
(G,S)∼µ

[χE(G)|V (E) ⊆ S] = (2p− 1)|E|

The last equality follows because for each edge e ∈ E, since e is present independently with

probability p, the expected value of χe is 1 · p+ (−1) · (1− p) = 2p− 1.

Now, we can write the moment matrix in terms of graph matrices.

Definition 6.2.2. Define the degree of SoS to be Dsos = nCsosε for some constant Csos > 0

that we choose later.

Definition 6.2.3 (Truncation parameter). Define the truncation parameter to be DV =

nCV ε for some constant CV > 0.

193

Remark 6.2.4 (Choice of parameters). We first set ε to be a sufficiently small constant.

Based on this choice, we will set CV to be a sufficiently small constant to satisfy all the

inequalities we use in our proof. Based on these choices, we can choose Csos to be sufficiently

small to satisfy the inequalities we use.

We will now describe the decomposition of the moment matrix Λ.

Definition 6.2.5. If a shape α satisfies the following properties:

• α is proper,

• α satisfies the truncation parameter Dsos, DV .

then define

λα =

(
k

n

)|V (α)|
(2p− 1)|E(α)|

Corollary 6.2.6. Λ =
∑
λαMα.

6.2.2 Proving positivity - Qualitative bounds

We use the canonical definition of H ′γ from ??. In this section, we will prove the main

qualitative bounds Lemma 6.2.7, Lemma 6.2.9 and Lemma 6.2.11.

Lemma 6.2.7. For all U ∈ Imid, HIdU � 0

We define the following quantity to capture the contribution of the vertices within τ to

the Fourier coefficients.

Definition 6.2.8. For U ∈ Imid and τ ∈MU , define

S(τ) =

(
k

n

)|V (τ)|−|Uτ |
(2p− 1)|E(τ)|

194

Lemma 6.2.9. For all U ∈ Imid and τ ∈MU ,

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 � 0

We define the following quantity to capture the contribution of the vertices within γ to

the Fourier coefficients.

Definition 6.2.10. For all U, V ∈ Imid where w(U) > w(V) and γ ∈ ΓU,V , define

S(γ) =

(
k

n

)|V (γ)|− |Uγ |+|Vγ |2

(2p− 1)|E(γ)|

Lemma 6.2.11. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2
H
−γ,γ
IdV

= H ′γ

In order to prove these bounds, we define the following quantity to capture the contribu-

tion of the vertices within σ to the Fourier coefficients.

Definition 6.2.12. For a shape σ ∈ L, define

T (σ) =

(
k

n

)|V (σ)|− |Vσ |2

(2p− 1)|E(σ)|

Definition 6.2.13. For U ∈ Imid, define vU to be the vector indexed by σ ∈ L such that

vU (σ) = T (σ) if σ ∈ LU and 0 otherwise.

Proposition 6.2.14. For all U ∈ Imid, ρ ∈ PU , HIdU = 1
|Aut(U)|vUv

T
U .

Proof. This follows by verifying the conditions of Definition 6.2.5.

This immediately implies that for all U ∈ Imid, HIdU � 0, which is Lemma 6.2.7.

195

Proposition 6.2.15. For any U ∈ Imid and τ ∈MU , Hτ = 1
|Aut(U)|2S(τ)vUv

T
U .

Proof. This follows by a straightforward verification of the conditions of Definition 6.2.5.

We can now prove Lemma 6.2.9 and Lemma 6.2.11.

Proof of Lemma 6.2.9.

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 =

 S(τ)
|Aut(U)|vUv

T
U

S(τ)
|Aut(U)|2vUv

T
U

S(τ)
|Aut(U)|2vUv

T
U

S(τ)
|Aut(U)|vUv

T
U

 � 0

Proof of Lemma 6.2.11. Fix σ, σ′ ∈ LU such that |V (σ ◦ γ)|, |V (σ′ ◦ γ)| ≤ DV . Note

that |V (σ)| − |Vσ|2 + |V (σ′)| − |Vσ′ |2 + 2(|V (γ)| − |Uγ |+|Vγ |2) = |V (σ ◦ γ ◦ γT ◦ σ′T)|. Us-

ing Definition 6.2.5, we can easily verify that λσ◦γ◦γT ◦σ′T = T (σ)T (σ′)S(γ)2. There-

fore, H
−γ,γ
IdV

(σ, σ′) =
|Aut(U)|
|Aut(V)|S(γ)2HIdU (σ, σ′). Since H ′γ(σ, σ′) = HIdU (σ, σ′) whenever

|V (σ ◦ γ)|, |V (σ′ ◦ γ)| ≤ DV , this completes the proof.

6.3 Qualitative bounds for Tensor PCA

6.3.1 Pseudo-calibration

Definition 6.3.1 (Slack parameter). Define the slack parameter to be ∆ = n−C∆ε for a

constant C∆ > 0.

• Random distribution: Sample A from N (0, I[n]k).

• Planted distribution: Let λ,∆ > 0. Sample u from {− 1√
∆n

, 0, 1√
∆n
}n where the values

are taken with probabilites ∆
2 , 1−∆, ∆

2 respectively. Then sample B from N (0, I[n]k).

Set A = B + λu⊗k.

196

Let the Hermite polynomials be h0(x) = 1, h1(x) = x, h2(x) = x2 − 1, For a ∈ N[n]k

and variables Ae for e ∈ [n]k, define ha(A) :=
∏
e∈[n]k he(Ae). We will work with this

Hermite basis.

Lemma 6.3.2. Let I ∈ Nn, a ∈ N[n]k . For i ∈ [n], let di =
∑
i∈e∈[n]k ae. Let c be the

number of i such that Ii + di is nonzero. Then, if Ii + di are all even, we have

E
µ

[uIha(A)] = ∆c
(

1√
∆n

)|I| ∏
e∈[n]k

(
λ

(∆n)
k
2

)ae

Else, Eµ[uIha(v)] = 0.

Proof. When A ∼ µ, for all e ∈ [n]k, we have Ae = Be + λ
∏
i≤k uei . where Be ∼ N (0, 1).

Let’s analyze when the required expectation is nonzero. We can first condition on u and

use the fact that for a fixed t, Eg∼N (0,1)[hk(g + t)] = tk to obtain

E
(ui,we)∼µ

[uIha(A)] = E
(ui)∼µ

[uI
∏
e∈[n]k

(λ
∏
i≤k

uei)
ae] = E

(ui)∼µ
[
∏
i∈[n]

uIi+dii]
∏
e∈[n]k

λae

Observe that this is nonzero precisely when all Ii + di are even, in which case

E
(ui)∼µ

[
∏
i∈[n]

uIi+dii] = ∆c
(

1√
∆n

)∑
i≤n Ii+di

= ∆c
(

1√
∆n

)|I| ∏
e∈[n]k

(
1

(∆n)
k
2

)ae

where we used the fact that
∑
e∈[n]k ae = k

∑
i∈[n] di. This completes the proof.

Now, we can write the moment matrix in terms of graph matrices.

Definition 6.3.3. Define the degree of SoS to be Dsos = nCsosε for some constant Csos > 0

that we choose later.

Definition 6.3.4 (Truncation parameters). Define the truncation parameters to be DV =

nCV ε, DE = nCEε for some constants CV , CE > 0.

197

Remark 6.3.5 (Choice of parameters). We first set ε to be a sufficiently small constant.

Based on the choice of ε, we will set the constant C∆ > 0 sufficiently small so that the planted

distribution is well defined. Based on these choices, we will set CV , CE to be sufficiently small

constants to satisfy all the inequalities we use in our proof. Based on these choices, we can

choose Csos to be sufficiently small to satisfy the inequalities we use.

Remark 6.3.6. The underlying graphs for the graph matrices have the following structure;

There will be n vertices of a single type and the edges will be ordered hyperedges of arity k.

Definition 6.3.7. For the analysis of Tensor PCA, we will use the following notation.

• For an index shape U and a vertex i, define degU (i) as follows: If i ∈ V (U), then it is

the power of the unique index shape piece A ∈ U such that i ∈ V (A). Otherwise, it is

0.

• For an index shape U , define deg(U) =
∑
i∈V (U) deg

U (i). This is also the degree of

the monomial that U corresponds to.

• For a shape α and vertex i in α, let degα(i) =
∑
i∈e∈E(α) le.

• For any shape α, let deg(α) = deg(Uα) + deg(Vα).

We will now describe the decomposition of the moment matrix Λ.

Definition 6.3.8. If a shape α satisfies the following properties:

• degα(i) + degUα(i) + degVα(i) is even for all i ∈ V (α),

• α is proper,

• α satisfies the truncation parameters Dsos, DV , DE.

then define

λα = ∆|V (α)|
(

1√
∆n

)deg(α) ∏
e∈E(α)

(
λ

(∆n)
k
2

)le
198

Otherwise, define λα = 0.

Corollary 6.3.9. Λ =
∑
λαMα.

6.3.2 Proving positivity - Qualitative bounds

We use the canonical definition of H ′γ from ??. In this section, we will prove the following

qualitative bounds.

Lemma 6.3.10. For all U ∈ Imid, HIdU � 0

We define the following quantity to capture the contribution of the vertices within τ to

the Fourier coefficients.

Definition 6.3.11. For U ∈ Imid and τ ∈ MU , if degτ (i) is even for all vertices i ∈

V (τ) \ Uτ \ Vτ , define

S(τ) = ∆|V (τ)|−|Uτ |
∏

e∈E(τ)

(
λ

(∆n)
k
2

)le

Otherwise, define S(τ) = 0.

Lemma 6.3.12. For all U ∈ Imid and τ ∈MU ,

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 � 0

We define the following quantity to capture the contribution of the vertices within γ to

the Fourier coefficients.

199

Definition 6.3.13. For all U, V ∈ Imid where w(U) > w(V) and γ ∈ ΓU,V , if degγ(i) is

even for all vertices i in V (γ) \ Uγ \ Vγ, define

S(γ) = ∆|V (γ)|− |Uγ |+|Vγ |2
∏

e∈E(γ)

(
λ

(∆n)
k
2

)le

Otherwise, define S(γ) = 0.

Lemma 6.3.14. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2
H
−γ,γ
IdV

� H ′γ

Proof of Lemma 6.3.10

When we compose shapes σ, σ′, from Definition 6.3.8, observe that all vertices i in λσ◦σ′

should have degσ◦σ
′
(i)+degUσ◦σ′ (i)+degVσ◦σ′ (i) to be even, in order for λσ◦σ′ to be nonzero.

To partially capture this notion conveniently, we will introduce the notion of parity vectors.

Definition 6.3.15. Define a parity vector ρ to be a vector whose entries are in {0, 1}.

Definition 6.3.16. For U ∈ Imid, define PU to be the set of parity vectors ρ whose coordi-

nates are indexed by U .

Definition 6.3.17. For a left shape σ, define ρσ ∈ PVσ , called the parity vector of σ, to

be the parity vector such that for each vertex i ∈ Vσ, the i-th entry of ρσ is the parity of

degUσ(i) + degσ(i), that is (ρσ)i ≡ degUσ(i) + degσ(i) (mod 2).

Definition 6.3.18. For U ∈ Imid and ρ ∈ PU , let LU,ρ be the set of all left shapes σ ∈ LU

such that ρσ = ρ, that is, the set of all left shapes with parity vector ρ.

Definition 6.3.19. For a shape τ , for a τ coefficient matrix Hτ and parity vectors ρ ∈

PUτ , ρ
′ ∈ PVτ , define the τ -coefficient matrix Hτ,ρ,ρ′ as Hτ,ρ,ρ′(σ, σ

′) = Hτ (σ, σ′) if σ ∈

LUτ ,ρ, σ
′ ∈ LVτ ,ρ′ and 0 otherwise.

200

Proposition 6.3.20. For any shape τ and τ -coefficient matrix Hτ , Hτ =
∑
ρ∈PUτ ,ρ′∈PVτ Hτ,ρ,ρ′

Proposition 6.3.21. For any U ∈ Imid, HIdU =
∑
ρ∈PU HIdU ,ρ,ρ

Proof. For any σ, σ′ ∈ LU , using Definition 6.3.8, note that in order for HIdU (σ, σ′) to be

nonzero, we must have ρσ = ρσ′ .

We define the following quantity to capture the contribution of the vertices within σ to

the Fourier coefficients.

Definition 6.3.22. For a shape σ ∈ L, if degσ(i) + degUσ(i) is even for all vertices i ∈

V (σ) \ Vσ, define

T (σ) = ∆|V (σ)|− |Vσ |2

(
1√
∆n

)deg(Uσ) ∏
e∈E(σ)

(
λ

(∆n)
k
2

)le

Otherwise, define T (σ) = 0.

Definition 6.3.23. For U ∈ Imid and ρ ∈ PU , define vρ to be the vector indexed by σ ∈ L

such that vρ(σ) is T (σ) if σ ∈ LU,ρ and 0 otherwise.

Proposition 6.3.24. For all U ∈ Imid, ρ ∈ PU , HIdU ,ρ,ρ = 1
|Aut(U)|vρv

T
ρ .

Proof. This follows by verifying the conditions of Definition 6.3.8.

Lemma 6.3.10. For all U ∈ Imid, HIdU � 0

Proof. We have HIdU =
∑
ρ∈PU HIdU ,ρ,ρ = 1

|Aut(U)|
∑
ρ∈PU vρv

T
ρ � 0.

Proof of Lemma 6.3.12

The next proposition captures the fact that when we compose shapes σ, τ, σ′T , in order for

λσ◦τσ′T to be nonzero, the parities of the degrees of the merged vertices should add up

correspondingly.

201

Proposition 6.3.25. For all U ∈ Imid and τ ∈ MU , there exist two sets of parity vectors

Pτ , Qτ ⊆ PU and a bijection π : Pτ → Qτ such that Hτ =
∑
ρ∈Pτ Hτ,ρ,π(ρ).

Proof. Using Definition 6.3.8, in order for Hτ (σ, σ′) to be nonzero, in σ ◦ τ ◦ σ′, we must

have that for all i ∈ Uτ ∪ Vτ , degUσ(i) + degUσ′ (i) + degσ◦τ◦σ
′T

(i) must be even. In other

words, for any ρ ∈ PU , there is at most one ρ′ ∈ PU such that if we take σ ∈ LU,ρ, σ′ ∈ LU

with Hτ (σ, σ′) nonzero, then the parity of σ′ is ρ′. Also, observe that ρ′ determines ρ. We

then take Pτ to be the set of ρ such that ρ′ exists, Qτ to be the set of ρ′ and in this case,

we define π(ρ) = ρ′.

We restate Definition 6.3.11 for convenience.

Definition 6.3.11. For U ∈ Imid and τ ∈ MU , if degτ (i) is even for all vertices i ∈

V (τ) \ Uτ \ Vτ , define

S(τ) = ∆|V (τ)|−|Uτ |
∏

e∈E(τ)

(
λ

(∆n)
k
2

)le

Otherwise, define S(τ) = 0.

Proposition 6.3.26. For any U ∈ Imid and τ ∈MU , suppose we take ρ ∈ Pτ . Let π be the

bijection from Proposition 6.3.25 so that π(ρ) ∈ Qτ . Then, Hτ,ρ,π(ρ) = 1
|Aut(U)|2S(τ)vρv

T
π(ρ)

.

Proof. This follows by a straightforward verification of the conditions of Definition 6.3.8.

Lemma 6.3.12. For all U ∈ Imid and τ ∈MU ,

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 � 0

Proof. Let Pτ , Qτ , π be from Proposition 6.3.25. For ρ, ρ′ ∈ PU , let Wρ,ρ′ = vρ(vρ′)
T .

Then, HIdU =
∑
ρ∈PU HIdU ,ρ,ρ = 1

|Aut(U)|
∑
ρ∈PU Wρ,ρ and Hτ =

∑
ρ∈Pτ Hτ,ρ,π(ρ) =

1
|Aut(U)|2S(τ)

∑
ρ∈Pτ Wρ,π(ρ). We have

202

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 =
S(τ)

|Aut(U)|2

 ∑ρ∈PU Wρ,ρ
∑
ρ∈Pτ Wρ,π(ρ)∑

ρ∈Pτ W
T
ρ,π(ρ)

∑
ρ∈PU Wρ,ρ



Since
S(τ)

|Aut(U)|2 ≥ 0, it suffices to prove that

 ∑ρ∈PU Wρ,ρ
∑
ρ∈Pτ Wρ,π(ρ)∑

ρ∈Pτ W
T
ρ,π(ρ)

∑
ρ∈PU Wρ,ρ

 � 0. Con-

sider  ∑ρ∈PU Wρ,ρ
∑
ρ∈Pτ Wρ,π(ρ)∑

ρ∈Pτ W
T
ρ,π(ρ)

∑
ρ∈PU Wρ,ρ

 =

∑ρ∈PU\Pτ Wρ,ρ 0

0
∑
ρ∈PU\Qτ Wρ,ρ


+

 ∑
ρ∈Pτ Wρ,ρ

∑
ρ∈Pτ Wρ,π(ρ)∑

ρ∈Pτ W
T
ρ,π(ρ)

∑
ρ∈Pτ Wπ(ρ),π(ρ)



We have
∑
ρ∈PU\Pτ Wρ,ρ =

∑
ρ∈PU\Pτ vρv

T
ρ � 0. Similarly,

∑
ρ∈PU\Qτ Wρ,ρ � 0 and

so, the first term in the above expression,

∑ρ∈PU\Pτ Wρ,ρ 0

0
∑
ρ∈PU\Qτ Wρ,ρ

 is positive

semidefinite. For the second term,

 ∑
ρ∈Pτ Wρ,ρ

∑
ρ∈Pτ Wρ,π(ρ)∑

ρ∈Pτ W
T
ρ,π(ρ)

∑
ρ∈Pτ Wπ(ρ),π(ρ)

 =
∑
ρ∈Pτ

 Wρ,ρ Wρ,π(ρ)

WT
ρ,π(ρ)

Wπ(ρ),π(ρ)


=
∑
ρ∈Pτ

 vρv
T
ρ vρ(vπ(ρ))

T

vπ(ρ)(vρ)
T vπ(ρ)(vπ(ρ))

T


=
∑
ρ∈Pτ

 vρ

vπ(ρ)

[vρ vπ(ρ)

]

� 0

203

Proof of Lemma 6.3.14

The next proposition captures the fact that when we compose shapes σ, γ, γT , σ′T , in order

for λσ◦γ◦γ′T ◦σ′T to be nonzero, the parities of the degrees of the merged vertices should add

up correspondingly.

Definition 6.3.27. For all U, V ∈ Imid where w(U) > w(V), for γ ∈ ΓU,V and par-

ity vectors ρ, ρ′ ∈ PU , define the γ ◦ γT -coefficient matrix H
−γ,γ
IdV ,ρ,ρ′

as H
−γ,γ
IdV ,ρ,ρ′

(σ, σ′) =

H
−γ,γ
IdV

(σ, σ′) if σ ∈ LU,ρ, σ′ ∈ LU,ρ′ and 0 otherwise.

Proposition 6.3.28. For all U, V ∈ Imid where w(U) > w(V), for all γ ∈ ΓU,V , there

exists a set of parity vectors Pγ ⊆ PU such that

H
−γ,γ
IdV

=
∑
ρ∈Pγ

H
−γ,γ
IdV ,ρ,ρ

Proof. Take any ρ ∈ PU . For σ ∈ LU,ρ, σ′ ∈ LU , since H
−γ,γ
IdV

(σ, σ′) =
λ
σ◦γ◦γT ◦σ′T
|Aut(V)| ,

H
−γ,γ
IdV

(σ, σ′) is nonzero precisely when λσ◦γ◦γT ◦σ′T is nonzero. For this quantity to be

nonzero, using Definition 6.3.8, we get that it is necessary, but not sufficient, that the parity

vector of σ′ must also be ρ. And also observe that there exists a set Pγ of parity vectors ρ

for which H
−γ,γ
IdV ,ρ,ρ

is nonzero and their sum is precisely H
−γ,γ
IdV

.

Definition 6.3.29. For all U, V ∈ Imid where w(U) > w(V), for all γ ∈ ΓU,V and parity

vector ρ ∈ PU , define the matrix H ′γ,ρ,ρ as H ′γ,ρ,ρ(σ, σ
′) = H ′γ(σ, σ′) if σ, σ′ ∈ LU,ρ and 0

otherwise.

Proposition 6.3.30. For all U, V ∈ Imid where w(U) > w(V), for γ ∈ ΓU,V , H ′γ =∑
ρ∈Pγ H

′
γ,ρ,ρ.

We restate Definition 6.3.13 for convenience.

204

Definition 6.3.13. For all U, V ∈ Imid where w(U) > w(V) and γ ∈ ΓU,V , if degγ(i) is

even for all vertices i in V (γ) \ Uγ \ Vγ, define

S(γ) = ∆|V (γ)|− |Uγ |+|Vγ |2
∏

e∈E(γ)

(
λ

(∆n)
k
2

)le

Otherwise, define S(γ) = 0.

Proposition 6.3.31. For all U, V ∈ Imid where w(U) > w(V), for all γ ∈ ΓU,V and ρ ∈ Pγ,

H
−γ,γ
IdV ,ρ,ρ

=
|Aut(U)|
|Aut(V)|

S(γ)2H ′γ,ρ,ρ

Proof. Fix σ, σ′ ∈ LU,ρ such that |V (σ ◦ γ)|, |V (σ′ ◦ γ)| ≤ DV . Note that |V (σ)| − |Vσ|2 +

|V (σ′)| − |Vσ′ |2 + 2(|V (γ)| − |Uγ |+|Vγ |2) = |V (σ ◦ γ ◦ γT ◦ σ′T)|. Using Definition 6.3.8,

we can easily verify that λσ◦γ◦γT ◦σ′T = T (σ)T (σ′)S(γ)2. Therefore, H
−γ,γ
IdV ,ρ,ρ

(σ, σ′) =

|Aut(U)|
|Aut(V)|S(γ)2HIdU ,ρ,ρ(σ, σ

′). SinceH ′γ,ρ,ρ(σ, σ
′) = HIdU ,ρ,ρ(σ, σ

′) whenever |V (σ◦γ)|, |V (σ′◦

γ)| ≤ DV , this completes the proof.

Lemma 6.3.14. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2
H
−γ,γ
IdV

� H ′γ

205

Proof. We have

|Aut(V)|
|Aut(U)|

· 1

S(γ)2
H
−γ,γ
IdV

=
∑
ρ∈Pγ

|Aut(V)|
|Aut(U)|

· 1

S(γ)2
H
−γ,γ
IdV ,ρ,ρ

=
∑
ρ∈Pγ

H ′γ,ρ,ρ

�
∑
ρ∈PU

H ′γ,ρ,ρ

= H ′γ

where we used the fact that for all ρ ∈ PU , we have H ′γ,ρ,ρ � 0 which can be proved the

same way as the proof of Lemma 6.3.10.

6.4 Qualitative bounds for Sparse PCA

6.4.1 Pseudo-calibration

Definition 6.4.1 (Slack parameter). Define the slack parameter to be ∆ = d−C∆ε for a

constant C∆ > 0.

We will pseudo-calibrate with respect the following pair of random and planted distribu-

tions which we denote ν and µ respectively.

• Random distribution: v1, . . . , vm are sampled from N (0, Id) and we take S to be the

m× d matrix with rows v1, . . . , vm.

• Planted distribution: Sample u from {− 1√
k
, 0, 1√

k
}d where the values are taken with

probabilites k
2d , 1 −

k
d ,

k
2d respectively. Then sample v1, . . . , vm as follows. For each

i ∈ [m], with probability ∆, sample vi from N (0, Id + λuuT) and with probability

1 − ∆, sample vi from N (0, Id). Finally, take S to be the m × d matrix with rows

v1, . . . , vm.

206

We will again work with the Hermite basis of polynomials. For a ∈ Nm×d and variables

vi,j for i ∈ [m], j ∈ [n], define ha(v) :=
∏
i∈[m],j∈[n] hai,j (vi,j).

Definition 6.4.2. For a nonnegative integer t, define t!! =


(2t)!

t!2t
= 1× 3× . . .× t, if t is odd

0, otherwise

Lemma 6.4.3. Let I ∈ Nd, a ∈ Nm×d. For i ∈ [m], let ei =
∑
j∈[d] aij and for j ∈ [d], let

fj = Ij +
∑
i∈[m] aij. Let c1 (resp. c2) be the number of i (resp. j) such that ei > 0 (resp.

fj > 0). Then, if ei, fj are all even, we have

E
µ

[uIha(v)] =

(
1√
k

)|I|(k
d

)c2
∆c1

∏
i∈[m]

(ei − 1)!!
∏
i,j

√
λ
aij

√
k
aij

Else, Eµ[uIha(v)] = 0.

Proof. v1, . . . , vm ∼ µ can be written as vi = gi +
√
λbiliu where gi ∼ N (0, Id), li ∼

N (0, 1), bi ∈ {0, 1} where bi = 1 with probability ∆.

Let’s analyze when the required expectation is nonzero. We can first condition on bi, li, u

and use the fact that for a fixed t, Eg∼N (0,1)[hk(g + t)] = tk to obtain

E
(u,li,bi,gi)∼µ

[uIha(v)] = E
(u,li,bi)∼µ

[uI
∏
i,j

(
√
λbiliuj)

aij] = E
(u,li,bi)∼µ

[
∏
i∈[m]

(bili)
ei
∏
j∈[d]

u
fj
j]
∏
i,j

√
λ
aij

For this to be nonzero, the set of c1 indices i such that ei > 0, should not have been resampled

otherwise bi = 0, each of which happens independently with probability ∆. And the set of c2

indices j such that fj > 0 should have been such that uj is nonzero, each of which happens

independently with probability k
d . Since li, uj are have zero expectation in ν, we need ei, fj

to be even. The expectation then becomes

∆c1

(
k

d

)c2
E

(u,li)∼µ
[
∏
i∈[m]

leii

∏
j∈[d]

u
fj
j]
∏
i,j

√
λ
aij

=

(
1√
k

)|I|(k
d

)c2
∆c1

∏
i∈[m]

(ei−1)!!
∏
i,j

√
λ
aij

√
k
aij

207

The last equality follows because, for each j such that uj is nonzero, we have utj = (1√
k

)t

and Eg∼N (0,1)[g
t] = (t− 1)!! if t is even.

Now, we can write the moment matrix in terms of graph matrices.

Definition 6.4.4. Define the degree of SoS to be Dsos = dCsosε for some constant Csos > 0

that we choose later.

Definition 6.4.5 (Truncation parameters). Define the truncation parameters to be DV =

dCV ε, DE = dCEε for some constants CV , CE > 0.

Remark 6.4.6 (Choice of parameters). We first set ε > 0 to be a sufficiently small constant.

Based on the choice of ε, we will set the constant C∆ > 0 sufficiently small so that the planted

distribution is well defined. Based on these choices, we will set CV , CE to be sufficiently small

constants to satisfy all the inequalities we use in our proof. Based on these choices, we can

choose Csos to be sufficiently small to satisfy the inequalities we use.

Remark 6.4.7. The underlying graphs for the graph matrices have the following structure:

There will be two types of vertices - d type 1 vertices corresponding to the dimensions of the

space and m type 2 vertices corresponding to the different input vectors. The shapes will

correspond to bipartite graphs with edges going between across of different types.

Definition 6.4.8. For the analysis of Sparse PCA, we will use the following notation.

• For a shape α and type t ∈ {1, 2}, let Vt(α) denote the vertices of V (α) that are of type

t. Let |α|t = |Vt(α)|.

• For an index shape U and a vertex i, define degU (i) as follows: If i ∈ V (U), then it is

the power of the unique index shape piece A ∈ U such that i ∈ V (A). Otherwise, it is

0.

• For an index shape U , define deg(U) =
∑
i∈V (U) deg

U (i). This is also the degree of

the monomial pU .

208

• For a shape α and vertex i in α, let degα(i) =
∑
i∈e∈E(α) le.

• For any shape α, let deg(α) = deg(Uα) + deg(Vα).

• For an index shape U ∈ Imid and type t ∈ {1, 2}, let Ut ∈ U denote the index shape

piece of type t in U if it exists, otherwise define Ut to be ∅. Note that this is well

defined since for each type t, there is at most one index shape piece of type t in U since

U ∈ Imid. Also, denote by |U |t the length of the tuple Ut.

We will now describe the decomposition of the moment matrix Λ.

Definition 6.4.9. If a shape α satisfies the following properties:

• Both Uα and Vα only contain index shape pieces of type 1,

• degα(i) + degUα(i) + degVα(i) is even for all i ∈ V (α),

• α is proper,

• α satisfies the truncation parameters Dsos, DV , DE.

then define

λα =

(
1√
k

)deg(α)(k
d

)|α|1
∆|α|2

∏
j∈V2(α)

(degα(j)− 1)!!
∏

e∈E(α)

√
λ
le

√
k
le

Otherwise, define λα = 0.

Corollary 6.4.10. Λ =
∑
λαMα.

6.4.2 Proving positivity - Qualitative bounds

We use the canonical definition of H ′γ from ??. In this section, we will prove the following

qualitative bounds.

209

Lemma 6.4.11. For all U ∈ Imid, HIdU � 0

For technical reasons, it will be convenient to discretize the Normal distribution. The

following fact follows from standard results on Gaussian quadrature, see for e.g. [51, Lemma

4.3].

Fact 6.4.12 (Discretizing the Normal distribution). There is an absolute constant Cdisc such

that, for any positive integer D, there exists a distribution E over the real numbers supported

on D points p1, . . . , pD, such that

• |pi| ≤ Cdisc
√
D for all i ≤ D and

• Eg∼E [gt] = Eg∼N (0,1)[g
t] for all t = 0, 1, . . . , 2D − 1

We define the following quantity to capture the contribution of the vertices within τ to

the Fourier coefficients.

Definition 6.4.13. For U ∈ Imid and τ ∈ MU , if degτ (i) is even for all vertices i ∈

V (τ) \ Uτ \ Vτ , define

S(τ) =

(
k

d

)|τ |1−|Uτ |1
∆|τ |2−|Uτ |2

∏
j∈V2(τ)\Uτ\Vτ

(degτ (j)− 1)!!
∏

e∈E(τ)

√
λ
le

√
k
le

Otherwise, define S(τ) = 0.

Definition 6.4.14. For any shape τ , suppose U ′ = (Uτ)2, V
′ = (Vτ)2 are the type 2 vertices

in Uτ , Vτ respectively. Define

R(τ) = (Cdisc
√
DE)

∑
j∈U ′∪V ′ deg

τ (j)

where Cdisc is the constant from Fact 6.4.12.

210

Lemma 6.4.15. For all U ∈ Imid and τ ∈MU ,

S(τ)R(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)R(τ)
|Aut(U)|HIdU

 � 0

We define the following quantity to capture the contribution of the vertices within γ to

the Fourier coefficients.

Definition 6.4.16. For all U, V ∈ Imid where w(U) > w(V) and γ ∈ ΓU,V , if degγ(i) is

even for all vertices i in V (γ) \ Uγ \ Vγ, define

S(γ) =

(
k

d

)|γ|1− |Uγ |1+|Vγ |1
2

∆|γ|2−
|Uγ |2+|Vγ |2

2
∏

j∈V2(γ)\Uγ\Vγ

(degγ(j)− 1)!!
∏

e∈E(γ)

√
λ
le

√
k
le

Otherwise, define S(γ) = 0.

Lemma 6.4.17. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2R(γ)2
H
−γ,γ
IdV

� H ′γ

Proof of Lemma 6.4.11

When we compose shapes σ, σ′, from Definition 6.4.9, observe that all vertices i in λσ◦σ′

should have degσ◦σ
′
(i)+degUσ◦σ′ (i)+degVσ◦σ′ (i) to be even, in order for λσ◦σ′ to be nonzero.

To partially capture this notion conveniently, we will introduce the notion of parity vectors.

Definition 6.4.18. Define a parity vector ρ to be a vector whose entries are in {0, 1}.

Definition 6.4.19. For U ∈ Imid, define PU to be the set of parity vectors ρ whose coordi-

nates are indexed by U1 followed by U2.

211

Definition 6.4.20. For a left shape σ, define ρσ ∈ PVσ , called the parity vector of σ, to

be the parity vector such that for each vertex i ∈ Vσ, the i-th entry of ρσ is the parity of

degUσ(i) + degσ(i), that is, (ρσ)i ≡ degUσ(i) + degσ(i) (mod 2).

Definition 6.4.21. For U ∈ Imid and ρ ∈ PU , let LU,ρ be the set of all left shapes σ ∈ LU

such that ρσ = ρ, that is, the set of all left shapes with parity vector ρ.

Definition 6.4.22. For a shape τ , for a τ coefficient matrix Hτ and parity vectors ρ ∈

PUτ , ρ
′ ∈ PVτ , define the τ -coefficient matrix Hτ,ρ,ρ′ as Hτ,ρ,ρ′(σ, σ

′) = Hτ (σ, σ′) if σ ∈

LUτ ,ρ, σ
′ ∈ LVτ ,ρ′ and 0 otherwise.

Proposition 6.4.23. For any shape τ and τ -coefficient matrix Hτ , Hτ =
∑
ρ∈PUτ ,ρ′∈PVτ Hτ,ρ,ρ′

Proposition 6.4.24. For any U ∈ Imid, HIdU =
∑
ρ∈PU HIdU ,ρ,ρ

Proof. For any σ, σ′ ∈ LU , using Definition 6.4.9, note that in order for HIdU (σ, σ′) to be

nonzero, we must have ρσ = ρσ′ .

We will now discretize the normal distribution while matching the first 2DE−1 moments.

Definition 6.4.25. Let D be a distribution over the real numbers obtained by setting D = DE

in Fact 6.4.12. So, in particular, for any x sampled from D, we have |x| ≤ Cdisc
√
DE and

for t ≤ 2DE − 1, Ex∼D[xt] = (t− 1)!!.

We define the following quantity to capture the contribution of the vertices within σ to

the Fourier coefficients.

Definition 6.4.26. For a shape σ ∈ L, if degσ(i) + degUσ(i) is even for all vertices i ∈

V (σ) \ Vσ, define

T (σ) =

(
1√
k

)deg(Uσ)(k
d

)|σ|1− |Vσ |12

∆|σ|2−
|Vσ |2

2
∏

j∈V2(σ)\Vσ

(degσ(j)− 1)!!
∏

e∈E(σ)

√
λ
le

√
k
le

Otherwise, define T (σ) = 0.

212

Definition 6.4.27. Let U ∈ Imid. Let xi for i ∈ U2 be variables. Denote them collectively

as xU2
. For ρ ∈ PU , define vρ,xU2

to be the vector indexed by left shapes σ ∈ L such that

the σth entry is T (σ)
∏
i∈U2

x
degσ(i)
i if σ ∈ LU,ρ and 0 otherwise.

Proposition 6.4.28. For any U ∈ Imid, ρ ∈ PU , suppose xi for i ∈ U2 are random variables

sampled from D. Then,

HIdU ,ρ,ρ =
1

|Aut(U)| Ex
[vρ,xU2

vTρ,xU2
]

Proof. Observe that for σ, σ′ ∈ LU,ρ and t ∈ {1, 2}, (|σ|t−
|Vσ|t

2) + (|σ′|t−
|Vσ′ |t

2) = |σ ◦ σ′|t.

The result follows by verifying the conditions of Definition 6.4.9 and using Definition 6.4.25.

Lemma 6.4.11. For all U ∈ Imid, HIdU � 0

Proof. We have HIdU =
∑
ρ∈PU HIdU ,ρ,ρ = 1

|Aut(U)|
∑
ρ∈PU ExU2

∼DU2 [vρ,xU2
vTρ,xU2

] � 0.

Proof of Lemma 6.4.15

The next proposition captures the fact that when we compose shapes σ, τ, σ′T , in order for

λσ◦τσ′T to be nonzero, the parities of the degrees of the merged vertices should add up

correspondingly.

Proposition 6.4.29. For all U ∈ Imid and τ ∈ MU , there exist two sets of parity vectors

Pτ , Qτ ⊆ PU and a bijection π : Pτ → Qτ such that Hτ =
∑
ρ∈Pτ Hτ,ρ,π(ρ).

Proof. Using Definition 6.4.9, in order for Hτ (σ, σ′) to be nonzero, we must have that, in

σ ◦ τ ◦ σ′, for all i ∈ Uτ ∪ Vτ , degUσ(i) + degUσ′ (i) + degσ◦τ◦σ
′T

(i) must be even. In other

words, for any ρ ∈ PU , there is at most one ρ′ ∈ PU such that if we take σ ∈ LU,ρ, σ′ ∈ LU

with Hτ (σ, σ′) nonzero, then the parity of σ′ is ρ′. Also, observe that ρ′ determines ρ. We

213

then take Pτ to be the set of ρ such that ρ′ exists, Qτ to be the set of ρ′ and in this case,

we define π(ρ) = ρ′.

We restate Definition 6.4.13 for convenience.

Definition 6.4.13. For U ∈ Imid and τ ∈ MU , if degτ (i) is even for all vertices i ∈

V (τ) \ Uτ \ Vτ , define

S(τ) =

(
k

d

)|τ |1−|Uτ |1
∆|τ |2−|Uτ |2

∏
j∈V2(τ)\Uτ\Vτ

(degτ (j)− 1)!!
∏

e∈E(τ)

√
λ
le

√
k
le

Otherwise, define S(τ) = 0.

Proposition 6.4.30. For any U ∈ Imid and τ ∈MU , suppose we take ρ ∈ Pτ . Let π be the

bijection from Proposition 6.4.29 so that π(ρ) ∈ Qτ . Let U ′ = (Uτ)2, V
′ = (Vτ)2 be the type

2 vertices in Uτ , Vτ respectively. Let xi for i ∈ U ′ ∪ V ′ be random variables independently

sampled from D. Define xU ′ (resp. xV ′) to be the subset of variables xi for i ∈ U ′ (resp.

i ∈ V ′). Then,

Hτ,ρ,π(ρ) =
1

|Aut(U)|2
S(τ)E

x

vρ,xU ′
 ∏
i∈U ′∪V ′

x
degτ (i)
i

 vTπ(ρ),xV ′


Proof. For σ ∈ LU,ρ, σ

′ ∈ LU,π(ρ) and t ∈ {1, 2}, we have (|τ |t − |Uτ |t) + (|σ|t −
|Vσ|t

2) +

(|σ′|t−
|Vσ′ |t

2) = |σ ◦ τ ◦ σ′|t. The result then follows by a straightforward verification of the

conditions of Definition 6.4.9 using Definition 6.4.25.

Lemma 6.4.15. For all U ∈ Imid and τ ∈MU ,

S(τ)R(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)R(τ)
|Aut(U)|HIdU

 � 0

214

Proof. Let Pτ , Qτ , π be from Proposition 6.4.29. Let U ′ = (Uτ)2, V
′ = (Vτ)2 be the type

2 vertices in Uτ , Vτ respectively. Let xi for i ∈ U ′ ∪ V ′ be random variables independently

sampled from D. Define xU ′ (resp. xV ′) to be the subset of variables xi for i ∈ U ′ (resp.

i ∈ V ′).

For ρ ∈ PU , define Wρ,ρ = EyU2
∼DU2 [vρ,yU2

vTρ,yU2
] so that HIdU ,ρ,ρ = 1

|Aut(U)|Wρ,ρ.

Observe that Wρ,ρ = E[vρ,xU ′v
T
ρ,xU ′

] = E[vρ,xV ′v
T
ρ,xV ′

] because xU ′ and xV ′ are also sets of

variables sampled from D and, U ′, V ′ have the same size as U2 because Uτ = Vτ = U .

For ρ, ρ′ ∈ PU , define Yρ,ρ′ = E
[
vρ,xU ′

(∏
i∈U ′∪V ′ x

degτ (i)
i

)
vT
π(ρ),xV ′

]
. Then, Hτ =∑

ρ∈Pτ Hτ,ρ,π(ρ) = 1
|Aut(U)|2S(τ)

∑
ρ∈Pτ Yρ,π(ρ). We have

S(τ)R(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)R(τ)
|Aut(U)|HIdU

 =
S(τ)

|Aut(U)|2

R(τ)
∑
ρ∈PU Wρ,ρ

∑
ρ∈Pτ Yρ,π(ρ)∑

ρ∈Pτ Y
T
ρ,π(ρ)

R(τ)
∑
ρ∈PU Wρ,ρ



Since
S(τ)

|Aut(U)|2 ≥ 0, it suffices to prove that

R(τ)
∑
ρ∈PU Wρ,ρ

∑
ρ∈Pτ Yρ,π(ρ)∑

ρ∈Pτ Y
T
ρ,π(ρ)

R(τ)
∑
ρ∈PU Wρ,ρ

 � 0.

ConsiderR(τ)
∑
ρ∈PU Wρ,ρ

∑
ρ∈Pτ Yρ,π(ρ)∑

ρ∈Pτ Y
T
ρ,π(ρ)

R(τ)
∑
ρ∈PU Wρ,ρ

 =R(τ)

∑ρ∈PU\Pτ Wρ,ρ 0

0
∑
ρ∈PU\Qτ Wρ,ρ


+

R(τ)
∑
ρ∈Pτ Wρ,ρ

∑
ρ∈Pτ Yρ,π(ρ)∑

ρ∈Pτ Y
T
ρ,π(ρ)

R(τ)
∑
ρ∈Pτ Wπ(ρ),π(ρ)



We have
∑
ρ∈PU\Pτ Wρ,ρ =

∑
ρ∈PU\Pτ E[vρ,xU ′v

T
ρ,xU ′

] � 0. Similarly,
∑
ρ∈PU\Qτ Wρ,ρ �

0. Also, R(τ) ≥ 0 and so, the first term in the above expression, R(τ)

[∑
ρ∈PU\Pτ Wρ,ρ 0

0
∑
ρ∈PU\Qτ Wρ,ρ

]

215

is positive semidefinite. For the second term,

R(τ)
∑
ρ∈Pτ Wρ,ρ

∑
ρ∈Pτ Yρ,π(ρ)∑

ρ∈Pτ Y
T
ρ,π(ρ)

R(τ)
∑
ρ∈Pτ Wπ(ρ),π(ρ)


=
∑
ρ∈Pτ

 R(τ)E[vρ,xU ′v
T
ρ,xU ′

] E
[
vρ,xU ′

(∏
i∈U ′∪V ′ x

degτ (i)
i

)
vT
π(ρ),xV ′

]
E
[
vTρ,xU ′

(∏
i∈U ′∪V ′ x

degτ (i)
i

)
vπ(ρ),xV ′

]
R(τ)E[vπ(ρ),xV ′

vT
π(ρ),xV ′

]


=
∑
ρ∈Pτ

E

 R(τ)vρ,xU ′v
T
ρ,xU ′

vρ,xU ′

(∏
i∈U ′∪V ′ x

degτ (i)
i

)
vT
π(ρ),xV ′

vTρ,xU ′

(∏
i∈U ′∪V ′ x

degτ (i)
i

)
vπ(ρ),xV ′

R(τ)vπ(ρ),xV ′
vT
π(ρ),xV ′


We will prove that the term inside the expectation is positive semidefinite for each ρ ∈ Pτ

and each sampling of the xi from D, which will complete the proof. Fix ρ ∈ Pτ and any

sampling of the xi from D. Let w1 = vρ,XU ′ , w2 = vπ(ρ),xV ′
. Let E =

∏
i∈U ′∪V ′ x

degτ (i)
i .

We would like to prove that

R(τ)w1w
T
1 Ew1w

T
2

EwT1 w2 R(τ)w2w
T
2

 � 0. For all y sampled from D,

|y| ≤ Cdisc
√
DE and so, |E| ≤ (Cdisc

√
DE)

∑
j∈U ′∪V ′ deg

τ (j)
= R(τ).

If E ≥ 0, then

R(τ)w1w
T
1 Ew1w

T
2

EwT1 w2 R(τ)w2w
T
2

 = (R(τ)− E)

w1w
T
1 0

0 w2w
T
2

+ E

w1w
T
1 w1w

T
2

wT1 w2 w2w
T
2


= (R(τ)− E)


w1

0

[w1 0

]
+

 0

w2

[0 w2

]+ E

w1

w2

[w1 w2

]

� 0

216

since R(τ)− E ≥ 0 And if E < 0,

R(τ)w1w
T
1 Ew1w

T
2

EwT1 w2 R(τ)w2w
T
2

 = (R(τ) + E)

w1w
T
1 0

0 w2w
T
2

− E
 w1w

T
1 −w1w

T
2

−wT1 w2 w2w
T
2


= (R(τ) + E)


w1

0

[w1 0

]
+

 0

w2

[0 w2

]− E
 w1

−w2

[w1 −w2

]

� 0

since R(τ) + E ≥ 0.

Proof of Lemma 6.4.17

The next proposition captures the fact that when we compose shapes σ, γ, γT , σ′T , in order

for λσ◦γ◦γT ◦σ′T to be nonzero, the parities of the degrees of the merged vertices should add

up correspondingly.

Definition 6.4.31. For all U, V ∈ Imid where w(U) > w(V), for γ ∈ ΓU,V and par-

ity vectors ρ, ρ′ ∈ PU , define the γ ◦ γT -coefficient matrix H
−γ,γ
IdV ,ρ,ρ′

as H
−γ,γ
IdV ,ρ,ρ′

(σ, σ′) =

H
−γ,γ
IdV

(σ, σ′) if σ ∈ LU,ρ, σ′ ∈ LU,ρ′ and 0 otherwise.

Proposition 6.4.32. For all U, V ∈ Imid where w(U) > w(V), for all γ ∈ ΓU,V , there

exists a set of parity vectors Pγ ⊆ PU such that

H
−γ,γ
IdV

=
∑
ρ∈Pγ

H
−γ,γ
IdV ,ρ,ρ

Proof. Take any ρ ∈ PU . For σ ∈ LU,ρ, σ′ ∈ LU , since H
−γ,γ
IdV

(σ, σ′) =
λ
σ◦γ◦γT ◦σ′T
|Aut(V)| ,

H
−γ,γ
IdV

(σ, σ′) is nonzero precisely when λσ◦γ◦γT ◦σ′T is nonzero. For this quantity to be

nonzero, using Definition 6.4.9, we get that it is necessary, but not sufficient, that the parity

217

vector of σ′ must also be ρ. And also observe that there exists a set Pγ of parity vectors ρ

for which H
−γ,γ
IdV ,ρ,ρ

is nonzero and their sum is precisely H
−γ,γ
IdV

.

Definition 6.4.33. For all U, V ∈ Imid where w(U) > w(V), for all γ ∈ ΓU,V and parity

vector ρ ∈ PU , define the matrix H ′γ,ρ,ρ as H ′γ,ρ,ρ(σ, σ
′) = H ′γ(σ, σ′) if σ, σ′ ∈ LU,ρ and 0

otherwise.

Proposition 6.4.34. For all U, V ∈ Imid where w(U) > w(V), for γ ∈ ΓU,V , H ′γ =∑
ρ∈Pγ H

′
γ,ρ,ρ.

We will now define vectors which are truncations of vρ,xU2
.

Definition 6.4.35. Let U, V ∈ Imid where w(U) > w(V), and let γ ∈ ΓU,V . Let xi for

i ∈ U2 be variables. Denote them collectively as xU2
. For ρ ∈ PU , define v

−γ
ρ,xU2

to be the

vector indexed by left shapes σ ∈ L such that the σth entry is vρ,xU2
(σ) if |V (σ ◦ γ)| ≤ DV

and 0 otherwise.

We restate Definition 6.4.16 for convenience.

Definition 6.4.16. For all U, V ∈ Imid where w(U) > w(V) and γ ∈ ΓU,V , if degγ(i) is

even for all vertices i in V (γ) \ Uγ \ Vγ, define

S(γ) =

(
k

d

)|γ|1− |Uγ |1+|Vγ |1
2

∆|γ|2−
|Uγ |2+|Vγ |2

2
∏

j∈V2(γ)\Uγ\Vγ

(degγ(j)− 1)!!
∏

e∈E(γ)

√
λ
le

√
k
le

Otherwise, define S(γ) = 0.

Proposition 6.4.36. For any U, V ∈ Imid where w(U) > w(V), and for any γ ∈ ΓU,V ,

suppose we take ρ ∈ Pγ. When we compose γ with γT to get γ ◦ γT , let U ′ = (Uγ◦γT)2, V
′ =

(Vγ◦γT)2 be the type 2 vertices in Uγ◦γT , Vγ◦γT respectively. And let W ′ be the set of type

2 vertices in γ ◦ γT that were identified in the composition when we set Vγ = UTγ . Let xi

218

for i ∈ U ′ ∪W ′ ∪ V ′ be random variables independently sampled from D. Define xU ′ (resp.

xV ′ , xW ′) to be the subset of variables xi for i ∈ U ′ (resp. i ∈ V ′, i ∈ W ′). Then,

H
−γ,γ
IdV ,ρ,ρ

=
1

|Aut(V)|
S(γ)2 E

x

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T


Proof. Fix σ, σ′ ∈ LU,ρ such that |V (σ ◦ γ)|, |V (σ′ ◦ γ)| ≤ DV . Note that for t ∈ {1, 2},

|σ|t −
|Vσ|t

2 + |σ′|t −
|Vσ′ |t

2 + 2(|γ|t −
|Uγ |t+|Vγ |t

2) = |σ ◦ γ ◦ γT ◦ σ′T |t. We can easily verify

the equality using Definition 6.4.9 and Definition 6.4.25.

Proposition 6.4.37. For any U, V ∈ Imid where w(U) > w(V), and for any γ ∈ ΓU,V ,

suppose we take ρ ∈ PU . Then,

H ′γ,ρ,ρ =
1

|Aut(U)| E
yU2
∼DU2

[
(v
−γ
ρ,yU2

)(v
−γ
ρ,yU2

)T
]

We can now prove Lemma 6.4.17.

Lemma 6.4.17. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2R(γ)2
H
−γ,γ
IdV

� H ′γ

Proof. Let U ′, V ′,W ′ be as in Proposition 6.4.36. We have

|Aut(V)|
|Aut(U)|

· 1

S(γ)2R(γ)2
H−γ,γIdV

=
∑
ρ∈Pγ

|Aut(V)|
|Aut(U)|

· 1

S(γ)2R(γ)2
H−γ,γIdV ,ρ,ρ

=
∑
ρ∈Pγ

1

|Aut(U)|
· 1

R(γ)2 E
x

[
(v−γρ,xU′)

(∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

)
(v−γρ,xV ′)

T

]

We will now prove that, for all ρ ∈ Pγ ,

1

|Aut(U)|
· 1

R(γ)2 E
x

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T

 � H ′γ,ρ,ρ

219

This reduces to proving that

2

R(γ)2 E
x

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T

 � 2 E
yU2
∼DU2

[
(v
−γ
ρ,yU2

)(v
−γ
ρ,yU2

)T
]

= E
x

[
(v
−γ
ρ,xU ′)(v

−γ
ρ,xU ′)

T + (v
−γ
ρ,xV ′)(v

−γ
ρ,xV ′)

T
]

where the last equality followed from linearity of expectation and the fact that U ′ ≡ V ′ ≡ U2.

Since H
−γ,γ
IdV ,ρ,ρ

is symmetric, we have

E
x

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T

 = E
x

(v
−γ
ρ,xV ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xU ′)

T


So, it suffices to prove

1

R(γ)2 E
x

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T + (v
−γ
ρ,xV ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xU ′)

T


� E

x

[
(v
−γ
ρ,xU ′)(v

−γ
ρ,xU ′)

T + (v
−γ
ρ,xV ′)(v

−γ
ρ,xV ′)

T
]

We will prove that for every sampling of the xi from D, we have

1

R(γ)2

(v
−γ
ρ,xU ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xV ′)

T + (v
−γ
ρ,xV ′)

 ∏
i∈U ′∪W ′∪V ′

x
degγ◦γ

T
(i)

i

 (v
−γ
ρ,xU ′)

T


� (v

−γ
ρ,xU ′)(v

−γ
ρ,xU ′)

T + (v
−γ
ρ,xV ′)(v

−γ
ρ,xV ′)

T

Then, taking expectations will give the result. Indeed, fix a sampling of the xi from D. Let

E =
∏
i∈U ′∪W ′∪V ′ x

degγ◦γ
T

(i)
i and let w1 = v

−γ
ρ,xU ′ , w2 = v

−γ
ρ,xV ′ . Then, the inequality we

need to show is

E

R(γ)2
(w1w

T
2 + w2w

T
1) � w1w

T
1 + w2w

T
2

220

Now, since |xi| ≤ Cdisc
√
DE for all i, we have |E| ≤

∏
i∈U ′∪W ′∪V ′(Cdisc

√
DE)deg

γ◦γT (i) =

R(γ)2.

If E ≥ 0, using E
R(γ)2 (w1 − w2)(w1 − w2)T � 0 gives

E

R(γ)2
(w1w

T
2 + w2w

T
1) � E

R(γ)2
(w1w

T
1 + w2w

T
2)

� w1w
T
1 + w2w

T
2

since 0 ≤ E ≤ R(γ)2.

And if E < 0, using −E
R(γ)2 (w1 + w2)(w1 + w2)T � 0 gives

E

R(γ)2
(w1w

T
2 + w2w

T
1) � −E

R(γ)2
(w1w

T
1 + w2w

T
2)

� w1w
T
1 + w2w

T
2

since 0 ≤ −E ≤ R(γ)2.

Finally, we use the fact that for all ρ ∈ PU , we have H ′γ,ρ,ρ � 0 which can be proved the

same way as the proof of Lemma 6.4.11. Therefore,

|Aut(V)|
|Aut(U)|

· 1

S(γ)2R(γ)2
H
−γ,γ
IdV

�
∑
ρ∈Pγ

H ′γ,ρ,ρ

�
∑
ρ∈PU

H ′γ,ρ,ρ

= H ′γ

221

6.4.3 Intuition for quantitative bounds

In this section, we will give some intuition on the bounds needed for our main theorem

Theorem 4.4.1, which is formally proved in Section 7.3. Informally, the theorem states that

when m ≤ d
λ2 and m ≤ k2

λ2 , then Λ � 0 with high probability.

We will try and understand why the inequality λ2
σ◦τ◦σ′T ‖Mτ‖2 ≤ λσ◦σT λσ′◦σ′T holds.

Assume for simplicity that d < n and consider the shapes in Fig. 6.1. The assumption d < n

is used in this example since otherwise, if d > n, the decomposition differs from what’s shown

in the figure.

Figure 6.1: Shapes σ ◦ τ1 ◦ σT , σ ◦ τ2 ◦ σT and σ ◦ σT . All edges have label 1.

Firstly, the shape σ ◦ σT has a coefficient of λσ◦σT ≈
(

1√
k

)4 (
k
d

)2
.

The first shape σ ◦ τ1 ◦ σT has a coefficient of λσ◦τ1◦σT ≈
(

1√
k

)4 (
k
d

)4 (√
λ√
k

)4
and with

high probability, upto lower order terms, ‖Mτ1‖ ≤ md (these norm bounds follow from

[2]). So, the inequality λ2
σ◦τ1◦σT

‖Mτ1‖
2 ≤ λσ◦σT λσ◦σT rearranges to m ≤ d

λ2 . But this

is precisely one of the assumptions on m. Moreover, this also confirms that we need this

assumption on m in order for our strategy to go through.

The second shape σ ◦ τ2 ◦ σT has a coefficient of λσ◦τ2◦σT ≈
(

1√
k

)4 (
k
d

)4 (√
λ√
k

)8

and with high probability, upto lower order terms, ‖Mτ2‖ ≤ m2d. So, the inequality

222

λ2
σ◦τ2◦σT

‖Mτ2‖
2 ≤ λσ◦σT λσ◦σT rearranges to m2 ≤ k2d

λ4 . But this is obtained simply by

multiplying our assumptions on m, namely m ≤ k2

λ2 and m ≤ d
λ2 .

Moreover, consider a shape of the form σ ◦ τ3 ◦ σT where τ3 is similar to τ2 except it

has t (instead of 3) different circle vertices that are common neighbors to the top 2 square

vertices. Analyzing our required inequality, we get for our strategy to go through, m has

to satisfy m ≤ k2

λ2 ·
(
d
k2

) 2
t+1

. By taking t arbitrarily large, we can see that the condition

m ≤ k2

λ2 is needed.

So, we get that for our analysis to go through, the assumptions m ≤ d
λ2 and m ≤ k2

λ2

are necessary. We will prove that in fact, these are sufficient. To do this, we use a charging

argument that exploits the special structure of the shapes α that appear in our decomposition

of Λ and their coefficients λα, as we obtained in Definition 6.4.9. For details, see Section 7.3.

223

CHAPTER 7

QUANTITATIVE BOUNDS

In this chapter, we will prove the main SoS lower bounds Theorem 4.2.1, Theorem 4.3.1 and

Theorem 4.4.1 by building on the qualitative bounds from Chapter 6. The material in this

chapter is adapted from [149].

7.1 Planted slightly denser subgraph: Full verification

In this section, we will prove all the required bounds to prove Theorem 4.2.1.

Theorem 4.2.1. Let Cp > 0. There exists a constant C > 0 such that for all sufficiently

small constants ε > 0, if k ≤ n
1
2−ε and p = 1

2 + n−Cpε
2 , then with high probability, the

candidate moment matrix Λ given by pseudo-calibraton for degree nCε Sum-of-Squares is

PSD.

In particular, we will use ?? where we choose ε in the theorem, not to be confused with

the ε in Theorem 4.2.1, to be an arbitrarily small constant.

To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.

Lemma 7.1.1. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

Lemma 7.1.2. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

224

Lemma 7.1.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Corollary 7.1.4. With constant probability, Λ � 0.

Proof. This follows by invoking ?? whose conditions follow from Lemma 6.2.7, Lemma 7.1.1,

Lemma 7.1.2 and Lemma 7.1.3.

7.1.1 Proof of Lemma 7.1.1

Lemma 7.1.5. Suppose k ≤ n1/2−ε. For all U ∈ Imid and τ ∈MU ,

√
n
|V (τ)|−|Uτ |S(τ) ≤ 1

nCpε|E(τ)|

Proof. This result follows by plugging in the value of S(τ). Using k ≤ n1/2−ε,

√
n
|V (τ)|−|Uτ |S(τ) =

√
n
|V (τ)|−|Uτ |

(
k

n

)|V (τ)|−|Uτ |
(2(

1

2
+

1

2nCpε
)− 1)|E(τ)|

≤ 1

nCpε|E(τ)|

Corollary 7.1.6. For all U ∈ Imid and τ ∈MU , we have

c(τ)Bnorm(τ)S(τ) ≤ 1

Proof. Since τ is a proper middle shape, we have w(Iτ) = 0 and w(Sτ) = w(Uτ). This

implies

n
w(V (τ))+w(Iτ)−w(Sτ)

2 =
√
n
|V (τ)|−|Uτ |

225

Since τ is proper, every vertex i ∈ V (τ) \ Uτ or i ∈ V (τ) \ Vτ has degτ (i) ≥ 1 and hence,

|V (τ) \ Uτ | + |V (τ) \ Vτ | ≤ 4|E(τ)|. Also, q = nO(1)·εCV . We can set CV sufficiently small

so that, using Lemma 7.1.5,

c(τ)Bnorm(τ)S(τ) = 100(3DV)|Uτ\Vτ |+|Vτ\Uτ |+2|E(τ)|2|V (τ)\(Uτ∪Vτ)|

· (6DV 4
√

2eq)|V (τ)\Uτ |+|V (τ)\Vτ |√n|V (τ)|−|Uτ |S(τ)

≤ nO(1)·εCV ·|E(τ)| ·
√
n
|V (τ)|−|Uτ |S(τ)

≤ nO(1)·εCV ·|E(τ)| · 1

nCpε|E(τ)|

≤ 1

We can now prove Lemma 7.1.1.

Lemma 7.1.1. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

Proof. We have

 1
|Aut(U)|c(τ)HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)HIdU

 =


(

1
|Aut(U)|c(τ) −

S(τ)Bnorm(τ)
|Aut(U)|

)
HIdU 0

0
(

1
|Aut(U)|c(τ) −

S(τ)Bnorm(τ)
|Aut(U)|

)
HIdU


+Bnorm(τ)

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU



By Lemma 6.2.9,

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 � 0, so the second term above is posi-

tive semidefinite. For the first term, by Lemma 6.2.7, HIdU � 0 and by Corollary 7.1.6,

226

1
|Aut(U)|c(τ)

− S(τ)Bnorm(τ)
|Aut(U)| ≥ 0, which proves that the first term is also positive semidefi-

nite.

7.1.2 Proof of Lemma 7.1.2

Lemma 7.1.7. Suppose k ≤ n1/2−ε. For all U, V ∈ Imid where w(U) > w(V) and for all

γ ∈ ΓU,V ,

nw(V (γ)\Uγ)S(γ)2 ≤ 1

nBε(|V (γ)\(Uγ∩Vγ)|+|E(γ)|)

for some constant B that depends only on Cp. In particular, it is independent of CV .

Proof. Since γ is a left shape, we have |Uγ | ≥ |Vγ | as Vγ is the unique minimum vertex

separator of γ and so, nw(V (γ)\Uγ) = n|V (γ)|−|Uγ | ≤ n|V (γ)|− |Uγ |+|Vγ |2 . Also, note that

2|V (γ)| − |Uγ | − |Vγ | = |Uγ \ Vγ | + |Vγ \ Uγ | + 2|V (γ) \ Uγ \ Vγ | ≥ |V (γ) \ (Uγ ∩ Vγ)|.

Therefore,

nw(V (γ)\Uγ)S(γ)2 = n|V (γ)\Uγ)|
(
k

n

)2|V (γ)|−|Uγ |−|Vγ |
(2(

1

2
+

1

2nCpε
)− 1)2|E(γ)|

≤ n|V (γ)|− |Uγ |+|Vγ |2

(
1

n1/2+ε

)2|V (γ)|−|Uγ |−|Vγ |(1

n2Cpε

)|E(γ)|

≤
(

1

nε

)2|V (γ)|−|Uγ |−|Vγ |(1

n2Cpε

)|E(γ)|

≤ 1

n
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

for a constant B that depends only on Cp.

We can now prove Lemma 7.1.2.

Lemma 7.1.2. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

227

Proof. By Lemma 6.2.11, we have

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

= c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

H ′γ

Using the same proof as in Lemma 6.2.7, we can see that H ′γ � 0. Therefore, it suffices to

prove that

c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

≤ 1

Since U, V ∈ Imid, |Aut(U)| = |U |!, |Aut(V)| = |V |!. Therefore,
|Aut(U)|
|Aut(V)| =

|U |!
|V |! ≤

D
|Uγ\Vγ |
V . Also, q = nO(1)·εCV . Let B be the constant from Lemma 7.1.7. We can set CV

sufficiently small so that, using Lemma 7.1.7,

c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

≤ 1002(3DV)2|Uγ\Vγ |+2|Vγ\Uγ |+4|E(α)|4|V (γ)\(Uγ∪Vγ)|

· (3DV)4|V (γ)\Vγ |+2|V (γ)\Uγ |(6DV
4
√

2eq)2|V (γ)\Uγ |+2|V (γ)\Vγ |

· nw(V (γ)\Uγ)S(γ)2 ·D|Uγ\Vγ |V

≤ nO(1)·εCV ·(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le) · nw(V (γ)\Uγ)S(γ)2

≤ nO(1)·εCV ·(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le) · 1

nBε(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le)

≤ 1

7.1.3 Proof of Lemma 7.1.3

In this section, we will prove Lemma 7.1.3.

Lemma 7.1.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

We use the strategy from [149, Section 10]. We will prove the following lemmas.

228

Lemma 7.1.8. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

nK1D2
sos
Idsym

for a constant K1 > 0.

Lemma 7.1.9. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ nK2Dsos

2DV

for a constant K2 > 0.

If we assume these, we can conclude the following.

Lemma 7.1.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Proof. Let ‖Mα‖ ≤ Bnorm(α) for all α ∈M′. By Lemma 7.1.8,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

nK1D2
sos
Idsym

for a constant K1 > 0. By Lemma 7.1.9,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ nK2Dsos

2DV

for a constant K2 > 0.

We choose Csos sufficiently small so that 1

nK1D
2
sos
≥ 6n

K2Dsos

2DV
which can be satisfied by

setting Csos < K3CV for a sufficiently small constant K3 > 0. Then, since IdSym � 0, using

229

Lemma 7.1.8 and Lemma 7.1.9,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

nK1D2
sos
Idsym

� 6
nK2Dsos

2DV
Idsym

� 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

The rest of the section is devoted to proving Lemma 7.1.8 and Lemma 7.1.9.

In the proofs of both these lemmas, we will need a bound onBnorm(σ)Bnorm(σ′)HIdU (σ, σ′)

that is obtained below.

Lemma 7.1.10. Suppose k ≤ n1/2−ε. For all U ∈ Imid and σ, σ′ ∈ LU ,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) ≤ 1

n0.5ε|V (α)|

Proof. Let α = σ ◦ σ′. Observe that |V (σ)| + |V (σ′)| = |V (α)| + |U |. By choosing CV

230

sufficiently small,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) = (6DV
4
√

2eq)|V (σ)\Uσ|+|V (σ)\Vσ|n
w(V (σ))−w(U)

2

· (6DV 4
√

2eq)|V (σ′)\Uσ′ |+|V (σ′)\Vσ′ |n
w(V (σ′))−w(U)

2

· 1

|Aut(U)|

(
k

n

)|V (α)|
(2(

1

2
+

1

2nCpε
)− 1)|E(α)|

≤ nO(1)·εCV ·|V (α)|√n|V (σ)|−|U |√
n
|V (σ′)|−|U |

(
k

n

)|V (α)| 1

nCpε|E(α)|

≤ nO(1)·εCV ·|V (α)|√n|V (α)|−|U |
(

1

n1/2+ε

)|V (α)| 1

nCpε|E(α)|

≤ nO(1)·εCV ·|V (α)| · 1

nε|V (α)| ·
1

nCpε|E(α)|

≤ 1

n0.5ε|V (α)|

Proof of Lemma 7.1.8

To prove Lemma 7.1.8, we will use the strategy from [149, Section 10]. We will also use the

notation from that section. We recall that for U ∈ Imid, L′U ⊂ LU was the set of non-trivial

shapes in LU .

Proposition 7.1.11. For V ∈ Imid, λV =
(
k
n

)|V |
.

Proof. We have λV = |Aut(V)|HIdV (IdV , IdV) =
(
k
n

)|V |
.

Corollary 7.1.12. λV ≥ 1
nO(1)Dsos

Lemma 7.1.13. For any edge e = (V, U) in G, we have

w(e) ≤ nO(1)Dsos

n0.1ε|U |

231

Proof. Let e = (V, U) be an edge in G. Then, w(U) > w(V) and w(e) =
2W (U,V)

λV
. Using

Lemma 7.1.10, we have

2W (U, V) =
2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)

≤ 2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

1

n0.5ε|V (σ◦σ′)|

≤
∑

σ,σ′∈L′V

2

n0.5ε|V (σ◦σ′)|

≤
∑

σ,σ′∈L′V

DDsos
sos

n0.1ε|V (σ◦σ′)|DDsos
sos nFε|V (σ◦σ′)|

≤ DDsos
sos

n0.1ε|U |

∑
σ,σ′∈L′V

1

DDsos
sos nFε|V (σ◦σ′)|

≤ DDsos
sos

n0.1ε|U |

≤ λV n
O(1)Dsos

n0.1ε|U |

where we set CV small enough so that 0.4 ≥ F . This proves the lemma.

Corollary 7.1.14. For any U, V ∈ Imid such that w(U) > w(V),

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤ nO(1)D2
sos

Proof. The total number of vertices in G is at most Dsos + 1 since each U ∈ Imid has at

most Dsos vertices. Therefore, for any fixed integer j ≥ 1, the number of paths from V to

U of length j is at most (Dsos + 1)j . Take any path P from V to U . Suppose it has length

j ≥ 1. Note that for all edges e = (V ′, U ′) in E(P), since |U ′| ≥ 1, we have

w(e) ≤ nO(1)Dsos

n0.1ε|U ′| ≤
nO(1)Dsos

n0.1ε

232

So,
∏
e∈E(P)w(e) ≤

(
nO(1)Dsos

n0.1ε

)j
. Therefore, by setting Csos small enough,

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤
Dsos∑
j=1

(Dsos + 1)j

(
nO(1)Dsos

n0.1ε

)j

≤ nO(1)D2
sos

We can now prove Lemma 7.1.8.

Lemma 7.1.8. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

nK1D2
sos
Idsym

for a constant K1 > 0.

Proof. For all V ∈ Imid, we have

IdSym,V � 2
∑

U∈Imid:w(U)≥w(V)

 ∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

 1

λU
Mfact(HIdU)

Summing this over all V ∈ Imid, we get

IdSym �
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

Mfact(HIdU)

�
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

nO(1)D2
sos

Mfact(HIdU)

For any fixed U ∈ Imid, the number of V ∈ Imid such that w(U) ≥ w(V) is at most Dsos+1.

233

Also, λU ≥ 1
dO(1)Dsos

for all U ∈ Imid. Therefore,

IdSym �
∑

U∈Imid

2

λU
(Dsos + 1)nO(1)D2

sosMfact(HIdU)

�
∑

U∈Imid

nO(1)D2
sosMfact(HIdU)

where we used the fact that for all U ∈ Imid, Mfact(HIdU) � 0.

Proof of Lemma 7.1.9

We restate the lemma for convenience.

Lemma 7.1.9. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ nK2Dsos

2DV

for a constant K2 > 0.

Proof. We have

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
γ∈ΓU,∗

1

|Aut(U)|c(γ)

∑
σ,σ′∈LUγ :|V (σ)|≤DV ,|V (σ′)|≤DV ,
|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

Bnorm(σ)Bnorm(σ′)HIdUγ (σ, σ′)

The set of σ, σ′ that could appear in the above sum must necessarily be non-trivial and

hence, σ, σ′ ∈ L′U . Then,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
∑

γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)

234

For σ ∈ L′U , define mσ = DV + 1− |V (σ)| ≥ 1. This is precisely set so that for all γ ∈ ΓU,∗,

we have |V (σ ◦ γ)| > DV if and only if |V (γ)| ≥ |U |+mσ. So, for σ, σ′ ∈ L′U ,

∑
γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)
=

∑
γ∈ΓU,∗:|V (γ)|≥|U |+min(mσ,mσ′)

1

|Aut(U)|c(γ)

≤ 1

2min(mσ,mσ′)−1

Also, for σ, σ′ ∈ L′U , we have |V (σ ◦ σ′)|+min(mσ,mσ′)− 1 ≥ DV . Therefore,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
1

2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

nO(1)Dsos

n0.5ε|V (σ◦σ′)|2min(mσ,mσ′)−1

where we used Lemma 7.1.10. Using n0.5ε|V (σ◦σ′)| ≥ n0.1ε|V (σ◦σ′)|2|V (σ◦σ′)|,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

nO(1)Dsos

n0.1ε|V (σ◦σ′)|2|V (σ◦σ′)|2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

nO(1)Dsos

n0.1ε|V (σ◦σ′)|2DV

≤
∑

U∈Imid

∑
σ,σ′∈L′U

nO(1)Dsos

DDsos
sos n0.1ε|V (σ◦σ′)|2DV

The final step will be to argue that
∑
U∈Imid

∑
σ,σ′∈L′U

1
DDsossos n0.1ε|V (σ◦σ′)| ≤ 1 which will

complete the proof. But this will follow if we set CV small enough.

7.2 Tensor PCA: Full verification

In this section, we will prove all the bounds required to prove Theorem 4.3.1.

235

Theorem 4.3.1. Let k ≥ 2 be an integer. There exist constants C,C∆ > 0 such that for all

sufficiently small constants ε > 0, if λ ≤ n
k
4−ε and ∆ = n−C∆ε then with high probability,

the candidate moment matrix Λ given by pseudo-calibration for degree nCε Sum-of-Squares

is PSD.

In particular, we will use ?? where we choose ε in the theorem, not to be confused with

the ε in Theorem 4.3.1, to be an arbitrarily small constant.

To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.

Lemma 7.2.1. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

Lemma 7.2.2. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

Lemma 7.2.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Corollary 7.2.4. With constant probability, Λ � 0.

Proof. This follows by invoking ?? whose conditions follow from Lemma 6.3.10, Lemma 7.2.1,

Lemma 7.2.2 and Lemma 7.2.3.

236

7.2.1 Proof of Lemma 7.2.1

Lemma 7.2.5. Suppose λ ≤ n
k
4−ε. For all U ∈ Imid and τ ∈MU , suppose degτ (i) is even

for all i ∈ V (τ) \ Uτ \ Vτ , then

√
n
|V (τ)|−|Uτ |S(τ) ≤ 1

n
0.5ε

∑
e∈E(τ) le

Proof. Firstly, we claim that
∑
e∈E(τ) kle ≥ 2(|V (τ)|− |Uτ |). For any vertex i ∈ V (τ)\Uτ \

Vτ , degτ (i) is even and is not 0, hence, degτ (i) ≥ 2. Any vertex i ∈ Uτ \ Vτ cannot have

degτ (i) = 0 otherwise Uτ \{i} is a vertex separator of strictly smaller weight than Uτ , which

is not possible, hence, degτ (i) ≥ 1. Therefore,

∑
e∈E(τ)

kle =
∑

i∈V (τ)

degτ (i)

≥
∑

i∈V (τ)\Uτ\Vτ

degτ (i) +
∑

i∈Uτ\Vτ

degτ (i) +
∑

i∈Vτ\Uτ

degτ (i)

≥ 2|V (τ) \ Uτ \ Vτ |+ |Uτ \ Vτ |+ |Vτ \ Uτ |

= 2(|V (τ)| − |Uτ |)

237

By choosing C∆ sufficiently small, we have

√
n
|V (τ)|−|Uτ |S(τ) =

√
n
|V (τ)|−|Uτ |∆|V (τ)|−|Uτ |

∏
e∈E(τ)

(
λ

(∆n)
k
2

)le

≤
√
n
|V (τ)|−|Uτ |∆|V (τ)|−|Uτ |

∏
e∈E(τ)

n(−k4−0.5ε)le

=
√
n
|V (τ)|−|Uτ |−

∑
e∈E(τ) kle

2 ∆|V (τ)|−|Uτ |
∏

e∈E(τ)

n−0.5εle

= ∆|V (τ)|−|Uτ |
∏

e∈E(τ)

n−0.5εle

≤ 1

n
0.5ε

∑
e∈E(τ) le

Corollary 7.2.6. For all U ∈ Imid and τ ∈MU , we have

c(τ)Bnorm(τ)S(τ) ≤ 1

Proof. Since τ is a proper middle shape, we have w(Iτ) = 0 and w(Sτ,min) = w(Uτ). This

implies

n
w(V (τ))+w(Iτ)−w(Sτ,min)

2 =
√
n
|V (τ)|−|Uτ |

If degτ (i) is odd for any vertex i ∈ V (τ) \ Uτ \ Vτ , then S(τ) = 0 and the inequality is

true. So, assume degτ (i) is even for all i ∈ V (τ) \ Uτ \ Vτ . As was observed in the proof

of Lemma 7.2.5, every vertex i ∈ V (τ) \ Uτ or i ∈ V (τ) \ Vτ has degτ (i) ≥ 1 and hence,

|V (τ)\Uτ |+ |V (τ)\Vτ | ≤ 4
∑
e∈E(τ) le. Also, |E(τ)| ≤

∑
e∈E(τ) le and q = nO(1)·ε(CV +CE).

238

We can set CV , CE sufficiently small so that, using Lemma 7.2.5,

c(τ)Bnorm(τ)S(τ) = 100(3DV)|Uτ\Vτ |+|Vτ\Uτ |+k|E(τ)|2|V (τ)\(Uτ∪Vτ)|

· 2e(6qDV)|V (τ)\Uτ |+|V (τ)\Vτ |
∏

e∈E(τ)

(400D2
VD

2
Eq)

le
√
n
|V (τ)|−|Uτ |S(τ)

≤ n
O(1)·ε(CV +CE)·

∑
e∈E(τ) le ·

√
n
|V (τ)|−|Uτ |S(τ)

≤ n
O(1)·ε(CV +CE)·

∑
e∈E(τ) le · 1

n
0.5ε

∑
e∈E(τ) le

≤ 1

We can now prove Lemma 7.2.1.

Lemma 7.2.1. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

Proof. We have

 1
|Aut(U)|c(τ)HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)HIdU

 =


(

1
|Aut(U)|c(τ) −

S(τ)Bnorm(τ)
|Aut(U)|

)
HIdU 0

0
(

1
|Aut(U)|c(τ) −

S(τ)Bnorm(τ)
|Aut(U)|

)
HIdU


+Bnorm(τ)

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU



By Lemma 6.3.12,

 S(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)
|Aut(U)|HIdU

 � 0, so the second term above is posi-

tive semidefinite. For the first term, by Lemma 6.3.10, HIdU � 0 and by Corollary 7.2.6,

1
|Aut(U)|c(τ)

− S(τ)Bnorm(τ)
|Aut(U)| ≥ 0, which proves that the first term is also positive semidefi-

nite.

239

7.2.2 Proof of Lemma 7.2.2

Lemma 7.2.7. Suppose λ ≤ n
k
4−ε. For all U, V ∈ Imid where w(U) > w(V) and for all

γ ∈ ΓU,V ,

nw(V (γ)\Uγ)S(γ)2 ≤ 1

n
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

for some constant B that depends only on C∆. In particular, it is independent of CV and

CE.

Proof. Suppose there is a vertex i ∈ V (γ) \ Uγ \ Vγ such that degγ(i) is odd, then S(γ) = 0

and the inequality is true. So, assume degγ(i) is even for all vertices i ∈ V (γ) \ Uγ \ Vγ .

We first claim that k
∑
e∈E(γ) le ≥ 2|V (γ) \ Uγ |. Since γ is a left shape, all vertices i

in V (γ) \ Uγ have degγ(i) ≥ 1. In particular, all vertices i ∈ Vγ \ Uγ have degγ(i) ≥ 1.

Moreover, if i ∈ V (γ) \ Uγ \ Vγ , since degγ(i) is even, we must have degγ(i) ≥ 2.

Let S′ be the set of vertices i ∈ Uγ \ Vγ that have degγ(i) ≥ 1. Then, note that

|S′| + |Uγ ∩ Vγ | ≥ |Vγ | =⇒ |S′| ≥ |Vγ \ Uγ | since otherwise S′ ∪ (Uγ ∩ Vγ) will be a vertex

separator of γ of weight strictly less than Vγ , which is not possible. Then,

∑
e∈E(γ)

kle =
∑

i∈V (γ)

degγ(i)

≥
∑

i∈V (γ)\Uγ\Vγ

degγ(i) +
∑

i∈Uγ\Vγ

degγ(i) +
∑

i∈Vγ\Uγ

degγ(i)

≥ 2|V (γ) \ Uγ \ Vγ |+ |S′|+ |Vγ \ Uγ |

≥ 2|V (γ) \ Uγ \ Vγ |+ 2|Vγ \ Uγ |

= 2|V (γ) \ Uγ |

Finally, note that 2|V (γ)| − |Uγ | − |Vγ | = |Uγ \ Vγ | + |Vγ \ Uγ | + 2|V (γ) \ Uγ \ Vγ | ≥

240

|V (γ) \ (Uγ ∩ Vγ)|. By choosing C∆ sufficiently small, we have

nw(V (γ)\Uγ)S(γ)2 = n|V (γ)\Uγ)|∆2|V (γ)|−|Uγ |−|Vγ |
∏

e∈E(γ)

(
λ2

(∆n)k

)le
≤ n|V (γ)\Uγ)|∆2|V (γ)|−|Uγ |−|Vγ |

∏
e∈E(γ)

n−(k2 +ε)le

≤ ∆2|V (γ)|−|Uγ |−|Vγ |
∏

e∈E(γ)

n−εle

≤ 1

n
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

for a constant B that depends only on C∆.

Remark 7.2.8. In the above bounds, note that there is a decay of nBε for each vertex in

V (γ) \ (Uγ ∩ Vγ). One of the main technical reasons for introducing the slack parameter

C∆ in the planted distribution was to introduce this decay, which is needed in the current

machinery.

We can now prove Lemma 7.2.2.

Lemma 7.2.2. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

Proof. By Lemma 6.3.14, we have

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

H ′γ

Using the same proof as in Lemma 6.3.10, we can see that H ′γ � 0. Therefore, it suffices to

prove that

c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

≤ 1

241

Since U, V ∈ Imid, |Aut(U)| = |U |!, |Aut(V)| = |V |!. Therefore,
|Aut(U)|
|Aut(V)| =

|U |!
|V |! ≤

D
|Uγ\Vγ |
V . Also, |E(γ)| ≤

∑
e∈E(γ) le and q = nO(1)·ε(CV +CE). Let B be the constant from

Lemma 7.2.7. We can set CV , CE sufficiently small so that, using Lemma 7.2.7,

c(γ)2N(γ)2B(γ)2S(γ)2 |Aut(U)|
|Aut(V)|

≤ 1002(3DV)2|Uγ\Vγ |+2|Vγ\Uγ |+2k|E(α)|4|V (γ)\(Uγ∪Vγ)|

· (3DV)4|V (γ)\Vγ |+2|V (γ)\Uγ |(6qDV)2|V (γ)\Uγ |+2|V (γ)\Vγ |
∏

e∈E(γ)

(400D2
VD

2
Eq)

2le

· nw(V (γ)\Uγ)S(γ)2 ·D|Uγ\Vγ |V

≤ nO(1)·ε(CV +CE)·(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le) · nw(V (γ)\Uγ)S(γ)2

≤ nO(1)·ε(CV +CE)·(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le) · 1

nBε(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le)

≤ 1

7.2.3 Proof of Lemma 7.2.3

In this section, we will prove Lemma 7.2.3 using the strategy sketched in [149, Section 10].

Lemma 7.2.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

In particular, we prove the following lemmas.

Lemma 7.2.9. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � ∆2D2
sos

nDsos
Idsym

242

Lemma 7.2.10. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ 1

∆2Dsos2DV

Assuming these, we can conclude the following.

Lemma 7.2.3. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Proof. We choose Csos sufficiently small so that ∆2D2
sos

nDsos
≥ 6

∆2Dsos2DV
which is satisfied by

setting Csos < 0.5CV . Then, since IdSym � 0, using Lemma 7.2.9 and Lemma 7.2.10,

∑
U∈Imid

M
fact
IdU

(HIdU) � ∆2D2
sos

nDsos
Idsym

� 6

∆2Dsos2DV
Idsym

� 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

The rest of the section is devoted to proving Lemma 7.2.9 and Lemma 7.2.10.

In the proofs of both these lemmas, we will need a bound onBnorm(σ)Bnorm(σ′)HIdU (σ, σ′)

that is obtained below.

Lemma 7.2.11. Suppose λ = n
k
4−ε. For all U ∈ Imid and σ, σ′ ∈ LU ,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) ≤ 1

n0.5εC∆|V (σ◦σ′)|∆Dsosn|U |

Proof. Suppose there is a vertex i ∈ V (σ) \ Vσ such that degσ(i) + degUσ(i) is odd, then

HIdU (σ, σ′) = 0 and the inequality is true. So, assume that degσ(i) + degUσ(i) is even for

243

all i ∈ V (σ) \ Vσ. Similarly, assume that degσ
′
(i) + degUσ′ (i) is even for all i ∈ V (σ′) \ Vσ′ .

Also, if ρσ 6= ρσ′ , we will have HIdU (σ, σ′) = 0 and we’d be done. So, assume ρσ = ρσ′ .

Let α = σ ◦σ′. We will first prove that
∑
e∈E(α) kle+ 2deg(α) ≥ 2|V (α)|+ 2|U |. Firstly,

note that all vertices i ∈ V (α) \ (Uα ∪ Vα) have degα(i) to be even and nonzero, and hence

at least 2. Moreover, in both the sets Uα \ (Uα ∩ Vα) and Vα \ (Uα ∩ Vα), there are at least

|U |− |Uα∩Vα| vertices of degree at least 1, because U is a minimum vertex separator. Also,

note that deg(α) ≥ |Uα|+ |Vα|. This implies that

∑
e∈E(α)

kle + 2deg(α) ≥ 2|V (α) \ (Uα ∪ Vα)|+ 2(|U | − |Uα ∩ Vα|) + 2(|Uα|+ |Vα|)

= 2(|V (α)| − |Uα ∪ Vα|) + 2(|U | − |Uα ∩ Vα|) + 2(|Uα ∪ Vα|+ |Uα ∩ Vα|)

= 2|V (α)|+ 2|U |

where we used the fact that Uα ∩ Vα ⊆ U . Finally, by choosing CV , CE sufficiently small,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) = 2e(6qDV)|V (σ)\Uσ|+|V (σ)\Vσ|
∏

e∈E(σ)

(400D2
VD

2
Eq)

len
w(V (σ))−w(U)

2

· 2e(6qDV)|V (σ′)\Uσ′ |+|V (σ′)\Vσ′ |
∏

e∈E(σ′)

(400D2
VD

2
Eq)

len
w(V (σ′))−w(U)

2

· 1

|Aut(U)|
∆|V (α)|

(
1√
∆n

)deg(α) ∏
e∈E(α)

(
λ

(∆n)
k
2

)le

≤ nO(1)·ε(CV +CE)·(|V (α)|+
∑
e∈E(α) le)∆|V (α)|

(
1√
∆

)deg(α)

·
√
n
|V (α)|−|U |

(
1√
n

)deg(α) ∏
e∈E(α)

n(− k4−0.5ε)le

≤ nO(1)·ε(CV +CE)·(|V (α)|+
∑
e∈E(α) le)

nεC∆|V (α)|n0.5ε
∑
e∈E(α) le

· 1

∆Dsosn|U |
√
n
|V (α)|+|U |−deg(α)− 1

2

∑
e∈E(α) kle

≤ 1

n0.5εC∆|V (α)|∆Dsosn|U |

where we used the facts ∆ ≤ 1, deg(α) ≤ 2Dsos.

244

Proof of Lemma 7.2.9

To prove Lemma 7.2.9, we will use the strategy from [149, Section 10]. We will also use the

notation from that section. We recall that for U ∈ Imid, L′U ⊂ LU was the set of non-trivial

shapes in LU .

Proposition 7.2.12. For V ∈ Imid, λV = 1
n|V |

.

Proof. We have λV = |Aut(V)|HIdV (IdV , IdV) = ∆|V |
(

1√
∆n

)2|V |
= 1

n|V |
.

Lemma 7.2.13. For any edge e = (V, U) in G, we have

w(e) ≤ 1

n0.1C∆ε|U |∆2Dsos

Proof. Let e = (V, U) be an edge in G. Then, w(U) > w(V) and w(e) =
2W (U,V)

λV
. Using

Lemma 7.2.11, we have

2W (U, V) =
2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)

≤ 2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

1

n0.5εC∆|V (σ◦σ′)|∆Dsosn|V |

≤
∑

σ,σ′∈L′V

2

n0.5εC∆|V (σ◦σ′)|∆Dsosn|V |

≤
∑

σ,σ′∈L′V

1

n0.1C∆ε|V (σ◦σ′)|DDsos
sos nFε|V (σ◦σ′)|∆2Dsosn|V |

≤ 1

n0.1C∆ε|U |∆2Dsosn|V |

∑
σ,σ′∈L′V

1

DDsos
sos nFε|V (σ◦σ′)|

≤ 1

n0.1C∆ε|U |∆2Dsosn|V |

=
λV

n0.1εC∆|U |∆2Dsos

where we set CV , CE small enough so that 0.4C∆ ≥ F . This proves the lemma.

245

Corollary 7.2.14. For any U, V ∈ Imid such that w(U) > w(V),

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤ 1

2Dsos

Proof. The total number of vertices in G is at most Dsos + 1 since each U ∈ Imid has at

most Dsos vertices. Therefore, for any fixed integer j ≥ 1, the number of paths from V to

U of length j is at most (Dsos + 1)j . Take any path P from V to U . Suppose it has length

j ≥ 1. Note that for all edges e = (V ′, U ′) in E(P), since |U ′| ≥ 1, we have

w(e) ≤ 1

n0.1C∆ε|U ′|∆2Dsos
≤ 1

n0.1C∆ε∆2Dsos

So,
∏
e∈E(P)w(e) ≤

(
1

n0.1C∆ε∆2Dsos

)j
. Therefore, by setting Csos small enough,

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤
Dsos∑
j=1

(Dsos + 1)j
(

1

n0.1C∆ε∆2Dsos

)j
≤ 1

2Dsos∆2D2
sos

We can now prove Lemma 7.2.9.

Lemma 7.2.9. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � ∆2D2
sos

nDsos
Idsym

Proof. For all V ∈ Imid, we have

IdSym,V � 2
∑

U∈Imid:w(U)≥w(V)

 ∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

 1

λU
Mfact(HIdU)

246

Summing this over all V ∈ Imid, we get

IdSym �
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

Mfact(HIdU)

�
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

1

2Dsos∆2D2
sos

Mfact(HIdU)

For any fixed U ∈ Imid, the number of V ∈ Imid such that w(U) ≥ w(V) is at most Dsos.

Therefore,

IdSym �
∑

U∈Imid

1

λU∆2D2
sos
Mfact(HIdU)

=
∑

U∈Imid

1

∆2D2
sos
n|U |Mfact(HIdU)

�
∑

U∈Imid

1

∆2D2
sos
nDsosMfact(HIdU)

where we used the fact that for all U ∈ Imid, we have |U | ≤ Dsos and Mfact(HIdU) � 0.

Proof of Lemma 7.2.10

We restate the lemma for convenience.

Lemma 7.2.10. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ 1

∆2Dsos2DV

247

Proof. We have

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
γ∈ΓU,∗

1

|Aut(U)|c(γ)

∑
σ,σ′∈LUγ :|V (σ)|≤DV ,|V (σ′)|≤DV ,
|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

Bnorm(σ)Bnorm(σ′)HIdUγ (σ, σ′)

The set of σ, σ′ that could appear in the above sum must necessarily be non-trivial and

hence, σ, σ′ ∈ L′U . Then,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
∑

γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)

For σ ∈ L′U , define mσ = DV + 1− |V (σ)| ≥ 1. This is precisely set so that for all γ ∈ ΓU,∗,

we have |V (σ ◦ γ)| > DV if and only if |V (γ)| ≥ |U |+mσ. So, for σ, σ′ ∈ L′U ,

∑
γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)
=

∑
γ∈ΓU,∗:|V (γ)|≥|U |+min(mσ,mσ′)

1

|Aut(U)|c(γ)

≤ 1

2min(mσ,mσ′)−1

Also, for σ, σ′ ∈ L′U , we have |V (σ ◦ σ′)|+min(mσ,mσ′)− 1 ≥ DV . Therefore,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
1

2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

1

n0.5εC∆|V (σ◦σ′)|∆Dsosn|U |2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

1

n0.5εC∆|V (σ◦σ′)|∆Dsos2min(mσ,mσ′)−1

248

where we used Lemma 7.2.11. Using n0.5C∆|V (σ◦σ′)| ≥ n0.1εC∆|V (σ◦σ′)|2|V (σ◦σ′)|,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

1

n0.1εC∆|V (σ◦σ′)|∆Dsos2|V (σ◦σ′)|2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

1

n0.1εC∆|V (σ◦σ′)|∆Dsos2DV

≤
∑

U∈Imid

∑
σ,σ′∈L′U

1

DDsos
sos n0.1εC∆|V (σ◦σ′)|∆2Dsos2DV

where we set Csos small enough so that Dsos = nεCsos ≤ ncεC∆ = 1
∆ . The final step will

be to argue that
∑
U∈Imid

∑
σ,σ′∈L′U

1

DDsossos n0.1C∆ε|V (σ◦σ′)| ≤ 1 which will complete the proof.

But this will follow if we set CV , CE small enough.

7.3 Sparse PCA: Full verification

In this section, we will prove all the bounds required to prove Theorem 4.4.1.

Theorem 4.4.1. There exists a constant C > 0 such that for all sufficiently small constants

ε > 0, if m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 , and there exists a constant A such that 0 < A < 1
4 ,

d4A ≤ k ≤ d1−Aε, and
√
λ√
k
≤ d−Aε, then with high probability, the candidate moment matrix

Λ given by pseudo-calibration for degree dCε Sum-of-Squares is PSD.

In particular, we will use ?? where we choose ε in the theorem, not to be confused with

the ε in Theorem 4.4.1, to be an arbitrarily small constant.

To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.

Definition 7.3.1. Define n = max(d,m).

Remark 7.3.2. The above definition conforms with the notation used in ??. So, we can use

the bounds as stated there.

249

Lemma 7.3.3. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

Lemma 7.3.4. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

Lemma 7.3.5. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Corollary 7.3.6. With high probability, Λ � 0.

Proof. This follows by invoking ?? whose conditions follow from Lemma 6.4.11, Lemma 7.3.3,

Lemma 7.3.4, and Lemma 7.3.5.

7.3.1 Proof of Lemma 7.3.3

Lemma 7.3.7. Suppose 0 < A < 1
4 is a constant such that

√
λ√
k
≤ d−Aε and 1√

k
≤ d−2A.

For all m such that m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 , for all U ∈ Imid and τ ∈MU , suppose degτ (i) is

even for all i ∈ V (τ) \ Uτ \ Vτ , then

√
d
|τ |1−|Uτ |1√

m
|τ |2−|Uτ |2S(τ) ≤

∏
j∈V2(τ)\Uτ\Vτ

(degτ (j)− 1)!! · 1

d
Aε
∑
e∈E(τ) le

250

Proof. Let r1 = |τ |1 − |Uτ |1, r2 = |τ |2 − |Uτ |2. Since ∆ ≤ 1, it suffices to prove

E :=
√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)∑
e∈E(τ) le

≤ 1

d
Aε
∑
e∈E(τ) le

We will need the following claim.

Claim 7.3.8.
∑
e∈E(τ) le ≥ 2 max(r1, r2).

Proof. We will first prove
∑
e∈E(τ) le ≥ 2r1. For any vertex i ∈ V1(τ) \ Uτ \ Vτ , degτ (i)

is even and is not 0, hence, degτ (i) ≥ 2. Any vertex i ∈ Uτ \ Vτ cannot have degτ (i) = 0

otherwise Uτ \ {i} is a vertex separator of strictly smaller weight than Uτ , which is not

possible, hence, degτ (i) ≥ 1. Similarly, for i ∈ Vτ \ Uτ , degτ (i) ≥ 1. Also, since Hτ is

bipartite, we have
∑
i∈V1(τ) deg

τ (i) =
∑
j∈V2(τ) deg

τ (j) =
∑
e∈E(τ) le. Consider

∑
e∈E(τ)

le =
∑

i∈V1(τ)

degτ (i)

≥
∑

i∈V1(τ)\Uτ\Vτ

degτ (i) +
∑

i∈(Uτ)1\Vτ

degτ (i) +
∑

i∈(Vτ)1\Uτ

degτ (i)

≥ 2|V1(τ) \ Uτ \ Vτ |+ |(Uτ)1 \ Vτ |+ |(Vτ)1 \ Uτ |

= 2r1

We can similarly prove
∑
e∈E(τ) le ≥ 2r2

To illustrate the main idea, we will start by proving the weaker bound E ≤ 1. Observe

that our assumptions implym ≤ d
λ2 ,m ≤ k2

λ2 and also, E ≤
√
d
r1√mr2

(
k
d

)r1 (√λ√
k

)2 max(r1,r2)

where we used the fact that
√
λ√
k
≤ d−Aε ≤ 1.

Claim 7.3.9. For integers r1, r2 ≥ 0, if m ≤ d
λ2 and m ≤ k2

λ2 , then,

√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)2 max(r1,r2)

≤ 1

251

Proof. We will consider the cases r1 ≥ r2 and r1 < r2 separately. If r1 ≥ r2, we have

√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)2r1

≤
√
d
r1

(√
d

λ

)r2 (
k

d

)r1 (√λ√
k

)2r1

=

(
λ√
d

)r1−r2
≤
(

1√
m

)r1−r2
≤ 1

And if r1 < r2, we have

√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)2r2

=
√
d
r1√

m
r2−r1√mr1

(
k

d

)r1 (√λ√
k

)2r2

≤
√
d
r1
(
k

λ

)r2−r1 (√d
λ

)r1 (
k

d

)r1 (√λ√
k

)2r2

= 1

For the desired bounds, we mimic this argument while carefully keeping track of factors

of dε.

Claim 7.3.10. For integers r1, r2 ≥ 0 and an integer r ≥ 2 max(r1, r2), if m ≤ d1−ε

λ2 and

m ≤ k2−ε

λ2 , then,

√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)r
≤
(

1

dAε

)r

252

Proof. If r1 ≥ r2,

E =
√
d
r1√

m
r2
(
k

d

)r1 (√λ√
k

)2r1
(√

λ√
k

)r−2r1

≤
√
d
r1

(√
d

1−ε

λ

)r2 (
k

d

)r1 (√λ√
k

)2r1
(√

λ√
k

)r−2r1

=

(
λ

√
d

1−ε

)r1−r2 (
1√
d

)εr1 (√λ√
k

)r−2r1

≤
(

1√
m

)r1−r2 (1√
d

)εr1 (1

dAε

)r−2r1

≤
(

1

d2A

)εr1 (1

dAε

)r−2r1

=

(
1

dAε

)r

And if r1 < r2,

E =
√
d
r1√

m
r2−r1√mr1

(
k

d

)r1 (√λ√
k

)2r2
(√

λ√
k

)r−2r2

≤
√
d
r1

(√
k

2−ε

λ

)r2−r1 (√
d

1−ε

λ

)r1 (
k

d

)r1 (√λ√
k

)2r2
(√

λ√
k

)r−2r2

=

(√
k√
d

)εr1 (
1√
k

)εr2 (√λ√
k

)r−2r2

≤
(

1√
k

)εr2 (√λ√
k

)r−2r2

≤
(

1

d2A

)εr2 (1

dAε

)r−2r2

≤
(

1

dAε

)∑
e∈E(τ) le

The result follows by setting r =
∑
e∈E(τ) le in the above claim.

253

Corollary 7.3.11. For all U ∈ Imid and τ ∈MU , we have

c(τ)Bnorm(τ)S(τ)R(τ) ≤ 1

Proof. First, note that if degτ (i) is odd for any vertex i ∈ V (τ) \Uτ \Vτ , then S(τ) = 0 and

the inequality is true. So, assume that degτ (i) is even for all i ∈ V (τ) \ Uτ \ Vτ .

Since τ is a proper middle shape, we have w(Iτ) = 0 and w(Sτ,min) = w(Uτ). This

implies

n
w(V (τ))+w(Iτ)−w(Sτ,min)

2 =
√
d
|τ |1−|Uτ |1√

m
|τ |2−|Uτ |2

As was observed in the proof of Lemma 7.3.7, every vertex i ∈ V (τ)\Uτ or i ∈ V (τ)\Vτ
has degτ (i) ≥ 1 and hence, |V (τ)\Uτ |+|V (τ)\Vτ | ≤ 4

∑
e∈E(τ) le. Also, q = dO(1)·ε(CV +CE).

We can set CV , CE sufficiently small so that

c(τ)Bnorm(τ)S(τ)R(τ) = 100(6DV)|Uτ\Vτ |+|Vτ\Uτ |+2|E(τ)|4|V (τ)\(Uτ∪Vτ)|

· 2e(6qDV)|V (τ)\Uτ |+|V (τ)\Vτ |
∏

e∈E(τ)

(400D2
VD

2
Eq)

le

·
√
d
|τ |1−|Uτ |1√

m
|τ |2−|Uτ |2

S(τ)(Cdisc
√
DE)

∑
j∈(Uτ)2∪(Vτ)2

degτ (j)

≤ dO(1)·(CV +CE)·ε
∑
e∈E(τ) le ·

∏
j∈V2(τ)\V2(Uτ)\V2(Vτ)

(degτ (j)− 1)!! · 1

dAε
∑
e∈E(τ) le

≤ dO(1)·(CV +CE)·ε
∑
e∈E(τ) le · (DVDE)

∑
e∈E(τ) le · 1

dAε
∑
e∈E(τ) le

≤ 1

We can now prove Lemma 7.3.3.

Lemma 7.3.3. For all U ∈ Imid and τ ∈MU ,

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU

 � 0

254

Proof. We have

 1
|Aut(U)|c(τ)

HIdU Bnorm(τ)Hτ

Bnorm(τ)HT
τ

1
|Aut(U)|c(τ)

HIdU


=


(

1
|Aut(U)|c(τ)

− S(τ)R(τ)Bnorm(τ)
|Aut(U)|

)
HIdU 0

0
(

1
|Aut(U)|c(τ)

− S(τ)R(τ)Bnorm(τ)
|Aut(U)|

)
HIdU


+Bnorm(τ)

S(τ)R(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)R(τ)
|Aut(U)|HIdU



By Lemma 6.4.15,

S(τ)R(τ)
|Aut(U)|HIdU Hτ

HT
τ

S(τ)R(τ)
|Aut(U)|HIdU

 � 0, so the second term above is posi-

tive semidefinite. For the first term, by Lemma 6.4.11, HIdU � 0 and by Corollary 7.3.11,

1
|Aut(U)|c(τ)

− S(τ)R(τ)Bnorm(τ)
|Aut(U)| ≥ 0, which proves that the first term is also positive semidef-

inite.

7.3.2 Proof of Lemma 7.3.4

Lemma 7.3.12. Suppose 0 < A < 1
4 is a constant such that

√
λ√
k
≤ d−Aε, 1√

k
≤ d−2A and

k
d ≤ d−Aε. For all m such that m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 , for all U, V ∈ Imid where w(U) > w(V)

and for all γ ∈ ΓU,V ,

nw(V (γ)\Uγ)S(γ)2 ≤

 ∏
j∈V2(γ)\Uγ\Vγ

(degγ(j)− 1)!!

2

1

d
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

for some constant B > 0 that depends only on C∆. In particular, it is independent of CV

and CE.

Proof. Suppose there is a vertex i ∈ V (γ) \ Uγ \ Vγ such that degγ(i) is odd, then S(γ) = 0

and the inequality is true. So, assume degγ(i) is even for all vertices i ∈ V (γ) \Uγ \ Vγ . We

255

have nw(V (γ)\Uγ) = d|γ|1−|Uγ |1m|γ|2−|Uγ |2 . Plugging in S(γ), we get that we have to prove

E := d|γ|1−|Uγ |1m|γ|2−|Uγ |2
(
k

d

)2|γ|1−|Uγ |1−|Vγ |1
∆2|γ|2−|Uγ |2−|Vγ |2

∏
e∈E(γ)

λle

kle
≤ 1

dBε(|V (γ)\(Uγ∩Vγ)|+
∑
e∈E(γ) le)

Let S′ be the set of vertices i ∈ Uγ \Vγ that have degγ(i) ≥ 1. Let e, f be the number of

type 1 vertices and the number of type 2 vertices in S′ respectively. Observe that S′∪(Uγ∩Vγ)

is a vertex separator of γ.

Let g = |Vγ \ Uγ |1 (resp. h = |Vγ \ Uγ |2) be the number of type 1 vertices (resp. type 2

vertices) in Vγ \ Uγ .

We first claim that demf ≥ dgmh. To see this, note that the vertex separator S′ ∪

(Uγ ∩ Vγ) has weight
√
d
e+|Uγ∩Vγ |1√mf+|Uγ∩Vγ |2 . On the other hand, Vγ has weight

√
d
g+|Uγ∩Vγ |1√mh+|Uγ∩Vγ |2 . Since γ is a left shape, Vγ is the unique minimum vertex sepa-

rator and hence,
√
d
e+|Uγ∩Vγ |1√mf+|Uγ∩Vγ |2 ≥

√
d
g+|Uγ∩Vγ |1√mh+|Uγ∩Vγ |2 which implies

demf ≥ dgmh.

Let p = |V (γ) \ (Uγ ∪ Vγ)|1 (resp. q = |V (γ) \ (Uγ ∪ Vγ)|2) be the number of type 1

vertices (resp. type 2 vertices) in V (γ) \ (Uγ ∪ Vγ).

To illustrate the main idea, we will first prove the weaker inequality E ≤ 1. Since ∆ ≤ 1,

it suffices to prove

d|γ|1−|Uγ |1m|γ|2−|Uγ |2
(
k

d

)2|γ|1−|Uγ |1−|Vγ |1 ∏
e∈E(γ)

λle

kle
≤ 1

We have

d|γ|1−|Uγ |1m|γ|2−|Uγ |2 = dp+gmq+h ≤ np+
e+g

2 mq+f+h
2

since demf ≥ dgmh. Also, 2|γ|1 − |Uγ |1 − |Vγ |1 = 2p+ e+ g. So, it suffices to prove

np+
e+g

2 mq+f+h
2

(
k

d

)2p+e+g ∏
e∈E(γ)

(
λ

k

)le
≤ 1

256

We will need the following claim.

Claim 7.3.13.
∑
e∈E(γ) le ≥ max(2p+ e+ g, 2q + f + h)

Proof. Since Hγ is bipartite, we have
∑
e∈E(γ) le =

∑
i∈V1(γ) deg

γ(i) =
∑
i∈V2(γ) deg

γ(i).

Observe that all vertices i ∈ V (γ) \ Uγ \ Vγ have degγ(i) nonzero and even, and hence,

degγ(i) ≥ 2. Then,

∑
e∈E(γ)

le =
∑

i∈V1(γ)

degγ(i)

≥
∑

i∈V1(γ)\Uγ\Vγ

degγ(i) +
∑

i∈(Uγ)1\Vγ

degγ(i) +
∑

i∈(Vγ)1\Uγ

degγ(i)

≥ 2p+ e+ g

Similarly,

∑
e∈E(γ)

le =
∑

i∈V2(γ)

degγ(i)

≥
∑

i∈V2(γ)\Uγ\Vγ

degγ(i) +
∑

i∈(Uγ)2\Vγ

degγ(i) +
∑

i∈(Vγ)2\Uγ

degγ(i)

≥ 2q + f + h

Therefore,
∑
e∈E(γ) le ≥ max(2p+ e+ g, 2q + f + h).

Now, let r1 = p + e+g
2 , r2 = q + f+h

2 . Then,
∑
e∈E(γ) le ≥ 2 max(r1, r2) and we wish to

prove

dr1mr2

(
k

d

)2r1
(
λ

k

)2 max(r1,r2)

≤ 1

This expression simply follows by squaring Claim 7.3.9.

257

Now, to prove that E ≤ 1

d
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le) , we mimic this argument while

carefully keeping track of factors of dε. Again, using demf ≥ dgmh, it suffices to prove that

dp+
e+g

2 mq+f+h
2

(
k

d

)2|γ|1−|Uγ |1−|Vγ |1
∆2|γ|2−|Uγ |2−|Vγ |2

∏
e∈E(γ)

λle

kle
≤ 1

d
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

The idea is that the dBε decay for the edges are obtained from the stronger assumption on

m, namely m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 . And the dBε decay for the type 1 vertices of V (γ)\(Uγ∩Vγ)

are obtained both from the stronger assumption on m as well as the factors of kd , the latter

especially useful for the degree 0 vertices. Finally, the dBε decay for the type 2 vertices of

V (γ) \ (Uγ ∩ Vγ) are obtained from the factors of ∆.

Indeed, note that for a constantB that depends on C∆, ∆2|γ|2−|Uγ |2−|Vγ |2 ≤ d−Bε|V (γ)\(Uγ∩Vγ)|2 .

So, we would be done if we prove

dp+
e+g

2 mq+f+h
2

(
k

d

)2|γ|1−|Uγ |1−|Vγ |1 (λ
k

)∑
e∈E(γ) le

≤ 1

d
Bε(|V (γ)\(Uγ∩Vγ)|1+

∑
e∈E(γ) le)

Let c0 be the number of type 1 vertices i in V (γ) \ (Uγ ∩ Vγ) such that degγ(i) = 0.

Since they have degree 0, they must be in (Uγ)1 \ Vγ . Also, we have 2|γ|1 − |Uγ |1 − |Vγ |1 =

2p+e+g+c0 and hence,
(
k
d

)2|γ|1−|Uγ |1−|Vγ |1
=
(
k
d

)2p+e+g+c0
. For these degree 0 vertices,

we have that the factors of kd ≤ d−Aε offer a decay of 1
dBε

. Therefore, it suffices to prove

dp+
e+g

2 mq+f+h
2

(
k

d

)2p+e+g (λ
k

)∑
e∈E(γ) le

≤ 1

d
Bε(p+q+e+f+g+h)+

∑
e∈E(γ) le)

for a constant B > 0. Observe that p+ q + e+ f + g + h ≤ 2(
∑
e∈E(γ) le). Therefore, using

the notation r1 = p+ e+g
2 , r2 = q + f+h

2 , it suffices to prove

dr1mr2

(
k

d

)2r1
(
λ

k

)∑
e∈E(γ) le

≤ 1

d
Bε
∑
e∈E(γ) le

258

for a constant B > 0. But this follows by squaring Claim 7.3.10 where we set r =
∑
e∈E(γ) le.

Remark 7.3.14. In the above bounds, note that there is a decay of dBε for each vertex in

V (γ) \ (Uγ ∩ Vγ). One of the main technical reasons for introducing the slack parameter

C∆ in the planted distribution was to introduce this decay, which is needed in the current

machinery.

We can now prove Lemma 7.3.4.

Lemma 7.3.4. For all U, V ∈ Imid where w(U) > w(V) and all γ ∈ ΓU,V ,

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� H ′γ

Proof. By Lemma 6.4.17, we have

c(γ)2N(γ)2B(γ)2H
−γ,γ
IdV

� c(γ)2N(γ)2B(γ)2S(γ)2R(γ)2 |Aut(U)|
|Aut(V)|

H ′γ

Using the same proof as in Lemma 6.4.11, we can see that H ′γ � 0. Therefore, it suffices to

prove that

c(γ)2N(γ)2B(γ)2S(γ)2R(γ)2 |Aut(U)|
|Aut(V)|

≤ 1

Since U, V ∈ Imid, Aut(U) = |U |1!|U |2!, Aut(V) = |V |1!|V |2!. Therefore,
|Aut(U)|
|Aut(V)| =

|U |1!|U |2!
|V |1!|V |2!

≤ D
|Uγ\Vγ |
V . Also, |E(γ)| ≤

∑
e∈E(γ) le and q = dO(1)·ε(CV +CE). Note that

R(γ)2 = (Cdisc
√
DE)

2
∑
j∈(Uγ)2∪(Vγ)2

degγ(j) ≤ d
O(1)·εCE ·

∑
e∈E(γ) le

and

 ∏
j∈V2(γ)\Uγ\Vγ

(degγ(j)− 1)!!

2

≤ (DVDE)
2
∑
e∈E(τ) le ≤ d

O(1)·ε(CV +CE)·
∑
e∈E(γ) le

259

Let B be the constant from Lemma 7.3.12. We can set CV , CE sufficiently small so that,

using Lemma 7.3.12,

c(γ)2N(γ)2B(γ)2S(γ)2R(γ)2 |Aut(U)|
|Aut(V)|

≤ 1002(6DV)2|Uγ\Vγ |+2|Vγ\Uγ |+|E(α)|16|V (γ)\(Uγ∪Vγ)|

· (3DV)4|V (γ)\Vγ |+2|V (γ)\Uγ |(6qDV)2|V (γ)\Uγ |+2|V (γ)\Vγ |
∏

e∈E(γ)

(400D2
VD

2
Eq)

2le

· nw(V (γ)\Uγ)S(γ)2d
O(1)·εCE ·

∑
e∈E(γ) le ·D|Uγ\Vγ |V

≤ d
O(1)·ε(CV +CE)·(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le) · nw(V (γ)\Uγ)S(γ)2

≤ d
O(1)·ε(CV +CE)·(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le) · 1

d
Bε(|V (γ)\(Uγ∩Vγ)|+

∑
e∈E(γ) le)

≤ 1

7.3.3 Proof of Lemma 7.3.5

In this section, we will prove Lemma 7.3.5 using the strategy sketched in [149, Section 10].

Lemma 7.3.5. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

In particular, we prove the following lemmas.

Lemma 7.3.15. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

dK1D2
sos
Idsym

260

for a constant K1 > 0 that can depend on C∆.

Lemma 7.3.16. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ dK2Dsos

2DV

for a constant K2 > 0 that can depend on C∆.

If we assume the above lemmas, we can prove Lemma 7.3.5.

Lemma 7.3.5. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

Proof. Let ‖Mα‖ ≤ Bnorm(α) for all α ∈M′. By Lemma 7.3.15,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

dK1D2
sos
Idsym

for a constant K1 > 0. By Lemma 7.3.16,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ dK2Dsos

2DV

for a constant K2 > 0.

We choose Csos sufficiently small so that 1

dK1D
2
sos
≥ 6d

K2Dsos

2DV
which can be satisfied by

setting Csos < K3CV for a sufficiently small constant K3 > 0. Then, since IdSym � 0, using

261

Lemma 7.3.15 and Lemma 7.3.16,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

dK1D2
sos
Idsym

� 6
dK2Dsos

2DV
Idsym

� 6

 ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (H ′γ , HIdU)

|Aut(U)|c(γ)

 Idsym

In the rest of the section, we will prove Lemma 7.3.15 and Lemma 7.3.16.

To begin with, we will need a bound on Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′).

Lemma 7.3.17. Suppose 0 < A < 1
4 is a constant such that

√
λ√
k
≤ d−Aε and 1√

k
≤ d−2A.

Suppose m is such that m ≤ d1−ε

λ2 ,m ≤ k2−ε

λ2 . For all U ∈ Imid and σ, σ′ ∈ LU ,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) ≤ dO(1)Dsos

d0.5Aε|V (σ◦σ′)|

Proof. Suppose there is a vertex i ∈ V (σ) \ Vσ such that degσ(i) + degUσ(i) is odd, then

HIdU (σ, σ′) = 0 and the inequality is true. So, assume that degσ(i) + degUσ(i) is even for

all i ∈ V (σ) \ Vσ. Similarly, assume that degσ
′
(i) + degUσ′ (i) is even for all i ∈ V (σ′) \ Vσ′ .

Also, if ρσ 6= ρσ′ , we will have HIdU (σ, σ′) = 0 and we would be done. So, assume ρσ = ρσ′ .

Let there be e (resp. f) vertices of type 1 (resp. type 2) in V (σ) \ Uσ \ Vσ. Then,

n
w(V (σ))−w(U)

2 =
√
d
|V (σ)|1−|U |1√

m
|V (σ)|2−|U |2

=
√
d
|Uσ|1√

m
|Uσ|2√de

√
m
f

≤ dO(1)Dsos
√
d
e√
m
f

where we used the fact that |Uσ| ≤ Dsos.

262

Let there be g (resp. h) vertices of type 1 (resp. type 2) in V (σ′) \ Uσ′ \ Vσ′ . Then,

similarly, n
w(V (σ′))−w(U)

2 ≤ dO(1)Dsos
√
d
g√

mh.

Let α = σ ◦ σ′. Since all vertices in V (α) \ Uα \ Vα have degree at least 2, we have∑
e∈E(α) le ≥

∑
i∈V1(α)\Uα\Vα deg

α(i) ≥ 2(e+ g). Similarly,
∑
e∈E(α) le ≥ 2(f + h). There-

fore, by setting r1 = e+ g, r2 = f + h in Claim 7.3.10, we have

√
d
e+g√

m
f+h

(
k

d

)e+g ∏
e∈E(α)

√
λ
le

√
k
le
≤ 1

d
Aε
∑
e∈E(α) le

Also,
(
k
d

)|α|1
≤
(
k
d

)e+g
and

∏
j∈V2(α)(deg

α(j)− 1)!! ≤ d
εCV

∑
e∈E(α) le . Therefore,

n
w(V (σ))−w(U)

2 n
w(V (σ′))−w(U)

2 HIdU (σ, σ′)

≤ dO(1)Dsos
√
d
e√
m
f
dO(1)Dsos

√
d
g√

m
h

· 1

|Aut(U)|

(
1√
k

)deg(α)(k
d

)|α|1
∆|α|2

∏
j∈V2(α)

(degα(j)− 1)!!
∏

e∈E(α)

√
λ
le

√
k
le

≤ dO(1)Dsosd
εCV

∑
e∈E(α) le

√
d
e+g√

m
f+h

(
k

d

)e+g ∏
e∈E(α)

√
λ
le

√
k
le

≤ dO(1)Dsosd
εCV

∑
e∈E(α) le 1

d
Aε
∑
e∈E(α) le

Now, observe that since all vertices in V (α) \ Uα \ Vα have degree at least 1, |V (α)| ≤
2Dsos + 2

∑
e∈E(α) le. So, by setting CV , CE sufficiently small,

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′) = 2e(6qDV)|V (σ)\Uσ|+|V (σ)\Vσ|
∏

e∈E(σ)

(400D2
VD

2
Eq)

len
w(V (σ))−w(U)

2

· 2e(6qDV)|V (σ′)\Uσ′ |+|V (σ′)\Vσ′ |
∏

e∈E(σ′)

(400D2
VD

2
Eq)

len
w(V (σ′))−w(U)

2

·HIdU (σ, σ′)

≤ dO(1)·ε(CV +CE)·(|V (α)|+
∑
e∈E(α) le)dO(1)DsosdεCV

∑
e∈E(α) le

1

dAε
∑
e∈E(α) le

≤ dO(1)Dsos

d0.5Aε|V (α)|

263

Proof of Lemma 7.3.15

To prove Lemma 7.3.15, we will use the strategy from [149, Section 10]. We will also use the

notation from that section. We recall that for U ∈ Imid, L′U ⊂ LU was the set of non-trivial

shapes in LU .

Proposition 7.3.18. For V ∈ Imid,

λV =
∆|V |2

d|V |1k|V |2

Proof. We have λV = |Aut(V)|HIdV (IdV , IdV) =
(

1√
k

)2|V | (
k
d

)|V |1
∆|V |2 = ∆|V |2

d|V |1k|V |2
.

Corollary 7.3.19. λV ≥ 1
dO(1)Dsos

Lemma 7.3.20. For any edge e = (V, U) in G, we have

w(e) ≤ dO(1)Dsos

d0.1Aε|V (σ◦σ′)|

Proof. Let e = (V, U) be an edge in G. Then, w(U) > w(V) and w(e) =
2W (U,V)

λV
. Using

264

Lemma 7.3.17, we have

2W (U, V) =
2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)

≤ 2

|Aut(U)|
∑

σ∈LV ,Uσ=U

∑
σ′∈LV ,Uσ′ 6=V

dO(1)Dsos

d0.5Aε|V (σ◦σ′)|

≤
∑

σ,σ′∈L′V

2dO(1)Dsos

d0.5Aε|V (σ◦σ′)|

≤
∑

σ,σ′∈L′V

dO(1)Dsos

d0.1Aε|V (σ◦σ′)|DDsos
sos dFε|V (σ◦σ′)|

≤ dO(1)Dsos

d0.1Aε|V (σ◦σ′)|

∑
σ,σ′∈L′V

1

DDsos
sos dFε|V (σ◦σ′)|

≤ dO(1)Dsos

d0.1Aε|V (σ◦σ′)|

≤ λV d
O(1)Dsos

d0.1Aε|V (σ◦σ′)|

where we set CV , CE small enough. Rearranging proves the lemma.

Corollary 7.3.21. For any U, V ∈ Imid such that w(U) > w(V),

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤ dO(1)D2
sos

Proof. The total number of vertices in G is at most (Dsos + 1)2 since each U ∈ Imid has

at most 2 index shape pieces corresponding to each type and each index shape piece has at

most Dsos vertices. Therefore, for any fixed integer j ≥ 1, the number of paths from V to

U of length j is at most (Dsos + 1)2j . Take any path P from V to U . Suppose it has length

j ≥ 1. Note that for all edges e = (V ′, U ′) in E(P), since |U ′| ≥ 1, we have

w(e) ≤ dO(1)Dsos

d0.1Aε|U ′| ≤
dO(1)Dsos

d0.1Aε

265

So,
∏
e∈E(P)w(e) ≤

(
dO(1)Dsos

d0.1Aε

)j
. Therefore, by setting Csos small enough,

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e) ≤
(Dsos+1)2∑

j=1

(Dsos + 1)2j

(
dO(1)Dsos

d0.1Aε

)j

≤ dO(1)D2
sos

We can now prove Lemma 7.3.15.

Lemma 7.3.15. Whenever ‖Mα‖ ≤ Bnorm(α) for all α ∈M′,

∑
U∈Imid

M
fact
IdU

(HIdU) � 1

dK1D2
sos
Idsym

for a constant K1 > 0 that can depend on C∆.

Proof. For all V ∈ Imid, we have

IdSym,V � 2
∑

U∈Imid:w(U)≥w(V)

 ∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

 1

λU
Mfact(HIdU)

Summing this over all V ∈ Imid, we get

IdSym �
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

∑
P :P is a path from V to U in G

∏
e∈E(P)

w(e)

Mfact(HIdU)

�
∑

U∈Imid

2

λU

 ∑
V ∈Imid:w(U)≥w(V)

dO(1)D2
sos

Mfact(HIdU)

For any fixed U ∈ Imid, the number of V ∈ Imid such that w(U) ≥ w(V) is at most

266

(Dsos + 1)2. Also, λU ≥ 1
dO(1)Dsos

for all U ∈ Imid. Therefore,

IdSym �
∑

U∈Imid

2

λU
(Dsos + 1)2dO(1)D2

sosMfact(HIdU)

�
∑

U∈Imid

dO(1)D2
sosMfact(HIdU)

where we used the fact that for all U ∈ Imid, Mfact(HIdU) � 0.

Proof of Lemma 7.3.16

We restate the lemma for convenience.

Lemma 7.3.16. ∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤ dK2Dsos

2DV

for a constant K2 > 0 that can depend on C∆.

Proof. We have

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
γ∈ΓU,∗

1

|Aut(U)|c(γ)

∑
σ,σ′∈LUγ :|V (σ)|≤DV ,|V (σ′)|≤DV ,
|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

Bnorm(σ)Bnorm(σ′)HIdUγ (σ, σ′)

The set of σ, σ′ that could appear in the above sum must necessarily be non-trivial and

hence, σ, σ′ ∈ L′U . Then,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)

=
∑

U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
∑

γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)

267

For σ ∈ L′U , define mσ = DV + 1 − |V (σ)| ≥ 1. This is precisely set so that for all

γ ∈ ΓU,∗, we have |V (σ ◦ γ)| > DV if and only if |V (γ)| ≥ |U |+mσ. So, for σ, σ′ ∈ L′U ,

∑
γ∈ΓU,∗:|V (σ◦γ)|>DV or |V (σ′◦γ)|>DV

1

|Aut(U)|c(γ)
=

∑
γ∈ΓU,∗:|V (γ)|≥|U |+min(mσ,mσ′)

1

|Aut(U)|c(γ)

≤ 1

2min(mσ,mσ′)−1

Also, for σ, σ′ ∈ L′U , we have |V (σ ◦ σ′)|+min(mσ,mσ′)− 1 ≥ DV . Therefore,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

Bnorm(σ)Bnorm(σ′)HIdU (σ, σ′)
1

2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

dO(1)Dsos

d0.5Aε|V (σ◦σ′)|2min(mσ,mσ′)−1

where we used Lemma 7.3.17. Using d0.5Aε|V (σ◦σ′)| ≥ d0.1Aε|V (σ◦σ′)|2|V (σ◦σ′)|,

∑
U∈Imid

∑
γ∈ΓU,∗

dIdU (HIdU , H
′
γ)

|Aut(U)|c(γ)
≤

∑
U∈Imid

∑
σ,σ′∈L′U

dO(1)Dsos

d0.1Aε|V (σ◦σ′)|2|V (σ◦σ′)|2min(mσ,mσ′)−1

≤
∑

U∈Imid

∑
σ,σ′∈L′U

dO(1)Dsos

d0.1Aε|V (σ◦σ′)|2DV

≤
∑

U∈Imid

∑
σ,σ′∈L′U

dO(1)Dsos

DDsos
sos d0.1Aε|V (σ◦σ′)|2DV

The final step will be to argue that
∑
U∈Imid

∑
σ,σ′∈L′U

1
DDsossos d0.1Aε|V (σ◦σ′)| ≤ 1 which will

complete the proof. But this will follow if we set CV , CE small enough.

268

CHAPTER 8

FOLLOWUP AND FUTURE WORK

In this chapter, we go over some followup works that are not covered in this dissertation and

also suggest directions for future work.

8.1 Nonlinear concentration for non-product distributions

Our techniques in Chapter 2 apply to a collection of random variables that are sampled

independently of each other. A natural question is to ask if we can generalize to the case

when they are not independent. For example, this is useful when instead of analyzing Erdős-

Rényi random graphs, we wish to analyze uniform d-regular graphs. Such a generalization

seems extremely likely because our proof techniques essentially requires a Markov Chain

that mixes rapidly to the given distribution, and then we can recursively apply the Poincaré

inequality. We leave this for future work.

8.2 Sum-of-Squares lower bounds

In this dissertation, we saw several SoS lower bounds and while they build on fundamental

conceptual blocks such as the nonlinear concentration results we show, and simple heuristics

like pseudocalibration, an important technical barrier in the current proofs is that the proofs

are highly technical and have many moving parts. It’s an important research question to

understand if the proofs can be simplified. Apart from enabling a better understanding of

the SoS hierarchy, this will also help us understand the computational barriers of several

fundamental problems in computer science. Examples of such problems follow.

269

8.2.1 Sparse independent set

In a followup work [95], we prove SoS lower bounds for the important problem of maximum

independent set on sparse Erdős-Rényi random graphs.

An important aspect of the SoS lower bounds until this work (including the ones in this

dissertation) is that they apply for the so-called dense setting, which corresponds to cases

when the input distribution can be specified by a collection of independent Rademacher or

Gaussian variables. In the case of planted clique, this corresponds to the case when the

input is a random graph distributed according to Gn,12
i.e. specified by a collection of

(n
2

)
independent Rademacher variables. Similarly, the tensor PCA and sparse PCA lower bounds

we show in this dissertation apply when the input tensor has independent Rademacher or

Gaussian entries. The techniques used to establish these lower bounds have proved difficult

to extend to the case when the input distribution naturally corresponds to a sparse graph

(or more generally, when it is specified by a collection of independent sub-gaussian variables,

with Orlicz norm ω(1) instead of O(1)).

In [95], we extend lower bound technology for SoS to the sparse setting, where the input is

a graph with average degree d ≤ n/2. We use as a case study the fundamental combinatorial

optimization problem of independent set. For the dense case d = n/2, finding an independent

set is equivalent to finding a clique and the paper [10] shows an average-case lower bound

against the Sum-of-Squares algorithm. We extend the techniques used in this dissertation,

namely pseudocalibration, graph matrices, and the approximate decomposition into positive

semidefinite matrices, in order to show the first average-case lower bound for the sparse

setting. We hope that the techniques developed here offer a gateway for the analysis of SoS

on other sparse problems.

Sample G ∼ G
n, dn

as an Erdős-Rényi random graph with average degree d, where we

think of d � n. Specializing to the problem of independent set, a maximum independent

set in G has size:

270

Fact 8.2.1 ([44, 46, 52]). W.h.p. the max independent set in G has size (1+od(1)) · 2 ln d
d ·n.

The value of the degree-2 SoS relaxation for independent set equals the Lovász ϑ function,

which is an upper bound on the independence number α(G), by virtue of being a relaxation.

For random graphs G ∼ Gn,d/n this value is larger by a factor of about
√
d than the true

value of α(G) with high probability.

Fact 8.2.2 ([43]). W.h.p. ϑ(G) = Θ(n√
d
).

In [95], we prove that the value of higher-degree SoS is also on the order of n/
√
d, rather

than n/d, and thereby demonstrate that the information-computation gap against basic

SDP/spectral algorithms persists against higher-degree SoS.

In considering relaxations for independent set of a graph G = (V,E), with variables xv

being the 0/1 indicators of the independent set, the SoS relaxation searches for pseudoex-

pectation operators satisfying the polynomial constraints

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 .

The objective value of the convex relaxation is given by the quantity Ẽ[
∑
v∈V xv] =

∑
v∈V Ẽ[xv].

For the results below, we say that an event occurs with high probability (w.h.p.) when it

occurs with probability at least 1 − O(1/nc) for some c > 0. The following theorem states

our main result.

Theorem 8.2.3. There is an absolute constant c0 ∈ N such that for sufficiently large n ∈ N

and d ∈ [(log n)2, n0.5], and parameters k,DSoS satisfying

k ≤ n

Dc0
SoS · log n · d1/2

,

it holds w.h.p. for G = (V,E) ∼ Gn, d/n that there exists a degree-DSoS pseudoexpectation

271

satisfying

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 ,

and objective value Ẽ[
∑
v∈V xv] ≥ (1− o(1))k.

Remark 8.2.4. This is a non-trivial lower bound whenever DSoS ≤
(
d1/2

log n

)1/c0
.

Remark 8.2.5. It suffices to set c0 = 20 for our current proof. We did not optimize the

tradeoff in DSoS with k, but we did optimize the log factor (with the hope of eventually

removing it).

Remark 8.2.6. Using the same technique, we can prove an nΩ(ε) SoS-degree lower bound

for all d ∈ [
√
n, n1−ε].

For nε ≤ d ≤ n0.5, the theorem gives a polynomial nδ SoS-degree lower bound. For

smaller d, the bound is still strong against low-degree SoS, but it becomes trivial as DSoS

approaches (d1/2/ log n)1/c0 or d approaches (log n)2 since k matches the size of the maximum

independent set in G, hence there is an actual distribution over independent sets of this size

(the expectation operator for which is trivially is also a pseudoexpectation operator).

The above bound says nothing about the “almost dense” regime d ∈ [n1−ε, n/2]. To

handle this regime, we observe that our techniques, along with the ideas from the Ω(log n)-

degree SoS bound from [10] for the dense case, prove a lower bound for any degree d ≥ nε.

Theorem 8.2.7. For any ε1, ε2 > 0 there is δ > 0, such that for d ∈ [nε1 , n/2] and

k ≤ n
d1/2+ε2

, it holds w.h.p. for G = (V,E) ∼ Gn, d/n that there exists a degree-(δ log d)

pseudoexpectation satisfying

∀v ∈ V. x2
v = xv and ∀(u, v) ∈ E. xuxv = 0 ,

and objective value Ẽ[
∑
v∈V xv] ≥ (1− o(1))k.

272

In particular, these theorems rule out polynomial-time certification (i.e. constant degree

SoS) for any d ≥ polylog(n).

One of the important conceptual innovations in this work was to improve our understand-

ing of sparse graph matrices by obtaining better norm bounds, which was done in Chapter 2.

We also employ several other techniques such as pseudocalibration with connected trunca-

tion, conditioning and generalized intersection tradeoff lemmas.

8.2.2 Planted Affine Planes and Maximum Cut

We conjecture that for the Planted Affine Planes problem, defined in Chapter 5, the problem

remains difficult for SoS even with the number of vectors increased to m = n2−ε.

Conjecture 8.2.8. Theorem 4.1.4 holds with the bound on the number of sampled vectors

m loosened to m ≤ n2−ε.

The reason for the upper bound comes from Remark 5.4.9. As we saw in Chapter 3,

analyzing Ẽ[1] is an established way to hypothesize about the power of SoS. We will revisit

this point in the next section.

Dual to the Planted Affine Planes problem, we conjecture a similar bound for Planted

Boolean Vector problem whenever d ≥ n1/2+ε.

Conjecture 8.2.9. Theorem 4.1.5 holds with the bound on the dimension p of a random

subspace loosened to p ≥ n1/2+ε.

We remark that recent work [186] has exhibited a polynomial time for the search variant

of Planted Affine Planes for m ≥ n+ 1, as opposed to prior known algorithms that required

m � n2, some of which were SoS based. Their algorithm is lattice-based, uses the special

algebraic structure present in the problem, and is not captured by SoS. It’s not clear if their

search algorithm can be used for certification.

273

We conjecture that the Planted Boolean Vector problem/Planted Affine Planes problem

is still hard for SoS if the input is no longer i.i.d. Gaussian or boolean entries, but is drawn

from a “random enough” distribution. For example, if in the random instance of PAP the

vectors du are i.i.d. samples from Sn, or a random orthonormal system, degree nδ SoS should

still believe the instance is satisfiable (after appropriate normalization of v). Or, taking the

view of Planted Boolean Vector, if the subspace is the eigenspace of the bottom eigenvectors

of a random adjacency matrix, the instance should still be difficult. This last setting arises

in Maximum Cut, for which we conjecture the following.

Conjecture 8.2.10. Let d ≥ 3, and let G be a random d-regular graph on n vertices. For

some δ > 0, w.h.p. there is a degree-nδ pseudoexpectation operator Ẽ on boolean variables xi

with maximum cut value at least

1

2
+

√
d− 1

d
(1− od,n(1))

The above expression is w.h.p. the value of the spectral relaxation for Maximum Cut,

therefore qualitatively this conjecture expresses that degree nδ SoS cannot significantly

tighten the basic spectral relaxation.

We should remark that, with respect to the goal of showing SoS cannot significantly

outperform the Goemans-Williamson relaxation, random instances are not integrality gap

instances. The main difficulty in comparing (even degree 4) SoS to the Goemans-Williamson

algorithm seems to be the lack of a candidate hard input distribution.

Evidence for this conjecture comes from the fact that the only property required of the

random inputs d1, . . . , dm was that norm bounds hold for the graph matrix with Hermite

polynomial entries. When the variables {du,i} are i.i.d from some other distribution, if we

use graph matrices for the orthonormal polynomials under the distribution and assuming

suitable bounds on the moments of the distribution, the same norm bounds hold [2]. When

du ∈R Sn or another distribution for which the coordinates are not i.i.d, it seems likely that

274

if we use e.g. the spherical harmonics then similar norm bounds hold, but this is not proven.

8.2.3 Unique Games

The famous Unique Games conjecture (UGC) [100] postulates that a graph theory prob-

lem known as the Unique Games problem is NP-hard. This conjecture gained tremendous

traction in the community because of it’s numerous consequences (e.g. [100, 102, 152]))

and connections to various other fields such as metric geometry [104] and discrete Fourier

analysis [103]. An exciting array of recent works [53, 16, 175] has shown that a problem

closely related to unique games, known as 2-to-2 games, is NP-hard. This is an important

step towards proving the UGC and offers evidence that the UGC is true.

On the algorithmic side, there have been various attempts (see for e.g. [179, 37, 5])

to disprove the UGC. In particular, Barak et al. [12] showed that degree 8 SoS can effi-

ciently solve integrality gap instances of the Unique Games problem that were proposed for

linear programs and SDPs considered earlier. This work caused significant interest in the

community, since it suggests that SoS might be a way to refute the UGC.

Therefore, it’s tremendously important to understand the performance of SoS on the

unique games problem. A good first step would be to understand the performance of SoS

for the problem of maximum cut, which is also a Unique Games problem. In fact, we can

be even more concrete and ask for the performance of SoS for the problem of maximum cut

on random graphs, more precisely Conjecture 8.2.10. Lower bounds were shown for degree 2

and degree 4 in [133, 129] and generalizing their analyses for higher degree SoS is a nontrivial

but important open problem.

8.3 Low degree likelihood ratio hypothesis

As explained in Chapter 3, the low-degree likelihood ratio hypothesis analytically predicts

the computational barriers for hypothesis testing in bounded time, for sufficiently nice dis-

275

tributions. See [91, 116, 79] and references therein for more details. A full proof of this

hypothesis is beyond current techniques, since it’s likely harder than proving say P 6= NP .

But confirming the hypothesis in restricted proof systems is a fascinating and important field

for future research. In particular, building on the notation from Chapter 3, we would like to

prove that for sufficiently nice distributions ν, µ, after pseudo-calibrating, if Ẽ[1] = 1 + o(1),

then there exists an SoS lower bound. Indeed, in this work, we confirm this for several fun-

damental problems. But proving this in general will go a long way towards understanding

the power of bounded-time algorithms.

8.4 Technical improvements

Having covered the general directions for future research, we now specify a few directions

for improving some technical aspects of our results.

8.4.1 Improving parameter dependences

In many of our lower bounds, we require polynomial decay in the Fourier coefficients. For

example, we require a decay of nε for each new Fourier character, where n is the input size.

This is done to handle various other factors that appear in norm bounds when doing the

charging arguments. In the proofs, we term these as vertex or edge decay, corresponding

to how they are encoded in the graph matrix arguments we use. By doing this, we obtain

a slightly weaker lower bound. For example, instead of getting a n1/4 lower bound (upto

polylogarithmic factors) for Tensor PCA, we obtain a n1/4−ε lower bound for any ε > 0. In

general, while they facilitate the proof, it’s not clear that this sort of decay is necessary and

it’s open to find a tighter analysis so as to close the gap from known upper bounds upto a

polylogarithmic factor.

Related to the above discussion, another open problem is to push the degree of SoS higher

in our lower bounds. For example, for the Sherrington-Kirkpatrick lower bound, it’s open

276

to push the SoS degree from nε to Ω(n). Our current techniques do not handle this but we

expect the lower bound to nevertheless hold.

8.4.2 Satisfying constraints exactly

In some of our lower bounds, our planted distributions only approximately satisfy constraints

such as having a subgraph of size k, having a unit vector u, and having u be k-sparse. While

we would like to use planted distributions which satisfy such constraints exactly, the moment

matrix becomes much harder to analyze.

We do resolve it for the Sherrington-Kirkpatrick lower bound by using a rounding tech-

nique. This same issue also appeared in the SoS lower bounds for planted clique [10], which

was fixed in a recent paper by Pang [140]. We leave it to future work to resolve this in

general.

277

REFERENCES

[1] Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm
bounds and applications. abs/1604.03423, 2020.

[2] Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm
bounds and applications. abs/1604.03423, 2020.

[3] Genevera I Allen and Mirjana Maletić-Savatić. Sparse non-negative generalized pca
with applications to metabolomics. Bioinformatics, 27(21):3029–3035, 2011.

[4] Arash A Amini and Martin J Wainwright. High-dimensional analysis of semidefinite
relaxations for sparse principal components. In 2008 IEEE international symposium
on information theory, pages 2454–2458. IEEE, 2008.

[5] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015.

[6] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows and a
√

log n-
approximation to sparsest cut. In Proceedings of the 36th ACM Symposium on Theory
of Computing, 2004.

[7] Jinho Baik, Gérard Ben Arous, Sandrine Péché, et al. Phase transition of the largest
eigenvalue for nonnull complex sample covariance matrices. The Annals of Probability,
33(5):1643–1697, 2005.

[8] Ainesh Bakshi and Adarsh Prasad. Robust linear regression: Optimal rates in poly-
nomial time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 102–115, 2021.

[9] Afonso S. Bandeira, Dmitriy Kunisky, and Alexander S. Wein. Computational hardness
of certifying bounds on constrained pca problems, 2019.

[10] B. Barak, S. B. Hopkins, J. Kelner, P. Kothari, A. Moitra, and A. Potechin. A nearly
tight sum-of-squares lower bound for the planted clique problem. In Proceedings of the
57th IEEE Symposium on Foundations of Computer Science, pages 428–437, 2016.

[11] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner,
David Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their
applications. CoRR, abs/1205.4484, 2012.

[12] Boaz Barak, Fernando GSL Brandao, Aram W Harrow, Jonathan Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their ap-
plications. In Proceedings of the forty-fourth annual ACM symposium on Theory of
computing, pages 307–326, 2012.

278

[13] Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra,
and Aaron Potechin. A nearly tight sum-of-squares lower bound for the planted clique
problem. SIAM Journal on Computing, 48(2):687–735, 2019.

[14] Boaz Barak, Jonathan A Kelner, and David Steurer. Rounding sum-of-squares re-
laxations. In Proceedings of the forty-sixth annual ACM symposium on Theory of
computing, pages 31–40, 2014.

[15] Boaz Barak, Jonathan A Kelner, and David Steurer. Dictionary learning and tensor
decomposition via the sum-of-squares method. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 143–151, 2015.

[16] Boaz Barak, Pravesh K Kothari, and David Steurer. Small-set expansion in shortcode
graph and the 2-to-2 conjecture. arXiv preprint arXiv:1804.08662, 2018.

[17] Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal
algorithms. In ICM, 2014.

[18] Avraham Ben-Aroya, Oded Regev, and Ronald De Wolf. A hypercontractive inequality
for matrix-valued functions with applications to quantum computing and ldcs. In
Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pages
477–486. IEEE, 2008.

[19] Florent Benaych-Georges, Charles Bordenave, and Antti Knowles. Spectral radii of
sparse random matrices. In Annales de l’Institut Henri Poincaré, Probabilités et Statis-
tiques, volume 56, pages 2141–2161. Institut Henri Poincaré, 2020.

[20] Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse
principal component detection. In Conference on Learning Theory, pages 1046–1066,
2013.

[21] Quentin Berthet, Philippe Rigollet, et al. Optimal detection of sparse principal com-
ponents in high dimension. The Annals of Statistics, 41(4):1780–1815, 2013.

[22] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-
jayaraghavan. Detecting high log-densities: an o (n 1/4) approximation for densest
k-subgraph. In Proceedings of the forty-second ACM symposium on Theory of comput-
ing, pages 201–210, 2010.

[23] Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaraghavan,
and Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest
k-subgraph. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 388–405. SIAM, 2012.

[24] Vijay Bhattiprolu, Mrinalkanti Ghosh, Venkatesan Guruswami, Euiwoong Lee, and
Madhur Tulsiani. Weak decoupling, polynomial folds and approximate optimization
over the sphere. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1008–1019. IEEE, 2017.

279

[25] Vijay Bhattiprolu, Venkatesan Guruswami, and Euiwoong Lee. Sum-of-squares certifi-
cates for maxima of random tensors on the sphere. arXiv preprint arXiv:1605.00903,
2016.

[26] K-H Borgwardt. The average number of pivot steps required by the simplex-method
is polynomial. Zeitschrift für Operations Research, 26(1):157–177, 1982.

[27] Karl Heinx Borgwardt. Probabilistic analysis of the simplex method. In DGOR/NSOR,
pages 564–575. Springer, 1988.

[28] Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi, and Pascal Massart. Moment
inequalities for functions of independent random variables. The Annals of Probability,
33(2):514 – 560, 2005.

[29] Fernando GSL Brandao and Aram W Harrow. Quantum de finetti theorems un-
der local measurements with applications. Communications in Mathematical Physics,
353(2):469–506, 2017.

[30] Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hard-
ness for densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341.
SIAM, 2017.

[31] Matthew Brennan and Guy Bresler. Optimal average-case reductions to sparse pca:
From weak assumptions to strong hardness. arXiv preprint arXiv:1902.07380, 2019.

[32] Matthew Brennan, Guy Bresler, Samuel B Hopkins, Jerry Li, and Tselil Schramm.
Statistical query algorithms and low-degree tests are almost equivalent. arXiv preprint
arXiv:2009.06107, 2020.

[33] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational
lower bounds for problems with planted sparse structure. In Conference On Learning
Theory, pages 48–166. PMLR, 2018.

[34] Matthew Brennan, Guy Bresler, and Wasim Huleihel. Universality of computational
lower bounds for submatrix detection. In Conference on Learning Theory, pages 417–
468. PMLR, 2019.

[35] Jonah Brown-Cohen and Prasad Raghavendra. Extended formulation lower bounds for
refuting random csps. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 305–324. SIAM, 2020.

[36] S Charles Brubaker and Santosh S Vempala. Random tensors and planted cliques.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 406–419. Springer, 2009.

280

[37] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algo-
rithms for unique games. In Proceedings of the 38th ACM Symposium on Theory of
Computing, 2006.

[38] Sourav Chatterjee. Concentration inequalities with exchangeable pairs. Stanford Uni-
versity, 2005.

[39] Sourav Chatterjee. Stein’s method for concentration inequalities. arXiv preprint
math/0604352, 2006.

[40] Yudong Chen and Jiaming Xu. Statistical-computational tradeoffs in planted problems
and submatrix localization with a growing number of clusters and submatrices. arXiv
preprint arXiv:1402.1267, 2014.

[41] Eden Chlamtáč and Pasin Manurangsi. Sherali-adams integrality gaps matching the
log-density threshold. arXiv preprint arXiv:1804.07842, 2018.

[42] Hyonho Chun and Sündüz Keleş. Expression quantitative trait loci mapping with
multivariate sparse partial least squares regression. Genetics, 182(1):79–90, 2009.

[43] Amin Coja-Oghlan. The Lovász number of random graphs. Combinatorics, Probability
and Computing, 14(4):439–465, 2005.

[44] Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs.
Random Structures & Algorithms, 47(3):436–486, 2015.

[45] Andrea Crisanti and Tommaso Rizzo. Analysis of the ∞-replica symmetry breaking
solution of the sherrington-kirkpatrick model. Physical Review E, 65(4):046137, 2002.

[46] Varsha Dani and Cristopher Moore. Independent sets in random graphs from the
weighted second moment method. In Approximation, randomization, and combina-
torial optimization, volume 6845 of Lecture Notes in Comput. Sci., pages 472–482.
Springer, Heidelberg, 2011.

[47] George Dantzig. Linear programming and extensions. Princeton university press, 2016.

[48] Amir Dembo, Andrea Montanari, and Subhabrata Sen. Extremal cuts of sparse random
graphs. The Annals of Probability, 45(2):1190–1217, 2017.

[49] Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for
hidden clique and hidden submatrix problems. In Conference on Learning Theory,
pages 523–562. PMLR, 2015.

[50] Yash Deshpande and Andrea Montanari. Sparse pca via covariance thresholding. The
Journal of Machine Learning Research, 17(1):4913–4953, 2016.

281

[51] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds
for robust estimation of high-dimensional gaussians and gaussian mixtures. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
73–84. IEEE, 2017.

[52] Jian Ding, Allan Sly, and Nike Sun. Maximum independent sets on random regular
graphs. Acta Math., 217(2):263–340, 2016.

[53] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof
of the 2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, pages 376–389, 2018.

[54] Tommaso d’Orsi, Pravesh K. Kothari, Gleb Novikov, and David Steurer. Sparse pca:
Algorithms, adversarial perturbations and certificates. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), 2020.

[55] Gábor Elek and Gábor Lippner. Borel oracles. an analytical approach to constant-
time algorithms. Proceedings of the American Mathematical Society, 138(8):2939–2947,
2010.

[56] Zhou Fan and Andrea Montanari. How well do local algorithms solve semidefinite
programs? In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 604–614, 2017.

[57] Uriel Feige and Robert Krauthgamer. Finding and certifying a large hidden clique in
a semirandom graph. Random Structures & Algorithms, 16(2):195–208, 2000.

[58] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algo-
rithmica, 29(3):410–421, 2001.

[59] Uriel Feige, Michael Seltser, et al. On the densest k-subgraph problem. Citeseer, 1997.

[60] Vitaly Feldman. Statistical Query Learning, pages 2090–2095. Springer New York,
New York, NY, 2016.

[61] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh S Vempala, and Ying Xiao.
Statistical algorithms and a lower bound for detecting planted cliques. Journal of the
ACM (JACM), 64(2):1–37, 2017.

[62] Vitaly Feldman, Cristobal Guzman, and Santosh Vempala. Statistical query algo-
rithms for mean vector estimation and stochastic convex optimization. Mathematics
of Operations Research, 2021.

[63] Vitaly Feldman, Will Perkins, and Santosh Vempala. On the complexity of random sat-
isfiability problems with planted solutions. SIAM Journal on Computing, 47(4):1294–
1338, 2018.

282

[64] N. Fleming, P. Kothari, and T. Pitassi. Semialgebraic Proofs and Efficient Algorithm
Design. 2019.

[65] PJ Forrester, NC Snaith, and JJM Verbaarschot. Developments in random matrix
theory. Journal of Physics A: Mathematical and General, 36(12):R1, 2003.

[66] Alan Frieze and Ravi Kannan. A new approach to the planted clique problem. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2008.

[67] Zoltán Füredi and János Komlós. The eigenvalues of random symmetric matrices.
Combinatorica, 1(3):233–241, 1981.

[68] David Gamarnik and Ilias Zadik. The landscape of the planted clique problem: Dense
subgraphs and the overlap gap property. arXiv preprint arXiv:1904.07174, 2019.

[69] Rong Ge and Tengyu Ma. Decomposing overcomplete 3rd order tensors using sum-of-
squares algorithms. arXiv preprint arXiv:1504.05287, 2015.

[70] Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and
Goutham Rajendran. Sum-of-squares lower bounds for sherrington-kirkpatrick via
planted affine planes. In 2020 IEEE 61st Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 954–965. IEEE, 2020.

[71] M. X. Goemans and D. P. Williamson. .878-approximation algorithms for MAX CUT
and MAX 2SAT. In Proceedings of the 26th ACM Symposium on Theory of Computing,
pages 422–431, 1994.

[72] M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995. Preliminary version in Proc. of STOC’94.

[73] Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. computa-
tional complexity, 10(2):139–154, 2001.

[74] Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs
for the parity. Theor. Comput. Sci., 259(1-2):613–622, 2001.

[75] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model.
Communications in mathematical physics, 233(1):1–12, 2003.

[76] Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues,
and approximation schemes for graph partitioning and quadratic integer programming
with psd objectives. In FOCS, pages 482–491, 2011.

[77] Bruce Hajek, Yihong Wu, and Jiaming Xu. Computational lower bounds for commu-
nity detection on random graphs. In Conference on Learning Theory, pages 899–928.
PMLR, 2015.

283

[78] Frank Hansen and Gert K Pedersen. Jensen’s operator inequality. Bulletin of the
London Mathematical Society, 35(4):553–564, 2003.

[79] Justin Holmgren and Alexander S Wein. Counterexamples to the low-degree conjec-
ture. arXiv preprint arXiv:2004.08454, 2020.

[80] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their appli-
cations. Bull. Amer. Math. Soc., 43(04):439–562, August 2006.

[81] Samuel Hopkins. Statistical inference and the sum of squares method. PhD thesis,
Cornell University, 2018.

[82] Samuel B Hopkins. Mean estimation with sub-gaussian rates in polynomial time. The
Annals of Statistics, 48(2):1193–1213, 2020.

[83] Samuel B Hopkins, Pravesh Kothari, Aaron Henry Potechin, Prasad Raghavendra, and
Tselil Schramm. On the integrality gap of degree-4 sum of squares for planted clique.
ACM Transactions on Algorithms (TALG), 14(3):1–31, 2018.

[84] Samuel B Hopkins, Pravesh K Kothari, and Aaron Potechin. Sos and planted clique:
Tight analysis of mpw moments at all degrees and an optimal lower bound at degree
four. arXiv preprint arXiv:1507.05230, 2015.

[85] Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghavendra, Tselil
Schramm, and David Steurer. The power of sum-of-squares for detecting hidden struc-
tures. In Proceedings of the 58th IEEE Symposium on Foundations of Computer Sci-
ence, pages 720–731. IEEE, 2017.

[86] Samuel B Hopkins, Tselil Schramm, and Jonathan Shi. A robust spectral algorithm for
overcomplete tensor decomposition. In Conference on Learning Theory, pages 1683–
1722. PMLR, 2019.

[87] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral al-
gorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,
pages 178–191, 2016.

[88] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component
analysis via sum-of-square proofs. In Conference on Learning Theory, pages 956–1006.
PMLR, 2015.

[89] Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component
analysis via sum-of-squares proofs. In Conference on Learning Theory, pages 956–
1006, 2015.

[90] Samuel B Hopkins and David Steurer. Efficient bayesian estimation from few samples:
community detection and related problems. In 2017 IEEE 58th Annual Symposium on
Foundations of Computer Science (FOCS), pages 379–390. IEEE, 2017.

284

[91] Samuel Brink Klevit Hopkins. Statistical inference and the sum of squares method.
2018.

[92] Carlos Hoppen and Nicholas Wormald. Local algorithms, regular graphs of large girth,
and random regular graphs. Combinatorica, 38(3):619–664, 2018.

[93] De Huang and Joel A. Tropp. From Poincaré inequalities to nonlinear matrix concen-
tration. Bernoulli, 27(3):1724 – 1744, 2021.

[94] Iain M Johnstone and Arthur Yu Lu. Sparse principal components analysis. arXiv
preprint arXiv:0901.4392, 2009.

[95] Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu.
Sum-of-squares lower bounds for sparse independent set. IEEE 62nd Annual Sympo-
sium on Foundations of Computer Science (FOCS), 2021.

[96] Sushrut Karmalkar, Adam R Klivans, and Pravesh K Kothari. List-decodable linear
regression. arXiv preprint arXiv:1905.05679, 2019.

[97] Richard M Karp. Reducibility among combinatorial problems. In Complexity of com-
puter computations, pages 85–103. Springer, 1972.

[98] R.M. Karp. Reducibility among combinatorial problems. In R.E. Miller and J.W.
Thatcher, editors, Complexity of Computer Computations, pages 85–103. Plenum
Press, 1972.

[99] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of
the ACM (JACM), 45(6):983–1006, 1998.

[100] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
34th ACM Symposium on Theory of Computing, pages 767–775, 2002.

[101] Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

[102] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inap-
proximability results for MAX-CUT and other two-variable CSPs? In Proceedings of
the 45th IEEE Symposium on Foundations of Computer Science, pages 146–154, 2004.

[103] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within
2−ε. In Proceedings of the 18th IEEE Conference on Computational Complexity, 2003.

[104] Subhash Khot and Nisheeth Vishnoi. The unique games conjecture, integrality gap for
cut problems and the embeddability of negative type metrics into `1. In Proceedings of
the 46th IEEE Symposium on Foundations of Computer Science, pages 53–63, 2005.

[105] Bohdan Kivva, Goutham Rajendran, Pradeep Ravikumar, and Bryon Aragam. Learn-
ing latent causal graphs via mixture oracles. 2021.

285

[106] Victor Klee and George J Minty. How good is the simplex algorithm. Inequalities,
3(3):159–175, 1972.

[107] Pravesh Kothari, Ryuhei Mori, Ryan O’Donnell, and David Witmer. Sum of squares
lower bounds for refuting any CSP. In Proceedings of the 49th ACM Symposium on
Theory of Computing, 2017.

[108] Pravesh K Kothari and Peter Manohar. A stress-free sum-of-squares lower bound for
coloring. arXiv preprint arXiv:2105.07517, 2021.

[109] Pravesh K Kothari and Ruta Mehta. Sum-of-squares meets nash: lower bounds for
finding any equilibrium. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1241–1248, 2018.

[110] Pravesh K Kothari and David Steurer. Outlier-robust moment-estimation via sum-of-
squares. arXiv preprint arXiv:1711.11581, 2017.

[111] Robert Krauthgamer, Boaz Nadler, Dan Vilenchik, et al. Do semidefinite relaxations
solve sparse pca up to the information limit? The Annals of Statistics, 43(3):1300–
1322, 2015.

[112] Jean-Louis Krivine. Anneaux préordonnés. Journal d’analyse mathématique,
12(1):307–326, 1964.

[113] Dmitriy Kunisky. Positivity-preserving extensions of sum-of-squares pseudomoments
over the hypercube. arXiv preprint arXiv:2009.07269, 2020.

[114] Dmitriy Kunisky. Spectral Barriers in Certification Problems. PhD thesis, New York
University, 2021.

[115] Dmitriy Kunisky and Afonso S. Bandeira. A tight degree 4 sum-of-squares lower bound
for the sherrington-kirkpatrick hamiltonian. abs/1907.11686, 2019.

[116] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on computational
hardness of hypothesis testing: Predictions using the low-degree likelihood ratio. arXiv
preprint arXiv:1907.11636, 2019.

[117] Jean B Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on optimization, 11(3):796–817, 2001.

[118] Massimo Lauria. Sum of squares and integer programming relaxations. Course at KTH
Royal Institute of Technology.

[119] James R Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 567–576, 2015.

286

[120] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM J. on Optimization, 1(12):166–190, 1991.

[121] Tengyu Ma and Avi Wigderson. Sum-of-squares lower bounds for sparse pca. In
Advances in Neural Information Processing Systems, pages 1612–1620, 2015.

[122] Zongming Ma. Sparse principal component analysis and iterative thresholding. The
Annals of Statistics, 41(2):772–801, 2013.

[123] Angshul Majumdar. Image compression by sparse pca coding in curvelet domain.
Signal, image and video processing, 3(1):27–34, 2009.

[124] Pasin Manurangsi. Almost-polynomial ratio eth-hardness of approximating densest
k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 954–961, 2017.

[125] David W Matula. The largest clique size in a random graph. Department of Computer
Science, Southern Methodist University Dallas, Texas . . . , 1976.

[126] Dhruv Medarametla and Aaron Potechin. Bounds on the norms of uniform low degree
graph matrices. RANDOM, 2016.

[127] Raghu Meka, Aaron Potechin, and Avi Wigderson. Sum-of-squares lower bounds for
planted clique. In Proceedings of the forty-seventh annual ACM symposium on Theory
of computing, pages 87–96, 2015.

[128] Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower
bounds: degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 840–853, 2020.

[129] Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower
bounds: degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 840–853, 2020.

[130] Ankur Moitra. Sum of squares in theoretical computer science. Sum of Squares: Theory
and Applications, 77:83, 2020.

[131] Ankur Moitra and Alexander S Wein. Spectral methods from tensor networks. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing,
pages 926–937, 2019.

[132] A. Montanari. Optimization of the sherrington-kirkpatrick hamiltonian. In Proceedings
of the 60th IEEE Symposium on Foundations of Computer Science, pages 1417–1433,
2019.

[133] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random
graphs and their application to community detection. In Proceedings of the 48th ACM
Symposium on Theory of Computing, pages 814–827, 2016.

287

[134] Nikhil Naikal, Allen Y Yang, and S Shankar Sastry. Informative feature selection
for object recognition via sparse pca. In 2011 International Conference on Computer
Vision, pages 818–825. IEEE, 2011.

[135] Yurii Nesterov. Squared functional systems and optimization problems. In High per-
formance optimization, pages 405–440. Springer, 2000.

[136] R. O’Donnell. Some topics in analysis of Boolean functions. In STOC, pages 569–578,
2008.

[137] Ryan O’Donnell. Sos is not obviously automatizable, even approximately. In 8th Inno-
vations in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

[138] Sean O’Rourke, Van Vu, and Ke Wang. Eigenvectors of random matrices. J. Comb.
Theory Ser. A, 144(C):361–442, November 2016.

[139] Dmitry Panchenko. The parisi formula for mixed p-spin models. Ann. Probab.,
42(3):946–958, 05 2014.

[140] Shuo Pang. SOS lower bound for exact planted clique. In 36th Computational Com-
plexity Conference, volume 200 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. 26,
63. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2021.

[141] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and
Complexity. Prentice-Hall, 1982.

[142] G. Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett.,
43:1754–1756, Dec 1979.

[143] Giorgio Parisi. A sequence of approximated solutions to the sk model for spin glasses.
Journal of Physics A: Mathematical and General, 13(4):L115, 1980.

[144] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[145] Pablo A Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Mathematical programming, 96(2):293–320, 2003.

[146] Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked
covariance model. Statistica Sinica, pages 1617–1642, 2007.

[147] Daniel Paulin, Lester Mackey, and Joel A. Tropp. Efron–stein inequalities for random
matrices. Ann. Probab., 44(5):3431–3473, 09 2016.

[148] Dénes Petz. A survey of certain trace inequalities. Banach Center Publications,
30(1):287–298, 1994.

288

[149] Aaron Potechin and Goutham Rajendran. Machinery for proving sum-of-squares lower
bounds on certification problems. arXiv preprint arXiv:2011.04253, 2020.

[150] Aaron Potechin and David Steurer. Exact tensor completion with sum-of-squares.
arXiv preprint arXiv:1702.06237, 2017.

[151] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univer-
sity Mathematics Journal, 42(3):969–984, 1993.

[152] Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254,
2008.

[153] Prasad Raghavendra, Satish Rao, and Tselil Schramm. Strongly refuting random
csps below the spectral threshold. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 121–131, 2017.

[154] Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in
the degree-4 sos program. arXiv preprint arXiv:1507.05136, 2015.

[155] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares
proofs. In Proceedings of the 44th International Colloquium on Automata, Languages
and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[156] Goutham Rajendran. Combinatorial optimization via the sum of squares hierarchy.
2018.

[157] Goutham Rajendran, Bohdan Kivva, Ming Gao, and Bryon Aragam. Structure learn-
ing in polynomial time: Greedy algorithms, bregman information, and exponential
families. 2021.

[158] Goutham Rajendran and Madhur Tulsiani. Nonlinear concentration via matrix efron-
stein. Manuscript, 2021.

[159] Bruce Reznick. Some concrete aspects of hilbert’s 17th problem. Contemporary math-
ematics, 253:251–272, 2000.

[160] Emile Richard and Andrea Montanari. A statistical model for tensor pca. In Advances
in Neural Information Processing Systems, pages 2897–2905, 2014.

[161] Benjamin Rossman. Average-case complexity of detecting cliques. PhD thesis, Mas-
sachusetts Institute of Technology, 2010.

[162] Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM
Journal on Computing, 43(1):256–279, 2014.

[163] Gian-Carlo Rota and Timothy C. Wallstrom. Stochastic integrals: a combinatorial
approach. Ann. Probab., 25(3):1257–1283, 1997.

289

[164] Grant Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In Pro-
ceedings of the 49th IEEE Symposium on Foundations of Computer Science, 2008.

[165] Tselil Schramm and David Steurer. Fast and robust tensor decomposition with appli-
cations to dictionary learning. In Conference on Learning Theory, pages 1760–1793.
PMLR, 2017.

[166] Warren Schudy and Maxim Sviridenko. Bernstein-like concentration and moment in-
equalities for polynomials of independent random variables: multilinear case. arXiv
preprint arXiv:1109.5193, 2011.

[167] Hanif D. Sherali and Warren P. Adams. A hierarchy of relaxations between the con-
tinuous and convex hull representations for zero-one programming problems. SIAM J.
Discrete Math., 3(3):411–430, 1990.

[168] David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Phys. Rev.
Lett., 35:1792–1796, Dec 1975.

[169] Naum Zuselevich Shor. An approach to obtaining global extremums in polynomial
mathematical programming problems. Cybernetics, 23(5):695–700, 1987.

[170] Steve Smale. On the average number of steps of the simplex method of linear pro-
gramming. Mathematical programming, 27(3):241–262, 1983.

[171] Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why
the simplex algorithm usually takes polynomial time. Journal of the ACM (JACM),
51(3):385–463, 2004.

[172] Charles Stein. A bound for the error in the normal approximation to the distribution of
a sum of dependent random variables. In Proceedings of the sixth Berkeley symposium
on mathematical statistics and probability, volume 2: Probability theory, pages 583–602.
University of California Press, 1972.

[173] Charles Stein. Approximate computation of expectations. IMS, 1986.

[174] Gilbert Stengle. A nullstellensatz and a positivstellensatz in semialgebraic geometry.
Mathematische Annalen, 207(2):87–97, 1974.

[175] Khot Subhash, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph
have near-perfect expansion. In 2018 IEEE 59th Annual Symposium on Foundations
of Computer Science (FOCS), pages 592–601. IEEE, 2018.

[176] Michel Talagrand. The parisi formula. Annals of mathematics, pages 221–263, 2006.

[177] Kean Ming Tan, Ashley Petersen, and Daniela Witten. Classification of rna-seq data.
In Statistical analysis of next generation sequencing data, pages 219–246. Springer,
2014.

290

[178] Ryota Tomioka and Taiji Suzuki. Spectral norm of random tensors. arXiv preprint
arXiv:1407.1870, 2014.

[179] Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the 46th
IEEE Symposium on Foundations of Computer Science, 2005.

[180] Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and
Trends® in Machine Learning, 8(1-2):1–230, 2015.

[181] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[182] Van H Vu. Spectral norm of random matrices. In Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 423–430, 2005.

[183] Dong Wang, Huchuan Lu, and Ming-Hsuan Yang. Online object tracking with sparse
prototypes. IEEE transactions on image processing, 22(1):314–325, 2012.

[184] Tengyao Wang, Quentin Berthet, Richard J Samworth, et al. Statistical and computa-
tional trade-offs in estimation of sparse principal components. The Annals of Statistics,
44(5):1896–1930, 2016.

[185] Eugene P Wigner. Characteristic vectors of bordered matrices with infinite dimensions
i. In The Collected Works of Eugene Paul Wigner, pages 524–540. Springer, 1993.

[186] Ilias Zadik, Min Jae Song, Alexander S. Wein, and Joan Bruna. Lattice-based methods
surpass sum-of-squares in clustering, 2021.

[187] Lenka Zdeborová and Stefan Boettcher. A conjecture on the maximum cut and bisec-
tion width in random regular graphs. Journal of Statistical Mechanics: Theory and
Experiment, 2010(02):P02020, 2010.

[188] Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds
and algorithms. Advances in Physics, 65(5):453–552, 2016.

291

