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ABSTRACT

We develop new tools in the theory of nonlinear random matrices and apply them to study
the performance of the Sum-of-Squares (SoS) hierarchy on average-case problems.

The SoS hierarchy is a powerful optimization technique that has achieved tremendous
success for various problems in combinatorial optimization, robust statistics and machine
learning. It’s a family of convex relaxations that lets us smoothly tradeoff running time for
approximation guarantees. In recent works, it’s been shown to be extremely useful to recover
structure in high dimensional noisy data. It also remains our best approach towards refuting
the notorious Unique Games Conjecture.

In this work, we analyze the performance of the SoS hierarchy on fundamental problems
stemming from statistics, theoretical computer science and statistical physics. In particu-
lar, we show subexponential-time SoS lower bounds for the problems of the Sherrington-
Kirkpatrick Hamiltonian, Planted Slightly Denser Subgraph, Tensor Principal Components
Analysis and Sparse Principal Components Analysis. These SoS lower bounds involve ana-
lyzing large random matrices, wherein lie our main contributions. These results offer strong
evidence for the truth of and insight into the low-degree likelihood ratio hypothesis, an
important conjecture that predicts the power of bounded-time algorithms for hypothesis
testing.

We also develop general-purpose tools for analyzing the behavior of random matrices
which are functions of independent random variables. Towards this, we build on and gener-
alize the matrix variant of the Efron-Stein inequalities. In particular, our general theorem
on matrix concentration recovers various results that have appeared in the literature. We

expect these random matrix theory ideas to have other significant applications.

x1



CHAPTER 1
INTRODUCTION

Algorithm design, mathematical optimization and computational complexity are close-knit
fields of computer science that have largely developed in parallel in the beginning. In recent
decades, there has been an explosion of research in these fields that often borrowed ideas
from the other ones, and there is no longer a discernible wall separating them. Indeed, these
fields of computer science can now be construed as trying to achieve the same goal - Which
problems are easy and which are hard?

Early researchers have mainly focused on search problems. Given an input, the objective
is to search for a desired hidden structure. Often, this can be equivalently restated as the

problem of optimizing an appropriate objective function under various constraints.

Figure 1.1: An example graph on 5 vertices and two possible cuts.

For example, consider the Mazimum Cut problem, where the input is a graph and the
goal is to partition the set of vertices into two subsets that maximizes the number of edges
with endpoints in different parts. If we take for instance the graph (a) in Fig. 1.1, two
possible partitions are shown in (b) and (¢) where blue colored vertices form a part and red
colored vertices form a part. Then, the partition in (b) cuts 3 edges and the partition in (c)
cuts 5 edges, namely the edges intersecting the green line. It’s easy to see via a simple parity

argument that we cannot do better than 5 edges.
1



In the search problem formulation, we would like our search algorithm to output a par-
tition that cuts the maximum possible number of edges. And in the optimization problem
formulation, we would like our optimization algorithm to output the maximum value cor-
rectly.

Another formulation of computational problems are decision problems. Given an input,
the objective is to decide whether there exists a hidden structure or if the objective value
satisfies some properties, with the restriction that the algorithm can only return a boolean
output - for example, true or false; or yes or no. In the above example of maximum cut, the
decision problem perspective could be to ask if the maximum cut in the given graph contains
at least 0.6 (say) fraction of the total number of edges.

These types of problems are all intimately related and in many cases, essentially boil down
to the search for algorithms. For practicality, we require various properties like efficiency,
accuracy, etc. This has led to the development of a rich theory of computability, complexity
theory and optimization. In this dissertation, we will also consider the viewpoints of related
types of problems, namely certification problems and hypothesis testing. As we will see,
these other formulations are related to the former and to each other but it’s not clear how
deep the connections go, and trying to understand this is an important pursuit in theoretical
computer science. That said, underlying all these formulations is the goal of searching for
efficient algorithms to detect and extract structure from data, or arguing that no such exist

unless we're willing to compromise on other things like efficiency or accuracy.

1.1 Certification problems

As opposed to search or decision problems, certification problems, given an input, ask for
a bound on the objective value, that holds true with probability 1. And the quality of the
algorithm is usually measured in terms of how close the bound gets to the true optimum.

In the running example of maximum cut, given a graph, the task could be to output a

2



value that’s always an upper bound on the size of the maximum cut. A simple algorithm
could be to simply return the total number of edges in the graph. Indeed, this is a valid
certification algorithm and we could ask if one could do better.

This is fundamentally a different approach to algorithm design. Consider the scenario
when we are maximizing some objective function and so we desire an upper bound on the
optimal value. Then, designing a certification algorithm can be construed as attacking a
problem from above as opposed to from below, the latter of which is the more standard
notion of algorithm design.

The notion of linear programming relaxations already provide such certification algo-
rithms. Given a problem that can be formulated as an integer program (as many are), a
natural way to obtain a certification solution is to widen the search space from integral vari-
ables to real variables, adding other appropriate constraints as necessary. This is known as
relaxing the program. This enables a faster algorithm to attempt to compute the solution,
but comes at a loss of only obtaining an approximate solution. But importantly, the objec-
tive value obtained by the return solution is a definite bound bound on the optimal solution,
no matter the input. This is what a certification algorithm desires. Measuring the quality of
the returned output often depends on the type of relaxation considered and problem specific
structure.

In many cases, it’s possible to obtain an approximation algorithm to a problem by looking
at a relaxation of the program, obtaining a non-integral solution and rounding it to a valid
solution. For the maximum cut problem, this was done by Goemans and Williamson in their
seminal work [72] where they used a semidefinite programming relaxation, which is more
powerful than linear programming relaxations.

In this dissertation, we will focus on a specific class of such certification algorithms,
namely the Sum-of-Squares (SoS) hierarchy, sometimes referred to as the Lasserre hierarchy.

The SoS hierarchy is a series of convex relaxations to a given program. By virtue of being a



relaxation, they can be used for certification. Due to it’s tremendous success for various fun-
damental optimization problems such as maximum cut, constraint satisfaction, etc., the SoS
hierarchy has become a powerful optimization technique. This is further amplified by results
that say that the SoS hierarchy is the optimal relaxation among a broad class of semidefinite
programming relaxations [119], and assuming the famous unique games conjecture, it’s the
best approximation algorithm for every constraint satisfaction problem [152]. A chief goal of
this dissertation is to understand the limits of this powerful technique. We especially focus

on the so-called average-case setting, that we will define now.

1.2 Average-case analysis

An important theme in this work is the study of random instances of problems, which is
termed average-case analysis. As opposed to traditional worst-case algorithm design, where
we wish to design an algorithm that performs well on the worst possible input, there has
been an exciting development of research on problems where the input is randomly sampled
from a distribution. For instance, in the maximum cut problem, we could assume that the
input comes from the Erdds-Rényi family of random graphs, where the number of vertices
in the graph is chosen beforehand and each edge is present independently with probability
0.5.

In average-case algorithm design, we wish to design algorithms that perform well on
average-case inputs with high probability, as opposed to all inputs. This is important because
studying the worst case complexity of a problem may not shed light on the intrinsic hardness
of the problem. This happens because the worst-case instance input for an algorithm could
be highly artificial and contrived. Put another way, in real world scenarios, the inputs for
various optimization or search problems we encounter are unlikely to be such instances.
This is seen in practice as well. For example, the simplex method for linear programming

[47] is exponentially slow in the worst-case, as was shown by Klee and Minty [106], but
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performs extremely well practically. Various works have tried to explain this behavior, e.g.
26, 170, 27, 171]

Tremendous effort has been invested to understand the average-case complexity for a
wide variety of problems. And research towards designing average-case algorithms brings
about a deeper understanding of the core of the problem, enabling the design of worst-case
algorithms as well. This can be seen for example for the famous Densest k-subgraph problem
[22]. In this work, we will focus on average-case analysis.

In our pursuit, fundamental mathematical objectS that occur repeatedly are large random

matrices. And we often desire to understand their behavior.

1.3 Underlying theme of this work: Random matrices

Random matrices are abundant in computer science, especially in the fields of optimization
and statistics. Often, the analysis of an algorithm requires analyzing the behavior of certain
random matrices that can be constructed from the input. Even outside computer science,
random matrix theory is a fundamental field of it’s own right, having been studied since the
early 1900s, with applications also extending to many branches of mathematics and physics.
For a short survey, see [65].

There has been tremendous effort over the last few decades to develop the theory of
random matrices, see the book by Tropp [180]. For example, the matrix-Bernstein inequal-
ity studies the behavior of a random weighted sum of matrices; the Wigner semicircle law
studies the distribution of the eigenvalues of a random matrix sampled from the Gaussian
Orthogonal ensemble. On the other hand, fewer tools are available to understand the be-
havior of nonlinear random matrices, where each matrix entry is a nonlinear function of the
input, say for instance low-degree polynomials.

In our setting, this occurs frequently when trying to analyze the SoS hierarchy for various

problems. This is true both when trying to design algorithms via SoS as well as when trying
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to study the limitations of SoS algorithms, for example, [11, 88, 165, 131, 95]. Therefore,
we begin with this important endeavor of understanding the behavior of nonlinear random
matrices. In the first part of this thesis, we are interested specifically in concentration
behavior. We emphasize that this is an important research direction in it’s own right.

To bound the fluctuations of a random matrix from its mean, measured in terms of
spectral or Schatten ¢-norm of the difference, a simple but powerful technique that has been
widely used (including in many of the works cited above) is the so-called trace method. In
this method, the (centered) random matrix is raised to a large power and the expected trace
of the resulting matrix is bounded. While this method gives satisfactory results, it often
requires ingenious observations and highly nontrivial combinatorics.

Another approach is as follows. Consider a random matrix that is a function of several
independent input variables. We can study it’s behavior by studying how much it deviates
when a single uniformly chosen input entry is resampled. By bounding these local fluctua-
tions, we can bound the global fluctuation of the random matrix. This technique gives rise
to the Efron-Stein inequalities. Originally, they were developed for scalar random variables
(which can be thought of as 1 x 1 matrix). And in this special case, they turned out to
be extremely powerful since they have been shown to recover many standard concentration
inequalities. And recently, the work [147] showed a matrix version of the Efron-Stein inequal-
ities. In this work, we build on this to obtain a general framework for proving concentration
of large random matrices.

In the second part of this thesis, in the analysis of SoS algorithms, the fundamental
difficulty that appears is to analyze the behavior of a large nonlinear random matrix. In
particular, we want to argue that this random matrix is positive semidefinite with high
probability over the choice of the input. For this, we exhibit an approximate Cholesky
decomposition of the matrix and the proof extensively builds on the concentration results

we develop above.



In conclusion, the motif in this work is the study of nonlinear random matrices, where
we both build a general framework for analyzing concentration and apply them to study

algorithms on fundamental problems.

1.4 The Sum of Squares Hierarchy

Given an optimization problem in the form of a program with polynomial inequality con-
straints, there have been many works proposing generic approaches to relax the program,
in order to obtain good solutions efficiently. Some of the more dominant approaches have
been the Lovasz-Schrijver hierarchy [120] and the Sherali-Adams hierarchy [167]. Informally
speaking, these hierarchies of algorithms lift the program to a larger set of variables, tied
together via various constraints, relax and solve the larger program, and finally project the
solution down to the original variable space. They are parameterized by an integer known as
the degree, where larger degrees offer tighter relaxations at the cost of larger running times.

The Sum-of-Squares (SoS) hierarchy is a similar optimization technique that harnesses
the power of semidefinite programming. For polynomial optimization problems, the SoS hi-
erarchy, first independently investigated by Shor [169], Nesterov [135], Parillo [144], Lasserre
[117] and Grigoriev [73, 74], offers a sequence of convex relaxations parameterized by an
integer called the degree of the SoS hierarchy. As we increase the degree d of the hierarchy,
we get progressively stronger convex relaxations which are solvable in nO@ time. This has
paved the way for the SoS hierarchy to be almost a blackbox tool for algorithm design. As
has been shown in multiple works, it serves as a strong algorithm for various problems, both
in the worst case and the average case settings.

Consider our running example of the Maximum Cut problem. The seminal Goemans-
Williamson algorithm [71] achieves an approximation factor of ~ 0.878 for this problem via
a semidefinite programming relaxation. As it turns out, this algorithm is just the degree 2

SoS hierarchy. This approximation factor is conjectured to be optimal and there has been
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increasing evidence that this is indeed the case. This highlights an example of why the SoS
hierarchy is powerful.

Indeed, there has been tremendous success in using the SoS hierarchy to obtain efficient
algorithms for combinatorial optimization problems (e.g., [72, 6, 76, 153]) as well as problems
stemming from Statistics and Machine Learning (e.g., [11, 15, 89, 150, 110]). In fact, SoS
achieves the state-of-the-art approximation guarantees for many fundamental problems such
as Sparsest Cut [6], Maximum Cut [72], Tensor PCA [89] and all Max-k-CSPs [152]. As
mentioned earlier, for a large class of problems, it’s been shown that SoS relaxations are the
most efficient among all semidefinite programming relaxations [119].

The term “Sum of Squares” comes from a dual view in proof complexity. Besides being
an algorithmic technique, SoS can be equivalently viewed as giving a proof or certificate of a
bound on the optimal value of a polynomial optimization problem. This work can be traced
back to Hilbert’s seventeeth problem which has led to work on a proof complexity result
known as the Positivstellensatz, which gives conditions under which polynomial systems can
be shown to have no solutions, see e.g. [174, 151, 159]. The algorithmic implications were
originally observed by Lasserre [117] and Parillo [144, 145] leading to the interpretation of
SoS as an optimization technique as we study in this work. This duality can be completely
formalized and has led to the so-called framework of “proofs to algorithms” that has achieved
tremendous success, especially recently in robust statistics, see e.g., [110, 96, 82, 8]. The
adage is that if we can find an “easy” proof of an identifiability result for a search problem,
then it can be automatized to give an algorithm. We will not explore this in detail here, and
we refer the reader to the monograph [64].

Next, we move onto SoS lower bounds but before that, we highlight some related tech-

niques that has gained traction in the community recently.



1.4.1 Related Algorithmic Techniques

Apart from search, decision and certification, researchers have also considered other related
types of problems. Consider a problem where the input is sampled from one of two known
distributions and we would like to identify which distribution it was sampled from. This is
known generally as hypothesis testing. For example, one distribution could be the distribu-
tion of Erdés-Rényi random graphs while the other could be the distribution of Erdés-Rényi
random graphs but with a large cut planted in them. It’s clear that this problem is a different
flavor of the maximum cut problem on random graphs. Beyond being interesting in their
own right, studying these related formulations offer alternate perspectives and interesting
insights into the search or certification variants as well. Another type of problem, known as
recovery problems, is to recover the planted structure when the input is sampled from the
latter distribution.

For all the type of problems considered so far, apart from SoS, there have also been several
other framework of algorithms that have been considered and in some cases, extensively

studied. Examples include

e Lovasz-Schrijver and Sherali-Adams hierarchies - As discussed earlier, these hierarchies
lift a program to a larger set of variables and then relax any integrality constraints. The
resulting solution is then projected back to the original variables which may then be
rounded to an integral solution. These hierarchies are captured by the SoS hierarchy,

or in other words, the SoS hierarchy is at least as powerful as these hierarchies [64].

e Low degree polynomials - For hypothesis testing, low degree polynomials can be used
to try and distinguish the two distributions. More precisely, if there is a low degree
polynomial such that its expected value on the two distributions behave differently and
the variance isn’t too large, this can be used to distinguish the two distributions. This

is related to the SoS hierarchy and we will revisit this point in more detail later.



e Statistical query algorithms - For hypothesis testing, the statistical query model (SQ)
is another popular restricted class of algorithms introduced by [99]. In this model, for
an underlying distribution, we can access it indirectly by querying expected values of
functions, upto some error. Given access to this oracle, we would like to hypothesis test.
SQ algorithms capture a broad class of algorithmic techniques in statistics and machine
learning including spectral methods, moment and tensor methods (see e.g. [61, 62]).
SQ algorithms has also been used to study information-computation tradeoffs and more
broadly has been studied in other contexts [60]. There has also been significant work
trying to understand the limits of SQ algorithms (e.g. [61, 63, 51]). Recent work [32]
has shown that low degree polynomials and statistical query algorithms have equivalent

power under mild conditions.

e Approximate message passing and other statistical physics techniques such as belief

propagation, see e.g. the review [188].
e Local algorithms, see e.g. [55, 56, 92].

e Circuit models of computation of bounded size, see e.g. [161, 162].

1.5 Lower bounds against The Sum of Squares Hierarchy

Because of the incredible success of the SoS hierarchy for a variety of problems, it’s an
important research direction to study the limits of the SoS hierarchy, which we endeavour
in this dissertation. In particular, we will focus on average-case problems and as we will see,
most of the technical difficulty boils down to the analysis of nonlinear random matrices, to
handle which we develop various techniques.

There are many reasons for why studying lower bounds against the SoS hierarchy is
important. The SoS hierarchy is general enough to capture a broad class of algorithmic rea-

soning [64]. In particular, SoS captures the Lovasz-Schrijver and Sherali-Adams hierarchies,
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statistical query algorithms and algorithms based on low degree polynomials. Therefore, SoS
lower bounds indicate to the algorithm designer the intrinsic hardness of the problem and
suggest that if they want to break the algorithmic barrier, they need to search for algorithms
that are not captured by SoS. Secondly, in average case problem settings, standard com-
plexity theoretic assumptions such as P # NP have not been shown to give insight into the
limits of efficient algorithms. Instead, lower bounds against powerful techniques such as SoS
have served as strong evidence of computational hardness [85, 91]. Thus, understanding the
power of the SoS hierarchy on these problems is an important step towards understanding
the approximability of these problems. See also the surveys [17, 130] for more on this.
There have been relatively fewer works on SoS lower bounds, as opposed to some other
classes of algorithms we have discussed, which can be attributed to the sheer technical
difficulty of proving such lower bounds. For example, the works [74, 164, 107] studied SoS
lower bounds for random constraint satisfaction problems. A series of works [57, 127, 49,
13, 140] studied SoS lower bounds for maximum clique on random graphs. Some other SoS

lower bounds, not including the ones in this thesis, are the works [121, 109, 128, 113, 108].

1.6 A summary of our main results

In the first part of this work, we study concentration behavior of nonlinear random matrices.
In the second part, we study lower bounds against the SoS hierarchy for several fundamental

problems.

1.6.1 Nonlinear matrixz concentration via Matriz Efron-Stein

We start by giving a general theorem on concentration of random matrices whose entries
are polynomials of independent random variables. The famous matrix-Bernstein inequality
answers this question when we only have linear polynomials. But understanding the setting

of non-linear polynomials is just as important yet it poses significant challenges. When they
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arise in various applications in the literature, the usual way to handle such random matrices
has been the so-called trace method. While this method gives the desired results, sometimes
to great effect, applying it usually turns out to be highly nontrivial. In this work, we propose
an alternate way to prove matrix concentration via the Matrix Efron-Stein inequalities. We
propose a general matrix concentration inequality, the proof of which relies on the powerful
method of exchangeable pairs. We show some applications of this inequality and expect it

to have significant applications outside what we have explored here.

1.6.2  Sum of Squares lower bounds

We obtain strong sub-exponential time lower bounds against the SoS hierarchy for a variety
of fundamental problems in computer science. All our applications start with the so-called
pseudocalibration heuristic, reducing the problem to analyzing the behavior of a large random
matrix, known as the moment matriz. Our conceptual and technical innovations happen at

this step. The results we present are as follows.

Sherrington-Kirkpatrick Hamiltonian

An important problem in statistical physics, the Sherrington-Kirkpatrick problem is to op-
timize the quadratic form of a random matrix sampled from the Gaussian Orthogonal En-
semble, over boolean vectors. It’s been known for a long time that the true optimal value
concentrates at a particular constant, upto scaling. And recently, an efficient algorithm has
also been proposed for this optimization problem. Certification on the other hand was widely
believed to be hard beyond the simple spectral algorithm. We provide strong evidence for
this by exhibiting lower bounds against SoS for this problem. This work requires us to
understand the nullspace of the moment matrix and nullify it before applying our matrix
concentration tools. Conceptually, this work provides a lot of insight into the behavior of SoS

on other fundamental problems such as maximum cut and learning mixtures of Gaussians.
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Sparse PCA

Sparse PCA is a variant of principal components analysis (PCA), a fundamental routine in
statistics and machine learning. We work with the spiked Wishart model, which is the most
natural version of this problem, but which has proved quite hard to analyze in SoS. Prior
works have predicted the computational barrier of the recovery of the sparse component, as
a tradeoff between the dimension, sparsity and number of samples. We confirm this barrier
by proving lower bounds, matching known algorithms, against sub-exponential time SoS.
This work involves splitting the random moment matrix into different matrices and using
innovative combinatorial charging arguments to study how these matrices interact with each
other. Conceptually, this work confirms the computational barrier diagram for this problem,

that has been predicted and believed to be true for a long time.

Planted Slightly Denser subgraph

Finding a dense subgraph in a given graph is an important problem that has received much
scrutiny over the years, both algorithmically as well as from the algorithmic hardness angle.
For random instances of the problem under certain parameter regimes, the difficulty of this
problem has been conjectured, usually referred to as the PDS conjecture, and this problem
has been used as a canonical hard problem to reduce to various other problems and study
their computational barriers. Moreover, these hard instances have also been used as a basis
for cryptographic schemes. Therefore, SoS lower bounds against this problem go a long
way towards confirming this conjecture. In this work, we exhibit such sub-exponential time
lower bounds for certain parameter regimes, where it has been widely believed to require

sub-exponential time.
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Tensor PCA

Tensor PCA is the average-case version of the problem of optimizing homogeneous polyno-
mials over the sphere, which is a fundamental and important problem in optimization due
to it’s connections to a variety of fields. In this work, we prove SoS lower bounds matching
known algorithms for this problem, settling the computational barrier for SoS for this prob-
lem. It also offers insight on the approximability-inapproximability threshold for general
homogeneous polynomial optimization and suggests that random instances may not be the

hardest for this problem.

1.7 Excluded work

This dissertation contains the main body of my research conducted during my PhD but there
has also been other research directions that have been left out, regrettably. This includes

the following works.

1.7.1 SoS Lower bounds for Sparse Independent Set

In our work [95], we show SoS lower bounds for the maximum independent set problem
on sparse Erdos-Rényi random graphs, matching the Lovéasz theta function upto low order
terms. To do this, we build on the tools developed in this dissertation as well as develop
a variety of new techniques. In particular, this work is the first venture in the important
research direction of understanding the limitations of SoS on sparse random graphs. We
highlight that for this work, our nonlinear matrix concentration tools from Chapter 2 are
very useful. We will elaborate on this result in Chapter 8 since it builds on much of the work

we will develop in this dissertation.
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1.7.2  Causal Inference

Causal inference is the study of discovering and understanding causal relationships in ob-
served data, with diverse applications in medicine, genetics, economics, epidemics, artificial
intelligence, etc. In [157], we focus on the problem of learning a class of causal models
known as Bayesian Networks (BN), from data. This is a classical and fundamental problem
since BNs are compact, modular and offer intuitive causal interpretation, which has made
them very useful in various fields. We propose and study a new practical algorithm for this
problem. It is efficient, provably differs from the widely used Greedy-Equivalence-Search
algorithm, and since the algorithm is a general-purpose score-based learning algorithm, it is
widely applicable. Also, under some statistical assumptions that are inspired from and which
generalize recent works, our algorithm provably recovers the true Bayesian Network, even
for non-parametric models making no assumptions on linearity, additivity, independent noise
or faithfulness. It also suggests interesting potential connections to other machine learning
fields such as clustering, forward-backward greedy methods, and kernel methods.

In [105], we study a relatively understudied but just as important setting, where we have
unobserved (sometimes even unmeasurable!) latent causes or confounders for the observed
variables. We focus on the setting of probabilistic mixture models, which naturally comes up
in machine learning, economics, finance, biology, etc. Under some natural assumptions on
the model, we develop an algorithm that takes the observed data and uncovers the hidden
variables and the underlying causal relationships. Prior works related to this problem have
usually focused on special settings such as linear models. We instead propose an algorithm
to this problem in the highly nonlinear mixture models setting which works atop existing

algorithms for mixture model order estimation (which is easier than density estimation).
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1.8 Organization of the thesis

In Chapter 2, we develop our nonlinear matrix concentration results and show it’s appli-
cations towards various nonlinear random matrices that have arisen in the literature. We
then introduce the Sum of Squares hierarchy in Chapter 3, introduce the technique of pseu-
docalibration used for showing SoS lower bounds and show it’s connections to low-degree
algorithms. In Chapter 4, we formally state the main SoS lower bounds we show in this the-
sis and put them in context with known prior works. In Chapter 5, we prove the SoS lower
bound for the Sherrington-Kirkpatrick problem. And in the next two chapters, Chapter 6
and Chapter 7, we prove the SoS lower bounds for Planted Slightly Denser Subgraph, Tensor

PCA and Sparse PCA. We conclude with followup and potential future works in Chapter 8.
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CHAPTER 2
NONLINEAR MATRIX CONCENTRATION

In this chapter, we will describe our techniques for nonlinear matrix concentration via FEfron-
Stein inequalities. The material in this chapter is adapted from [158], which is joint work

with Madhur Tulsiani.

2.1 Introduction

In optimization, statistics, and spectral algorithms, we often want to understand the con-
centration of various random matrices. To do this, we can appeal to the powerful theory of
matrix-deviation inequalities [180]. For example, the matrix-Bernstein inequality addresses

random matrices of the form

M =2-Ci+-+xn-Cq

where x1,..., 2y, are independent scalar random variables, and C1q, ..., Cy are fixed matri-
ces. A large selection of such inequalities are available when the random matrix (say) M is
a linear function of independent random variables. However, several recent works require us
to understand random matrices which are non-linear functions, and in particular low-degree
polynomial functions, of scalar random variables. This forms the focus of our work.

[ [n]

2
As a motivating example, consider the random matrix M € R obtained as

M=A10A1+ +Am @ Am,

where Aq,...,Am € RM*[M] are independent random matrices, with i.i.d. entries uniformly
distributed in {—1,1}. Tt is easy to see that the entries of the matrix M are degree-2 poly-
nomial functions of the independent random variables describing the entries of Aq,..., Am.
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The concentration of such a matrix was analyzed by Hopkins et al. [88, 81], who use it to
design spectral algorithms for a variant of the principal components analysis (PCA). This

matrix is a special case of a more general setting that we study in this work.

Matrix-valued polynomial functions. In the example above, the entries of the matrices
are low-degree polynomials in independent (Rademacher) random variables. In this work,
we consider a general setting where we take an n-tuple Z = (Z1,. .., Zp) of independent and
identically distributed random variables! distributed in Q. We consider random matrices
given by a matrix-valued function F(Z) taking values in RZ* for arbitrary index sets Z, 7,
where each entry F[I, J|(Z) is a polynomial in Z1, ..., Z,. We develop a general framework to
analyze concentration of such matrices. Our matrix concentration results are simpler to state
in the case when Z1,..., Z, are independent Rademacher variables uniformly distributed in
{—1, 1}, but apply for the general case as well.

Special cases of such non-linear random matrices have been used in several applications

in spectral algorithms and lower bounds. We now briefly discuss a few examples below.

1. Tensor networks. Random matrices such as the above were viewed as a special case
of “flattened tensor networks” by Moitra and Wein [131], who also considered spectral
algorithms obtained via somewhat larger tensor networks. A tensor network is a graph
with nodes corresponding to tensors (see the figure below for an example). An edge
between two nodes corresponds to shared indices for one of the dimensions and the
degree of each node is equal to the order of the corresponding tensor (the number of
dimensions). Such networks indicate how tensors of different orders can be multiplied
to obtain larger ones. For example, the first network in the figure below illustrates
the network corresponding to simple multiplication A - B of two matrices A € R"™*"

and B € R where the red and blue edges indicate the row and column indices

1. Our framework also applies when the variables are not necessarily identically distributed, as long as
they are independent.
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respectively. Similarly, the second network in the figure below illustrates the network
corresponding to the application by Hopkins et al. [87], where T € R "*™ ig a
random tensor with i.i.d. entries in {—1,1}. While the latter network yields an order-
4 tensor, they obtain a matrix in R X1’ by “flattening” it, where the row is indicated
by the indices in the red edges and the column is indicated by the indices in the blue
edges. In the figure, we also indicate the index sets corresponding to each of the edges
(though these are often supressed in the diagrams). Moitra and Wein [131] analyzed a
larger tensor network, with a graph consisting of 10 nodes, in their algorithm for the

continuous multi-reference alignment problem.

Figure 2.1: Tensor networks for matrix multiplication and the algorithm in [87]

. Graph matrices. Another setting of nonlinear concentration arises from the analysis
of the so-called “graph matrices” [126, 1]. Graph matrices play an important role in
lower bounds for average-case problems, against algorithms based on the powerful Sum-
of-Squares (SoS) SDP hierarchy running in polynomial time and even sub-exponential

time [127, 49, 84, 154, 13, 1287 , 149, 95].

Let X be the {+1}-adjacency matrix of a random graph in G, ;5 i.e., X[, j] is uni-
form {—1,1} when i # j and 0 when ¢ = j. Graph matrices are random matrices
corresponding to the occurences of a small graph pattern called a “shape”. A shape 7
is a small, fixed graph with two ordered subsets Ur, V; of vertices. For simplicity, let
7 be a shape of a fixed size, where the vertex set V(7) is partitioned into two ordered

sets V(1) = Uy U V;. For such a shape 7, the corresponding graph matriz M; has

Ur Vr

| and [n]!V7] respectively, and we view the row and
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column indices I and J as defining a (unique in this case) map ¢ : Ur UV, — [n]. The

corresponding entry is given by

[(uv)er@) Xle(w), o[v]] if ¢ is injective
M (I, J] = M:p(Ur),¢(V7)] =

0 otherwise

In the case of general graph matrices (defined formally in Section 2.4.2), Uy, V; are
arbitrary ordered subsets of the vertex set of 7, and we sum over all feasible injective
maps ¢. As an example, consider the case shown in Fig. 2.2, where 7 is a triangle on
three vertices {uy,v1,v9} with Ur = (u1) and V7 = (v1,v9). Then, the corresponding

matrix is given by
MT[?:L (2.27 Z3>] = X[ilv ZQ] ' X[i2> 23] ’ X[Z?)a 21] )

where X automatically enforces injectivity.

Graph matrices are closely related to tensor networks (ignoring the injectivity con-
straint on ¢). For instance, the above matrix can be viewed as the flattened tensor
network below, where the tensor I denotes the “diagonal” tensor of order 3 with entries

being 1 if all indices are equal and 0 otherwise.

/

x|
X
)
AN

Figure 2.2: The graph 7 and corresponding flattened tensor network
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Analyzing concentration Recall that our objective is to analyze the concentration of
polynomial random matrices. To motivate our approach, consider first the problem of ob-
taining concentration bounds on a scalar polynomial f(Z) with mean zero. To obtain such

bounds, because of Markov’s inequality, it suffices to compute moment estimates
PA(2) 22 = P[(F(2)* > N] < x2-E[(f(2)]

While in some cases E[(f(Z))?'] can be computed by direct expansion, it often involves
an intricate analysis of the structure of terms with degrees growing with ¢, and therefore
indirect methods may be more convenient. One such method is based on hypercontractive
inequalities. In particular for Rademacher variables, the hypercontractive inequality [136]

gives that for a polynomial f of degree dj, we have

t

E|(f2)¥] < @-u%t (B[(r@)])

Thus, for (scalar) polynomial functions, the hypercontractive inequality gives moment esti-

mates using (f(Z))?, which is convenient because (f(Z))?

is a polynomial of fized degree
and therefore is much easier to understand. In fact, it can often be conveniently analyzed
using the Fourier coefficients of f.

The matrix analog of the above argument involves the Schatten-2¢ norm |.||5;, which is

defined for a matrix M with non-zero singular values o1, ..., 0, as HM||%§ = Y jelr] J?t.

For a function F with E[F(Z)] = 0, we have the following bound using Schatten norms.
Ploi(F) 22 < A2 -EF|3 = A -Etr |[(F(Z2)F(2)T)

Known norm bounds for tensor networks [131] (which involves Gaussian variables) and graph

matrices [1, 95] rely on direct expansion of the trace above. They analyze terms in the
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expansion as being formed by 2t copies of the network/shape, which leads them to consider
graphs formed by 2t copies of the network/shape, with possibly overlapping vertex sets. To
analyze such graphs, they both rely on intricate combinatorics.

While hypercontractive inequalities are also known for matrix-valued functions of Rademacher
variables [18], their form involves Schatten-p norms for p € [1,2] and (to the best of our
knowledge) are not known to imply matrix concentration. To get around this, we consider
another indirect method based on Efron-Stein inequalities. In the scalar case, Efron-Stein
inequalities gives us a slight weakening of the above scalar bound. Interestingly, it turns out

that this can indeed be generalized to the matrix case.

Efron-Stein inequalities. Efron-Stein inequalities bound the global variance of a function
of independent random variables, in terms of local variance estimates obtained by changing
one variable at a time. For ¢ € [n] and tuple Z = (Z1,...,Zy), let Z(0) denote the tuple
(Z1,.. ., Zi_1, ZVZ-, Zii1,...,Zy), where ZZ is an independent copy of Z;. For a scalar function

f(Z), the Efron-Stein inequality states that

var[f(2)] = E[(f(2)-E)?] < %-ZE[(f(Z)—f(Z“)))Q} ~ E[V(Z)],

where V(Z) = 3 iy E [(f(Z) —f (Z(i)))2 ]Z} . For Rademacher variables, E[V(Z)] is
equal to the total influence from boolean Fourier analysis and indeed, the above inequality
can also be observed via Fourier analysis. In fact, when f is a polynomial of degree d), the
two sides are within a factor dy,.

A moment version of the Efron-Stein inequality was developed by Boucheron et al. [28],
who obtain bounds in terms of V(Z) (in fact, in terms of more refined quantities Vi (Z) and

V_(Z)) which serves as a proxy for the variance. Their results imply that for a function f,

E|(f(2)-ENY| < (-0 E|vV(2)].
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A beautiful matrix generalization of the above inequality (Theorem 2.1.1 below) was obtained
by Paulin, Mackey and Tropp [147], via the method of exchangeable pairs (see also [93] for
a different proof). Their inequality is stated for Hermitian matrix valued functions H. But

we can also use it for non-Hermitian functions F, where we simply apply it to the Hermitian

0 F
dilation H = instead.

FT 0

Theorem 2.1.1 ([147]). Let H(Z) be a Hermitian matriz valued function of independent

random variables Z = (Zy, ..., Zy) with E|H|| < co. Then, for each natural numbert > 1,
Etr [(H —EH)%] < (4t —2) Etr [Vf} ,

where V(Z) is the variance proxy defined as

A simple bound for Rademacher variables. The form of the variance proxy suggests
a recursive approach for polynomial functions (say of degree dp) of Rademacher variables.
Consider the scalar case again in particular the Efron-Stein inequality by Boucheron et

al. [28], where the variance proxy can be written as

0Z;

V(Z) = % Z]E{(f(Z)—f(Z(i)>>2|Z] - ZE
- Z(%) ~ 823 .

i€[n]

(Z; — Z (0f( )) | Z

where f1(Z) is a vector-valued function given by f[i](Z) = % Thus, to estimate

E (f(Z))*, we just need to estimate E ||f; (2) ||%t, where f](Z) is now a vector valued function.

The key observation is that f1(Z) has entries of degree at most d — 1. This suggests that we
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can apply this inequality recursively until we end up with constant polynomials, which we
fully understand. We can do a similar computation for matrix-valued functions F(Z) using
Theorem 2.1.1. This yields two matrices F( 1 and Fy ( of partial derivatives, where an extra
index ¢ is added either to the row or column indices. Iterating this yields the following result,
which we state in terms of the partial derivative operators V(f) = <Hi:a,~:1 %) (f) for

a € {0,1}" (extended entry-wise to matrices).

Theorem 2.1.2 (Rademacher recursion). Let F : {—1,1}" — RI*J be a matriz valued
polynomial function of degree at most dyp. Then, for each natural number t > 1,

2t

EIF —EF[3 < Y (16tdy) "7 |[EFq5, .

1<a+b<d)p
where ¥y, is a matriv of partial derivatives indeved by the sets T x {0,1}"" and J x {0, 1}"

with

VOL (F) Zf’Oé’:CL,’B|Ib,OJﬂ:O
Fal}[('vo‘)’(':ﬁ)] = 0

0 otherwise

Similar to the hypercontractive bound for the scalar case, the bound above is in terms of
a small number (O(d]%)) of matrices that arise from polynomials of fixed degree (not growing
with ¢), but importantly, they are deterministic matrices. Because they are deterministic,
analyzing them is considerably easier. When we apply this theorem to the case F = M,
the graph matrix of a shape 7, we obtain bounds in terms of combinatorial objects known
as ‘“vertex separators” of the shape 7. This recovers the bounds by Ahn et al. [1] and
perhaps surprisingly (to the authors), this gives an alternative and direct derivation of these
combinatorial structures such as vertex separators, compared to the ingenious observations
made in Ahn et al. [1]. We cover this and other applications of the Rademacher framework

in Section 2.4.
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Extending the framework to general product distributions. A key contribution
of our work is to show how the above framework can be extended to arbitrary product
distributions (with bounded moments). A motivating example of this is norm bounds for
the so-called “sparse graph matrices”. In sparse graph matrices, the variables Z; can be
thought of as (normalized) edges of a gn/,p graph, that is, Z; = —\/? with probability p
and Z; = \/% with probability 1 — p. These variables are standard in p-biased Fourier
analysis [? ] and are chosen to satisfy EZ; = 0 and IE?Zi2 = 1. Sparse graph matrices
naturally arise when analyzing average case problems on Gy, ;, graphs for p = o(1), as opposed
to gn,1/2 graphs.

Until recently, little was known about norm bounds for sparse graph matrices. The
difficulty stems partly from the fact that when p = o(1), it is important that sparse graph
matrix norm bounds have the right dependence on p and not just on n. Such norm bounds
were obtained recently by Jones et al. [95], via the trace power method which involved
a delicate combinatorial counting argument. On the other hand, we obtain similar norm
bounds using our framework but in a more mechanical fashion. We can also readily apply
our framework in the even more general case of sub-Gaussian random variables and our
bounds will depend on the sub-Gaussian norm of the distributions.

To extend our framework to general product distributions, we could take inspiration
from the Rademacher case and could attempt to simply recursively apply the Efron-Stein
inequality. Unfortunately, this idea will fail. The issue can be observed by again considering
the scalar case. Assume that Z1,..., 7, areii.d. with E Z; = 0 and IEZZ.2 = 1for all 7 € [n].
Also assume for simplicity that f(Z) is a multi-linear polynomial of degree dp. Analyzing

the variance proxy as before, we get

(Zi — Z;)? - (8(];(2?))2 | Z] = % Z E [(Zi - Zi>2’Z] : ((‘3£(Zf))2 :

€[n]

1
V(z) = - > E
i€[n]
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In the Rademacher case, we had E[(Z; — Z;)2|Z] = 2. This left us with the polynomials
corresponding to partial derivatives but which importantly had a strictly lower degree. How-
ever, for a general product distribution, we instead have E[(Z; — Z;)2|Z ]=1 +Zi2' This gives
back a term (ZZ- . %)2 where the polynomial inside the square could have degree possibly
still equal to dj,. This means that in the next step of the recursion, we may again have to
consider a derivative with respect to Z; and may again end up with the same polynomial f.
Therefore, the recursion is stalled! A similar issue occurs for matrices, which is elaborated

in Section 2.5. To get around this, we generalize the work of [147].

Generalizing [147] via explicit inner kernels. To resolve the above issue, we modify
the proof of [147] and our proof techniques may be of independent interest.

We first recall how the matrix Efron-Stein inequality, Theorem 2.1.1, was proved in
[147]. Their basic strategy is to utilize the theory of ezchangeable pairs [172, 173, 38, 39], in
particular kernel Stein pairs. A kernel Stein pair is an exchangeable pair of random matrices
that has a “kernel”, a bivariate function that “reproduces” the matrices in the pair. More
concretely, consider an exchangeable pair of random variables (Z, Z’) (which means (Z’, Z)
has the same distribution). For this exchangeable pair, a bivariate matrix-valued function

K(z,2') is said to be a kernel for a matrix-valued function F if it satisfies
e Anti-symmetry: K (2, 2) = —K(z,2') for all inputs (z, 2/).
e Reproducing property: E[K(Z,Z') | Z] = F(Z).

If such a kernel K exists, then the pair of random variables (F(Z),F(Z')) is said to be a
kernel Stein pair.

Building on ideas from [173, 38], Paulin, Mackey and Tropp [147] first show the existence
of a kernel, by exhibiting it as a limit of coupled Markov Chains. By studying the evolution

of this kernel coupling, they prove analytic properties of the kernel. Then, using this kernel,
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they employ the powerful method of exchangeable pairs to evaluate moments of the random
matrix, which in turn will imply concentration.

For a Hermitian random matrix X, they introduce two matrices - the conditional variance
Vx which measures the squared fluctuations of X when resampling a coordinate of Z; and
the kernel conditional variance VX which measures the squared fluctation of the kernel
when resampling a coordinate of Z. With these matrices in hand, they bound the Schatten
2t-norm of X by the Schatten t-norm of sVx + s~ VK for any parameter s > 0. Finally,
they choose s appropriately to make these two quantities approximately equal, in which case
it simplifies to the variance proxy V, proving Theorem 2.1.1.

In our setting, no such choice of s is feasible because for any choice of s, either the
conditional variance term sVx will dominate X2 or the kernel conditional variance term
s VK will dominate X2. This will make the main inequality Theorem 2.1.1 trivial.

To get around this, we will exploit the structure of the matrix we have, i.e. F = DGD
where D is a diagonal matrix that encodes all variables that have already been differentiated
on and G is a polynomial matrix of the remaining variables. Since D is a simple diagonal
matrix with low degrees, most of the deviations exhibited by F are in fact likely to be
exhibited by G. To capture this intuition, we consider a kernel for only the inner matrix G
instead of F as a whole. We call this an inner kernel.

This helps us avoid the root cause of the issue, i.e. differentiating on variables we have
already encountered (which correspond to entries in D). Therefore, the recursion will not
stall!

However, in general, this is not realizable since D and the kernel of G can interact in
unexpected ways. To study this interaction, we construct explicit polynomial kernels (The-
orem 2.7.3) (compared to [147] who show the existence of the kernel but for all functions).

We study how this explicit inner kernel interacts with D (see Lemma 2.7.6) and use it to

obtain a generalization of the inequalities by [147] (generalized because setting D = I will
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give back their result) stated in Lemma 2.7.10.

A subtle issue is that the conditional variance of X may still have additional deviations
due to the diagonal matrices D (which still involve random variables). We control the addi-
tional deviations using Jensen’s operator trace inequality (for non-commuting averages) [78]
(stated in Lemma 2.2.4). Putting these ideas together lets us obtain a version of the Efron-
Stein inequality where the variance proxy only corresponds to the conditional variance of
the inner kernel. In the setting of polynomial functions, this inequality generalizes the work
of [147].

With the modified Efron-Stein inequality from above, we cannot guarantee that the
matrices F at intermediate steps are of lower degree, but on the other hand, the degree of
the inner matrix G reduces at each step. Therefore, we can recursively apply this inequality
to obtain our final bounds. The final bounds are then stated in terms of norm bounds for
the simplified matrices of the form DGD where G are deterministic matrices and D are
diagonal matrices which are still functions of Z. While random, these matrices can be easily
analyzed via simple scalar concentration tools.

The main theorem is stated in Section 2.6, in particular Theorem 2.6.6, with the proof
following in Section 2.7. While our proof builds on the work by [147], the argument here is

self-contained.

Applications. Our framework is suitable for many nonlinear concentration results ob-
tained in the literature [11, 69, 88, 126, 1, 87, 165, 81, 86, 131, 95]. We show a few of these
applications in Section 2.4 and Section 2.8. We expect similar future applications to bene-
fit from our framework because the task is mechanically reduced to analyzing considerably
simpler matrices.

In Section 2.4.2, we derive norm bounds on dense graph matrices. In earlier works,
dense graph matrices have been used extensively in analysis of semidefinite programming

hierarchies, especially the Sum-of-Squares (SoS) hierarchy [127, 49, 84, 154, 13, 1287 | 149].
28



For more applications and a detailed treatment of graph matrices, see [1].

In Section 2.8, we derive norm bounds for sparse graph matrices. Sparse graph matrices
have been relatively less understood until recently, when [95] obtained norm bounds for such
matrices via the trace power method. They use these bounds to prove SoS lower bounds for

the maximum independent set problem on sparse graphs.

Potential extensions In this work, we assumed that the input forms a product distri-
bution. In other words, the variables Z1, ..., Z, are independent. A natural extension is
the case when they are not independent. This has important applications for many prob-
lems such as when the input is a uniform d-regular graph, or when the input is sampled
from a distribution with a global constraint, etc. In such cases, the input variables are not
independent but it may be possible to use similar ideas to analyze concentration.

More concretely, to study concentration in the non-independent setting, one can use the
recent work of Huang and Tropp [93] on matrix concentration from Poincaré inequalities,
together with our framework. For this, we just need to exhibit a Markov process that

converges to our desired distribution.

Organization of the chapter We start with preliminaries in Section 2.2. In Section 2.3,
we state and prove the Rademacher recursion. We illustrate some applications of this frame-
work in Section 2.4. In Section 2.5, we explain why similar ideas may not be enough in
the general case. We then propose our general framework in Section 2.6 and prove it in
Section 2.7. We end with an application of the general framework to sparse graph matrices

in Section 2.8.

2.2 Preliminaries

Notation We use boldface letters such as I, M, X ..., to denote matrices. Entries of a

matrix X € RT*J will be denoted by X[I,J] for I € Z,J € J. Let H" denote the set of
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n X n real symmetric matrices. The trace of a matrix X € H" equals Zie[n] X[i,i] and is

denoted by tr X.

Multi-index notation

For any pair of vectors a, § € N” and scalar ¢ € N, we define a + 3, « - 3, ca entrywise. We
also define the orderings o < 8 and a < 8 where we say o < § if for each 7, o; < f3;, and
a <4 g if for each i, «; is either 0 or 3;. We denote by |a|p the number of nonzero entries of
a and by ||, the sum of entries of . For a boolean vector v € {0,1}", we define 1 — =y the

vector with all its bits flipped.

Derivatives

For variables Z1,...,Z, and a € N", define the monomial Z¢ := []}" ZZQZ'. This forms a
standard basis for polynomials.

For o € N, we define the linear operator V, that acts on polynomials by defining its
action on the elements Z” as follows and then extend linearly to all polynomials.

Z0-a ifa<p
Va(ZP) =
0 0.W.

Informally, for a polynomial f written as a linear combination of the standard basis
polynomials ZP , Va(f) isolates the terms that precisely contain the powers Zl-ai for all ¢
such that a; # 0 and then truncates these powers. In other words, it’s the coefficient of Z¢
in f. In particular, observe that V(f) does not depend on Z; for any i such that «; # 0.

Supose f is multilinear, as we can assume in the Rademacher case when we are working
with Z; € {—1,1}. For o € {0,1}" with nonzero indices i1, ...,i; € [n], we have Vo (f) =
% e % f. So this linear operator generalizes the partial derivative operator. But note

that in general, V is not simply the standard partial derivative operator.
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Matrix Analysis

Linear operators that act on polynomials can also be naturally defined to act on matrices
by acting on each entry.

We define I, to be the m x m identity matrix. We drop the subscript when it’s clear. For

0 F
matrices F, G, define F & G to be the matrix . For a matrix F, define its Hermitian

G 0
dilation F as F® FL. Denote by < the Loewner order, that is, A < B for A, B € H" if and

only if B — A is positive semi-definite.

Definition 2.2.1. For a matriz ¥ and an integer t > 0, define the Schatten 2t-norm as
IFI5; = ex[(FFT)"]
Fact 2.2.2. For real symmetric matrices Xy, ..., Xy, we have
(X1 +... +Xp)? 20X+, +X2)

Fact 2.2.3. For positive semidefinite matrices X, X1, ..., Xy such that X = X +...+ X,

and for any integer t > 1,
tr[X?] < nfHer[XE) 4.+ te[XE))

Proof. By Hélder’s inequality, nf=(tr[X!] + ... + tr[XL]) > (IXqll; + ... + [Xnl)t By
triangle inequality of Schatten norms, this is at least || X{ + ...+ Xn||§ Finally, because
Xi4...+X,, = X > 0, we can use the monotonicity of trace functions (see [148, Proposition

t

1]) where we use the increasing function f(z) = 2" on x € [0, 00). This proves the result. =

Lemma 2.2.4 (Jensen’s operator trace inequality). [78, Corollary 2.5] Let f be a conver,

continuous function defined on an interval I and suppose that 0 € I and f(0) < 0. Then,
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for all integers m,n > 1, for every tuple By, ..., By of real symmetric m x m matrices with
spectra contained in I and every tuple Aq, ..., Ay of m X m matrices with > ;- 4 AiAZT <1,

we have

ulfO°ATBA) <> AT f(B)A/]
=1 =1

2.3 The basic framework for Rademacher random variables

Let Z = (Zy,...,Zy) be sampled uniformly from {—1,1}". We will consider matrix-valued
functions F : {—1,1}" — RZ*J | with rows and columns indexed by arbitrary sets Z,J

respectively such that for all I € Z,J € 7,

F[I,J] = fr.7(2)

where f7 j are polynomials of Z1, ..., Zy. Since Z; € {—1,1}, we can assume without loss of
generality that fr ; are multilinear. Let d) be the maximum degree of any f; y in F. In this
section, we will give a general framework using which we can obtain bounds on E |[F — E FH%%

for any integer t > 1.

Theorem 2.1.2 (Rademacher recursion). Let F : {—1,1}" — RZXJ be a matriz valued

polynomial function of degree at most dy. Then, for each natural number t > 1,

EIF-EF[3 < > (16tdy) ) [[EF,5, .
1<a+b<d)p

where ¥, is a matriz of partial derivatives indeved by the sets T x {0,1}"" and J x {0, 1}"

with
VaisF) iflal=a, |8l =ba-=0
Fopla) (w8 =4
0 otherwise

Remark 2.3.1. Note that while the matrices ¥y are stated above as having rows and
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colmns indexed by T x {0,1}" and J x {0,1}" for convenience, we only need to consider

the submatrices with |Z| - () rows and |J|- (}) columns, since all other entries will be zero

(when || # a or |B| #b).

Remark 2.3.2. To obtain high probability norm bounds from moment estimates, we can set
t = polylog(n) and invoke Markov’s inequality. Since we do not attempt to optimize the
dependence on the logarithmic factors, we do not attempt to optimize the exponent of t in

the main theorem.

To prove this, we will prove Lemma 2.3.3 and then recursively apply it.

For each i < n, define the random vector
20 = (21, Zi 1, 2 Zis1s - Zn)

where ZZ is an independent copy of Z;, that is, is independently resampled from {—1,1}.
Let X := F—EF. When the input is Z, we denote the matrices as F, X, etc and when the

input is Z(i), denote the corresponding matrices as F(i), X(i), etc. Thatis,for I € Z,J € J,

we have FO[IJ] = fLJ(Z(i)). Define X, =F,, —EF,.

Lemma 2.3.3. For integers a,b > 0, we have

2t

Qt)

E HXangi < (16tdp)t(E HXa,bHH;z TE HXaJrLb ;E + HEFa,bH”;i + HEFaH,b

Using this lemma, we can complete the proof of the main theorem.

Proof of Theorem 2.1.2. Observing that X is a principal submatrix of X o with all other
entries being 0, we can apply Lemma 2.3.3 repeatedly until X, ;, = 0, which will be the case

if a 40> dp. ]

In the rest of this section, we will prove Lemma 2.3.3. We start with a basic fact. Let

e; € {0,1}" be the vector with a unique nonzero entry (e;); = 1.
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Proposition 2.3.4. For a multilinear polynomial f(Z) = f(Z1,...,Zp), we have
1(2) = 1(2Y) = (Zi = Z) Ve f(2)

Proof of Lemma 2.3.3. Consider the Hermitian dilation Fa,b =F. @ ng. Define Xa,b =

Fop—EF, =X, @ Xgab. By Theorem 2.1.1 applied to X, ;,

Etr [Xop] < (2@t — 1) Etr [VE]

where V, p, is the variance proxy

Firstly, by a simple computation,

9ot 2t
Bt [X2] = Bor [(XXT)!] + Bt [(X],%,0)1] = 28 [|X,0 2

and

=1
n ? (i
1 X, p— X)Xy — XT 0
_ 5 Z E [ ( b b)( b ,b) Z 0 |Z
i=1 0 (Xa,b - Xa b)T(Xa,b - Xa,b)
1S ElFp — By (Fey —FL)TIZ] 0
2 0 " E[(Fyy —FU)T(F,, —FU)IZ)

We will use the following claim that we will prove later.
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Claim 2.3.5. We have the following relations.

n

S B[y~ FU)(Fy —FO)T1Z) = 2(b+ DF i FT
=1
- (i (i
1 1
S El(Fey — FU)T(F,y —FU)IZ) =20+ DET, | Fouy
=1

This gives E tr [thb] = (b+1)E HFaJH_ngi +(a+1)'E ||Fa+17ngz. Therefore, we get

2E [Xaull3y = Etr [
< (22t — 1)) Etr [V,]
< (202t = D)0+ 1) E|[Faprilla + (a+ 1) El[Fatrpllor)
< (22t = 1) ((0+1)'E|Xaps1 + EFaprilly + (@ + 1) E|[Xat1p + EFarill5)
< (166)"((b+ D' (E | Xap41 151 + IEFappalzy) + (@ + D ENXarsll3 + IEFayisl3)

2 2 2 2
< (16tdy)" (B | Xap+1llz; + IEFapi1ls; + B Xas1sll5 + IEFarplls,)

It remains to prove the claim.
Proof of Claim 2.53.5. We will prove the first equality. The second one is analogous. For

Ie€Z,JeJ,ape{0,1}" we have

Z’ Vars(fs(2) = f10(2D) it laly = a,]8lo = b.a- =0
(Fap—F)(La), (L)) = T 0= 018l

0 0.W.

By Proposition 2.3.4, the first expression simplifies to (Z; — Zi)veiva+5fI7J(Z). Define the

matrix Fyp; to be the matrix with the same set of rows and columns as F, ; and whose
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only nonzero entries are given by
Fopil(l,a),(J,8+e€)] =Ve,Vorpfry(Z) if lajp=a,|Blo =08 ¢ =0,a-(8+e)=0

Then, it’s easy to see that Y i ; FQ,MFT = (b+1)Fa,b+1ng+1 and (Fa7b_F((j%))(Fa,b_

a,b,i

()

)T =(Z = Z')QF@’MFCTL p;- Lhe latter equality implies

| | .
El(Fup — FU)(Fop — FO)T1Z) = BI(Z; — Z)*F 0, FL, | Z) = 2F ) F]

a, a,b,i a,b,i

Therefore,
- (i) (i) -
1 1
ZE[(Fa,b - Fa7b>(Fa,b - Fa7b>T|Z] =2 Z Fa,b,iF;b’@' = 2(b + 1)Fa,b+1FZ’b+1
i=1 =1

2.4 Applications

To illustrate our framework, we apply it to obtain concentration bounds for nonlinear random
matrices that have been considered in the literature before. The first one is a simple tensor
network that arose in the analysis of spectral algorithms for a variant of principal components
analysis (PCA) [88, 81]. The second application is to obtain norm bounds on dense graph
matrices [126, 1]. In the second application, the norm bounds are governed by a combinatorial
structure called the minimum vertex separator of a shape. We will see how this notion arises
naturally under our framework, while prior works that derived such bounds used the trace

power method and required nontrivial combinatorial insights.

2.4.1 A simple tensor network

We consider the following result from [88, 81].
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Lemma 2.4.1 ([81], Theorem 6.7.1). Let ¢ € {1,2} and let d > 1 be an integer. Let
Aq, ..., Ayc be ii.d. random matrices uniformly sampled from {—1, 1}”dxnd. Then, with

probability 1 — O(n~100),

STALRAL-E Y Ap® Ayl < CVdnP) 2 (logn) /2
k<n¢ k<nc

for an absolute constant C' > 0.

Using our framework, we will prove a slightly relaxed version of the inequality where
\/c_i(log n)l/ 2 is replaced by logn. We remark that we have not attempted to optimize these
extra factors in front of the dominating term n(2d+c)/ 2 50 it’s plausible that a more careful

analysis can obtain a slightly better bound.

Proof of the relazed bound. Let the i, j-th entry of Ay beay; ;. Let F =37, c A ® Ay —
E Y i<nc Ar ® Ay be a random matrix on the variables ay,; ; for k < n€i,j < n®. So

EF = 0 and we are looking for bounds on ||F||. The entries are given by

> i gy if (i1,51) # (i2, j2)
F((i1,12), (j1,J2)] = { k=n®
0 if (i1,71) = (2, 2)

The nonzero entries are homogeneous polynomials of degree 2. Using Theorem 2.1.2,

2t
2t)

EIFI3 < (320*(JEF20]l5 + [EF 1]l + [EFo

We will consider each of these terms. In the following arguments, we restrict attention

to indices 71,149, j1, j2 such that (i1, j1) # (i2, j2)-

1. EFy has nonzero entries in row ((i1,142), {(k,i1,j1), (k,42,j2)}) and column (j1, j2)

and all these entries are 1. The Schatten norm does not change when we permute the
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rows and columns. So, we can group the rows on k, i1, 79 and within each group, we can

2d+c

sort 71,72 in both rows and columns. We get a matrix having n identity matrices,

2d o

each of dimensions n n2?, stacked on top of each other. Using the definition, the

Schatten-2¢ norm of this matrix is easily computed to be HE FQ)OH;; = pctidpt(2d+e)

2. EF1 1 has nonzero entries in either row ((i1,72), {(k, 41, j1)}) and column ((j1, j2), {(k, 2, j2)});
or row ((i1,72), {(k,12,72)}) and column ((j1, j2), {(k,41,j1)}) and all these entries are
1. So we can write EF1 1 = A + B corresponding to the 2 sets of entries. Arguing

— potdd t(2d+c)

just as in the previous case, we can obtain ||A||%§ where we group

nctid,t(2d+c)

the rows on k,i9, 71 and ||B||%§ = where we group the rows on k, i1, jo.

2t
Therefore, [|EFy 1[5, < 2% (|A]5; + [[Bll3;) = 22+ e+ dntGite),
3. The case E Fy 2 is identical to EF9 .

Putting them together, E ||F||%§ < (C't)2petAdpt(2d+0) for an absolute constant €’ > 0.

Now, we apply Markov’s inequality to get
Pr(|F —EF| > 0] < Pr|[F—EF[3 > 0% < 07 E|F—EF|3 < 07%(C't)Hnetidpi2dte)

We now set § = e~ /(2 (C't)nlct4d)/ty(2d+c)/2 15 make this expression at most . Plug
in e = n 100 and set t = logn to obtain that ||[F — EF|| < Cn(24+¢)/210gpn holds with

0

probability 1 —n 19 where C' > 0 is an absolute constant. ]

2.4.2  Graph matrices

In this section, we first define graph matrices and then show how to obtain norm bounds for
dense graph matrices, i.e. the case when G ~ Qn,l /25 using our framework. Handling sparse
graph matrices, i.e. the case when G ~ Gy, p for p = o(1), may not work well with our basic
framework as we will explain in Section 2.5. Instead, our general framework in Section 2.6

will handle this case well and we obtain sparse graph matrix norm bounds in Section 2.8.
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Definitions

Define by Gy, the Erdés-Rényi random graph on the vertex set [n] with n vertices, where
each edge is present independently with probability p. Let the graph be encoded by variables
Gi; €Q= {—\/?, \/%} where —\/1]'3 indicates the presence of the edge {7, } and
\/% indicates absence, for all 1 <i,j <n.

So, each G;; for i < j is sampled from  where G ; takes the value —\/1].3 with
probability p and takes the value \/gp otherwise. Here, {2 has been normalized so that
E,wqlz] = 0, Epoqlz?] = 1. as is standard in p-biased Fourier analysis.

When p = 1/2, we are in the setting of dense graph matrices. Then, gn,m can be thought
of as a sampling of the G; ;,i < j independently and uniformly from Q = {-1,1}.

For a set of edges E C ([g]), define G = [[.cg Ge. When p = 1/2, the G correspond
to the Fourier basis for functions of the graph.

Define Z to be the set of sub-tuples of [n], including the empty tuple. Graph matrices
will have rows and columns indexed by Z. Each graph matrix has a succinct representation

as a graph with some extra information, that is called a shape.

Definition 2.4.2 (Shape). A shape is a tuple T = (V (1), E(1),Ur, V;) where (V (1), E(T))

1s a graph and Uy, V- are ordered subsets of the vertices.

Definition 2.4.3 (Realization). Given a shape T, a realization of T is an injective map

v : V(1) = [n].

Definition 2.4.4 (Graph matrices). Let 7 be a shape. The graph matriz M, : {:I:l}<721) —

RIXL s defined to be the matriz-valued function with I, J-th entry defined as follows.

MT[I, J] = Z GQD(E(T)) = Z H GQP(“)»@(”)
Realization ¢ Realization ¢ (u,v)EE(T)
o(U)=Lo(Vy)=J (Ur)=Ip(Vr)=J

In other words, we sum over all realizations of T that map Uy, V; to I,J respectively and
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for each such realization, we have a term corresponding to the Fourier character that the

realization gives.

Shape 7 for adjacency matrix Example shape T

Figure 2.3: Left: Shape corresponding to adjacency matrix, Right: Example of a more complicated
shape

The following examples illustrate some simple graph matrices.

Example 2.4.5 (Adjacency matrix). Let 7 be the shape on the left in Fig. 2.3, with two
vertices V(1) = {u,v} and a single edge E(T) = {{u,v}}. Ur,V; are (u),(v) respectively
where we use tuples to indicate ordering. Then My has nonzero entries M:[(1), (1)](G) =
Gij for alli # 3. If G € {il}(g) s thought of as a graph, then My has as principal
submatriz the £1 adjacency matrix of G with zeros on the diagonal, and the other entries

are 0.

Example 2.4.6. In Fig. 2.3, consider the shape T on the right. We have Ur = (uy,u2),Vy =
(v1), V(1) = {uq,uo,v1, w1} and E(7) = {{uy, w1}, {ug, w1}, {wy,v1}}. My is a matriz with
rows and columns indexed by sub-tuples of [n]. Its nonzero entries are in rows I and columns
J with |I| = |Ur| = 2 and |J| = |V7| = 1 respectively. Specifically, for all distinct ay, a9, by,
the entry corresponding to row (a1, az) and column (by) is Zqé[n]\{al,ag,bl} Gaye1Gager, Gey g -

Here, each term is obtained via the realization ¢ that maps uy,us,wy, v to ay,ao,c1,by re-
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spectively. Succinctly,

column (by)

!

Intuitively, graph matrices are symmetrizations of the Fourier basis, where the symmetry
is incorporated by summing over all realizations of “free” vertices V(7)\ Ur \ V; of the shape

7. For more examples of graph matrices and why they can be a useful tool to work with, see

1].

Norm bounds for dense graph matrices

In this section, we study the concentration of the so-called “dense graph matrices” which is
a term that refers to graph matrices M; in the setting p = 1/2. Since the edges of a random
graph sampled from Qn’l /2 can be viewed as independent Rademacher random variables, we
can apply our framework in this setting.

In particular, we will obtain bounds on E ||[M; — EMTH%;% The G;; € {—1,1} corre-
spond to the Z;s in Section 2.3 and for a fixed shape 7, M will be the matrix F we are
interested in analyzing. For I,J € Z, M;[I,J] is a nonzero polynomial only when there
exists at least one realization of 7 that maps Uy, V; to I, J respectively. In particular, we
must have |I| = |Ur| and |J| = |V7|. In this case, M|/, J] is a homogenous polynomial of

degree |E(T)].
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By Theorem 2.1.2, we have

9 2t
EIIM: —EM-3 < Y (16t E@)) O EM, 415
a+bb21
a,b>0

where for integers a,b > 0, M, , ;, is defined to be the matrix with rows and columns each

indexed by Z x {0, 1}(3) such that for all I, J € Z, we have

Vs sMAL T if alg = a.|Blo = bya - f =0
M, l(La).(1.0) = { 7

0 0.W.

For any multilinear homogenous polynomial f of degree d, since E[G; ;] = 0 for all 4, j,
we have Vo f = 0 whenever |alg < d. Therefore, EM,,; = 0 for all a + b < |E(G)].
Moreover, EM; , ;, = 0 whenever a + b # |E(G)| otherwise EM_ ,; = M, , ;. So, we can

further simplify the above expression to

9 2t
EIM: —EM3 < Y 6t|B(n))FON v, )5
“onas

It remains to analyze HMT,a,ngi for a +b = |E(G)|. We will see that analyzing these
matrices is much simpler since they are deterministic matrices and simple computations
using the Frobenius norm bound will work well. To state our final bounds, we need to define

the notion of vertex separators of shapes.

Remark 2.4.7. As we will see, when analyzing the Frobenius norms for these deterministic
matrices, the notion of the minimum vertex separator arises naturally. In prior trace method

calculations (e.g. [126], [1]), this required ingenious combinatorial observations.

Definition 2.4.8 (Vertex separator). For a shape T, define a vertex separator to be a subset

of vertices S C V(1) such that there is no path from Ur to Vy in 7\ S, which is the shape
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obtained by deleting all the vertices of S (including all edges they’re incident on).

For a shape 7, denote by S; a vertex separator of the smallest size. Also, let I+ be the
set of isolated vertices (vertices with degree 0) in V(7) \ Ur \ V, so the presence of these

vertices essentially scale the matrix by a scalar factor.

Theorem 2.4.9. For a shape 7 and any integer t > 1,
E M, — EM, 2 < (CtE<T>|n|V<T>|tt|E<T>|, E(T)‘Qtwvn)ntuvw|ST|+|IT>

for an absolute constant C' > 0.

Upto lower order terms, the same result has been shown before in [126, 1]. To interpret
this bound, assume that 7 has a constant number of vertices. By setting ¢ ~ polylog(n), we
get

IM,|| = O <\/ﬁ|V(T)‘_|ST|+|IT|>

with high probability, where O hides logarithmic factors. This is obtained by applying
Markov’s inequality on the bound on E HMTH% If 7 has at least one edge, then EM; = 0
and Theorem 2.4.9 yields such bounds. If 7 has no edges, then it’s quite simple to obtain such
a bound and we include it in Lemma 2.4.10 for the sake of completeness. Corollary 2.4.11
makes precise the high probability bound above. Therefore, this power of n is essentially

what controls the norm bound and this is utilized heavily in applications (e.g. [137 , 149]).

Proof of Theorem 2.4.9. We first argue that we can assume I, = (). This is because of the
following reason. Each distinct vertex in 7 of degree 0 essentially scales the matrix by a factor

of at most n. And in the right hand side of the inequality, each vertex in Ir contributes a

tv(r) t1r|

factor of n2t accordingly, from n | and from n , and the other changes only weaken

the inequality.
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Now, fix a,b > 0 such that a + b = |E(7)| and consider M, , ;. For I,J € Z,a,3 €
{0, 1}(721) such that |a|g = a,|B]g = b, a - f = 0, by definition,

M, o 3l(1,@),(J,8)] = Vayis > I Gowww
(p:@(UT):L(p(VT):JuaUEE(T)

= He | ¢Ur) =1,0(V7) = J,0(E(7)) = Supp(a + 8)}|

where Supp(.) denotes the support. We will now obtain norm bounds on these deterministic
matrices by reinterpreting them as graph matrices for different shapes.
Let P = (E1, E9) denote the partition of F(r) = E7 U E3 into two ordered sets E7, Es,

where U denotes disjoint union. Then, we can write M, = > pep My o, p where

M o p.p(L, @), (J.8)] = {e | eUsr) =1,0(Vr) = J,o(E1) = Supp(a), ¢(E2) = Supp(5)}|

Let the set of ordered partitions P be P. Then, |P| < (4\E(T)])|E(T)| and so, by
Fact 2.2.3,

M, apllar < AE@DIEONST M, 04 2l

PeP

Each M ,; p can be interpreted as a graph matrix for a different shape 7p, with the same
vertex set and no edges. Let V(7p) = V(7), E(tp) = 0 and set Ur, = U UV (E1),V(7p) =
Vr UV/(E3) using a canonical ordering. Then, M., ; is equal to M+, upto renaming of the
rows and columns. For an illustration, see Fig. 2.4.

This graph matrix has a block diagonal structure indexed by the realizations of the set

of common vertices S = Urp N Vrp. Indeed, for K € [n]S, let M, g be the block of Mz,
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Figure 2.4: An example illustrating how 7p is defined. In this example, P constraints the blue and
red edges to go to a and 3 respectively. U-,, V;, have an ordering on the vertices (not shown here).

with ¢(S) = K. Then, M, KMT K MTP’ M,, g =0 for K # K’ and so,
E |[Mr.qp/l5 < @E@NEONS™ M |15

PeP
= @B@ODEOIS S My 1|5

PeP Ten)s

t

<@E@NONY 3 (M)

PeP Ten)s

where we bounded the Schatten norm by the appropriate power of the Frobenius norm.
For any fixed K € [n]®, the entries of M, i take values in {0,1} and the number of
nonzero entries is at most n!V(MI=I5] hecause the realizations of vertices in S are fixed and
the other vertices have at most n choices each. Therefore, HMTP, K”g < plVI=Is1,
Finally, we bound |S| to estimate how large this term can be over all possibilities of P.
We argue that S blocks all paths from U; to V. To see this, consider any path from U to
V-, it must contain an edge (u,v) € E(7) such that v € Urp,v € V5. We must either have
(u,v) € Eq, in which case u,v € Urp and v € S, or (u,v) € E9, in which case u,v € V;p,
and u € S. In either case, S must contain either u or v. This argument implies S must be

a vertex separator of 7, giving |S| > |S7|. For a proof by picture, see Fig. 2.5.
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Ju V(B)

Figure 2.5: Proof by picture that |S| > |S;|. Green edges can occur in 7, orange edges cannot, so
S blocks all paths from U, to V.

We also have the trivial upper bound |S| < |V (7)|. Ultimately, this gives

HMTabH < (4|E(7) t\E |Z Z )|=1571)

PeP Ten)s

< (B NIEO] (4 B EOLIV @)LtV @)= )
Along with our prior discussion, we get

2t
E[M, -EM 3 < Y (6t|E@NEON M, 415,
a+b=[E(7)|

< Y @B EOM B ) EON 4B PEOIV OV OI=1s)
a+b=|E(1)|

< (Ct|E<T>|HV<T>tt|E<T>| E<T>|2t|E<v>|>nt<|V<T>|ST|>
for an absolute constant C' > 0. [

In the proof above, our analysis of the shape 7p which has no edges, applies in general
to any shape 7 with no edges. For the sake of completeness, we state it explicity in the

following lemma.
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Lemma 2.4.10. For a shape T with no edges and any integer t > 1,

E ||MT||%§ < n\UTﬂVT|nt(V(T)—|UTﬁV7—|—|—|IT|)

Note that this has the same form as Theorem 2.4.9 because for a shape 7 with no edges,
the minimum vertex separator S; is just U, N V.
The following corollary obtains high probability norm bounds for norms of graph matrices

via Markov’s inequality.

Corollary 2.4.11. For a shape T, for any constant € > 0, with probability 1 — ¢,
IV || < (CIE ()] log(nl" D /2 EOI !V IS

for an absolute constant C' > 0.

Proof. If E(1) = 0, we invoke Lemma 2.4.10. Otherwise, EM; = 0 and we invoke Theo-

rem 2.4.9. By an application of Markov’s inequality,

2t 2
Pr{|M;|| > 6] < Pr[|M. |3 > 6%
<672 g M, |3

<o <(C/)t|E<T>|nv<T>tt|E<r> | E<T>|2t|E<r>|)nt<|v<r>—|ST|+|IT|>
for an absolute constant C’ > 0. We now set

o= (5—1/<2t>(on)|E<r>|n|V<r>|/<zt>t|E<T>|/2| E<T>|E<r>|> SV OIS+

for an absolute constant C” > 0, to make this expression at most ¢. Set ¢t = %log(nW(T”/a)

to complete the proof. [ ]
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2.5 Why a naive application of [147] may fail for general product

distributions

In this section, we elaborate on the difficulties that arise when working with random variables
that are not necessarily Rademacher. In this case, note that we cannot assume that the
polynomial entries are multilinear as well.

To recall the setting, we are given a random matrix F whose entries are low degree
polynomials in random variables Z1, ..., Z, which are independently sampled from arbitrary
distributions. And we wish to obtain concentration bounds on how much F can deviate from
its mean, by way of controlling E ||F — EFH%

Building on the ideas from Section 2.3, we could attempt to use matrix Efron-Stein,
Theorem 2.1.1 and hope to obtain a similar recursion framework. We now discuss what
happens if we do this. Assume E[Z;] = O,E[ZZZ] = 1. We can proceed similar to the proof
of Theorem 2.1.2. So, we consider X as a principal submatrix of X and follow through
Lemma 2.3.3. The main change will happen in Claim 2.3.5. In particular, the equation
E[(Z; — Z;)%|Z] = 2 is no longer true. Instead, we will have E[(Z; — Z;)%|Z] = 1 + ZZZ. So,

we get the expression

n

n n
2 2
Z(l +Z; >Fa,b7tiTL,b,z' - Z Fa,b,iF;,b,z‘ + Z Z; Fa,b,iF;,b,i
i=1 i=1 i=1

The first term can been handled just as in the basic framework. Unfortunately, the
second term will be a source of difficulty. To get around this difficulty, we could attempt to
apply the matrix Efron-Stein inequality again on an appropriately constructed matrix. To
do this, we can interpret the second term as having been obtained after differentiating with
respect to the variable Z; and then putting the variable back. In contrast, we didn’t need to
put it back when working with Rademacher random variables. But after we do this, when

we recurse on these extra matrices, the new second term will contain the left hand side as a
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sub-term, thereby giving a trivial inequality and stalling the recursion.

To see this more clearly, consider the simplest case a = b = 0. Then, the first term
o Fa,b,tiTL,b,i will be equal to F071F8’1 as we saw earlier. To evaluate the second term

. Zi2Fa7b,iF;,b,i in a similar manner, we define the matrix H to be the same as Fg 1
except that each entry is now multiplied by Z; where ¢ is the differentiated variable in the
column. That is, H[I, (J,e;)] = Z;F¢ 1[/,(J,e;)]. Observe that in the definition of H, Z;
has been put back after differentiating with respect to it. Then, the second term will be
HHT and we can hope to use Efron-Stein again on this matrix H recursively.

We could do that and proceed similarly to the proof of Lemma 2.3.3 with appropriate
modifications as above. But since §; = 1 already, differentiating with respect to Z; and

putting it back, will return the same matrix H! So, we end up with an inequality of the form
2t t 2t :
E [[H||5; < O(t)"(E ||H||5; + other nonnegative terms)

Indeed, this is a tautology and will not be useful to us.

For a quick and dirty bound, suppose we had a parameter L such that 1 + le < L for
our distributions, then we will be able to obtain a similar framework while incurring a loss of
V'L at each step of the recursion. But unfortunately, this bound will be lossy. For example,
if we do this computation for the centered normalized adjacency matrix of G' ~ G, 5, we will

vn(l-p) )) where O hides logarithmic factors.. This bound is tight

obtain a norm bound of O( T
for constant or even inverse polylogarithmic p. But for p = n~? for some constant 0 < 6 < 1,
this is not tight because in this regime, the true norm bound is known to be 6(\/ﬁ) (see the
early works of [67, 182] and for tighter bounds, see [19] and references therein).

If we dig into the details of what happened, this example illustrates that the matrix
Efron-Stein inequality Theorem 2.1.1 becomes a tautology for certain kinds of matrices, that
yield V = O(1)XXT + other positive semidefinite matrices.

But in our framework in general, the aforementioned bad matrices occur when we differ-
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entiate with respect to variables that have already been differentiated on. In other words,
the current definition of the variance proxy V doesn’t take into account whether we have
already differentiated with respect to some variable Z;. So, for the general recursion, we
dive into the proof due to [147] and modify it using structural properties of the intermediate

matrices we obtain in our framework.

2.6 The general recursion framework

We now assume 7271, ...,Z, are i.i.d. random variables sampled from a distribution {2 with
finite moments. We assume that they are identically distributed for simplicity but our
technique easily extends even when they are not identically distributed, as long as they are
independent. For each i < n, define ZZ to be an independent copy of Z; and define the
vector Z(1) = (Z1,..., Zi_1, Zi, Zis1,---,Zpn). Define Z' to be the random vector defined
by sampling i from [n] uniformly at random and then setting 7/ = Z (@),

Let F € R[Z]2*7 be a matrix with rows and columns indexed by arbitrary sets Z,J
respectively such that for all I € Z,J € J, F[I, J] are polynomials of Z7,...,Z,. Let d,
the maximum degree of F[I, J] over all entries I, J and let d be the maximum degree of Z;
over all entries F[I, J] and ¢ < n.

Similar to the Rademacher case, let X := F — EF. When the input is Z, we denote
the matrices as F, X, etc and when the input is Z (i), denote the corresponding matrices as
F(i), X(i), etc. In this section, we will give a general framework using which we can obtain
bounds on E ||F — EFH% for any integer ¢ > 1.

We set up a few preliminaries in order to state the main theorem.

Definition 2.6.1 (Space S). Let S be the space of mean-zero polynomials in Z1, ..., Zy of

degree at most dp.
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For o # 0, we also define the centered monomials

xa(Z) = ] (27 - E[Z]"))
a;>0
By definition, xo € S for all a # 0, |a|; < dp. The following proposition is straightfor-

ward.
Proposition 2.6.2. The set {xa(2)|1 < |a|; < dp} forms a basis for S.

For the general framework, we work over this basis because as we will see in Section 2.7,

the “inner kernel matrix” is convenient to state in this basis. The V operator also works

X B—a if a g ﬂ
nicely with our polynomials xg. Indeed, observe that V(xg) = .

0 0.W.

For a polynomial f(Z) in S, denote by f(«) the coefficient of x(Z) in the expansion of

f, that is,
(2= % Flaxa(2)

0#£aeNn
We can naturally extend this notation to matrices that have mean 0. So, we can
write X = 2,2 X (a)xa(Z) where X(a) are deterministic matrices. In order to apply
our recursion framework, we group this sum into terms based on |aly. For k& > 1, define
Xp = X lalg=k X(@)Xa(Z). Then,
X = X

Note that when & > dp, X, = 0.

Definition 2.6.3 (Indexing set ). We define K C N” x {0, 1}" to be the set of pairs (a, )

such that |afy < dp,a € N and v < o,y € {0,1}".

Define the diagonal matrix Dy € R[Z]J2*K x R[Z]Z*X with nonzero entries

D1 ((1,e,7), (I,a,7)] = \/E[Z22>(1=7)] 227
51



Similarly, define the diagonal matrix Dy € R[Z]7 %K x R[Z]7 %K with nonzero entries
Dy[(J:a,7), (J, 0,7)] = \E[Z20 (177 220

Definition 2.6.4 (Matrices Gy, 4 p, F qp)- For integers k,a,b such that k > 1,a,b > 0,
define the matriz Gy, o3 to have rows and columns indexed by I x K and J X K respectively
such that for all (I,a1,71) €Z XK, (Jya9,72) € T X K,

Vai+asXpll, Jl  if |latlo =a,|a2lo =b,a1 - ag =0
G apl(L,a1,m), (J;a2,72)] =
0 0.10.

Also, define Fi, o, := D1Gy, 4 pDo.
Note that when & > dp, Fj, , = 0.

Proposition 2.6.5. For integers k,a,b such that k > 1,a,b > 0, suppose a +b < k. Then

~

each nonzero entry f of Gy, 4 p has the property that f(a) is nonzero only when |alg = k—a—b

Proof. The nonzero entries of X only has terms containing exactly k variables and Vo, +a,
either zeroes out the term, or it truncates exactly |ag +aolg = |a1]o+|az2]p = a+b variables.

This also immediately implies that E[Gy, 4] = 0 whenever a + b < k. Finally, when
k = a+ b, we have that Gy, is a deterministic matrix independent of the Z;. These give
rise to the matrices F 14 o that appears in our main theorem.

We are now ready to state the main theorem.

Theorem 2.6.6 (General recursion). Let the tuple of random variables Z and the function

F be as above. Then, for all integers t > 1,

2t

2
EIF-EF3< Y (CPdd) D E|Fyp 0l

a,b>0,a+b>1
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for an absolute constant C' > 0.

Note that F 1 45 = D1GgqpqpD2 where Dy, Do are diagonal matrices and G4
is a deterministic matrix that’s independent of Z. To analyze the expected Schatten norm
of such matrices, we can resort to far simpler techniques. For instance, we can obtain a
simple bound using an appropriate power of the Frobenius norm, and apply standard scalar

concentration tools. We will see an example of this in Section 2.8.

Remark 2.6.7. We have made no attempts to optimize the factors in front of the expectation

in Theorem 2.6.6, which we suspect can be improved.

We prove the main theorem by repeatedly applying the following technical lemma, the

proof of which we defer to the next section.

Lemma 2.6.8. For all integers t > 1, integers k > 1,a,b > 0 such that a +b < k,
EHFkabH Ct2dd2 EHFkabHHQt +EHF1€ a+1b||

for an absolute constant C' > 0.

Using this lemma, we can complete the proof of the main theorem.

Proof of Theorem 2.6.6. Using Fact 2.2.3, we have E HXH% < d2tz " E HXkH Note
that for any k£ > 1, the matrix Xk is a principal submatrix of Fy, oo with all other entries

being 0, so E ||Xk|| . Therefore,

2t
E || X2 <

N | —

dp
2t w 2t
dp ZE HFk,O,OHQt
k=1
We now apply Lemma 2.6.8 repeatedly to all our terms until £ = a 4 b, ultimately giving

2t (12 712 (a+b)t i 2t
EIXI3 < S (02 I ST [Fopaily
a,b>0,a+b>1
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Observing that E ||Fa+b,a,bH§§ =2FE HFa+b,a,b”§Itg completes the proof. ]

2.7 A generalization of [147] and proof of Lemma 2.6.8

In this section, we will prove Lemma 2.6.8 using the high level strategy described in Sec-
tion 2.1. This requires generalizing the results in [147], and the proof techniques may be of

independent interest.

2.7.1 Generalizing [147] via explicit inner kernels

In our setting, observe that (Z, Z’) has the same distribution as (Z’, 7). This is what is
known as an exchangeable pair of variables, that will be extremely useful for our analysis. In
particular, Z, Z’ have the same distribution and E f(Z, Z') = E f(Z’, Z) for every integrable

function f.

Definition 2.7.1 (Laplacian operator £). Define the operator L on the space S as
L()(Z) =Elf(2) - [(Z)|Z]

for all polynomials f € S.

Note that this operator is well-defined since for any f € S, E[L(f)] = E[E[f(Z) —
f(Z)|Z]] = Elf(Z) - f(Z")] = 0 and hence, L(f) € S.

Lemma 2.7.2. For all « € N, xq is an eigenvector of L with eigenvalue %.

Proof. Recall that Z’ is obtained by choosing i € [n] uniformly at random and then setting
7' = 7). Therefore,

L(Xa)(Z) = Elxa(Z) — xa(Z")| 2]

_ % Y Ela(2) ~ xa(29))2]

<n

o4



When a; = 0, xa(Z)—xa(ZD) = 0. Otherwise, E[xa(Z)—xa(Z®)|Z] = xa(Z). Therefore,

the above expression simplifies to %XQ(Z ). |

Theorem 2.7.3 (Explicit Kernel). For any mean-centered polynomial f € S, there exists a
polynomial Ky on 2n variables z1, ..., zn, zi, ..., 2}, denoted collectively as (z,2'), with the

following properties
1. K¢(2,2) = —=K¢(z,2)
2. E[K¢(Z,2")|Z] = f(Z) where (Z, Z') is the exchangeable pair we consider above.

Proof. Using Proposition 2.6.2 and Lemma 2.7.2, under the basis of polynomials y,, the
operator £ is a diagonal matrix with nonzero diagonal entries and therefore, £7! exists and

is explicitly given by

We then take K¢(z,2') = L7Yf)(2) — L7Yf)(Z)). The first condition is obvious and for

the second condition, we have
E[K;(Z,2)|2) = EILL™()(2) — £~ N2 2Z) = L™ () = |

As seen in the proof of Theorem 2.7.3, £ has a well-defined inverse £~1. We now define

the matrix Ky, ,; that we call the inner kernel.

Definition 2.7.4 (The inner kernel matrix Ky, ,p). For integers k > 1,a,b > 0 such that
a+b <k, define the matriz Ky, ,p € R[Z[TK x R[Z]T*K taking 2n variables (z,2') =

(215 -+, 2n, zi, ..., 2h) as input as follows

Kpap(2,2) = LTHGE ) (2) = L7HGpap)(Z)
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In the rest of this section except where explicitly stated, fix integers £ > 1,a,b > 0 such

that @ +b < k. Then, the inner kernel Ky, , 1, is well-defined.

Lemma 2.7.5. K}, 44(Z, 2') = 1=0=3(Gp 0 p(Z) — Gy ap(Z"))

Proof.

Kpap(Z2,2') = L7HG0p)(Z) — L HGp0p)(Z)

= Y Grap@ (L ()(2) ~ L7 (x)(2)

|ajo=k—a—b

——— > Grap@(al(?) - xal2)
|ajo=k—a—b

n
= 1 (Gpap(2) ~ Cprap(Z))

The following lemma postulates important properties of the the inner kernel, including

how it interacts with D and Do.
Lemma 2.7.6. Ky, . satisfies the following properties
1 Ky op(7,2) = =K 0 p(2,7)
2. BEKy 05(Z, 2" Z] = Gy, 4 (2Z)
3. (D1(Z) = D1(Z")Kp o p(Z,Z") = Ky 0.5(Z, Z')(D2(Z) — Da(Z")) = 0.

Proof. The first equality is obvious from the definition. For the second equality, note that
E[Gj ap] = 0 and Ky, is defined by replacing each entry f of Gy, by the kernel poly-

nomial K’y as exhibited in Theorem 2.7.3. Now, we prove the third equality.
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Consider the matrix (D1(Z) — D1(Z'))Ky 44(Z, Z") whose [(I,a1,71), (J, a2,72)] entry

is given by

n

m\/1[“3[22“'(1_“)](ZC”'71 — (ZN" M) (Vay+ap Xil1L J)(Z) = Var+a, Xl J)(Z1))

where we have used Lemma 2.7.5. We will argue that this term is identically 0. We must
have Z' = Z() for some i < n. If (a -71); = 0, then Z*1'7 = (Z/)*1'71 and the above term
is 0. Otherwise, (a1 + a2); # 0 and so Vi, 4a, on any polynomial f will only contain the
terms independent of Z;, in which case Vo, +aoXg[l, J(Z) = Va,+as Xg I, J](Z'). In this

case was well, the above term is 0. The proof of the other equality is analogous. ]

The reason we call Ky, ,, the inner kernel is because, as seen above, it serves as a kernel
for the inner matrix G in the decomposition F = DGD.

Since we will need to work with Hermitian dilations, we define

We will use the following basic fact extensively in our manipulations.
Fact 2.7.7. For any matriz A € R[Z]2*K x R[Z]7*X DAD = D;ADs.

Proof. We have

_ D; O 0 A| |Dy 0 0 D{A| |[Dy 0
DAD = =
0 Do| |[AT 0 0 Do DyAT 0 0 Do
0 D;ADy
D>ATD, 0
=D1AD>
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We start with a generalized version of a result from [147].

Lemma 2.7.8. Let K = Kl@a,b- For any symmetric matriz valued function R on the

variables Z of the same dimensions as K, such that E ||K(Z, Z')R(Z)| < oo, we have
— 1
E[F.q0(2)R(Z)] = 5 ED(2)K(Z, 2)D(Z)(R(Z) — R(Z))]
Proof. By Lemma 2.7.6, we have

E[Fta(Z)R(Z)] = E[D(Z)Gj 0,5(Z2)D(Z)R(Z)]
=E[D(Z)EIK(Z, Z')|Z]D(Z)R(Z)]

=ED(Z2)K(Z, Z"\D(Z)R(Z)]

where the first equality follow from condition 2 of Lemma 2.7.6 and the second follows from

the pull-through property of expectations. Continuing,

E[F;.0(Z2)R(Z)] = ED(2)K(Z, Z\D(Z)R(Z)]
= ED(Z)K(Z', 2)D(Z)R(Z"))
— —ED(Z)K(Z, 2 )D(Z)R(Z)]
— —ED(Z2)K(Z, Z\D(Z")R(Z)]

= —ED(2)K(Z,Z)D(Z)R(Z)]

Here, the second equality follows from the fact that (Z,Z’) has the same distribution as
(Z',Z), so we can exchange them. The third, fourth and fifth equalities follow from condi-

tions 1, 3,3 of Lemma 2.7.6 respectively. Adding the two displays, we get the result. [
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Definition 2.7.9 (Matrices Uy, , , V. 45)- We define the following matrices
&l Enl 2
U ap = El(Fpop(Z2) = Frop(Z2)|Z]

Viab = El(D(2)Kp0p(2, 2)D(2))*|Z]

The definition of Uy, ,; is essentially unchanged from [147], where it is called the con-
ditional variance. The definition of V. ;5 is slightly different in our setting. This lets us
exploit the specific product structure exhibited by Fk,a,b and the special properties of the
inner kernel from Lemma 2.7.6.

We will now prove a lemma which is similar to a lemma shown in [147].
Lemma 2.7.10. For any s > 0 and for any integer t > 1,

2t —1

t
E[|F,q,0/l5 < (—> E HSUk,a,b +5 Vb

4 V

t

To prove this, we will need the following inequality.
Lemma 2.7.11 (Polynomial mean value trace inequality, [147]). For all matrices A,B,C €
Hd, all integers ¢ > 1 and all s > 0,
tr[C(A? — BY)]| < %tr[(s(A ~B)2 4 sla?)(Ad 4 B

Proof of Lemma 2.7.10. We start by invoking Lemma 2.7.8 by setting R(Z) = sz;ll)(Z)

E[Frasll = Etr[Frap Fras)

= SEID(Z)Ky (2 2D(2) g )(2) ~ Filah (7))
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Applying Lemma 2.7.11,

= 2t
E HFkv“vaQt

< Y B ual(s(Fra(2) — Fran(2))? + 5~ (D(2) K02, 2)D(2))2) B0 2(2) + T2y 2(27))]
= D Enl(5(Fras(2) ~ Fras(Z)) + 57 (D(2)Kas(Z 2)D(2))Frty (2)

where the last line used the fact that (Z, Z’) has the same distribution as (Z’, Z) and applied

condition 3 of Lemma 2.7.6. Using the definitions of Uy, ,; and V. ,;, we get

2t -1
4

2t -1
2 (e

-1 =2t—2
Etr[(sUkapb+5 Vias) Fiapl

Nt
t) (& |[Frapllo)

— 2t
E [ Frabll5

IN

1
SUkab TS Viab

4

where we used Holder’s inequality for the trace and Holder’s inequality for the expectation.

Rearranging gives the result. ]

2.7.2 Proof of Lemma 2.6.8

Lemma 2.7.10 suggests that in order to bound E ||Fk:,a,bH§i= it suffices to bound E HUk,a,b”:
and E ||Vk,a,bH§' Indeed, this will be our strategy. To bound E HUk,a,bHi’ we will bound it

via the matrices that we define below.

Definition 2.7.12 (Matrices A]f’a’b, Ag’a’b, Ag’a’b). Define the matrices
k,a,b NN 2
A7 =E[((D(2) = D(27)Gp 0 (2)D(2))7| 2]

AY* = B[(D(2)(Gap(2) — Grap(Z))D(2))?|Z]

et

AR — B(D(2)Ghas(2)(D(2) - D(Z')))% 2]

bhad)

Lemma 2.7.13. Uy, = 3(A]f’“’b+A§’a’b+A§’a’b),
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To prove this lemma, we will use the following lemma.

Lemma 2.7.14. We have the relations
(D(Z) = D(Z')) (G0 p(Z)D(Z) — Gy o p(2")D(Z")) = 0

(Grap(Z) = Grap(Z2"))(D(Z) - D(Z)) = 0

Proof sketch. The proof is similar to the proof of third equality in Lemma 2.7.6. When Z’
is set to Z() for some i < n, when a diagonal entry of D(Z) — D(Z’) is nonzero, then the
corresponding row of Gy, o 5(Z)D(Z) — Gy, 45(Z")D(Z') will be 0. The second equality is

analogous. n

Proof of Lemma 2.7.13. We have

(Frab(Z) = Frap(Z2))?
= (D(Z2)G,ap(2)D(Z) = D(Z')Gap(2")D(Z"))?

= <D(Z)Gk,a,b(z)(D(Z) —D(Z") +D(Z2)(Grap(Z) — Grap(Z2')D(Z') + (D(Z) — D(Z/))Gk,a,b(Z/)D(Z/))

2
= (D(Z)Gk,a,b(z)(D(Z) —D(Z)) + D(2)(Gr,ab(Z) — Grap(2)D(Z) + (D(Z) - D(Z'))Gk,a,b(Z)D(Z))

where the last equality follows from Lemma 2.7.14. Taking expectations conditioned on Z

and applying Fact 2.2.2, we immediately get Uy, ,p =< 3(Ak wb Ak by Ak @ b) n

In subsequent sections, we will prove the following technical bounds on the matrices we

have considered so far.

2t>

Lemma 2.7.15. For all integerst > 1, E HAk -

‘ < OB (g |[Fy g

2t

5t):

(2dp t t EHFkabHHQt

k,a,b

Lemma 2.7.17. For all integerst > 1, E HA < (8ddp E HFk; a b“

61




k,a,b 4dp

Lemma 2.7.18. For all integerst > 1, E HA E H angi

Assuming the above lemmas, we can complete the proof of Lemma 2.6.8, which we restate

for convenience.

Lemma 2.6.8. For all integers t > 1, integers k > 1,a,b > 0 such that a +b < k,

E || Fraslls < (CPAER) E |Frapirlloy + E|Frarinla)

for an absolute constant C' > 0.

Proof of Lemma 2.6.8. Using Lemma 2.7.10, Lemma 2.7.13, we get that for any s > 0,

= 2 2t t
E|[Fraplly < ( T E HSUk@b +5 Viap
< (9st)!( EHA’“”( +EHA’“”’ k“b()ﬂt

Let p = s/n. Since the inequality is true for any choice of s > 0, it is true for any choice of

p > 0. Now, using Lemma 2.7.17, Lemma 2.7.18,

t t
t) (95t)t < <8ddp) + (4dp> ) E HFk,a b||2t

nt nt

k,a,b k,a,b

(9st)" (2 | AT

)+EHA

= o' (Cytddy)!

for an absolute constant C'; > 0. Using Lemma 2.7.15, Lemma 2.7.16,

(9st)' & | A5

t 2d.)t _ _
L + TR | Viaslll < ((9st)t(nf) + tts_t(2dp)tnt) (E HFk,a,bHHZ +E \]Fk7a+17b\|§i)

< (p'CL+ p ' CL) (tdy) (B |Fraoit | + E [[Frsas]|o0)
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for absolute constants C9, C's > 0. Therefore,

E|[Frasl|? < pH(Crtddy) E [Frqpl2 + (0/Ch + p CL) (tdp) (B | Frapin |2 + E [[Frasr ol )

We choose p > 0 so that pf(Cytddy)t = % to get

2t

_ 1 = 1 _ _
E[Fraslly < 5 EIFraplly + 5 (€A @ [Frapillyy + B [Frasrplly)

for an absolute constant C' > 0. Rearranging yields the result. [ ]

2.7.3 Bounding A’;“’b and Vi qp

The next lemma relates Vi, ,j to Ag’a’b upto a factor of n? which will be enough for us. We

can then focus on bounding Ag’a’b.

Lemma 2.7.19. V}, ,; = HQAIQWJJ

Proof. Using Lemma 2.7.5,

Viab = El(D(Z2)Kp0p(2, 2)D(2))?|Z]

~E(D(2)

L @ras(2) - Crasl2) D)1

<0’ B[(D(2)(Gpap(Z) = Grap(2)D(2))% 2]

= n2A§’a’b

Forl1<i<mnand1l<I[<d,let e € N denote the vector a with «; = [ and a; =0

for 5 # i. We note the following simple proposition.
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Proposition 2.7.20. For any polynomial f such that the degree of Z; is at most d,

12) = £(ZD) = 3 (2} = Z Ve, ()

1<i<d

We now restate and prove Lemma 2.7.15.

2t

2d,)t
(2dy) 2

nt

t — o —
‘t < (B || Fkapr1llo+E [ Fratsp

Lemma 2.7.15. For all integerst > 1, E HAS’“’b

Proof. Consider

AL = B[(D(2)(C0p(2) — Crap(Z))D(2))|2]

2
MMT 0
=E Z
0 MM
E[MMT|Z] 0
0 E[MTM|Z]

where M = D1(Z)(Gy, 4 (Z) — Gy 0.5(Z"))D2(Z). Using Proposition 2.7.20,

EMM"|Z] = E[D1(2)(Gr,a(2) = Gr.a(Z)D2(Z) - D2(Z)(Gr,ap(Z) = Grap(Z)™D1(Z)| 2]

Y EDi(Z2)(Grap(Z) = Gran(Z29)D2(2) - D2(Z)(Grap(Z) — Gran(27)TD1(2)|Z]

s
I
—
-~
I
=
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Similarly,

d
2 n
MTM|Z] < = (22 + B[Z?) - N, ;(2)TN, (2
E[ ‘ —n;; +E z,l( ) z,l( )

Claim 2.7.21. We have the relations

NE
MQ.

2 2
(Z +EIZ]) Nig(ZN (D)7 = (b + DFpapa1F] o0

~
Il
—_
~
I
—

M&

2

=11

(22" + B[Z2]) - N (Z2)TN; (Z) = (a + 1)F] a1 bF kat1
1

~.

Using this claim, we have

2(b+1) 2d,,
E[MMT|Z] = Fkab—HFkab_H Fkab+1Fkab+1
2(a+1) ¢ 2dp 1
]E[MTM|Z] j —Fk7a+17ka,a+1,b j TFk7a—|—1’ka7a+1,b
Therefore,
t
E[a5*| = ElEmMTIZ))] + B ™M™ Z));
(de)t 2t 2t
= nt (E HFk,aJ?—H H2t 275)
(2d)" 2t
< 2 o Bl 2

It remains to prove the claim.

Proof of Claim 2.7.21. We will prove the first relation, the second is analogous. For a fixed
i < n,l < d, consider any nonzero entry [(I1,a1,71), (I2,a2,72)] of > 1" Zflzl(ZZZl +

E[Z2))N; (Z)N; ;(Z)T, where Iy, I € T, (a1,7), (a2,72) € K. We must have |a1]p =
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lao|g = @, in which case the entry is equal to

Z (22 +E[Z%]) - (\/E[Zzal'(1_71)4_2&3'(1_73)]Zal'71+a3'73Vei71Va1+a3Xk[I1, )

(J7a37’y3)€\7x’C
|as|=b
ajaz=agaz=0

. (\/E[ZQOL2'(1—72)+2O[3'(1_73>]Za2">/2+043'73vei’lva2+a3Xk[_[27 J])

Note that the term inside the summation is nonzero only when e; ;-(a1+a3) = €; ;-(ag+ag) =

0. Hence, this sum can be written as

> (VE[Z201 (=) +205: (1) 701 40307 o X, )

(J,az,y3)eT XK
|ag|=b+1
€; 1Jag,ajaz=aza3=0

(Y B{Z2e () 205 ()] 70 0y 0 Xy 1, )

When we add this entry over all i < n,[ < d, this simplifies to

(b+1)- Z (\/E[ZQal.(1771)+2a3.(1—fy3)]Za1~71+043.73va1+a3Xk[[1’ J])

(J,a3,93)€T xK
|as|=b+1
alaz=aga3=0

(B[220 (120204205 (13| 202 20557 oo X (I, J])

The factor of (b4 1) came because the index i could have been chosen from among all
the active indices in ag. But this is precisely the [(I1,a1,71), (I2,a2,72)] entry of (b +

1)Fk”“ab+1F%,a,b+1’ proving the claim. .

We restate and prove Lemma 2.7.16.

2t
20):

Lemma 2.7.16. For all integerst > 1, E Hvk,mbHi < (2dp)tnt(IE HFk,a’bJrlH;i%—E HFk,’aJrLb
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Proof. Using Lemma 2.7.19 and Lemma 2.7.15, we get

k,a,b

t
E[[Viasll; <n®E[ a5

< (2dp)'n!(E HFk,a,bJrngi +E|[Frat1p §§>

2.7.4  Bounding A} and Alg’a’b

Define LI to be the disjoint union of sets. For 1 <7 <n and 1 <[ < d, define the diagonal
matrices IT; ;, I, TI;, IT), € REXKIUT %K)  REXKILT %K) (the same dimensions as D)

as
1 if(¢-v);#0and o; =1 1 if(a-v); #0
Hi,l[(‘[aa7ﬁ)7([aa7ﬂ)]: Hi[(,LO[,B),(I,O[,B)]:
0 o.w. 0 ow
1 ifa;#0and a; =1 1 ifa; #0
H;’l[(I,mﬁ),(I,a,ﬁ)] = H;[(Iaoﬁﬂ)v(-[aa’ﬁ)] =
0 o.w. 0 ow

for all 7 € ZU J. Note that for all i <n, II; = ¢ | T, ;.

Also, for all 1 < i < n, we define the permutation matrices 3; € REXK)I(TXK)

RIXK)UT %K) a5 follows. Consider the permutation o on Z x K that transposes (I,a,7)

and (I, o,y + €;) for all (I,a,v) € Z x K such that a; # 0. Here, e; € {0,1}" has exactly

one nonzero entry, which is in the ith position, and v + e; is the usual addition over 9. oy

(1) (2)

leaves other positions fixed. Let ;7" be the permutation matrix for o. Similarly, let 3;

be the permutation matrix of the permutation o9 on J x K that transposes (J, «,~) and

(J, o,y +€;) for all (J,a,v) € J x K such that o; # 0, and leaves all other positions fixed.
I
Then, we define ; = | * @ | The following fact is easy to verify.
0o 3

1
Fact 2.7.22. H;’ZEi = ZZTI;.,Z and H;EZ = EZH{L
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We are now ready to prove Lemma 2.7.17 which we restate for convenience.

Lemma 2.7.17. For all integerst > 1, E HAlf’a’b

t t _
< Bl B Py

Proof. Firstly,

=E[(D(Z) - D(Z"))M(2)(D(2) - D(Z"))|Z]

where we define M(Z) = Gy, 45(Z)D(Z) - D(Z)Gy; 4,5(Z). Recall that Z' = Z( for some i
randomly chosen from [n] uniformly. Observing that D(Z) —D(Z(0)) = I1;(D(Z) — D(Z (1))

for all 7, we get

< 2(1&[, B MD(ZM(Z)D(Z)T17) + B & ][HiD<Z<">>M<Z>D<Z<Z‘>>H¢]|Z])
1€n 1€N

<o s (MF,10) + 5] 5 ][H¢D<Z<i>>M<Z>D<Z<Z’>>Hi1121)
1€n 1€n

=2(A10+ Aqq)
where we define

Ay = E][Hifi,a,bni], Ay =E[ E ILD(ZO)M(2)D(2)11;] 7]

i€ln i€[n

t

Y

Invoking Lemma 2.2.4 over the interval [0, oo) with the convex continuous function f(z) = x
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B; = FZ wbr Ai = —=TI; where we observe that S AiAZT = dl S Hg <1, we get
bhatl p

7

t n t
-9 1 =2
E| Ayl = Etr[Al)] = Etr[< _EI% ][HiFk,a,bHi]) | = ﬁEtY[( E HiFk,a,bHi> ]
1<cn .

dt 1
< —Etr (ZH F,wbn )
di ! 9\ =2t
S —Etl" (ZH )Fkab
t
< @ Etr[F%fa’b]
t 2t
Now, consider
Ay = E[,g IL;D(Z2D)M(2)D(2')11;)|Z]
d ‘ d
= E| E ][(Z 11; )D(Z)M(Z)D(2D) (11, )] Z]
[ ] =1
d .
<d-E| @}[ZHZ,ZD<Z“>>M<Z>D<Z< )L, ]| Z]
€N l=1

= I B2 pzmzpzm,
i=11=1 “i
n d
= Z Z I1,,3,D(Z)M(Z)D(Z)2] 11,
1=11=1
n d

d 2
== > Ty SiFy S
1=11[=1

We now invoke Lemma 2.2.4 on dd) terms with B; ; = Fi,a,b and A; ) = ﬁnwzi where
P
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we observe that

to get

n d
—2
ElAnlf=Etr[Al] < SB[ T BF; o T, )]

—21
> Hz‘,lzz’sz,a,bEiTHi,l)]

VAN
=
{F%&
=

=

—+

= =
VRS N
>§“| =
[]=

d
1 - =2t
i > 2.5 Hi,lﬂz‘,lziFk,a,b)]

To simplify this, we use Fact 2.7.22 to get

n d n d n d n d
ZZE ZZ ZZH’ZETEH”_ZZH;JH;Jjde
i=11=1

i=11=1 =1 1[=1 1=11=1

Therefore,

(ddy)! ot (ddyy)!
E[An) < nfg? Etr[Ff ) = np

k,a,b { ’ 2%

Putting them together, using Fact 2.2.3,

k,a,b
el abet| < s Al +ElAnl)
(8ddp) 2t
— ot
|
We now restate and prove Lemma 2.7.18.
kab (4dp
Lemma 2.7.18. For all integerst > 1, E ||Ag’ < E HFkabH
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Proof. Recall that Z' = Z (@) for 4 sampled uniformly from [n]. Then,

A" = E[(D(2)G}ap(2)(D(2) - D(2"))*|Z]

=E[ E [(D(2)G}04(2)(D(2) = D(21)))?)|2]

=E[ E [(D(2)Gy,ap(2)IL(D(Z) — D(2)))]| 2]

where we use the fact that D(Z) —D(Z(1)) = IL,(D(Z) — D(Z(i))) for all 4. Define M(Z) =
D(Z)Gy, qp to get

A" =B B IM(Z)TL(D(Z) - D) M)

< 2(E] E [M(2)ILD(Z2)ILM(2)7)|Z] + E[ E [M(Z)ILD(ZW)*I,M(2)T)|2])

i€[n] i€[n]

=2( : ][M<Z>HiD<Z>2HiM<Z>T1 +E[ . }[M<Z>H¢D<Z“>>2HiM<Z>W|Z1>

= 2(Az0 + A3z1)
where we define

Az = E MZ2)ILD(Z2)’ILM(2)T], Az =E[ E [M(Z)ILD(Z9)*I,M(2)T)|Z]

E
i€[n] i€[n]

We have

Az = E M(Z)ILD(Z2)’ILM(Z)T) = E [M(Z)D(Z)ILILD(Z)M(Z)T]

ic[n] i€ln]
= M(Z)D(2)(> S T)D(Z)M(2)"
1=1
< EM(Z)D(Z)DZM()T
= d_pfz a,b



For the other term, using Fact 2.7.22,

Az =E[ E [M(2)ILD(29)’1,;M(2)7]2)

1€[n]

= ]1?, }[M(Z)HZ-EZ-D(Z)QEZ'HZ‘M(Z)T]
1€|n

M(2)IT}2;D(2)* £ I M(Z)T]

A
%.
ELTJ

= E [M(Z)SIID(Z)11%,M(2)T]

M
3

-k }[D<Z>6k,a,b2iﬂéD<Z>2H222~Gk,a,bD<Z>1
1<|n

Observe that ak’avii = Ek’a,b because the entries of G only depend on « and not on -,

so permuting the vs will not have any effect on the matrix. Therefore,

Az = z ][D<Z>€k,a,bH§D<Z>2H§€k,a,bD<Z>1
1 n

= IF[J][D(Z)ak@,bD(Z)H;HQD(Z)alaa,bD(Z)]
1EN

= K Fk‘ a bH;H;Fk a,b
ie[n} ) b bandl

1 n
_ o
= Z Fr o ) ILILFEE 4 p
i—1

dp=2

P
< PF
- k,a,b

where we used the fact that > ;" | H;Hg = dpl. Putting them together,

d; 2t (4dp)t

t
t t t o o 2t
, S 2 E 1Al +E Azl <2 225 E|[Fraplly < 7 El[Frap

k,a,b
E HA?, ot

72



2.8 Application: Sparse graph matrices

We now consider sparse graph matrices, i.e., the setting G ~ Gy p for p < % The main
difference from dense graph matrices is the contribution of the edge factors. Naively bounding
the contribution of each edge by it’s absolute value, as explained in Section 2.5, each edge

=2 But in many cases, these bounds are not tight.

in the shape contributes a factor of 1 5

In fact, they are not tight even in the basic case of the adjacency matrix. In this section, we
obtain tighter bounds using our general recursion. As we will see, the improved bound will
contain the edge factors only for edges within the vertex separator.

Let M, be the graph matrix corresponding to shape 7 where we use p-biased Fourier
characters G; ;. In this section, we obtain bounds on E [[Mr — E MT||%§ and use it to obtain
high probability bounds on ||[M;||. Since many of the details are similar to Section 2.4.2 and
the proof of Theorem 2.4.9, we will pass lightly over some details. We recommend the reader
to read that section first.

The G; ; correspond to the Z;s in Section 2.6 and F corresponds to M;. Let Z denote
the set of sub-tuples of [n]. Each nonzero entry of M is a homogenous polynomial of degree
|E(7)]. If E(T) =0, then, M; — EM; = 0 so we can focus on the case when 7 has at least
one edge. Moreover, since degree-0 vertices in V(1) \ Ur \ V; simply scale the matrix by a
factor of at most n, we can handle them separately and for our main analysis, we assume
there are no such vertices in 7.

We will use Theorem 2.6.6 but the matrices and the statement can be drastically sim-
plified in our application. Instate the notation of Section 2.6. Since we are dealing with
multilinear polynomials, in the definition of K, we can restrict our attention to a € {0, 1}(3)
because for any other o € N", the corresponding row or column of G444 and hence
Fytb.0,b, Will be 0. So, we can accordingly redefine K to only contain these («,7v), hence
KK C{0,1}"™ x {0,1}™.

Next, the diagonal matrices D1, Do will both be equal to the diagonal matrix D €
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R[Z]T*K x R[Z]Z*K with nonzero entries

D((I,a,7), (I,a,7)] = \/E[H G?J%(l—v)ij] H G@%my _ HG?z‘j%j
ij i,J i,J

where we used the fact that for any i, 7, E[ng] =1.
For integers a,b > 0 such that a + b = |E(7)|, define the matrix M, , j to be the matrix
G4b,a,p- We use this notation in order to be streamlined with Section 2.4.2. That is, M, ,

has rows and columns indexed by Z x K such that for all (I, a1,71), (J,a9,7) € Z x K,

Var+aos M-I, J] if |ag]g = a,|aglg =b,a1 - ag =0
M b1, a1,71), (J, a2,72)] =
0 0.W.

This is almost identical to the M, ,; matrix defined in Section 2.4.2, with the dif-
ference being that the row and column indices now have v in them. Therefore, for I,J €
Z,(a1,71), (g, 72) € K such that |aq|g = a, |ag|g = b, a1 -ag = 0, the entry in row (I, a1,71)

and column (J, a9, 7y2) is the number of realizations ¢ of 7 such that
e U, V: map to I, J respectively under ¢, and
e Under ¢, the edges of 7 map to the edges in a1 and a9 viewed as a set.

By Theorem 2.6.6, for integers t > 1,

2t 2 544 b 2
E|M; —EM;|5 < E (Ct ddp>(a+ 'E [Fatbablla
a,b>0,a+b>1

- Y (eRE@OHIPOIE|pM, D2
a,b>0,a+b=|E(T)|
for an absolute constant C' > 0.
Now, we would like to analyze E HDMr,a,bD”Z- Just as in the proof of Theorem 2.4.9,

let P specify which edges of E(7) go to aq, ag respectively and in what order. Moreover, we
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now store extra information in P that indicates which entries of v1, 9 (relative to aq, ao) are
set to 1. Let the set of such information P be denoted P, then |P| < (4|E(T)])t|E(T)|2|E(T)|.

Thus,

£ |[DM,.,,D|f5; < (1B Y E[|DM,., , pDI
pPep
where we define M, ,j p similar to M, ,; with the extra condition that ¢, a1, a2,71,72
must respect P.

At this point, in contrast to the proof of Theorem 2.4.9, note that the matrices M, ,p p
here have rows and columns indexed by Z x K. We will again define the shape 7p that
is equal to the nonzero block of the matrix DM, ,; pD, upto renaming of the rows and
columns. V(7p), Urp, Vrp are defined the same way as in Section 2.4.2 but to incorporate
the action of D on these entries, we simply keep the edges that are active in ~v; or o, as

prescribed by P. For an illustration, see Fig. 2.6.

Figure 2.6: An example illustrating how 7p is defined. In this example, P constraints the blue and
red edges to go to a1 and s respectively. Moreover, P indicates that some edges are active in
71,72 (indicated by a solid edge) and some are not active (indicated by a dashed edge) in 71, 7s.
We keep the solid edges in 7p. U,,, V;, also have an ordering on the vertices (not shown here).

Then, by similar renaming of the rows and columns of DM , ;, pD and dropping the 7s,



we obtain M;,. We therefore obtain the bound

2t E 2t
E[[DM,,4D|5 < GIE@NTFON S B [Me |y,
peP
We would like to analyze norm bounds on the matrices M7,. Observe that 7p are shapes

with the properties

e there are no vertices in V(7p) \ Urp \ Vip

e cach edge is either entirely contained in Uy, or entirely contained in V7,

Call such shapes simple.

In the following lemma, whose proof is deferred to the next section, we prove norm
bounds on simple shapes. Recall that in Lemma 2.4.10, we analyzed the norm bounds of
simple shapes with no edges (because in this case, the graph distribution doesn’t matter).
The analysis for simple shapes is very similar but this time, we use scalar concentration tools
to bound the Frobenius norm.

For a set S of vertices, denote by E(S) the set of edges with both endpoints in S.

Lemma 2.8.1. For all even integers t > 2, if 7 is a simple shape,

t|E(S
E[|M;|3 < (nV<T>|(Ct)tlE<T>lyV(T>|tIV<T>I) max (ﬂ) i )'ntovm\—wn
B U,V-CSCV(r) \ P

for an absolute constant C' > 0.

For simple shapes, the main difference from norm bounds on corresponding dense graph

1-p

matrices is that each edge within S contributes a factor of 5

. Edge contributions are
unavoidable when handling sparse graph matrices, but we have identified that we need not
consider all edges in the shape but only a subset of it.

Using this lemma, we can obtain norm bounds on general graph matrices. We recall the

definition of a vertex separator.
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Definition 2.4.8 (Vertex separator). For a shape T, define a vertex separator to be a subset
of vertices S C V(1) such that there is no path from Ur to Vr in 7\ S, which is the shape

obtained by deleting all the vertices of S (including all edges they’re incident on).

Let I be the set of isolated vertices (vertices of degree 0) in V() \ Ur \ V7, so they
essentially scale the matrix by a scalar factor. We now state the main theorem of this

section.

Theorem 2.8.2. For all even integers t > 2, for any shape T,

tE(S)]
EHMT—EMTH%is(nV“)v<T)t'””'<0t3|E<T)|5)t'E<T>) max (1‘1“) IV (DI=IST4117D)

vertex separator S p
where the mazimum is over all verter separators S.

To interpret this bound, if we assume that there are a constant number of vertices in 7,

then by choosing ¢ ~ polylog(n), we get

E(S
HMT\l:G( max ( 1;79) ()|\/5|V<T>|S+|IT|)

vertex separator S p

with high probability, where O hides logarithmic factors. This result follows from Theo-
rem 2.8.2 if 7 has at least one edge, but also applies if 7 has no edges, in which case we can
directly use the far simpler Lemma 2.4.10. A precise form of the above characterization is
given in Corollary 2.8.3.

Theorem 2.8.2 gives us the right dependence on p, n for norm bounds in the case of sparse
graph matrices. The same bound, upto lower order terms, was also obtained in [95] via the
trace power method, where they use these bounds to prove semidefinite-programming lower

bounds for the maximum independent set problem on sparse graphs.

Proof of Theorem 2.8.2. If E(1) = 0, then M; = EM; and we are done. So, assume

E(1) # 0. Since vertices in I only scale the matrix by a factor of at most n, we can
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handle them separately and our bound has the appropriate power of n coming from these.

Therefore, we can assume I = (). Continuing our prior discussions, for an absolute constant

Cq >0,

9 2t
EIM, —EM 3 < Y (@2E@ONPOIE|DM, D,
a,b>0,a+b=|E(7)|

< S @AEEHEO(S E@IEON ST R M, |5

a,b>0,a+b=|E(7)| Yelyp

where I'; ; are the set of simple shapes we obtain for DM , ;D, as per our discussion above.

Using Lemma 2.8.1, for an absolute constant C'y > 0, we have

2t
E ||MT - EMTHQt

1 — o\ HE®)
S(n'V(T)l|V(T)|t|V(T)(Czt3|E(T)|5)t|E(T)|> 3 3 max )( p) nt(V@)I-IS)

UypNVy, CSCV(
a,b>0,a+b=|E(r)| $€Tap ¥ V= p

For any a,b, consider any simple shape ¢ € T j that can be obtained. As observed in the
proof of Theorem 2.4.9 (see in particular Fig. 2.5), Uy N Vi, must be a vertex separator of
7. Therefore, any S 2 Uy, N Vi, must be a vertex separator of 7. It’s easy to see that as S
ranges over all sets such that Uy, NVy, €5 C V' (1), it ranges over all vertex separators of 7.

Also, the number of different 1) is at most 4B gince each edge can go either to Uy, or

Vi, and for each such choice, it can either be active in  or not. Therefore,

E M, — EM, |3

t|lE(S
< (n|V<T>||V<T),t|V<T>(Cﬂs‘ E<T>|5>t|E<T>|>4|E<T>| max (ﬂ) N v

vertex separator S p

t|E(S
< <n|V<T>|,V(T),t|V<T>(Ct3| E(T),5)t|E<T>|) - (ﬂ) O s

vertex separator S p

for an absolute constant C' > 0.

The following corollary obtains high probability norm bounds for norms of graph ma-
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trices via Markov’s inequality. We assume the graph has at least one edge, otherwise it is
deterministic and its norm bound was already analyzed in Lemma 2.4.10, Corollary 2.4.11,
where we observe that the distinction between sparse and dense graph matrices does not

matter if the random matrix is deterministic.

Corollary 2.8.3. For a shape T with at least one edge, for any constant € > 0, with proba-
bility 1 — &,

|E(S)|
M < (VOB Pl DY) e ((EE) O

vertex separator S P
for an absolute constant C' > 0.

Proof. Since |E(7)| > 1, EM; = 0. By an application of Markov’s inequality,

Pr{|M,| > 6] < Pr{|M,|% > 6%

<OTME M.
, ] p\ B
< g2 (nvm V(T)t|V<r>|(C/ts|E(T)B)tE<r>|> i () SV (D) =18 |+ )
vertex separator S P
for an absolute constant C’ > 0. We now set

o= (51/<2t>(cff)|E<T>n|vm|/<2t> Vn)IVEOV2BIE@I2, E(T)‘5|E<T>/2>

=\ _veisin
max ( —) NaaY T

vertex separator S p

for an absolute constant C” > 0, to make this expression at most €. Set t = %log(nW(T”/s)

to complete the proof. [ ]

2.8.1 Norm bounds on simple graph matrices

In this section, we will prove Lemma 2.8.1. First, we recall the following scalar concentration

result from [166].
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Schudy-Sviridenko moment bound

The definitions and main bound in this section are from [166].

Definition 2.8.4. A random wvariable Z is central moment bounded with real parameter

L > 0 if for any integer i > 1,
EllZ - E[Z)|') <i-L-E[Z - E[Z)]"]

Proposition 2.8.5. The p-biased Bernoulli random variable Z is central moment bounded

with real parameter L = ,/%.

Proof. We have E[Z] = 0 and for p < 1 |Z] < ,/%, therefore,

- P L—p
E[|Z —E[Z]|'| =py/—— + (1 —p)y/ ——
I [Z]|'] T (1-p) ;
_ -1
I—p D 1—1 1 _pz
[
p l—p p
1-— _
— | —ElZ - ElZ]/
p
therefore, we can take L = %. [ ]
For a given multilinear polynomial f(z) on variables z1,...,z,, we can naturally as-

sociate with it a hypergraph H on vertices [n] and weighted hyperedges E(H) where each
h € E(H) corresponds to a distinct term of f(x). Each hyperedge h is a subset V(h) of
vertices and has a real valued weight wj, which is the coefficient of that monomial in f.

Therefore,

f(z) = Z wy, H Ty

heE(H) veV(h)

Assume f has degree dy, then each hyperedge of H has at most d), vertices.
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Now, for a given collection of independent random variables Y7,...,Y},, a multilinear

poynomial f with associated hypergraph H and weights w, and an integer r > 0, define

V)= e (Sl T EI)

heE(H),SCV(h) veV (h)\S

Lemma 2.8.6 ([166], Lemma 5.1). Given n independent central moment bounded random
variables Y1, ..., Yy with the same parameter L > 0 and a degree dp, multilinear polynomial

f(x). Lett > 2 be an even integer, then

BIA(Y) — BF(V)Y] < max { (% tRZfPVar[fw)t, e (1" R L7y (. Y»f}

re(dp)
where Ry > 1 is some absolute constant.

In our setting, we can also bound the variance in terms of the p, as was shown in [166],

which will simplify our calculations.

Lemma 2.8.7 ([166], Lemma 1.5). For the same setting as in Lemma 2.8.6,

Var(f(Y)] < 2dpa™ max (o(f, ¥ par (£ Y)4°L")

Proof of Lemma 2.8.1
We are ready to prove Lemma 2.8.1 which we restate for convenience.

Lemma 2.8.1. For all even integers t > 2, if 7 is a simple shape,

t|E(S
E M, |2 < (nV(T)|(Ct)t|E(T)||V(7-)|t|V(T)|) e (1;1?) L ve-s)
B UrNV-CSCV () P

for an absolute constant C' > 0.

We will prove it the same way as Lemma 2.4.10, by bounding the schatten norm of each
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diagonal block by an appropriate power of its Frobenius norm. In this case, to bound the
expected power of the Frobenius norm, we use the scalar concentration inequality from the

previous section.

Proof of Lemma 2.8.1. First, we note that M has a block diagonal structure indexed by
the realizations of the set of common vertices So = Urp, N Vrp. For T € [n)0, let M, 7 be

the block of My with ¢(Sp) = 7. Then, M M ., = MT .M, 1v = 0 for T # T" and so,

EIMAZ = > E[M gl < Y E(IM 2[5
Te[n)% Te[n)%

where we bounded the Schatten norm by a power of the Frobenius norm.
Fix T € [n]%0 and consider E HMﬂTHg' Let R be the set of realizations ¢ of 7 such that

©(Sg) =T. Then, for p € R and e € E(S)), the value of p(e) is fixed. Using this,

Mozl =3 IT G

pER e E(T)

= II &3> I G

eeE(Sy) (pER eeE(T)\E(So)

S DS | RN

wER ec E(T)\E(S))

where L = pp is an upper bound on G2 for p < 1 . Define the quantity

Ae ma LEGL V@S]
SoCSCV(7)

Claim 2.8.8. E HMTTH < (CHUEDNY () IVOIAL for an absolute constant C > 0.
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Using this claim, we have

EIMA3 < Y (M2,
Te[n])%

< %l (et HE@ 1y () V(D] 4t

y L p\HEG)
_ VOl EONy VOl max <_) LLVE]-1S)
UNVCSCV (1) p

as required. ™

It remains to prove the claim.

Proof of Claim 2.8.8. For 1 < i,j < n, define the variables Y;; GQ. with E[|Y;;]] = 1
Let f(Y) be the polynomial LIZ(50)l > 0eR HeeE(T)\E(SO) Y (e)- It suffices to prove that
ELF(V)] < (Cr1Filat

We will first prove that B[(f(Y)—E[f(Y)])] < (C"t)HEONv (7)Y (DI AL for a sufficiently
large constant C’ > 0.

f is a homogeneous multilinear polynomial of degree |E(7) \ E(Sp)|. If we had E(7) \
E(Sp) = 0, then f is a constant and so, the inequality is obvious because f(Y) = E[f(Y)].

Now, assume E(7)\ E(Sy) # (. We invoke Lemma 2.8.6. Let f have associated hypergraph
H and weights w. Then,

t

E[F(Y) — E[F(V)]"] < max { (wRLE“)\E(S‘”Var[faf)]) ,

(1 RIEOVESOl ), (1 3yt }

ma
re[|E(T)\E(So)l]

For all r > 0, we will prove that L7 pu,(f,Y) < |V (7)|V("IA. By definition,

pe(fY) = max S Jul

FE)\Fl=r hep(m) Pev )

Consider any set of edge labels F' C ([g]), |F| = r. Then, ZheE(H),FgV(h) lwy,| is at most

LIE(S0)l¢ where c is the number of realizations ¢ € R such that o(E(7)) contains F. Suppose
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F contains v new labels apart from ¢(Sg) = T. Then ¢ < |V(7)[?nlV (DI=150]=v pecause
we can first choose and label the set of vertices that get these v labels and then label the

remaining vertices freely, each of which has at most n choices.

Observe that LIES0)l LrplV(T)I=1S]|=v < A because in the definition of S, we can set S

to be the union of S and any valid choice of these v vertices. Putting this together, we get

L'pp(£Y) S L7 max >, lul
FE()IFl=r heE(H),FCV (h)

< V@IVl

which implies

rRIENESo)l : VOl B 4
tR L' (f,Y)) < |V Rut A
et (£ Y) < V@)V Ol Ryt

and using Lemma 2.8.7,

Var[f(Y)] < 2|E(7)[4/E ()] X Y (f,Y)ATLT
ar[f(Y)] < 2[E(7)] reHE(TmﬁE(so)H(”O(f ) (f,Y)A"LT)

< 2E(r)[16F Oy (7)) 2IV (7] 42

Putting them together, we get

E[(f(Y) — E[f(Y)])"] < max { (\/2tR4E(T)| |E(7)[16/E(7)] |v(T)|2va2)t, |V(T)|f'V<T>'(R4t)flE<T>At}

< (C/t)tlE(T)I|V(T)|t\V(T)\At

for an absolute constant C’ > 0.
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Finally, E[f(Y)] < LIFGNR| < LIEGIIVINS] < A which gives

E[f (V)1 < 2Y(E[(f(Y) - E[f(Y)])]] + E[f(V)])
< 2t((0/t>t\E(7)||V(T)|t\V(T)\At +At)

< (Ct)t\E(Tﬂ |V<7_)|t\V(T)|At

for an absolute constant C' > 0.
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CHAPTER 3
THE SUM OF SQUARES HIERARCHY

In this chapter, we formally introduce the Sum of Squares (SoS) hierarchy. Then, we take
a minor detour and define low-degree distinguishers and related concepts for hypothesis
testing, which will set the stage for us to discuss SoS lower bounds. We then go back to SoS
and discuss the heuristic known as pseudo-calibration, that will be a basic ingredient we use
in our SoS lower bounds. We finally show a formal connection between pseudo-calibration

and low-degree distinguishers.

3.1 The Sum of Squares hierarchy

We start by defining convex relaxations for polynomial optimization problems. The SoS
hierarchy will then be a special family of convex relaxations. For a more detailed treatment,

see e.g. [118, 17, 64].

3.1.1 Polynomaial optimization and convex relaxations

In polynomial optimization, we are given multivariate polynomials p, g1,..., gn on n vari-

ables x1, ..., xy taking real values, denoted collectively by x, and the task is to:

maximize p(x) such that g;(x) =0,...,gm(z) =0

In general, we could also allow inequality constraints, e.g., g;(z) > 0. For technical
convenience in our setup, we work only with equality constraints but much of the theory
generalizes, with some modifications, when we have inequality constraints instead. An alter-
nate approach is to replace each inequality g;(z) > 0 by g;(z) = y2 where y is a new variable

that we can introduce.
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In this formulation, many optimization problems can be formulated as polynomial opti-

mization problems.

Example 3.1.1 (Maximum Cut). Given a graph G = (V, E), we would like to partition
the set of vertices into two subsets such that the number of edges with endpoints in different
subsets is maximized. To formulate this as a polynomial optimization problem, let the graph
have n vertices and let x1,...,xn be variables, one for each vertex. We wish to enforce
x; € {—1,1} where all vertices i with x; = —1 form one subset and the rest form the other
subset. We can enforce this set containment constraint via the polynomial constraint a:? = 1.
For any edge (i,7) € E, it is cut if and only if x;x; = —1. Therefore, the total number of

edges cut s Z(i,j)eE %(1 — x;w5). The polynomial formulation therefore becomes
max (1 —xz;) such that
x?zlforallign

Example 3.1.2 (Maximum Clique). Given a graph G = (V, E), we would like to find the
mazimize size subset of vertices that form a clique. Again, let x1,...,xn be variables, one
for each vertex. This time, we wish to enforce x; € {0,1}, which we can easily do so using
the polynomial constraint SL‘ZQ = x;, with the intent being that all vertices 1 with x; = 1 form
a clique. To enforce this clique constraint, we can add the polynomial constraint z;x; = 0
for all non-edges (i,j) ¢ E. Finally, to mazimize the size of the subset, we simply maximize

Zign x;. Therefore, the polynomial optimization is

max x; such that
reR"? Z !

1<n
vixy =0 for all (i,j) ¢ £

x?:xiforallign
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There can be other equivalent formulations for these problems. In general, many opti-
mization problems can be stated in this manner, therefore generic polynomial optimization
contains a large class of fundamental problems that appear in computer science.

Since exactly solving maximum cut or maximum clique is NP-hard [97], exactly solving
these polynomial optimization problems is also NP-hard. Therefore, we turn to convex
relaxations.

A convex relaxation of a polynomial optimization problem widens the search space of
solution vectors z into a larger space that one can efficiently optimize over. We will describe
one way to do this. We identify a convex space C that contains the space S = {g1(x) =
0,...,9m(xz) = 0} upto a map, that is, for each x € S, there exists a corresponding y € C
such that y is a representative of z. We also identify a convex function p(y) such that if y
is a representative of z, then p(y) = p(z). Then, we simply optimize p(y) over C. There
has been significant work on efficiently optimizing a convex function over a convex body,
which is possible under reasonable assumptions (see e.g. [141]). It’s clear that from the
above properties, the solution we get is at least as large as the optimal solution (in the case
of maximization), but it comes with the advantage that it is efficiently computable. It is
desirable to design convex relaxations for problems that yield good approximations. The

SoS hierarchy is a family of such convex relaxations.

3.1.2  Sum of Squares relaxations

The SoS hierarchy, sometimes referred to as the Lasserre hierarchy, was first independently
studied by [144, 117, 169] and has been studied in other contexts by [135, 73, 74]. It is
a family of convex relaxations for polynomial optimization, parameterized by an integer
known as it’s degree. As we increase the degree, we get progressively tighter relaxations, but
requiring longer times to optimize over.

We now formally describe the Sum of Squares hierarchy, via the so-called pseudo-expectation
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operator view.

Definition 3.1.3 (Pseudo-expectation values). Given multivariate polynomial constraints
g1 =0,...,9m =0 on n variables x1, ..., xy, degree d pseudo-expectation values are a linear
map E from polynomials of x1,...,xn of degree at most d to R satisfying the following

conditions:
1. E[1] =1,
2. INE[f - gi] =0 for every i € [m] and polynomial f such that deg(f - g;) < d.
3. IE[f2] > 0 for every polynomial f such that deg(fz) <d.

Any linear map E satisfying the above properties is known as a degree d pseudoexpecta-

tion operator satisfying the constraints g1 = 0,...,gm = 0.

Definition 3.1.4 (Degree d SoS). The degree d SoS relazation for the polynomial optimiza-
tion problem

mazximize p(x) such that g1(z) =0,...,gm(x) =0

15 the program that maximizes E[p(x)] over all degree d pseudoexpectation operators E satis-

fying the constraints g1 = 0,...,gm = 0.

The intuition behind pseudo-expectation values is that the conditions on the pseudo-
expectation values are conditions that would be satisfied by any actual expected values over
a distribution of solutions, so optimizing over pseudo-expectation values gives a relaxation
of the problem.

The main observation is that the SoS relaxation can be efficiently solved! This is because
the conditions on pseudo-expectation values can be captured by a semidefinite program. In
particular, Item 3 in Definition 3.1.3 can be reexpressed in terms of a matrix called the

moment matrix.
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Definition 3.1.5 (Moment Matrix of IE) Given a degree d pseudo-expectation operator IE,
define the associated moment matrix A to be a matriz with rows and columns indexed by

monomials p and q such that the entry corresponding to row p and column q s

Alp,q] :=E[pq].

It is easy to verify that Item 3 in Definition 3.1.3 equivalent to A > 0. Therefore, solving
the degree d SoS relaxation can be done via semidefinite programming, see for e.g. [181].

0(d)

In general, for degree-d SoS, we can solve it in n timel. Therefore, constant degree SoS

can be solved in polynomial time.

Analyzing degree 2 SoS for maximum clique

To illustrate the use of this technique, let’s analyze the degree 2 SoS relaxation for the
maximum clique problem on Erdés-Rényi random graphs Gn,l /2- We use the program from
Example 3.1.2.

Let A be the adjacency matrix of a graph GG sampled from Gn,l /2 and let J be the matrix
with all 1s. Then, with high probability over the choice of G, from random matrix theory,
we have A\ppaz(A—J/2) = O(y/n) where A\pqz(.) denotes the maximum singular value. Now,
suppose a set S of vertices form a clique and let 1g denote the indicator vector of the set S,
then

k(k—1)

5 = (15, (A= J/2)1g)

<118 - Amaz(A — J/2)

<k-O(V/n)

1. This is not completely accurate due to issues of bit complexity [137] but this doesn’t occur for most
problems of interest [155]
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which shows & < O(y/n).

The crux of this simple argument is that this is a low-degree proof, more specifically
degree 2 proof, that SoS can capture. That is, if we solve the degree 2 SoS relaxation, we
will be able to show that E[S" z;] = O(yv/n) whp.

To see this formally, we start with the following inequality: O(y/n)I — (A — J/2) = 0
whp. This implies

2O — (A= J/2))x = pi(x)’

is a sum of squares of polynomials of degree at most 1. A simple computation yields

1 n
1A= T2z = S0 @i)’ = Y wiwil jyem(o)

i=1 i.j

For our program variables z, we have :c? = x; and xile( VEE(G) = 0. Therefore,

]

n

S pi(a)? = OV (3 i) — 5 (> w)?

1=1 1=1

Apply E both sides. We finally use the fact that for a polynomial p(z), we have IE[p(x)Q] >
E[p(x)]2, which is true because this rearranges to E[(p(z) — E[p(z)])2] > 0, which is true
because the left hand side is the the pseudo-expectation of a square polynomial, which is

nonnegative by definition. This simple fact is essentially saying that the pseudo-variance is
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nonnegative. Using the linearity of IE, we finally get

OWMELY 2] ~ 5D ) > OB i) — SEI(D 2)”
=1 =1 =1 =1
— B> w) - 23w
=1 =1

Therefore, E[Y>"_; z;] = O(y/n) like we wanted to show.

This shows that the degree 2 SoS relaxation certifies an upper bound of O(y/n) whp on
the size of the maximum clique of an Erdos-Rényi random graph. In contrast, the size of
the true maximum clique is (2 4+ o(1)) logn [125]. And despite intense effort, polynomial
time algorithms can only detect a planted k-clique when k = Q(y/n). Therefore, SoS already
achieves the best known guarantees for this problem upto constant factors. It was shown in
[13] that higher degree SoS (upto degree O(logn)) doesn’t necessarily do much better, which

is a SoS lower bound of the type we will study in this work.

Alternate viewpoints of SoS

In the polynomial optimization problem of maximizing p(x) subject to the constraints
g1(z) = 0,...,gm(z) = 0, if there does not exist any degree d pseudo-expectation oper-
ator E satisfying g1 = 0,...,9m = 0 such that IE[p] > ¢, then we say that degree d SoS
certifies that E[p(z)] < c.

A degree d SoS proof that p(x) < ¢ given gi(z) = 0,...,gm(z) = 0 is an expression of
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the form

1= gi(@a(z) + > si(x)* + (p(x) — ) > _ti(x)?

i<m i<a i<b
where q1,...,qm, S1,---,5a,t1,-..,tp are polynomials in = such that each term on the right
hand side of the above expression has degree at most d. Indeed, the existence of such an
expression automatically implies that p(z) < ¢ whenever gi(z) =0,..., gm(z) = 0.

When degree d SoS certifies that IE[p(m)] < ¢, by duality, this will imply that there
exists a degree d SoS proof that p(x) < ¢ given gq(z),...,gm(z) = 0. The Positivstel-
lensatz of Krivine and Stengle [112, 174] says that for any ¢, either there exists x such
that p(z) > ¢, g1(z) = 0,...,9m(z) = 0, or there is an SoS proof that p(z) < ¢ given
g1(z) =0,...,9m(x) =0.

For a fixed d, degree d SoS can indeed be construed as finding the best ¢ so that there
is a degree d SoS proof of E[p(m)] < ¢. This also intuitively explains why higher degree
SoS gives tighter relaxations. For most programs stemming from combinatorial optimization
problems, degree n SoS usually finds the optimal bound, where n is the number of variables.
So, for instance, degree n SoS exactly outputs the size of the maximum clique of a graph.
For efficient algorithms, we usually want constant degree SoS. For showing lower bounds, we
would like to show for higher degrees. In this work, all our lower bounds are for degree n®
SoS, which corresponds to subexponential time!

The viewpoint we have studied here is the dual view aka the search for simple proofs,
which will suit our purposes. There is also the primal viewpoint where SoS can be viewed
directly as a semi-definite programming relaxation of the program. This is sometimes useful
for algorithm design.

Similar to the maximum clique application shown above, the SoS hierarchy has been
shown formally to obtain the state-of-the art approximation guarantees for many fundamen-
tal problems both in the worst case and the average case setting. This includes constraint
satisfaction problems [152], maximum cut [72], sparsest cut [6], tensor PCA [88], etc. There-
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fore, it’s natural to study the limits of SoS by studying SoS lower bounds.
Before we discuss SoS lower bounds, we introduce the framework of hypothesis testing

problem in more detail, suited to our purposes.

3.2 Hypothesis testing

Let € be a sample space. Let v, u be probability distributions on €. The hypothesis
testing problem is the problem of distinguishing v, 4 given access to a sample. Formally,

input z ~ Q" is sampled from either
o Hy:x~p
o Hi: x~w.

Our objective is to determine which distribution it came from, with high probability. This
is the hypothesis testing problem in general, where traditionally, Hy is known as the null
hypothesis and H; the alternate hypothesis. We abuse notation and use Hg, H1 to also
denote the probability distributions u, v respectively as well.

For example, Hy could be the distribution of Erdos-Rényi random graphs and Hy could
be the distribution of Erdds-Rényi random graphs with a large planted clique. Given the
graph, we would like to determine which of the two distributions it came from, or in other
words, whether it contains a large clique.

A hypothesis test f is a function f : Q" — {0,1}. Given the input z, if f(x) = 0, then
we report that x came from the null distribution Hy otherwise we report that x came from
the alternate distribution Hj.

A successful hypothesis test is a test f such that when b is chosen uniformly at random
from {0, 1} and z is sampled from Hj, we have Ey Prp g, [f(7) # b] < o(1). That is, test f
has success probability 1 — o(1). Here, for simplicity, we don’t distinguish type 1 and type

2 errors.
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Indeed, for a test to be useful, it should be computable efficiently. But when computa-
tional efficiency is disregarded, the famous Neyman-Pearson lemma precisely characterizes
the best hypothesis test. To define this test, we need the following standard definition.

Definition 3.2.1 (Likelihood ratio). For a given hypothesis testing problem, define the like-

. . . ~ Pry(z)
lihood ratio of an input x to be LR(x) = Pry (@)’
Lemma 3.2.2 (Neyman-Pearson Lemma). For a given hypothesis testing problem, the test

[ that minimizes By Pry g, [f (%) # b] is the likelihood ratio test

1 ifLR(z)>1
fx) =

0 o.w.

In this work, our focus will be on efficiently computable tests f.

3.2.1 Low degree likelihood ratio

Given a hypothesis testing problem. We focus on a special class of efficiently computable
hypothesis tests involving low degree multivariate polynomials. These are termed low-degree
distinguishers. We give a brief treatment in this section and refer the readers to [91, 114] for
a more detailed treatment.

In this section, for polynomials to be well-defined, assume 2 C R. Moreover, assume H
has finite moments. We will consider distinguishers that arise from multivariate polynomials
f:R™ — R. We say that the distinguisher has degree D if the degree of f is at most D.
Since the output of a polynomial need not be boolean, we need an alternate definition of the

success of this distinguisher. We use the following definition from [91].

Definition 3.2.3 (Degree D distinguisher). For a hypothesis testing problem, the multivari-

ate polynomaial [ is a successful degree D distinguisher if

e (Low degree) f is a multivariate polynomial of degree at most D.
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e (Normalization) Ey~ 1, [f(z)] = 0, Exn g [f(m)Q} =1
e (Distinguishability) limp o0 By, [f (7)] — 00.

The normalization ensures appropriate scaling for the polynomial. Note that the normal-
ization is over the null distribution. Informally, normalized f is a successful distinguisher if
it attains unbounded values on the alternate distribution in the limit. Indeed, in applica-
tions, a hypothesis test may be obtained by appropriately thresholding on the value of the
polynomial.

The limit on the degree imposes the kind of computational restrictions we wish to impose
on our distinguishing algorithm. It’s an active area of research trying to understand the
power of such low-degree distinguishers for hypothesis testing problems. For instance, we
could ask: If degree O(logn) distinguishers fail for a hypothesis testing problem with input

o(1)

size n , is the problem hard for all polynomial time algorithms?

The first natural question is to ask what’s the best degree D distinguisher for a given hy-
pothesis testing problem. This has been answered in prior works and is simply the projection

P
of the likelihood ratio LR(z) = PEI g; to degree D polynomials.
0

To make this precise, for f, g : R — R, define the inner product (f, 9) = Ex~p, f()g(x).
Then, we can canonically define the projection fSD of a function f to degree D poly-
nomials via this inner product. Take an orthonormal basis xg = 1,x1,...,x¢ of multi-
variate polynomials of degree at most D where yg = 1 is the constant function. Then,
fSD(I) = Zi§t<fa X)Xt ().

The following lemma is implicit in prior works (e.g. [90, 83]). We include a proof for

completeness.

Lemma 3.2.4. For a hypothesis testing problem, the optimal degree D test f that maxi-

. . . o 7 . LR<D_4
mizes By p, f(x) is the normalized low-degree likelihood ratio MLR=D—1]

i
Eorn [f(2)] = [LE=P -1

And it’s value s
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Proof. Let f be a normalized degree D polynomial with f = ZEZO cext- Then, cg = E[f] =0
and 3° ¢? = E[f?] = 1. Then,

E flx)= ) ¢ ]EHXiS\/(ZC@Z>(Z(EHXz Z E x0)’

JZNHl
On the other hand, equality is attained by the polynomial g = %. Indeed, we have
Eq~H,lg] = 0 because E,. g, [LR=P (z)] = Eg~Hy[LR(7)] = 1 and trivially, E, g, l9(2)?] =
1 since we scaled by the norm. Finally,

E g() = ———— 3 (LR(@),x:)?

o~Hy |LR=P —1]| S

We complete the proof by observing that (LR(x), x;) = Eg~ o [LR(7) X (2)] = Egmomr, [Xi (2)]-

Computing the value is straightforward. [ ]

The low-degree likelihood ratio hypothesis [85, 91, 116] hypothesizes that if Hy, Hq are

sufficiently nice distributions, then there is a successful hypothesis test with running itme

O(D) if and only if there exists a successful degree D distinguisher. In particular, based on

o(D)

n

the above discussion, if |LRSP —1|| = O(1), then we expect that there is no n time

successful hypothesis test.

A main contribution of this work is to provide strong evidence that this conjecture is
true for many fundamental problems, by exhibiting strong SoS lower bounds. To see this
connection a bit more formally, we will introduce pseudo-calibration and connect it with

low-degree distinguishers.

3.3 Pseudo-calibration

Given an optimization problem we are trying to show SoS lower bounds for. To obtain SoS

integrality gaps on random instances, we need to construct valid pseudo-expectation values
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for a random input instance of the problem. Naturally, these pseudo-expectation values will
depend on the input.

Psuedo-calibration is a heuristic introduced by [10] to construct such candidate pseudo-
expectation values almost mechanically by considering a planted distribution supported on
instances of the problem with large objective value and using this planted distribution as a
guide to construct the pseudo-expectation values. Note here that, for historic reasons, we use
the term random distribution instead of null distribution and the term planted distribution
instead of alternative distribution.

Unfortunately, psuedo-calibration doesn’t guarantee feasibility of these candidate pseudo-
expectation values and the corresponding moment matrix and this has to be verified sepa-
rately for different problems. This verification of feasibility is relatively easy except for the
PSDness condition. This is where the main contribution of this work lies, where we analyze
the behavior of the constructed random moment matrix.

Indeed for our applications, psuedocalibration is used to obtain a candidate pseudoexpec-
tation operator E and a corresponding moment matrix A from the random vs planted prob-
lem. This will be the starting point for all our applications. Pseudo-calibration gives lower
bounds for many problems, such as the ones considered in the works [74, 164, 107, 41, 129],
making it an intriguing but poorly understood technique.

Here, we do not attempt to motivate and describe pseudo-calibration in great detail.
Instead, we will briefly describe the heuristic, the intuition behind it and show an example
of how to use it. A detailed treatment can be found in [10].

Let v denote the random distribution and p denote the planted distribution. Let v denote
the input and x denote the variables for our SoS relaxation. The main idea is that, for an
input v sampled from v and any polynomial f(z) of degree at most the SoS degree, pseudo-

calibration proposes that for any low-degree test g(v), the correlation of E[f] should match
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in the planted and random distributions. That is,

E Elf(@)]g@)] = E [f(z)g(v)]

v~y (20)~p

Here, the notation (z,v) ~ pu means that in the planted distribution y, the input is v and
x denotes the planted structure in that instance. For example, in planted clique, z would be
the indicator vector of the clique. If there are multiple, pick an arbitrary one.

Let F denote the Fourier basis of polynomials for the input v. By choosing different
basis functions from F as choices for g such that the degree is at most some truncation
parameter D, we get all lower order Fourier coefficients for IE[ f(z)] when considered as a
function of v. Furthermore, the higher order coefficients are set to be 0 so that the candidate
pseudoexpectation operator can be written as

Ef)= Y E[E[f@lg@lge)= Y  E [[f@)]s)g)

v~V

geF geF (w0)~p
deg(g)<n® deg(g)<n®

The coefficients E(;, )~ [[f(2)]g(v)] can be explicitly computed in many settings, which
therefore gives an explicit pseudoexpectation operator E.

One intuition for pseudo-calibration is as follows. The planted distribution is usually
chosen to be a maximum entropy distribution which still has the planted structure. This
conforms to the philosophy that random instances are hard for SoS, such as the uniform
Bernoulli distribution for planted clique or the Gaussian distribution for Tensor PCA. By
conditioning on the lower order moments matching such a planted distribution, pseudo-
calibration can be interpreted as sort of interpolating between the random and planted
distributions by only looking at lower order Fourier characters. This intuition has proven
to be successful, since pseudo-calibration been successfully exploited to construct SoS lower

bounds for a wide variety of dense as well as sparse problems.
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An advantage of pseudo-calibration is that this construction automatically satisfies some
nice properties that the pseudoexpectation E should satisfy. It’s linear in v by construction.
For all polynomial equalities of the form f(z) = 0 that is satisfied in the planted distribution,
it’s true that E[f(z)] = 0. For other polynomial equalities of the form f(z,v) = 0 that are
satisfied in the planted distribution, the equality IE[ f(z,v)] = 0 is approximately satisfied.
In most cases, E can be mildly adjusted to satisfy these exactly.

The condition E[l] = 1 is not automatically satisfied but in most applications, we usually
require that E[1] = 1 + o(1). Indeed, this has been the case for all known successful appli-
cations of pseudo-calibration. Once we have this, we simply set our final pseudoexpectation
operator to be E/ defined as E/[f(z)] = E[f(x)]/E[1].

We remark that the condition E[1] = 1+ 0(1) has been quite successful in predicting the
right thresholds between approximability and inapproximability[85, 91, 116]. This will be

crucial when we connect pseudo-calibration to low degree distinguishers.

Example: Planted Clique As an warmup, we review the pseudo-calibration calculation
for planted clique. Here, the random distribution v is G(n, %)

The planted distribution g is as follows. For a given integer k, first sample G’ from
G(n, %), then choose a random subset S of the vertices where each vertex is picked indepen-
dently with probability % For all pairs i, j of distinct vertices in S, add the edge (4,7) to
the graph if not already present. Set G' to be the resulting graph.

The input is given by G € {—1, 1}([75]) where Gj ; is 1 if the edge (i,7) is present and
—1 otherwise. Let x1,...,z, be the boolean variables for our SoS program such that x;
indicates if 7 is in the clique.

Given a set of vertices V' C [n], define zy = [[,cy 2. Given a set of possible edges

B (1), define xp = (~1)/P\EON <[, 5y Gi .
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Pseudo-calibration says that for all small V' and F,

E |Blevie| =Elrvxg]

Using standard Fourier analysis, this implies that if we take

k) VUV (E)]

cp = IE vy xp] = <ﬁ

where V(E) is the set of the endpoints of the edges in F, then for all small V,

- VUV (E)]
Eayl= > cpxp= Y, (g) XE

FE:FE is small FE:E is small

Since the values of ]E[xv] are known, by multi-linearity, this can be naturally extended
to obtain values IE[ f(x)] for any polynomial f of degree at most the SoS degree.

Here, we only set the Fourier coefficients for small E and set the other larger Fourier
coefficients to 0. Usually, the choice of the truncation parameter is problem specific but
there are some basic requirements [85]. We now outline our general strategy to show SoS

lower bounds. We employ this in all our results.

3.3.1 Strategy to show SoS lower bounds
In this work, the general strategy to show SoS lower bounds can be summarized as follows.
e Given a random distribution, identify a suitable planted distribution

e Pseudocalibrate with respect the two distributions and obtain a candidate pseudoex-

pectation operator

e Show that the moment matrix satisfies the constraints
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The most technically challenging part of this approach usually is to show that the mo-
ment matrix is positive semidefinite. Much of our contributions lies in this step, where
we analyze the behavior of the random moment matrix thus obtained. Now, we connect

pseudo-calibration to low-degree distinguishers.

3.3.2  Connection to Low-degree distinguishers

We are ready to connect psuedo-calibration to low-degree tests. Recall that in pseudo-
calibration, we set the higher order Fourier coefficients to 0. This is known as truncation.
In particular, we truncate so that the resulting pseudoexpectation has degree at most D in
the input. By construction, E[E[1]] = 1 and we would like to understand how much E[1]
deviates from 1. The following lemma says that the variance of E[l] behaves like the squared

value of the optimal degree-D distinguisher.

Lemma 3.3.1. The pseudo-calibrated pseudo-expectation ]E, truncated to degree D, satisfies

var(E[1]) = HLRSD - 1H2

Proof. Pseudocalibration sets E,~ g, [E[1]x;] = Ez~p, [x;i] for all i < t. Therefore, E[1] =

2
1+ Y1 <ict Bpotr [XilXG giving var(B[1]) = 371 <y (Bampr, Xi)? = HLRSD - 1H - L

One of the essential steps in our SoS lower bound proofs is to verify, after pseudo-
calibration, that E[l] is well-behaved. In particular, for strong SoS lower bounds, we expect
E[1] = 1 + o(1). Although this is not formally necessary, it has often been the case in our
applications and we expect it to be necessary for obtaining strong SoS lower bounds via this
approach.

But when this is indeed the case and we exhibit SoS lower bounds, note that this is already

strong evidence towards the low-degree likelihood ratio hypothesis. In more detail, because

of Lemma 3.2.4 and Lemma 3.3.1, the best degree D distinguisher does not distinguish the
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two distributions u,v. And our lower bounds affirm that the powerful SoS hierarchy cannot
distinguish the two distributions as well, which is an important step towards the general

hypothesis.

It’s a fundamentally important open problem in this field to prove that for sufficiently

nice distributions u, v, after pseudo-calibrating, E[1] = 1 4 o(1) implies the existence of

strong SoS lower bounds.
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CHAPTER 4
OUR MAIN RESULTS ON SUM-OF-SQUARES LOWER
BOUNDS

In this chapter, we state formally the main Sum of Squares lower bounds that we prove
in this thesis and put them in the context of prior works. The material in this chapter is

adapted from [70, 149], where the results originally appeared.

4.1 The Sherrington-Kirkpatrick Hamiltonian

We first define the Gaussian Orthogonal Ensemble, GOE(n), a random matrix model for

n X n matrices.

Definition 4.1.1. The Gaussian Orthogonal Ensemble, denoted GOE(n), is the distribution

of \/L?(A + AT) where A is a random n x n matriz with i.i.d. standard Gaussian entries.

Equivalently, we could define GOE(n) to be a probability distribution over symmetric
matrices W such that Wj; ~ N(0,2) for i < n and for i # j, W;; = Wj; ~ N(0,1)
independently.

We consider the main optimization task

OPT(W) := r?ax} "W, (4.1)
TE{E1}"

where W is a random symmetric matrix in R”*™. This is an important task that arises in
computer science and statistical physics.

In computer science, a natural choice of W is to take it to be the Laplacian of a graph [80,
Section 4]. Then, the problem is equivalent to the Maximum Cut problem, a well-known
NP-hard problem in the worst case [98]. The equivalence is immediate by observing that

x € {£1}" can be thought of as encoding a bipartition of [n| ={1,2,...,n}.
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In particular, an interesting special case is when we consider sparse random graphs,

sampled either from the Erdés-Rényi graphs G(n, %) with average degree d or a uniformly

chosen d-regular graph, where d > 3 is a fixed integer. In this case, it is known that the true
size of the maximum cut is asymptotically n(% + f(d)Vv/d). Moreover, it was shown in [48]
%P* ~ 0.382, where

(originally conjectured in [187]) that limg_,,, f(d) =

1 . 1

is referred to as the Parisi constant. This already strongly motivates the problem of studying
Eq. (4.1) when W ~ GOE(n). But this problem is motivated for another fantastic reason.

In statistical physics, when W ~ GOE(n), our objective, upto scaling, is the Hamiltonian
of the famous Sherrington-Kirkpatrick model. Here, x can be thought of as encoding spin
values in a spin-glass model. —W; ; models the interaction between spin z; and x; (with
—W; j > 0 being ferromagnetic and —W; ; < 0 being anti-ferromagnetic). Then, the optimal
value corresponds to the minimum-energy, or ground state of the system, upto sign. The
works [142, 143, 45] predicted, using non-rigorous means, that P* =~ 0.7632. This was
eventually formalized in the works [176, 139, 75].

In this work, we will focus on this average case optimization problem when W ~ GOE(n).
The first natural question is whether there exists a polynomial-time algorithm that given
W ~ GOE(n) computes an = achieving close to OPT(W)?” In a recent breakthrough work,
Montanari [132] showed that, for any ¢ > 0, there exists a polynomial time algorithm that
with high probability achieves a value of (2P* —5)713/ 2 assuming a widely believed conjecture.

Now we move onto certification: Is there an efficient algorithm to certify an upper bound
on OPT(W) for any input W?

A simple algorithm will be the spectral algorithm where we just output the largest eigen-
value of W, upto scaling, for an upper bound. Note that GOE(n) is a particular kind of

Wigner matrix ensemble, thereby satisfying the semicircle law, which in this case establishes
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that the largest eigenvalue of W is (2+0y,(1)) - /n with probability 1 —o,(1). Thus, a trivial
spectral bound establishes OPT(W) < (2 4 0, (1)) - n3/2 with probability 1 — op(1).

Now, we can ask if it’s possible to beat this spectral algorithm for certification. In
particular, we can ask how well SoS does as a certification algorithm. The natural upper
bound of (2+0,(1))-n3/2 obtained via the spectral norm of W is also the value of the degree-
2 SoS relaxation [133]. Two independent recent works of Mohanty—Raghavendra—Xu [129]
and Kunisky-Bandeira [115] show that degree-4 SoS does not perform much better, and a
heuristic argument from [9] suggests that even degree-(n/logn) SoS cannot certify anything

stronger than the trivial spectral bound. Thus we ask,

Can higher-degree SoS certify better upper bounds for the Sherrington—Kirkpatrick problem,

hopefully closer to the true bound 2 - P* - n3/2¢

In this work, we answer the question above negatively by showing that even at degree as

large as n5, SoS cannot improve upon the basic spectral algorithm.

Theorem 4.1.2. There exists a constant § > 0 such that, w.h.p. for W ~ GOE(n), there
5 a degree-n5 SoS solution for the Sherrington—Kirkpatrick problem with value at least (2 —

on(1)) - n3/2.

An independent and concurrent work by Kunisky [113] also showed a special case of the
above theorem for degree-6 SoS, using different techniques.

We will present the proof of this theorem in Chapter 5. The above theorem and it’s proof
originally appeared in [70], from where the material here is adapted from. We now present

the high level ideas behind the proof of this theorem.

4.1.1  Our approach

In order to prove Theorem 4.1.2, we first introduce a new average-case problem we call

Planted Affine Planes (PAP) for which we directly prove a SoS lower bound. We then use
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the PAP lower bound to prove a lower bound on the Sherrington—Kirkpatrick problem. The
PAP problem can be informally described as follows (see Definition 5.1.1 for the formal

definition).

Definition 4.1.3 (Informal statement of PAP). Given m random vectors dy, ..., dp in R",
can we prove that there is no vector v € R such that for allu € [m], (v,dy)? = 12 In other
words, can we prove that m random vectors are not all contained in two parallel hyperplanes

at equal distance from the origin?

This problem, when we restrict v to a Boolean vector in {i\/iﬁ}”, can be encoded as the
feasibility of the polynomial system

1
Jv € R" s.t. Vi € [n], UZ.Q = -,
n

Vu € [m], (v,dy)? = 1.

Hence it is a ripe candidate for SoS. However, we show that SoS fails to refute a random
instance. The Boolean restriction on v actually makes the lower bound result stronger since
SoS cannot refute even a smaller subset of vectors in R™. In this work, we will consider two
different random distributions, namely when dy, ..., d;, are independent samples from the
multivariate normal distribution and when they are independent samples from the uniform

distribution on the boolean hypercube.

Theorem 4.1.4. For both the Gaussian and Boolean settings, there exists a constant ¢ > 0
such that for all e > 0 and 6 < ce, for m < n3/2_5, w.h.p. there is a feasible degree—n5 SoS

solution for Planted Affine Planes.

It turns out that the Planted Affine Plane problem introduced above is closely related
to the following “Boolean vector in a random subspace” problem, which we call the Planted
Boolean Vector problem, introduced by [129] in the context of studying the performance of

SoS on computing the Sherrington—Kirkpatrick Hamiltonian.
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The Planted Boolean Vector problem is to certify that a random subspace of R™ is far

from containing a boolean vector. Specifically, we want to certify an upper bound for

OPT(V) := 1 max b1y,
nbe{£1}"
where V' is a uniformly random p-dimensional subspace! of R, and ITy, is the projector onto
V. In brief, the relationship to the Planted Affine Plane problem is that the PAP vector v
represents the coefficients on a linear combination for the vector b in the span of a basis of
V.

An argument of [129] shows that, when p < n, w.h.p., OPT(V) ~ %, whereas they also
show that w.h.p. assuming p > n0-9 there is a degree-4 SoS solution with value 1 — op(1).
They ask whether or not there is a polynomial time algorithm that can certify a tighter
bound; we rule out SoS-based algorithms for a larger regime both in terms of SoS degree

and the dimension p of the random subspace.

Theorem 4.1.5. There exists a constant ¢ > 0 such that, for all € > 0 and 6 < ce, for
p > n2/3+5, w.h.p. over V there is a degree—n5 SoS solution for Planted Boolean Vector of

value 1.

The bulk of our technical contribution lies in the SoS lower bound for the Planted
Affine Planes problem, Theorem 4.1.4. We then show that Planted Affine Planes in the
Gaussian setting is equivalent to the Planted Boolean Vector problem. The reduction
from Sherrington-Kirkpatrick to the Planted Boolean Vector problem is due to Mohanty—
Raghavendra—Xu [129].

As a starting point to the PAP lower bound, we employ pseudocalibration to produce a
good candidate SoS solution E. The operator E unfortunately does not exactly satisfy the

PAP constraints “(v, dy,)? = 17, it only satisfies them up to a tiny error. In the original work,

1. V can be specified by a basis, which consists of p i.i.d. samples from N (0, I).
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we use an interesting and rather generic approach to round E to a nearby pseudoexpectation
operator E’ which does exactly satisfy the constraints, We have omitted this in this thesis
for the sake of brevity, but it can be found in the original work [70].

For degree D, the candidate SoS solution can be viewed as a (pseudo) moment matrix
M with rows and columns indexed by subsets I, J C [n]| with size bounded by D/2 and with
entries

M(I, J] = E[o'v”].

The matrix M is a random function of the inputs dy,...,dy,, and the most challenging
part of the analysis consists of showing that M is positive semi-definite (PSD) with high
probability.

Similarly to [10], we decompose M as a linear combination of graph matrices, i.e., M =
Yo Aa - Mq, where M, is the graph matrix associated with shape a. In brief, each graph
matrix aggregates all terms with shape « in the Fourier expansions of the entries of M
— the shape « is informally a graph with labeled edges with size bounded by poly(D).
A graph matrix decomposition of M is particularly handy in the PSD analysis since the
operator norm of individual graph matrices M, is (with high probability) determined by
simple combinatorial properties of the graph «. One technical difference from [10] is that
our graph matrices have two types of vertices [] and (); these graph matrices fall into the
general framework developed by Ahn et al. in [2].

To show that the matrix M is PSD, we need to study the graph matrices that appear
with nonzero coefficients in the decomposition. The matrix M can be split into blocks and
each diagonal block contains in the decomposition a (scaled) identity matrix. From the graph
matrix perspective, this means that certain “trivial” shapes appear in the decomposition,
with appropriate coefficients. If we could bound the norms of all other graph matrices
that appear against these trivial shapes and show that, together, they have negligible norm

compared to the sum of these scaled identity blocks, then we would be in good shape.
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Unfortunately, this approach will not work. The kernel of the matrix M is nontrivial, as
a consequence of satisfying the PAP constraints “(v, du>2 =17, and hence there is no hope
of showing that the contribution of all nontrivial shapes in the decomposition of M has
small norm. Indeed, certain shapes a appearing in the decomposition of M are such that
| Ao - Mo || is large. As it turns out, all such shapes have a simple graphical substructure,
and so we call these shapes spiders.

To get around the null space issue, we restrict ourselves to Null(M)L, which is the
complement of the nullspace of M. We show that the substructure present in a spider implies
that the spider is close to the zero matrix in Null(M)+. Because of this, we can almost freely
add and subtract M, for spiders o while preserving the action of M on Null(M)L. Our
strategy is to “kill” the spiders by subtracting off A\, - M for each spider . But because
My, is only approximately in Null(M)=, this strategy could potentially introduce new graph
matrix terms, and in particular it could introduce new spiders. To handle this, we recursively
kill them while carefully analyzing how the coefficients of all the graph matrices change. After

all spiders are killed, the resulting moment matrix becomes
1 /
> kX XMy
0<k<D/2 ~: non-spiders

for some new coeflicients )\’7. Here, I}, is the matrix which has an identity in the kth block
and the remaining entries 0. Using a novel charging argument, we finally show that the

latter term is negligible compared to the former term, thus establishing M > 0.

4.1.2  Related work

Degree-4 SoS lower bounds on the Sherrington-Kirkpatrick Hamiltonian problem were proved
independently by Mohanty—Raghavendra—Xu [129] and Kunisky—Bandeira [115]. The con-

current and independent work by Kunisky [113] obtained degree 6 SoS lower bounds. In this
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work, we prove an improved degree—n5 SoS lower bound for some constant § > 0. Our result
is obtained by reducing the Sherrington-Kirkpatrick problem to the “Boolean Vector in a
Random Subspace” problem which is equivalent to our new Planted Affine Planes problem
on the normal distribution. The reduction from Sherrington-Kirkpatrick problem to the
“Boolean Vector in a Random Subspace” is due to Mohanty—Raghavendra—Xu [129]. The
results of Mohanty—Raghavendra—Xu [129] and Kunisky—Bandeira [115] build on a degree-2
SoS lower bounds of Montanari and Sen [133].

Degree-4 SoS lower bounds on the “Boolean Vector in a Random Subspace” problem

for p > n099

were proved by Mohanty—Raghavendra—Xu in [129] where this problem was
introduced. We improve the dependence on p to p > n2/3+¢ for any € > 0 and obtain a
stronger degree-n“ SoS lower bound for some absolute constant ¢ > 0.

Interestingly, the recent work [186] exhibited a polynomial-time algorithm for the search
variant of Planted Affine Planes for m > n+1, achieving statistical optimality. In particular,
they beat prior known polynomial time algorithms, including SoS based ones, all of which

required m > n2. Their algorithm is a lattice-based method that uses the specific algebraic

structure present in this problem. It’s not clear if this algorithm can be used for certification.

4.2 Planted Slightly Denser Subgraph

In the planted dense subgraph problem, we are given a random graph G where a dense
subgraph of size k has been planted and we are asked to find this planted dense subgraph.
This is a natural generalization of the k-clique problem [97] and has been subject to a long
line of work over the years (e.g. [59, 58, 101, 22, 23, 30, 124]). In this work, we consider the

following certification variant of planted dense subgraph.

Given a random graph G sampled from the Erdés-Rényi model G(n, %), certify

an upper bound on the edge density of the densest subgraph on k vertices.
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To apply the strategy from Section 3.3.1, we use the following distributions.

e Random distribution: Sample G from G(n, %)

e Planted distribution: Let k£ be an integer and let p > % Sample a graph G’ from

G(n, %) Choose a random subset S of the vertices, where each vertex is picked in-
dependently with probability % For all pairs i, of vertices in S, rerandomize the
edge (7, j) where the probability of (i, j) being in the graph is now p. Set G to be the

resulting graph.

In Section 6.2, we compute the candidate moment matrix A obtained via pseudo-calibration.

Our main theorem is as follows.

Theorem 4.2.1. Let Cp > 0. There exists a constant C' > 0 such that for all sufficiently

1 e
small constants € > 0, if k < n27% and p = % + I 2p6, then with high probability, the

candidate moment matriz A given by pseudo-calibraton for degree nce Sum-of-Squares is

PSD.

Corollary 4.2.2. Let C, > 0. There ewists a constant C > 0 such that for all sufficiently
1 —C

small constants e > 0, if k <n27° andp = %%— ”Tpe, then with high probability, degree nCe

Sum-of-Squares cannot certify that a random graph G from G(n, %) does not have a subgraph

of size =~ k with edge density = p.

4.2.1 Related work

For many different parameter regimes of the random and planted distributions (an example
being planting G}, , in Gpp for constants p < ¢), and when k = o(y/n), the hardness
of the easier distinguishing version of planted dense subgraph problem has been posed as
formal conjecture (often referred to as the PDS conjecture) before in the literature (see e.g.,

[77, 40, 33, 34]). This has also led to many reductions to other problems [31], although it’s
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not clear if these reductions can be made in the SoS framework without loss in the parameter
dependence.

In our case, we consider the slightly planted denser subgraph version where for k < n%_"g,
we plant a subgraph of density % + ﬁ, ie. p= %, q = % + ﬁ. This has been widely
believed to require sub-exponential time. Our work provides strong evidence towards this
by exhibiting unconditional lower bounds against the powerful SoS hierarchy, even if we

. o . . .
0(e) levels, which corresponds to n" © running time! We expect this to lead to

consider n
this problem being used as a natural starting point for reductions to show sub-exponential
time hardness for various problems.

Within the SoS literature, [10] show that for k& < n%_s for a constant € > 0, the degree
o(logn) Sum-of-Squares cannot distinguish between a fully random graph sampled from
G(n, %) from a random graph which has a planted k-clique. This implies that degree o(logn)
SoS cannot certify an edge density better than 1 for the densest k-subgraph if k < n%_g.

In Corollary 4.2.2, we show that for k£ < n%_g for a constant ¢ > 0, degree nf€) SoS
cannot certify an edge density better than % + ﬁ. The degree of SoS in our setting, nSHE)
is vastly higher than the earlier known result which uses degree o(logn). To the best of our
knowledge, this is the first result that proves such a high degree lower bound.

We remark that when we take k£ = n%_E, the true edge density of the densest k-subgraph
is % + %”/k) + O(\/LE) ~ % + 711/4%/2 as was shown in [68, Corollary 2] whereas, by
Corollary 4.2.2, the SoS optimum is as large as %+ % This highlights a significant difference

in the optimum value.

4.3 Tensor PCA

The Tensor Principal Component Analysis problem, originally proposed by [160], is a variant
of the PCA problem from machine learning to higher order tensors. Given an order k tensor

k
of the form Mu®* + B where u € R is a unit vector and B € R has independent Gaussian
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entries, we would like to recover u. Here, A is known as the signal-to-noise ratio.

This can be equivalently considered to be the problem of optimizing a homogenous degree
k polynomial f(z), with random Gaussian coefficients over the unit sphere ||z| = 1. In
general, polynomial optimization over the unit sphere is a fundamental primitive with a lot
of connections to other areas of optimization (e.g. [66, 36, 29, 14, 15, 24]). Tensor PCA is
an average case version of the above problem and has been studied before in the literature
(160, 89, 25, 85]. In this work, we consider the certification version of this average case

problem.

For an integer k > 2, given a random tensor A € RI® with entries sampled
independently from N(0,1), certify an upper bound on (A, x®k> over unit vectors

x.

Let k£ > 2 be an integer. We apply the strategy from Section 3.3.1 using the following

distributions.
e Random distribution: Sample A from N (0, I in] k)

.. . 1 1 _\n

e Planted distribution: Let A, A > 0. Sample u from { A 0, \/Tn} where the values
are taken with probabilites %, 1—-A, % respectively. Then sample B from N (0, [, 1] k)
Set A = B + Mu®F.

In Section 6.3, we compute the candidate moment matrix A obtained by using pseudo-

calibration on this planted distribution. Our main theorem is as follows.

Theorem 4.3.1. Let k > 2 be an integer. There exist constants C;,Ca > 0 such that for all
k
sufficiently small constants € > 0, if A < ni" ¢ and A = n~CAE then with high probability,

the candidate moment matriz A given by pseudo-calibration for degree nte Sum-of-Squares

1s PSD.
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Corollary 4.3.2. Let k > 2 be an integer. There exists a constant C' > 0 such that for

k
all sufficiently small constants ¢ > 0, if X\ < nd~ %, then with high probability, degree n¢e

Sum-of-Squares cannot certify that for a random tensor A from N (0, I[n]k)’ there is no vector
u such that ||u|| = 1 and (A, x ® ... Q) =~ \.
—_———

k times

4.8.1 Related work

Ok) (. k/4
In [25], it was shown that ¢ < n levels of SoS certifies an upper bound of 2 (7;5/0412713%(71))

for the Tensor PCA problem. When ¢ = n® for sufficiently small ¢, this gives an upper bound
of ni—0(e). Corollary 4.3.2 shows that this is tight.

In [85], they state a theorem similar to Corollary 4.3.2 and observe that it can be proved
by applying the techniques used to prove the SoS lower bounds for planted clique. However,
they do not give an explicit proof. Also, while they consider the setting where the random
distribution has entries from {—1,1}, we work with the more natural setting where the
distribution is N(0, 1).

When k = 2, the maximum value of (z®%, A) over the unit sphere ||z]|> = 1 is precisely
the largest eigenvalue of (A + AT)/2 which is ©(y/n) with high probability. For any integer
k > 2, the true maximum of (z®%, A) over ||z||? = 1 is O(y/n) with high probability [178]. In

k
contrast, by Corollary 4.3.2, the optimum value of the degree n° SoS is as large as ni—00),

k1
This exhibits an integrality gap of n1—2-0(),

4.4 Sparse PCA

The Wishart model of Sparse PCA, also known as the Spiked Covariance model, was orig-
inally proposed by [94]. In this problem, we observe m vectors vy, ..., vy, € R? from the
distribution N (0, I; + )\uuT) where u is a k-sparse unit vector, and we would like to recover
u. Here, the sparsity of a vector is the number of nonzero entries and A is known as the

signal-to-noise ratio.
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Sparse PCA is a fundamental problem that has applications in a diverse range of fields
(e.g. [183, 134, 123, 177, 42, 3]). It’s known that vanilla PCA does not yield good estimators
in high dimensional settings [7, 146, 94]. A large volume of work has gone into studying
Sparse PCA and it’s variants, both from an algorithmic perspective (e.g. [4, 122, 111, 50,
184]) as well as from an inapproximability perspective (e.g. [20, 121, 51, 85, 31]).

Given the decades of research on this problem and how fundamental it is for a multitude
of applications and disciplines, understanding the computational threshold behavior of the
Wishart model of Sparse PCA is an extremely important research topic in statistics. In
particular, prior works have explored statistical query lower bounds, SDP lower bounds,
lower bounds by reductions from widely believed conjectures, etc. On the other hand, there
have only been two prior works on lower bounds against SoS, specifically only for degree 2
and degree 4 SoS, which can be attributed to the difficulty in proving such lower bounds.
In this paper, we vastly strengthen these lower bounds and show almost-tight lower bounds
)

for the SoS hierarchy of degree d° which corresponds to a running time of ddo(g :

To apply the strategy from Section 3.3.1, we use the following distributions.

e Random distribution: vy, ..., vy, are sampled from N(0, I;) and we take S to be the

m X d matrix with rows vy, ..., vp,.

e Planted distribution: Sample u from {_\/LE’ 0, ﬁ}d where the values are taken with
k k

probabilites %, 1 — 5,5 respectively. Then sample vy, ..., vp as follows. For each
i € [m], with probability A, sample v; from N (0,1; + Muul) and with probability
1 — A, sample v; from N(0, ;). Finally, take S to be the m x d matrix with rows
Uly- vy U

In Section 6.4, we compute the candidate moment matrix A obtained by using pseudo-

calibration on this planted distribution. We now state our main theorem.

Theorem 4.4.1. There exists a constant C' > 0 such that for all sufficiently small constants

1- 2—
e >0, ifm < d/\—;,m < k)\—;, and there exists a constant A such that 0 < A < zll}
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<k < dl_AE, and \\/Ti < d_AE, then with high probability, the candidate moment matriz
A given by pseudo-calibration for degree dce Sum-of-Squares is PSD.

Corollary 4.4.2. There exists a constant C' > 0 such that for all sufficiently small constants
e >0, ifm< %,m < ki—j, and there exists a constant A such that 0 < A < le,
d* < k< d' =4 gnd % < d=4¢, then with high probability, the degree d°¢ degree Sum-
of-Squares cannot certify that for a random m x d matriz S with Gaussian entries, there is

no vector u such that u has ~ k nonzero entries, |u| ~ 1, and ||Sul> = m + mAN.

4.4.1 Related work

Between this work and prior works, we completely understand the parameter regimes where
sparse PCA is easy or conjectured to be hard up to polylogarithmic factors. In Fig. 4.1 and

Fig. 4.2, we assign the different parameter regimes into the following categories.

e Diagonal thresholding: In this regime, Diagonal thresholding [94, 4] recovers the sparse
vector. Covariance thresholding [111, 50] and SoS [54] can also be used in this regime.
Covariance thresholding has better dependence on logarithmic factors and SoS works

in the presence of adversarial errors.

e Vanilla PCA: Vanilla PCA can recover the vector, i.e. we do not need to use the fact

that the vector is sparse (see e.g. [21, 54]).
e Spectral: An efficient spectral algorithm recovers the sparse vector (see e.g. [54]).

e Spectral®: A simple spectral algorithm distinguishes the planted distribution from the
random distribution but it is information theoretically impossible to recover the sparse

vector [54, Appendix E.

e Hard: A regime where it is conjectured to be hard to distinguish between the random

and the planted distributions. We discuss this in more detail below.
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In Fig. 4.1 and Fig. 4.2, the regimes corresponding to Diagonal thresholding, Vanilla
PCA and Spectral are dark green, while the regimes corresponding to Spectral®* and Hard
are light green and red respectively. The hard regime is the one studied in this work.

Sparsity k

Can hypothesis
test spectrally but
impossible to
recover u.

Ambient
m Am A2m dimension d

Figure 4.1: The computational barrier diagram when A > 1

In the Hard parameter regime where m < % and m < ng, degree 2 and degree 4 SoS
lower bounds have been shown in prior works, while we handle degree d°). In particular,
the works [111, 21] obtain degree 2 SoS lower bounds. [121] obtain degree 4 SoS lower
bounds using an ad-hoc construction. It’s not clear if their construction can be generalized
for higher degrees. Moreover, the bounds they obtain are tight up to polylogarithmic factors
when ) is a constant but are not tight when A is not a constant, so we improve their bounds
even in the degree 4 case. We subsume all these earlier known results in this work with
Corollary 4.4.2. This is a vast improvement over prior known sum of squares lower bounds
and provides compelling evidence for the hardness of Sparse PCA in this parameter range.

The work [85] considers the related but qualitatively different Wigner model of Sparse
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Sparsity k

Ambient
A2m Am m dimension d

Figure 4.2: The computational barrier diagram when A < 1

PCA and they state degree d® SoS lower bounds, without explicitly proving these bounds.
The techniques in that work do not recover our results because the matrix formed by the
random samples in the Wishart model is asymmetric, and handling it correctly is far from
being a mere technicality. On the other hand, the machinery can recover the results on the
Wigner model as well, though we only analyze the Wishart model in this paper.

A
not distinguish the random and planted distributions. Corollary 4.4.2 says that under mildly

1-Q(e)
In [54], they prove that if m < % and m < (%) , then degree n® polynomials can-

stronger assumptions, degree n® Sum-of-Squares cannot distinguish the random and planted
distributions, so we confirm that SoS is no more powerful than low degree polynomials in
this setting.

There have also been direct reductions from planted clique to Sparse PCA [31], and it’s

natural to ask if these reductions can obtain SoS lower bounds on Sparse PCA from the
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known SoS lower bounds on planted clique [10]. To the best of our knowledge, no such
reduction is known and constructing such a reduction would be challenging as it would have
to be captured by SoS and avoid losing too much in the parameters. Still, it may well be

possible to construct such a reduction.

4.5 Our approach

Theorem 4.2.1, Theorem 4.3.1 and Theorem 4.4.1 all essentially boil down to showing that
a large moment matrix A is PSD. All three results are obtained via applications of one
main theorem, which we call the machinery. In this work, we state and use the machinery,
whose proof can be found in the original work where it appeared [149]. To show PSDness,
the machinery constructs certain coefficient matrices from A and gives conditions on these
coefficient matrices which are sufficient to guarantee that A is PSD with high probability.
In this section, we give an informal sketch of the machinery and how it generalizes the
techniques used to prove the SoS lower bound for planted clique [10]. We also motivate some

of the conditions that arise in the machinery.

Shapes and graph matrices

Before we can describe how the machinery works, we need to describe shapes and graph
matrices, which were originally introduced by [10, 126] and later generalized in [2]. Both the
planted clique analysis and our analysis use shapes and graph matrices.

Shapes o are graphs that contain extra information about the vertices. Corresponding
to each shape «, there is a matrix-valued function (i.e. a matrix whose entries depend on
the input) M, that we call a graph matrix. Graph matrices are analogous to a Fourier basis,
but for matrix-valued functions that exhibit a certain kind of symmetry. In our setting, A
will be such a matrix-valued function, so we can decompose A as a linear combination of

graph matrices.
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Shapes and graph matrices have several properties which make them very useful to work
with. First, ||Ma]|| can be bounded with high probability in terms of simple combinatorial
properties of the shape «a. Second, if two shapes a and 8 match up in a certain way, we
can combine them to form a larger shape a o 5. We call this operation shape composition.
Third, each shape o has a canonical decomposition into three shapes, the left, middle and
right parts of a, which we call o, 7, and o’ T For this canonical decomposition, we have
that « = ocoTo O'/T and M, ~ MUMTMU,T 2 This decomposition turns out to be crucial

for both the planted clique analysis and our analysis.

Summary of the SoS lower bound for planted clique and the machinery

We now give a brief summary of the techniques for the SoS lower bound for planted clique
and for the machinery.

For planted clique, the SoS lower bound analysis works as follows
1. Using the technique of pseudo-calibration, construct a candidate moment matrix A.

2. Decompose the moment matrix A as a linear combination A = Zshapes o AaMq of

graph matrices My,.

3. For each shape «a, decompose « into a left part o, a middle part 7, and a right part

a'T. We then have that M, ~ MUMTMU,T.

4. Using the approximate decompositions M, =~ MJMTMg,T, give an approximate de-

composition A ~ LQLT of M where Q *= 0 with high probability.

5. Show that with high probability, A = LQLT — (LQLT — M) »= 0 by carefully analyzing

the difference LQLT — M using similar techniques.

2. Actually, due to a technical issue related to automorphism groups, this equation is off by a multiplicative
constant. For details, see [149].
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The machinery uses a similar framework. The key innovation of the machinery is that it
introduces coefficient matrices (step 4) and carry out the analysis in terms of these coefficient

madtrices.

1. Construct a candidate moment matrix A. This can be done either using pseudo-

calibration or in a more ad-hoc manner.

2. Decompose the moment matrix A as a linear combination A = Zshapes o AaMq of

graph matrices M.

3. For each shape a, decompose « into a left part o, a middle part 7, and a right part

O'/T.

4. Based on the coefficients A\, and the decompositions of the shapes « into left, middle,

and right parts, construct coefficient matrices H 1dy; and Hr.

5. Based on the coefficient matrices Hpg,, and Hr, obtain an approximate PSD decom-

position of A.

6. Show that the error terms (which we call intersection terms) can be bounded by the

approximate PSD decomposition of A.

We show that this analysis will succeed as long as three conditions on the coefficient matrices
are satisfied. Thus, in order to use the machinery to prove sum of squares lower bounds, it

is sufficient to do the following.
1. Construct a candidate moment matrix A.

2. Decompose the moment matrix A as a linear combination A = Zshapes o AaMq of
graph matrices M, (akin to Fourier decomposition) and find the corresponding coeffi-

clent matrices.

3. Verify the required conditions on the coefficient matrices.
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A sketch of the intuition behind the machinery conditions

Giving an approximate PSD factorization As discussed above, we decompose the
moment matrix A as a linear combination A = Zshapes o AaMq of graph matrices M,. We

then decompose each « into left, middle, and right parts o, 7, and o’ T We now have that

A= Z )\O'OTOU/T MJOTOJ’T

a=coroo’l

M

goo

We first consider the terms >, /A TR Yol Aot Mo M, m where T corre-

go0
sponds to an identity matrix and can be ignored.

If there existed real numbers v, for all left shapes o such that A___r = vsv,/, then we

[oaele

would have
Z )\UOU/TMUMU/T = ZUUUU/MJMU/T = (Z UO'MO')(Z UUMJ)T =0
o0’ o0’ o o

which shows that the contribution from these terms is positive semidefinite. In fact, this
turns out to be the case for the planted clique analysis. However, this may not hold in
general. To handle this, we note that the existence of vy can be relaxed as follows: Let H

be the matrix with rows and columns indexed by left shapes o such that H(o,0’') = \__ .

go0
Up to scaling, H will be one of our coefficient matrices. If H is positive semidefinite then
the contribution from these terms will also be positive semidefinite. In fact, this will be the

first condition of the main theorem in the machinery.

Handling terms with a non-trivial middle part Unfortunately, we also have terms

)\ /TM

vorogTM o o Where T is non-trivial. Our strategy will be to charge these terms to other

terms.
For the sake of simplicity, we will describe how to handle one term. A starting point is

the following inequality. For a left shape o, a middle shape 7, a right shape o’ T and real
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numbers a, b,

(aMy — dM M _1)(aMy — bM M )T = 0

which rearranges to

ab(My MM, + (Mg MM r)7) < a® My M 1 + 6> My M_p My M, 7

< a*MgM 1 + 0% | M7 ||* My M7

IfA2 M2 < A__ oA, 7, then we can choose a, b such that a2 < X

TOTOT ooot “oloo ooo

A and ab= A 7. This will approximately imply

o'oo ooToC

M

goo

/TM

M T+ MT T+ )\ U/OU/T

O'OTOO'/T( goTO0 goq—og/T) = )‘aoa

A

oloo

which will give us a way to charge terms with a nontrivial middle part against terms with a
trivial middle part.

While we could try to apply this inequality term by term, it is not strong enough. Instead,
the machinery generalizes this inequality to work with the entire set of shapes o,0’ for a

fixed 7. This will lead us to the second condition of the main theorem of the machinery.

Handing intersection terms There’s one important technicality in the above heuristic
calculations. Whenever we decompose o into left, middle, and right parts o, 7, and o’ T,

MsM:M ,r is only approximately equal to My = M ;7. All the other error terms have

g o0TOO
to be carefully handled in the analysis. We call these terms intersection terms.

These intersection terms themselves turn out to be graph matrices and the strategy is to
now recursively decompose them into o9 o 79 o O'IQT and apply the previous ideas. To do this
methodically, the machinery employs several ideas such as the notion of intersection patterns
and the generalized intersection tradeoff lemma. Properly handling the intersection terms

is one of the most technically intensive parts of [149]. This analysis leads us to the third
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condition of the main theorem of the machinery.

Applying the machinery To apply the machinery to our problems of interest, we verify
the spectral conditions that our coefficients should satisfy and then we can use the main
theorem. The Planted slightly denser subgraph application is straightforward and will serve
as a good warmup to understand the machinery. In the applications to Tensor PCA and
Sparse PCA, the shapes corresponding to the graph matrices with nonzero coefficients have
nice structural properties that will be crucial for our analysis. We exploit this structure and
use novel charging arguments to verify the conditions of the machinery. We do this in this

work.

4.6 Related work on Sum-of-Squares Lower Bounds for

Certification Problems

[107] proved that for random constraint satisfaction problems (CSPs) where the predicate
has a balanced pairwise independent distribution of solutions, with high probability, degree
Q(n) SoS is required to certify that these CSPs do not have a solution. While they don’t
state it in this manner, the pseudo-expectation values used by [107] can also be derived
using pseudo-calibration [156, 35]. The analysis for showing that the moment matrix is PSD
is very different. It is an interesting question whether or not it is possible to unify these
analyses.

[129] showed that it’s possible to lift degree 2 SoS solutions to degree 4 SoS solutions
under suitable conditions, and used it to obtain degree 4 SoS lower bounds for average case
d-regular Max-Cut and the Sherrington Kirkpatrick problem. Their construction is inspired
by pseudo-calibration and their analysis also goes via graph matrices.

[113] recently proposed a technique to lift degree 2 SoS lower bounds to higher levels

and applied it to construct degree 6 lower bounds for the Sherrington-Kirkpatrick problem.
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Interestingly, their construction does not go via pseudo-calibration.

4.7 Organization of the proofs

We prove the Sherrington-Kirkpatrick lower bound, Theorem 4.1.2, in Chapter 5. The proofs
for planted slightly denser subgraph, tensor PCA and sparse PCA, namely Theorem 4.2.1,
Theorem 4.3.1 and Theorem 4.4.1, are split between Chapter 6 and Chapter 7. The latter
proofs are split into qualitative and quantitative versions. Qualitative theorem statements
capture the essence of the inequalities we prove, and serve to illustrate the main forms of the
bounds we desire, without getting lost in the details. Quantitative theorems on the other
hand build on their qualitative counterparts by stating the precise bounds that are needed.
In Chapter 6, we introduce the machinery and and in Section 6.2, Section 6.3 and Section 6.4,
we qualitatively verify the conditions of the machinery for planted slightly denser subgraph,
tensor PCA, and sparse PCA respectively. While these sections only verify the qualitative
conditions, the results in these sections are precise and will be reused in Chapter 7, where

we fully verify the conditions of the machinery in Section 7.1, Section 7.2 and Section 7.3.
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CHAPTER 5
THE SHERRINGTON-KIRKPATRICK HAMILTONIAN

In this chapter, we will prove SoS lower bounds for the certification problem of the Sherrington-
Kirkpatrick Hamiltonian, in particular Theorem 4.1.2. The material in this chapter is

adapted from [70], where this work originally appeared.

5.1 Technical preliminaries

In this section we record formal problem statements, then define and discuss one of the main
objects in our SoS lower bound: graph matrices.

For a vector or variable v € R”, and I C [n], we use the notation v/ := [[;c; v;. When a
statement holds with high probability (w.h.p.), it means it holds with probability 1 — o, (1).

In particular, there is no requirement for small n.

5.1.1 Problem statements

We introduce the Planted Affine Planes problem over a distribution D.
Definition 5.1.1 (Planted Affine Planes (PAP) problem). Given dy,...,dy ~ D where
each dy, is a vector in R™, determine whether there exists v € {j:\/iﬁ}" such that

(v, dy)? =1,

for every u € [m].

Our results hold for the Gaussian setting D = N(0, ) and the boolean setting where D
is uniformly sampled from {£1}", though we conjecture in Section 8.2.2 that similar SoS

bounds hold under more general conditions on D.
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Observe that in both settings the solution vector v is restricted to be Boolean (in the
sense that the entries are either \/Lﬁ or :/—717) and an SoS lower bound for this restricted version
of the problem is stronger than when v can be an arbitrary vector from R".

As we saw in Chapter 4, the Sherrington—Kirkpatrick (SK) problem comes from the

spin-glass model in statistical physics [168].

Definition 5.1.2 (Sherrington-Kirkpatrick problem). Given W ~ GOE(n), compute

OPT(W) := I?:EE)I(} rTWa.
€ "

The Planted Boolean Vector problem was introduced by Mohanty—Raghavendra—Xu [129],

where it was called the “Boolean Vector in a Random Subspace”.

Definition 5.1.3 (Planted Boolean Vector problem). Given a uniformly random p-dimensional

subspace V' of R™ in the form of a projector Iy, onto V', compute

1
OPT(V) :=— max bTIyb.
n be{£l1}n

5.1.2  Graph matrices

To study M, we decompose it using the framework of graph matrices. Originally developed
in the context of the planted clique problem, graph matrices are random matrices whose
entries are symmetric functions of an underlying random object — in our case, the set of
vectors dy, . .., dy,. We take the general presentation and results from [2]. For our purposes,
the following definitions are sufficient.

The graphs that we study have two types of vertices, circles O) and squares []. We let Cp,
be a set of m circles labeled 1 through m, which we denote by (0, ®),...,(m), and let S, be
a set of n squares labeled 1 through n, which we denote by [1],[2], ... ,[n]. We will work with

bipartite graphs with edges between circles and squares, which have positive integer labels on
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the edges. When there are no multiedges (the graph is simple), such graphs are in one-to-one
correspondence with Fourier characters on the vectors dy,. An edge between () and [i] with

label [ represents h;(d,, ;) where {hy} is the Fourier basis (e.g. Hermite polynomials).

simple graph with labeled edges — H hl(@,)(du,i)

@<Cm,
[i]eSn

An example of a Fourier polynomial as a graph with labeled edges is given in Fig. 5.1.

Unlabeled edges are implicitly labeled 1.

w1

i1 3 J1

19 Jo

Figure 5.1: The Fourier polynomial h3(dy i, )hi(du,iy)h2(dyw, )R1(duji )h1(dy j,) Tepresented as a
graph.

Define the degree of a vertex v, denoted deg(v), to be the sum of the labels incident to
v, and | F| to be the sum of all labels. For intuition it is mostly enough to work with simple
graphs, in which case these quantities make sense as the edge multiplicities in an implicit

multigraph.
Definition 5.1.4 (Proper). We say an edge-labeled graph is proper if it has no multiedges.

The definitions allow for “improper” edge-labeled multigraphs which simplify multiplying

graph matrices (Section 5.4.2).
Definition 5.1.5 (Matrix indices). A matriz indez is a set A of elements from Cpp, U Sp,.

We let A([i]) or A(@) be 0 or 1 to indicate if the vertex is in A.
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Definition 5.1.6 (Ribbons). A ribbon is an undirected, edge-labeled graph R = (V(R), E(R), ARr, BRr),
where V(R) C Cp U Sy, and AR, Br are two matriz indices (possibly not disjoint) with
Ap,Br C V(R), representing two distinguished sets of vertices. Furthermore, all edges in

E(R) go between squares and circles.

We think of Ap and Bp as being the “left” and “right” sides of R, respectively. We also
define the set of “middle vertices” Cp := V(R)\ (Agr U BpR). If e ¢ E(R), then we define its
label I(e) = 0. We also abuse notation and write {([i], @) instead of I({[i], @}).

Akin to the picture above, each ribbon corresponds to a Fourier polynomial. This Fourier
polynomial lives inside a single entry of the matrix Mp. In the definition below, the hj(x)
are the Fourier basis corresponding to the respective setting. In the Gaussian case, they are
the (unnormalized) Hermite polynomials, and in the boolean case, they are just the parity

function, represented by

Definition 5.1.7 (Matrix for a ribbon). The matriz Mg has rows and columns indexed by

subsets of Cyp, U Sy, with a single nonzero entry defined by

IT  ue)(dui) T=Ag J=Bg
ecE(R),
e={l{J@}

0 Otherwise

Mgll,J] =

Next we describe the shape of a ribbon, which is essentially the ribbon when we have
forgotten all the vertex labels and retained only the graph structure and the distinguished

sets of vertices.

Definition 5.1.8 (Index shapes). An index shape is a set U of formal variables. Further-

more, each variable is labeled as either a “circle” or a “square”.
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We let U([i]) and U(@) be either 0 or 1 for whether [i] or @), respectively, is in U.

Definition 5.1.9 (Shapes). A shape is an undirected, edge-labeled graph o = (V (), E(«), Uq, Vi)
where V(a) is a set of formal variables, each of which is labeled as either a “circle” or
a “square”. Uy and Vi are index shapes (possibly with variables in common) such that
Ua, Vo C V(). The edge set E(a) must only contain edges between the circle variables and

the square variables.
We'll also use Wy, := V() \ (Uq U Vy) to denote the “middle vertices” of the shape.

Remark 5.1.10. We will abuse notation and use [i],[j], @), @), ... for both the vertices of
ribbons and the vertices of shapes. If they are ribbon vertices, then the vertices are elements
of Cn U Sy, and if they are shape vertices, then they correspond to formal variables with the

appropriate type.

Definition 5.1.11 (Trivial shape). Define a shape a to be trivial if Uy = Vo, Wo = 0 and
E(a) =10.

Definition 5.1.12 (Transpose of a shape). The transpose of a shape o = (V(«), E(«), Uy, Vi)
is defined to be the shape aT = (V(«), E(a), Vi, Uq).

For a shape a and an injective map o : V(«a) — Cpp U S, we define the realization o(«)
as a ribbon in the natural way, by labeling all the variables using the map o. We also require
o to be type-preserving i.e. it takes square variables to S, and circle variables to Cy,. The
ribbons that result are referred to as ribbons of shape «; notice that this partitions the set
of all ribbons according to their shapel2.

Finally, given a shape «, the graph matrix M, consists of all Fourier characters for

ribbons of shape a.

1. Partitions up to equality of shapes, where two shapes are equal if there is a type-preserving bijection
between their variables that converts one shape to the other. When we operate on sets of shapes below, we
implicitly use each distinct shape only once.

2. Note that in our definition two realizations of a shape may give the same ribbon.
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Definition 5.1.13 (Graph matrices). Given a shape o = (V (), E(a),Uq, V), the graph

matriz My, is

M, = > Mp

R is a ribbon of shape «
The moment matrix for PAP will turn out to be defined using graph matrices M, whose
left and right sides only have square vertices, and no circles. However, in the course of the

analysis we will factor and multiply graph matrices with circle vertices in the left or right.

5.1.8 Norm bounds

Similar to the norm bounds for graph matrices with only a single type of vertex (see Chap-
ter 2), the spectral norm of a graph matrix in our setting is determined, up to logarithmic
factors, by relatively simple combinatorial properties of the graph. For a subset S C C,,, US,,,
we define the weight w(S) := (# circles in 5) - log,,(m) + (# squares in S). Observe that

nw(S) — mp#circlesin S # squares in S

Definition 5.1.14 (Minimum vertex separator). For a shape «, a set Sy, 1S a minimum
vertex separator if all paths from Uy, to Vi pass through Spyin and w(Spin) is minimized over

all such separating sets.

Let W;4, denote the set of isolated vertices in W,. Then essentially the following norm
bound holds for all shapes o with high probability (a formal statement can be found in Sec-
tion 5.6.1):

~ w(V () =w(Smin) +wWiso)
Mol <6 (n ;

In fact, the only probabilistic property required of the inputs dy, ..., d;, by our proof is
that the above norm bounds hold for all shapes that arise in the analysis. We henceforth
assume that the norm bounds in Lemma 5.6.3 (for the Gaussian case) and Lemma 5.6.1 (for

the boolean case) hold.
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5.2 Proof Strategy

Now we explain in more detail the ideas for the Planted Affine Planes lower bound. Towards
the proof of Theorem 4.1.4, fix a constant ¢ > 0 and a random instance dy,...,dy,, with
n < m < n327¢. We will construct a pseudoexpectation operator and show that it is PSD
up to degree D = 2 - n% with high probability.

We start by pseudocalibrating to obtain a pseudoexpectation operator E. The operator E

2 1 ” though it may not exactly satisfy

will exactly satisfy the “booleanity” constraints “v;
the constraints “(v,dy)? = 17 due to truncation error in the pseudocalibration. Taking the
truncation parameter n” to be larger than the degree D of the SoS solution, i.e., § < 7, the
truncation error is small enough that we can round E to a nearby E/ that exactly satisfies the
constraints. This is formally accomplished by viewing Ee R(Lnl])) as a vector and expressing
the constraints as a matrix () such that E satisfies the constraints iff it lies in the null space
of Q. The choice of E is then the projection of E to Null(@). The end result is that we
construct a moment matrix M r;,, = M + £ that exactly satisfies the constraints such that
|€|| is tiny. For the sake of brevity, we omit this technicality in this work, see [70] for the
details.

After performing pseudocalibration, in both settings, we will have essentially the graph

matrix decomposition

1 M,
Z AaMo = Z Ual+Val - H heg(@ nIE(O;l/2

shapes « shapes a: no 2 WeV (a)
deg([i))+-U (i) +V ([2]) even,
deg((w)) even

Here hj(1) is in both settings the k-th Hermite polynomial, evaluated on 1.
In this decomposition of M, the trivial shapes will be the dominant terms which we
will use to bound the other terms. Recall that a shape a = (V(«), E(a), Uq, Vy) is trivial

if Uy = Vo, W = 0 and E(a) = (). These shapes contribute scaled identity matrices on
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different blocks of the main diagonal of M, with trivial shape a contributing an identity

matrix with coefficient n~1Val. Two trivial shapes are illustrated in Fig. 5.2.

Uy
1 U 1
n nQ UQ
Una NV,
Ua NV

Figure 5.2: Two examples of trivial shapes.

Let M,y be this diagonal matrix of trivial shapes in the above decomposition of M.
To prove that M > 0, we attempt the simple strategy of showing that the norm of all other
terms can be “charged” against this diagonal matrix My,y. For several shapes this strategy

is indeed viable. To illustrate, let’s consider one such shape o depicted in Fig. 5.3.

w1
u w9 ul
Ul akd!
Ua w3 Vo

Figure 5.3: Picture of basic non-spider shape a.

This graph matrix has [A\q| = @(%) Using the graph matrix norm bounds, with high
probability the norm of this graph matrix is O(n?m): there are four square vertices and two
circle vertices which are not in the minimum vertex separator. Thus, for this shape «, with
high probability || | Mal| is O (%) and thus Ay My < L7d (which is the multiple of the
identity appearing in the corresponding block of My )-

Unfortunately, some shapes a that appear in the decomposition have ||Aq My || too large to
be charged against M,;,. These are shapes with a certain substructure (actually the same

structure that appears in the matrix ) used to project the pseudoexpectation operator!)
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whose norms cannot be handled by the preceding argument, and which we denote spiders.

The following graph depicts one such spider shape (and also motivates this terminology):

Ui — V1
U9 H %)
Ua va

Figure 5.4: Picture of basic spider shape «.

The norm ||\ M| of this graph is (NZ(%), as can be easily estimated through the norm
bounds (the coefficient is Ag = #2—, the minimum vertex separator is (w), and there are no
isolated vertices). This is too large to bound against #I d, which is the coefficient of My
on this spider’s block.

To skirt this and other spiders, we restrict ourselves to vectors = L Null(M), and observe
that this spider « satisfies TM, =~ 0. To be more precise, consider the following argument.

Consider the two shapes in Fig. 5.5, f; and f (take note of the label 2 on the edge in (3).

Uy
U9 || v
Ug, =0 &
Vs, Io))
Ug,

Figure 5.5: Picture of shapes 1 and Ss.

We claim that every column of the matrix 2Mpg, + %M 3, 18 In the null space of M.

There are m nonzero columns indexed by assignments to V', which can be a single circle
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@, @), .. ,@m). The nonzero rows are () in B and {[i},[j]} for i # j in B;. Fixing I C [n],
entry (I, @) of the product matrix M(2Mp, + %M&) is

~ 1~
QZE[UIUZ'U]'] . duiduj + HE[UI] ) Z(dal —1)

i<j Z.
E E = = 1
! L2 2 1 - wo 1,
— QZE[U vv] - dyidyj + Elv vf] - de —E[v'] (E satisfies “vf = - )
1<J i
= ZE[UIUZ‘Uj]dmduj — E[UI]
i,
= Efv! (v, du)? = 1)]
=Y (E satisfies “(v, dy)? = 17)

In words, the constraint “(v,dy)2 = 17 creates a shape 281 + %ﬁz that lies in the null space
of the moment matrix. On the other hand, we can approximately factor the spider a across

its central vertex, and when we do so, the shape 1 appears on the left side. Therefore

el T 1 e

>< ~

=1/ Nl el I
Vﬂ1 Vﬁl

Uﬁl Uﬁl Ua Va

Figure 5.6: Approximation 81 x 3] ~ «a.

My =~ MﬁlMﬁT1 ~ (Mg, + %M@)Mél. The columns of the matrix Mg, + %M@ are in the
null space of M, so for x L Null(M) we have xTM,, ~ 0. More formally, we are able to find

coefficients cg SO that all columns of the matrix

A:Ma—l-ZC@MB
B
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are in Null(M). We then observe the following fact:
Fact 5.2.1. Ifz L Null(M) and MA =0, then 2T(AB+ M)z = 2T(BTAT+ M)z = 2TMz.

Using the fact, we can freely add multiples of A to M without changing the action of M
on Null(M)+. A judicious choice is to subtract Ao A which will “kill” the spider from M.
Doing this for all spiders, we produce a matrix whose action is equivalent on Null(./\/l)L, and
which has high minimum eigenvalue by virtue of the fact that it has no spiders, showing that
M is PSD. The catch is two-fold: first, the coefficients cg may contribute to the coefficients
on the non-spiders; second, the further intersection terms Mg may themselves be spiders (
though they will always have fewer square vertices than «). Thus we must recursively kill
these spiders, until there are no spiders remaining in the decomposition of M. The resulting

matrix has some new coefficients on the non-spiders

r_ /
non-spiders 3
We must bound the accumulation on the coefficients )\/ﬁ' We do this by considering the
web of spiders and non-spiders created by each spider and using bounds on the cg and Ay to
argue that the contributions do not blow up, via an interesting charging scheme that exploits

the structure of these graphs.

5.3 Pseudocalibration

As we saw in Chapter 3, to be able to apply the pseudocalibration technique to an average-
case feasibility problem, in our case the PAP problem, one needs to design a planted dis-
tribution supported on feasible instances. This is done in Section 5.3.1. In Section 5.3.2,
we recall the precise details in applying pseudocalibration. Then we pseudocalibrate in the

Gaussian (Section 5.3.3) and boolean (Section 5.3.4) settings.
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5.3.1 PAP planted distribution

We formally define the random and the planted distributions for the Planted Affine Planes
problem in the Gaussian and boolean settings. These two (families of) distributions are re-
quired by the pseudocalibration machinery in order to define a candidate pseudoexpectation

operator E. For the Gaussian setting, we have the following distributions.

Definition 5.3.1 (Gaussian PAP distributions). The Gaussian PAP distributions are as

follows.

1. (Random distribution) m i.i.d. vectors dy ~ N(0,1).

2. (Planted distribution) A vector v is sampled uniformly from {:I:L}n, as well as signs

/n
bu €p {£1}, and m vectors dy, are drawn from N(0,1) conditioned on (dy,v) = by,

For the boolean setting, we have the following distributions.
Definition 5.3.2 (Boolean PAP distributions). The boolean PAP distributions are as follows
1. (Random distribution) m i.i.d. vectors dy, € {—1,+1}".

2. (Planted distribution) A vector v is sampled uniformly from {j:\/iﬁ}n, as well as signs

by €g {£1}, and m vectors dy, are drawn from {+1}" conditioned on {(dy,v) = by.

5.3.2  Pseudocalibration technique

We will use the shorthand Er, and Ej for the expectation under the random and planted
distributions. Pseudocalibration gives a method for constructing a candidate pseudoexpec-
tation operator E. The idea behind pseudocalibration is that EraEf(v) should match with

Ep1f(v) for every low-degree test of the data t = t(d) = t(dy, ..., dm),

Erat()Ef(v) = Eyt(d) f(v).
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When pseudocalibrating, one can freely choose the “outer” basis in which to express the
polynomial f(v), as well as the “inner” basis of low-degree tests which should agree with the
planted distribution. Though we attempted to use alternate bases to simplify the analysis,
ultimately we opted for the standard choice of bases: a Fourier basis for the inner basis in
each setting (Hermite functions for the Gaussian setting, parity functions for the boolean
setting), and the coordinate basis vl for the outer basis.

When the inner basis is orthonormal under the random distribution (as a Fourier ba-
sis is), the pseudocalibration condition gives a formula for the coefficients of E f(v) in the
orthonormal basis (though it only gives the coefficients of the low-degree functions t(d)).
Concretely, letting the inner basis be indexed by a € F, as a function of d the pseudocali-

bration condition enforces

Ef() = Y (Epta(d)f(v))ta(d).

aeF:
loe|<n”

Here we use “|a| < n™” to describe the set of low-degree tests. The pseudocalibration condi-
tion does not prescribe any coefficients for functions t,(d) with || > n”™ and an economical
choice is to set these coefficients to zero.

When pseudocalibrating, our pseudoexpectation operator is guaranteed to be linear, as
the expression above is linear in f. It is guaranteed to satisfy all constraints of the form
“f(v) = 0”. It will approximately satisfy constraints of the form “f(v,d) = 0", though only

up to truncation error.

Fact 5.3.3 (Proof in [70]). If p(v) is a polynomial which is uniformly zero on the planted
distribution, then IE[p] is the zero function. If p(v,d) is a polynomial which is uniformly zero
on the planted distribution, then the only nonzero Fourier coefficients of ]E[p] are those with
size between n” + degy(p).

Truncation introduces a tiny error in the constraints, which we are able to handle in [70],
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omitted in this work for brevity.

For the pseudocalibration we truncate to only Fourier coefficients of size at most n”. The
relationship between the parameters is § < e < /e where ¢/ < ¢ < 1 are absolute constants.
We will assume that they are sufficiently small for all our proofs to go through.

Pseudocalibration also by default does not enforce the condition E[l] = 1. However, this
is easily fixed by dividing the operator by ]E[l] As will be pointed out in Remark 5.4.9,
w.h.p. in the unnormalized pseudocalibration, E[1] = 1 + 0,(1) and so the error introduced

does not impact the statement of any lemmas.

5.3.83  Gaussian setting pseudocalibration

We start by computing the pseudocalibration for the Gaussian setting. Here the natural
choice of Fourier basis is the Hermite polynomials. Let a € (N™)" denote a Hermite poly-
nomial index. Define a! := [], ;o ;! and [af 1= 37, ;o and |au| == 325 aq . We let
ha(dy, ..., dm) denote an unnormalized Hermite polynomial, so that he/+v/a! forms an or-
thonormal basis for polynomials in the entries of the vectors dy,...,d;, under the inner
product (p,q) =Eg, _ 4.~n,n)lP- -

We can view « as an m x n matrix of natural numbers, and with this view we also define

al € (N™)™,

Lemma 5.3.4. For any I C [n], the pseudocalibration value is

~ 7 il - 1 ha(dy, .. dm)
Bt = 2. (ghlaul(1)> o172 +]al /2 al '

a:la|<nT,
|| even,

[(aT);|=I; ( mod 2)

In words, the nonzero Fourier coefficients are those which have even row sums, and whose

column sums match the parity of I.
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Proof. The truncated pseudocalibrated value is defined to be
’ Epl[hoz(dly . ) dm) ' UI]

ha(d]_, e ,dm)

~ 7

Ev' = Z o
a:la|<nT
For this computation, the following

So we set about to compute the planted moments.
lemma is crucial. Here, we give a short proof of this lemma using generating functions. For

a different combinatorial proof, see [70].
When v is fized and b is fived (not necessarily £1) and

Lemma 5.3.5. Let o € N
d~ N(0,1) conditioned on (v,d) =b||v|],
,UOZ
Eglha(d)] = ——— - hj4(D).
o]

Proof. Tt suffices to prove the claim when ||v|| = 1 since the left-hand side is independent of
|v||. Express d = bv + (I —vvT)z where z ~ N(0, I) is a standard normal variable. Now we

ECCNN(O,I) ha (b’U + ([ — UUT) ) .

want
The Hermite polynomial generating function is
. 1113
(bv + (I —ovvT)z, t) — TN

E : IE:wa(O,I)hoz (bv+ (I — UUT)JU) o =[E,exp
2 2
t
@U+U_Uﬂ)¢,_nm_wﬂb>d'

aeN"?
2

N /]R” (2;)3 'eXp<
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Completing the square,

n (27)2 2
— exp ((bv,t) - <U’2t> )
— exp (b(v,t) _ % . <v,t>2>

. . . 2 .

How can we Taylor expand this in terms of ¢t? The Taylor expansion of exp(by — %) is
i 2

>0 hz(b)g—, That is, the i-th derivative in y of exp(by — %), evaluated at 0, is h;(b).

Using the chain rule with y = (v,t), the a-derivative in ¢ of our expression, evaluated at

0, is v® - hjy(b). This is the expression we wanted when [[v|| = 1, and along with the
aforementioned remark about homogeneity in ||v|| this completes the proof. ]
Now we can finish the calculation. To compute Ep[ha(dy, ..., dm) - vl |, marginalize v

and the b, and factor the conditionally independent b,, and d,,.

m
Epilha(dy, ... dm)v'] = By p 0" ] Ba lhay (du) | v, bd]

u=1
m e
=E,p v - H ——— g (bu) (Lemma 5.3.5)
T el

I Zm o m
v u=1
( U||U||§:um—1|au|> ‘ (II buhau|(bu)>
u=1

The Hermite polynomial expectations will be zero in expectation over by, if the degree is odd,
and otherwise b, is raised to an even power and can be replaced by 1. This requires that
|| is even for all u. The norm ||v|| is constantly 1 and can be dropped. The numerator
will be m if the parity of every |(aT);| matches I;, and 0 otherwise. This completes

the pseudocalibration calculation. [ ]

We can now write M in terms of graph matrices.
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Definition 5.3.6. Let L be the set of all proper shapes o with the following properties

Uy and Vi, only contain square vertices and |Uy|,|Va| < nd

Wq has no degree 0 vertices
deg([d]) + Ua (@) + V(i) is even for all[i] € V(«)
deg(@) is even and deg(@) > 4 for all @ € V()

[E()] <n”

Remark 5.3.7. Note that the shapes in L can have isolated vertices in Uy N V.

Remark 5.3.8. L captures all the shapes that have nonzero coefficient when we write M in

terms of graph matrices. The constraint deg(@) > 4 arises because pseudocalibration gives

us that deg(@) is even, @ cannot be isolated, and ha(1) = 0.

For a shape «, we define

al:= ] i)

e€E(a)

Note that this equals the factorial of the corresponding index of the Hermite polynomial for

this shape.

Definition 5.3.9. For any shape o, if a € L, define

1 1
o= | ] hae@O | —mmmmmE@ns o
WeV (o)

Otherwise, define Ay := 0.

Corollary 5.3.10. Modulo the footnote3, M = Z AaMg.

shapes «

3. Technically, the graph matrices M, have rows and columns indexed by all subsets of C,, US,. The
submatrix with rows and columns from ( <%"/2) equals the moment matrix for E.
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5.3.4 Boolean setting pseudocalibration

We now present the pseudocalibration for the boolean setting. For the sequel, we need

notation for vectors on a slice of the boolean cube.

Definition 5.3.11 (Slice). Let v € {£1}" and 6 € Z. The slice Sy(0) is defined as
Sy(0) = {d € {£1}" | (v,d) = 0}.

We use Sy(£0) to denote Sy(0) U Sy(—0) and S(0) to denote Sy,(0) when v is the all-ones

vector.

Remark 5.3.12. With our notation for the slice, the planted distribution in the boolean

setting can be equivalently described as
1. Sample v € {\j;—%}” uniformly, and then
2. Sample dy, ..., dn independently and uniformly from S\/ﬁ,v(i\/ﬁ).

The planted distribution doesn’t actually exist for every n, but this is immaterial, as we
can still define the pseudoexpectation via the same formula.
We will also need the expectation of monomials over the slice S(y/n) since they will

appear in the description of the pseudocalibrated Fourier coefficients.
Definition 5.3.13. e¢(k) = Eocps(yn) [x1 - xp].

We now compute the Fourier coefficients of Ev’ , where 8 € Fy. The Fourier basis when
dy,...,dm €gr {£1}" is the set of parity functions. Thus a character can be specified by
a € (F3)™, where a is composed of m vectors a, . ..,y € Fiy. More precisely, the character

Xa associated to « is defined as

m

Xa(di, ... dp) = H g

u=1
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We denote by |a| the number of non-zero entries of o and define |ay,| similarly. Thinking of

o as an m X n matrix with entries in Fg, we also define aT € (F})™

Lemma 5.3.14. We have

B = Y H (loul) - X, ().

a: la|<n”,
|au| even,

|of|=8; ( mod 2)

The set of nonzero coeflicients has a similar structure as in the Gaussian case: the rows

of @ must have an even number of entries, and the i-th column must have parity matching

Bi-

Proof. Given a € (F5)™ with |a| < n7, the pseudocalibration equation enforces by con-

struction that

Edl,...,dme{il}”(ﬁvﬁ)(dla s 7dm) ’ Xa(d1> s adm) = ]Eplvﬂ ’ Xa(dla s 7dm)
Computing the RHS above yields

m
Epeqr137Ea; . d,ens, (2vn) [vﬁnx%(du)] =Eveqz13Ea, ... dpnerns(Evn) [ Hxau V)Xo, u]

=Eye(z1}nXar++am+80)Ea, . a4, es(xvm) [H Xai(dz‘)]

i=1

= Loy 4otam=] * | | Baresavin Xou (di)]

i=1

=1ja, 4 tam=4] H 1jjai|=0 (mod 2)] * He(lail).
=1 i=1

Since we have a general expression for the Fourier coefficient of each character, applying

Fourier inversion concludes the proof. [

We can now express the moment matrix in terms of graph matrices.

145



Definition 5.3.15. Let Ly, be the set of shapes in L from Definition 5.5.6 in which the

edge labels are all 1.

Remark 5.3.16. Ly, captures all the shapes that have nonzero coefficient when we write
M in terms of graph matrices. Similar to Remark 5.5.8, since e(2) = 0 (see Claim 5.6.5),

we have the same condition deg(@) > 4 for shapes in Ly,

Definition 5.3.17. For all shapes «, if a € Ly, define

1
Vo= —pmae 1L eldes(@)
eV (a)

Otherwise, let Ao := 0.

Corollary 5.3.18. M = Z AaMy

shapes «
Unifying the analysis

It turns out that the analysis of the boolean setting mostly follows from the analysis in the
Gaussian setting. Initially, the boolean pseudocalibration is essentially equal to the Gaussian
pseudocalibration in which we have removed all shapes containing at least one edge with a
label £ > 2. The coefficients on the graph matrices will actually be slightly different, but
they both admit an upper bound that is sufficient for our purposes (see Proposition 5.4.13
for the precise statement).

To unify the notation in our analysis, we conveniently set the edge functions of the graphs

in the boolean case to be
1 ifk=0

hg(x) =9 o ifk=1
0 ifk>2
This choice of hj(z) preserves the fact that {hg(z) = 1,h1(z) = z} is an orthogonal poly-

nomial basis in the boolean setting, while zeroing out graphs with larger labels.
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During the course of the analysis, we may multiply two graph matrices and produce graph
matrices with improper parallel edges (so-called “intersections terms”). For a fixed pair u, i
of vertices, parallel edges between u and ¢ with labels lq, ..., ls correspond to the product of
orthogonal polynomials H?:l hlj(du,i) =: q(dy,;). We will re-express this product as a linear
combination of polynomials in the orthogonal family, i.e., q(d, ;) = Z?i%(q) Ai - hi(dy ;)
for some coefficients \; € R. For the boolean case, the polynomial ¢(d,, ;) will be either
ho(dy ;) = 1 or hi(dy ;) = dy ;. However, for the Gaussian setting there may be up to deg(q)
non-zero, potentially larger coefficients \; for the corresponding Hermite polynomials h;. For
the graphs that arise in this way, we will always bound their contributions to M by applying
the triangle inequality and norm bounds. Since we show bounds using the larger coefficients
A; from the Gaussian case, the same bounds apply when using the 0/1 coefficients in the
boolean case.

We will consider separate cases at any point where the analysis differs between the two

settings.

5.4 Proving PSD-ness

Looking at the shapes that make up M, the trivial shape with k square vertices contributes
an identity matrix on the degree-2k submatrix of M. Our ultimate goal will be to bound

all shapes against these identity matrices.

Definition 5.4.1 (Block). For k,l € {0,1,...,D/2}, the (k1) block of M is the submatriz
]

with rows from ([Z]) and columns from ( ! ) Note that when M is expressed as a sum of

graph matrices, this exactly restricts M to shapes a with |Ug| = k and |Vy| = 1.

We define the parameter n := 1/4/n. The trivial shapes live in the diagonal blocks of

M, and on the (k, k) block contribute a factor of # = %% on the diagonal. In principle, we
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could make 7 as small as we like* by considering the moments of a rescaling of v rather than
v itself. Counterintuitively, it will turn out that the scaling helps us prove PSD-ness (see
[70] for more details). It turns out that pseudocalibrating v as a unit vector (equivalently,
using n = 1/4/n) is sufficient for our analysis.

Towards the goal of bounding M by the identity terms, we will bound the norm of
matrices on each block of M, and invoke the following lemma to conclude PSD-ness.

[] [n]
Lemma 5.4.2. Suppose a symmetric matriz A € R(SD)X(SD) satisfies, for some parameter

n € (0,1),
1. Foreachk € {0,1,...,D}, the (k, k) block has minimum singular value at least n*F(1—
1
D71

k-+1
2. For each k,l € {0,1,...,D} such that k # [, the (k,l) block has norm at most DL:I

Then A = 0.

Proof. We need to show that for all vectors z, T Az > 0. Given a vector z, let xqg,...,xp

be its components in blocks 0, ..., D. Observe that

) ” ] ) pkH
ez 5 P (- g )l - Y el

ke[0,D] k#1€[0,D]
1 1 1
1- 1 ~ D1 T D1 [
1 1 1
o l-p o o || wlal
1 D+1 1
= (lzoll,m |zl - - 0" l=pl) . - * > 0.
1 1 1 D
T D+1 ~D¥1 1 - DF1 n” lzpll

We start by defining spiders, which are special shapes « that we will handle separately in

the decomposition of M. Informally, these contain special substructures which allow their

4. Though pseudocalibration truncation errors may become nonnegligible for extremely tiny 7.
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norm bounds not to be negligible with respect to the identity matrix. We then show that

shapes which are not spiders have bounded norms.

Definition 5.4.3 (Left Spider). A left spider is a proper shape o = (V(«), E(a), Uqa, Vi)
with the property that there exist two distinct square vertices [i),[j] € Uq of degree 1 and
a circle vertex @ € V(o) such that E(a) contains the edges ([i], @) and ([j],@) (these are

necessarily the only edges incident to [i] and[j]).

The vertices [i] and [ | are called the end vertices of a. Because of degree parity, the end

vertices must lie in Uy \ (Uq N Va).

Definition 5.4.4 (Right spider). A shape a = (V(«), E(«),Uq, Vo) is a right spider if
al = (V(a), E(a),Va,Uys) is a left spider. The end vertices of aT are also called the end

vertices of a.
Definition 5.4.5 (Spider). A shape « is a spider if it is either a left spider or a right spider.

Remark 5.4.6. A spider can have many pairs of end vertices. For each possible spider
shape, we single out a pair of end vertices, so that in what follows we can discuss “the” end

vertices of the spider.

5.4.1 Non-spiders are negligible

For non-spiders, we will now show that their norm is small. We point out that this norm

bound on non-spiders critically relies on the assumption m < n3/2—¢

Lemma 5.4.7. If o € L is not a trivial shape and not a spider, then

1 w V(@) (Sipiy) 1
—n —_—
nlE(@)l/2 ~ pfUelE(@)])

where Sy 1S the minimum vertex separator of «.
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Proof. The idea behind the proof is as follows. Each square vertex which is not in the
minimum vertex separator contributes v/n to the norm bound while each circle vertex which
is not in the minimum vertex separator contributes v/m. To compensate for this, we will try
and take the factor of \/Lﬁ from each edge and distribute it among its two endpoints so that
each square vertex which is not in the minimum vertex separator is assigned a factor of \/Lﬁ

or smaller and each circle vertex which is not in the minimum vertex separator is assigned

1
a factor of T or smaller.

Remark 5.4.8. Instead of using the minimum vertex separator, we will actually use a set S
of square vertices such that w(S) < w(Sin). For details, see the actual distribution scheme

below.

To motivate the distribution scheme which we use, we first give two attempts which
don’t quite work. For simplicity, for these first two attempts we assume that Uy, NV, = 0

as vertices in U, NV, can essentially be ignored.

Attempt 1: Take each edge and assign a factor of % to its square endpoint and a

yn
factor of §/L7n to its circle endpoint.
With this distribution scheme, since each circle vertex has degree at least 4, each circle
vertex is assigned a factor of \/Lﬁ or smaller. Since each square vertex in W, has degree
at least 2, each square vertex in W, is assigned a factor of \/Lﬁ or smaller. However,

square vertices in Uy UV, may only have degree 1 in which case they are assigned a

factor of —41—n which is not small enough.

7

To fix this issue, we can have all of the edges which are incident to a square vertex in

Uq UV, give their entire factor of \/Lﬁ to the square vertex.

Remark 5.4.9. For analyzing ]E[l], this first attempt works as Uy = Vi, = (0. Thus,

as long as m < n~¢, with high probability E[l] =1xop(1).
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Attempt 2: For each edge which is between a square vertex in U, U V,, and a circle

1
NG

For all other edges, we assign a factor of % to its square endpoint and a factor of

Vn

3
lm to its circle endpoint (which we can do because m < n27°).

K

With this distribution scheme, each square vertex is assigned a factor of \/Lﬁ Since

vertex, we assign a factor of to the square vertex and nothing to the circle vertex.

« is not a spider, no circle vertex is adjacent to two vertices in U, or V. Thus, any
circle vertex which is not adjacent to both a square vertex in U, and a square vertex
in V,, must be adjacent to at least 3 square vertices in Wy, and is thus assigned a factor

of or smaller. However, we can have circle vertices which are adjacent to both a

1
vm
square vertex in U, and a square vertex in V. These circle vertices may be assigned

a factor of -, which is not small enough.

% )
To fix this, observe that whenever we have a circle vertex which is adjacent to both a
square vertex in U, and a square vertex in V,, this gives a path of length 2 from U,
to V. Any vertex separator must contain one of the vertices in this path, so we can

put one of these two square vertices in S and not assign it a factor of \/Lﬁ

Actual distribution scheme: Based on these observations, we use the following distri-

bution scheme. Here we are no longer assuming that U, NV, is empty.

1. Choose a set of square vertices S C U, UV, as follows. Start with S = Uy N V.
Whenever we have a circle vertex which is adjacent to both a square vertex in
Ua \ Vi and a square vertex in V;, \ Ug, put one of these two square vertices in S

(this choice is arbitrary). Observe that w(S) < w(Smyin)

2. For each edge which is incident to a square vertex in .S, assign a factor of {”/Lﬁ to

its circle endpoint and nothing to this square.

3. For each edge which is incident to a square vertex in (UyUVy) \ S, assign a factor

of -1 to the square vertex and nothing to the circle vertex.

NG
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4. For all other edges, assign a factor of 4= to its square endpoint and a factor of

f
\6/_ﬁ to its circle endpoint.

Now each square vertex which is not in S is assigned a factor of —= f and since « is not

a spider, all circle vertices are assigned a factor of \/; or smaller.

We now make this argument formal.
Let C,, and S, be the set of circle vertices and the set of square vertices in « respectively.

w(V () —w(Spin) ‘ .
We have n 2 < 105186 \Smin|+(0-75—=35)|Ca\Smin| So, it suffices to prove that

[E()] = |Sa \ Smin| — (1.5 = €)|Ca \ Spin| = Qe[ E(a)])

Let Q = Uy NVy, P = (UyUV,)\ Q and let P’ be the set of vertices of P that have degree
1 and are not in S,,,;;,. Let E] be the set of edges incident to P’ and let By = E(a) \ Ej.
For each vertex [i] (resp. @), let the number of edges of Es incident to it be deg’ ([]) (resp.

deg’(@)). Since « is bipartite, we have that |Eo| = > TS, deg'([7]) = Z@EC deg’(@). We
get that

|E(a)| = |E1] + | Eo| = \P’H (Y deg'(@+ D> deg(@
.eS WeCa

We also have |Sq \ Spinl < |P'| +1Sa N Wa| 4+ |Sa N (P\ P| < |P/|+ % > TS, deg’ ([7))
because each square vertex outside P’ U Q has degree at least 2 and is not incident to any

edge in F1. So, it suffices to prove
S Y deg/ (@) — (1.5 —€)[Ca \ Spinl > Qe|E(a)])

Now, observe that each @) € Cy is incident to at most two edges in £7. This is because if
it were adjacent to at least 3 edges in E7, then either () is adjacent to at least two vertices
of degree 1 in U, or () is adjacent to at least two vertices of degree 1 in V,,. However, this

cannot happen since « is not a spider. This implies that deg’ (@) > deg(@) — 2.
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Note moreover that if @ € Cq \ Spin, we have that deg’(@) > deg(@) — 1. This is
because, building on the preceding argument, deg’(@) = deg(@) — 2 can only happen if
there exist [i] € Ua,[j] € Vo such that ([i], ), (], @) € £1. But then, note that we have
[i),[5] & Smin by definition of P’ and also, @ & Syin by assumption. This means that there
is a path from U, to V, which does not pass through S,,,;,,, which is a contradiction.

Finally, we set € small enough such that the following inequalities are true, both of which

follow from the fact that deg(@) > 4 for all @ € Cq.
1. For any @ € Co N Spnin, We have % > 15 deg(@).
2. For any @ € Cq \ Synin, we have % —1.5+¢e > ydeg(@).

Using this, we get

5 Z deg 15_5)‘6 \Smm|> Z %"’ Z %_(1'5_5”00\5’””‘“

@ec (WeCanSmin (WECa\Smin
> Z f—odeg(@) + Z (deg(@Q)—l — 1.5+€)
@ecamsmm @Eca\smm
> Z 16—0 deg(() + Z 1% deg(W)
(WeECaNSmin (WECa\Smin
= Y 5 deg(@) = Q|B()
(weca

Since Ly, € L, the above result extends to non-trivial non spider shapes in Ly, too.

Corollary 5.4.10. If a € Ly, s not a trivial shape and not a spider, then

1 w(V(a));w(Smm) < 1
Al E@)]2" — pQelE()])

Corollary 5.4.11. If a € L is not a trivial shape and not a spider, then w.h.p.

1 1
w2 Mell = —ocE@D
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Proof. Using the norm bounds in Lemma 5.6.3, we have

Mol < 2-(JV(a)] - (1 + |E(a)]) - 10g(n))0-(|‘4ez(a)|+|E(a)\).nqw(

We have Wz, = 0. Observe that since there are no degree 0 vertices in V,..;(«), we have
that [V,.;(a)| < 2|E(a)| and since we also have [V ()| - (1 + |E()]) - logn < nO7) the
factor 2 - (|V(a)] - (1 + |E(a)]) - log(n))C Ve (@) HIE(@)]) can be absorbed into m
The result follows from Lemma 5.4.7. ]

This says that nontrivial non-spider shapes have o,(1) norm (ignoring the extra factor n
for the moment). We now demonstrate how to use this norm bound to control the total norm
of all non-spiders in a block of M, Corollary 5.4.14. We will first need a couple propositions
which will also be of use to us later after we kill the spiders.

Proposition 5.4.12. The number of proper shapes with at most L vertices and exactly k

edges is at most L8(k+1),

Proof. The following process captures all shapes (though many will be constructed multiple
times):

e Choose the number of square and circle variables in each of the four sets U NV, U \

(UNV),V\ (UNV),W. This contributes a factor of L5.

e Place each edge between two of the vertices. This contributes a factor of L%k,
|
3| E(a)
Proposition 5.4.13. |\y| < plUal+1Val . % where we assume by convention that

00 =1.

Proof. (Gaussian setting) Recall that the coefficients A\, are either zero or are defined by

the formula

Unl+|Va, 1 1
Aq = nlUalt+Val . H hdeg(@) (1) @
eV ()
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The sequence hy(1) satisfies the recurrence ho(l) = h1(1) = 1,hp (1) = hp(l) —

khj._1(1). We can prove by induction that |hy;(1)| < k* and hence,

11 \hdeg@)(l)\é [T (deg(@)®@ < |B(a)|F@l.
eV (@) @EeV (a)

(Boolean setting) In the boolean setting the coefficients A, are defined by

Mo = pllaltVal (T etdeg(@))
WeV (o)

Using Corollary 5.6.16, we have that |e(k)| < k3% - n=%/2. Thus,

_ Ual+[Va Ual Vel . |E(@) )
\a| = plUaltVal. 11 le(deg(@))| < nlVel ! "W'

@V (@)

Corollary 5.4.14. For k,l € {0,1,...,D/2}, let B, ; € L denote the set of nontrivial, non-
spiders o € L on the (k1) block i.e. |Uy| = k,|Va| = 1. The total norm of the non-spiders

in By, satisfies

kel L
Z |/\a| HMaH =7 T Q(E)
aGBkJ n

155



Proof.

E(a)BIE@)]
S DallMall < Y i BT (Proposition 5.4.13)

E 2
OzGBkJ OLEBk’l nl (a)|/
|E(a)]
E(o)?
< . Z ( e (Corollary 5.4.11)
OéEBk,l
bl n37 |E(a)|
TS <W) (a € L)
aEBkJ
1
K+l
<7 ) Q@)
OtEBk’l
> ,0(ri)
< phtt. —ares (Proposition 5.4.12 and |E(a)| > 1 for a € By, )
—n (¢i) ’
1=
1
k+1
= . [ ]
T

5.4.2  Killing a single spider

We saw in the Proof Strategy section that the shape 28] + %52 lies in the nullspace of a
moment matrix which satisfies the constraints “(v, du)2 = 17. The shape 3 is exactly the
kind of substructure that appears in a spider! Therefore it is natural to hope that if « is a
left spider, then M z; My = 0. This doesn’t quite hold because (v, du>2 is “missing” some
terms: in realizations of a, the end vertices are required to be distinct from the other squares
in o, which prevents terms for all pairs 7, j from appearing in the product M fizMa. There
are smaller “intersection terms” (which we call collapses of «) that we can add so that the
end vertices are permitted to take on all pairs i,j. After adding in these terms, we will
produce a matrix L with M ;L = 0.

We first define what it means to collapse a shape into another shape by merging two
vertices. Here, we only define it for merging two square vertices, since these are the only

kind of merges that will happen in our analysis of intersection terms.
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Definition 5.4.15 (Improper collapse). Let a be a shape and let[i],[j] be two distinct square

vertices in V(o). We define the improper collapse of [i,[j] by:

e Remove [, [j] from V(«) and replace them by a single new vertez [k].

o Replace each edge {[i], @} and {[j],@}, if present, by {[k], @}, keeping the same labels

(note that there may be multiedges and so the new shape may not be proper).

o Set U(k]) =U([@) + U(G])( mod 2) and V([x]) = V(i) + V([5])( mod 2).

Improper collapses have parallel edges, but we can convert them back to a sum of proper
shapes. This is done by, for each set of parallel edges, expanding the product of Fourier
characters in the Fourier basis. For example, two parallel edges with label 1 should be

expanded as

hi(2)? = (27 = 1) + 1= ha(2) + ho(2)

Definition 5.4.16 (Collapsing a shape). Let « be a shape with two distinct square vertices
[i},[5]- We say that B is a (proper) collapse of [i],[j] if B appears in the expansion of the
improper collapse of [i,[j].

Remark 5.4.17. If ly,...,l;. are the labels of a set of parallel edges, then the product
hi (2) -y, (2) is even/odd depending on the parity of Iy + --- + . Thus the nonzero
Fourier coefficients will be the terms of matching parity. Therefore, in both the boolean and
Gaussian cases, the shapes that are proper collapses of a given improper collapse are formed
by replacing each set of parallel edges by a single edge e such that l(e) < 1 + ...+ 1} and
lle) = 1 +---+ 1} (mod 2).

Remark 5.4.18. Looking at the definition and in light of the previous remark, we have the

following.

1. The number of circle vertices does not change by collapsing a shape but the number of

square vertices decreases by 1.
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2. a € L has the property that the vertices have odd degree if and only if they are in

(Ua UVa) \ (Ua NVy). When « collapses, this property is preserved.
We now define the desired shapes Ly, which lie in the null space of M g;,.

Definition 5.4.19. For k > 2 define the shape {}. on {[1], ... ,[k],(D} with two edges {{[1], D}, {2, D}}.
The left side of £}, consists of Up, = {[@, ..., [k]}. The right side consists of Vy, = {[3],...,[k], ®}.

Definition 5.4.20. Define the “completed” version Ly of ¢}, to be the matriz which is the

sum of cgMpg for 5 being the following shapes with coefficients:

(Ly.1): Ly, with coefficient 2.

(Ly2): If k > 3, collapse (1] and [3] in £}, with coefficient %

(Ly3): If k > 4, collapse [1] and [3], and collapse 2] and [4] in €}, with coefficient %

(Lk,4): Collapse [1] and [2], replacing the edges by an edge with label 2, with coefficient
1

n

(Lk,5): If k > 3, collapse [1],[2], and [3], replacing the edges by an edge with label 2,

with coefficient %
For a pictorial representation of the ribbons/shapes, see Fig. 5.7 below.
Lemma 5.4.21. My;, Lj, =0

Proof. These shapes are constructed so that if we fix a partial realization of the vertices ()

and [3],...,[k] as @ € Cpy, and S € (k‘SfQ), the squares [1] and [2] can still be realized as any
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J1,72 € [n]. That is, exactly the following equality holds,

(ML) r= > > Eplvovjvpldyg duj, + Y Elo0F )(d2;, — 1)
@ECm, | d1.52€n): J1€[n]
Se(k‘s_"z) J1#j2

= > EploS((v,dy)? — 1))
WeCm,
Se(/i@

=0

To demonstrate how the coeflicients arise, we analyze the ribbons R which L;, is composed
of and see how they contribute to the output. For pictures of the ribbons/shapes, see Fig. 5.7
below. Let the ribbon be partially realized as @ and S = {[iz], ..., [iu]}. Let (MfipLg)r(y,s)
denote the terms in (Mp;, L) with this partial realization. In this notation we want to

show

(M gizLi)1(u,5) = Z E[Ulvsvﬂvm]duﬁduyz + Z UIUS”2 ](d"z]l —1).
J1,J2€n]: J1€[n]
J#j2

1. If we take a ribbon R with Ap = {[ii],...,[i]}, Br = {is}. - - -, e} U {@} and E(R) =
{{7@}7 {7@}} where jl 7& j2 and jla.jQ ¢ S then

(MfixMR)I(u,S) = ]E[UIUS% Vjg )y ujy-

This ribbon must “cover” both ordered pairs (j1,j2) and (j2, j1), so we want each such

ribbon R to appear with a coeflicient of 2 in L.

2. If we take a ribbon R with Ap = {[i],...,i]} \ {5}, Br = {5} -- -]} U {@}

159



Vﬂl \ Uﬂl
2 Uﬂl \‘/;‘l
Uﬂ'l N Vﬂl
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Ua, NV, Uay N Vg

Figure 5.7: The five shapes that make up L.

and E(R) = {{{is) @}, {2, @} } where j1 = j3 € S then
(MfixMR)I(u,S) [U v \{]3}1’]2] ujsujy = ”E[U USUJ1UJ2]duJ1du32

Taking a coefficient of % in Lj, covers the two pairs (ji,j2) and (jo,71) for this case of

overlap with S.

. If we take a ribbon R with Ap = {[ii], ... [} \ {7} 72} [Gs]: 4]} Br = {[Gs)- - - - [0} U
{@} and E(R) = {{iz) @}, {[ia] @}} where j1 = j3 € S and js = js € S then

(Mfia:MR)I(u,S) = E[ S\{B’M}] dyjadyjy =1 E[U USU]leQ]dujldujz

Taking a coefficient of n% in Lj, covers the two pairs (j1,j2) and (j2,71) for this case

of overlap with S.
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4. If we take a ribbon R with Ap = {[i],...,[i]} \ {7} ]}, Br = {G)---.[]} U{@}
and E(R) = {{[ii, @}2} where j; = ja ¢ S then

(MpiaMR) (u,5) = Blo'0%](dr;, — 1) = nE[p!v” 03 |(d2;, = 1).

ujy Jii\ ug
Taking a coefficient of % in L. covers these terms.

5. If we take a ribbon R with Ap = {[i],...,[i[} \ {7} [}, Br = {&) - [} U{®}
and E(R) = {{[iz, @}2} where j; = jo = j3 € S then

(M 13 MR) 1.5y = Elv'v5](d2;, — 1) = nE[v’v503 (a2, — 1).

Taking a coefficient of % in L. covers these terms.

One of the key facts about graph matrices is that multiplication of graph matrices ap-
proximately equals a new graph matrix, My - Mz ~ M,, where 7 is the result of gluing V4
with Ug (and if Vi, U 5 do not have the same number of vertices of each type, the product is
zero). The error terms in the approximation are intersection terms (collapses) between the

variables in a and /.

Definition 5.4.22. Say thal shapes a and 3 are composable if Vo and Ug have the same
number of square and circle vertices. We say a shape v is a gluing of o and (3, if the graph
of v 1s the disjoint union of the graphs of o and B, followed by identifying Vo, and Ug under

some type-preserving bijection, and if Uy = Uy and Vy = Vj.

Proposition 5.4.23. Let «, 5 be composable shapes. Assume that V(a)\ Vo, has only square
vertices. Let {v;} be the distinct gluings of a and 3, and let Z be the set of improper collapses

of any number of squares (possibly zero) in V(a) \ Vo, with distinct squares in V(B) \ Ug in
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any gluing ;. Then there are coefficients ¢ for vy € T such that

~eT

Furthermore, the coefficients satisfy ‘cy| < olV(a)\Val \V(fy)\'v(o‘)\UO".

Proof. The product My - Mg is a matrix which is a symmetric function of the inputs
(di,...,dm), the space of which is spanned by the M over all possible shapes v (not re-
stricted to f), so there exist coefficients cy if we allow all shapes v. We need to check that
My - Mg actually lies in the span of shapes in 7 by showing that all ribbons in My - Mg have
shapes in 7. Expanding the definition,

M, - Mg = ( > MR> ( > Ms) = > MgpMs.

R is a ribbon of shape « S is a ribbon of shape 3 R is a ribbon of shape a,
S is a ribbon of shape 3

In order for MpMg to be nonzero, we require Bp = Ag as sets; R may assign the labels
arbitrarily inside Bp, resulting in different gluings of o and 8. Fix R and S, and let v be
the corresponding gluing of o and £ for this R and S.

The matrix MpMg has one nonzero entry; we claim that it is a Fourier character for a
ribbon 7" which is a collapse of . The labels of R outside of Br can possibly overlap with
the labels of S outside of Ag, and naturally the shape of T is the result of collapsing vertices
in v with the same label.

To bound the coefficients ¢y that appear, it suffices to bound the coefficient on a ribbon
M, which is bounded by the number of contributing ribbons R, S, where we say ribbons R
of shape a and S of shape f contribute to T if MrpMg = Mp. From T, we can completely
recover the sets Ap and Bg. The labels of V(R)\ Ar must be among the labels of T'; choose
them in at most |V(7)||V(O‘)\U°‘| ways. This also determines Bp = Ag. All that remains
is to determine the graph structure of S. Since improper collapsing doesn’t lose any edges,

knowing the labels of R we know exactly which edges of T" must come from R and S. The

162



vertices V(T') \ V(R) must come from S, as must Bp; pick a subset of V/(R)\ Bp to include

in 2/V(@)\Val ways. ]

Let a be a left spider with end vertices [i],[j] which are adjacent to a circle @). Recall
that our goal is to argue that MM, ~ 0. To get there, we can try and factor M, across the

vertex separator S = Uy U {@} \ {{i},[j]} which separates o into
My ~ L\Ua| ) Mbody(a)

where we have defined,

Definition 5.4.24. Let o be a left spider with end vertices [i],[j]. Define body(a) as the
shape whose graph is o with [i] and[j] deleted and with Upoqy () = Ua{@I\ T [1]} Viody(a) =

V. The definition is analogous for right spiders.

Due to Lemma 5.4.21, the right-hand side of the approximation is in the null space of

M. We now formalize this approximate factorization.

Definition 5.4.25. Let o be a spider with end vertices [i],[j]. Define fa to be the set of

shapes that can be obtained from « by performing at least one of the following steps:
e Improperly collapse [i] with a square vertex in «
o Improperly collapse [ | with a square verter in «

Let I, be the set of proper shapes that can be obtained via the same process but using proper

collapses.

In the above definition, we allow [i],[j]to collapse with two distinct squares, or to collapse
together, or to both collapse with a common third vertex. For technical reasons we need to
work with a refinement of Z, into two sets of shapes and use tighter bounds on coefficients

of one set.
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Definition 5.4.26. Let I(gl) be the set of shapes that can be obtained from « by performing

at least one of the following steps:
e Collapse [i] with a square vertez in body(«) \ Uy

e Collapse with a square vertez in body(a) \ Uy (distinct from [i]’s collapse if it

happened)
Let Ig) =Ta \I&l) and define the improper versions fé})jé?) analogously.

Lemma 5.4.27. Let « be a left spider with end vertices [il, [j]. There are coefficients cg for

B e fa such that

L|Ua| 'Mbody(a) =2M, + ZN CBM57
BELy

WP gezd
|cg| <
40|V () ?

ey
Proof. First, we can check that the coefficient of M, is 2. Only the ¢} term of L has the
full number of squares, and it has a factor of 2 in L;..

The shapes in 7, are definitionally the intersection terms that appear in this graph
matrix product, and furthermore the shapes in T, are definitionally the intersection terms
for the ¢, term. Using Proposition 5.4.23, for each of the five shapes in L|Ua| the coefficient
it contributes is bounded by 4 |V («)|?. The coefficient on ¢, is 2, so the coefficients for f&l)
are at most 8|V (a)|>. The maximum coefficient of the other four shapes in Ly, is 2 50

2) 32V (o)

their total contribution to coefficients on fa is at most [

We now want to turn our improper shapes into proper ones from Z,. Unfortunately it is
not quite true that to expand an improper shape, one can just expand each edge individually
(though this is true for improper ribbons). There is an additional difficulty that arises due

to ribbon symmetries. To see the difficulty, consider the example given in Fig. 5.8 below.
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Figure 5.8: A surprising equality of graph matrices.

One would expect both coefficients on the right shapes to be 1 since hi(z)2 = ha(z) +
ho(z). However, in the left shape, the two circles are distinguishable, hence summing over
all ribbons includes one with wi = i, w9 = 7 and a second with w; = 7, w9 = . On the top
right shape, the circles are indistinguishable, hence the graph/ribbon where the circles are
assigned {4, 7} is counted twice. On the bottom right shape, the circles are distinguishable,
so all ribbons are summed once. To bound the new coefficients, we use the concept of shape

automorphisms.

Definition 5.4.28. An automorphism of a shape o« is a function ¢ : V(a) — V(a) that
preserves the sets Uy, Vo, and is an automorphism of the underlying edge-labeled graph. Let

Aut(«) denote the automorphism group of a.

Proposition 5.4.29. Let o be an improper shape, and let P be the set of proper shapes that

can be obtained by expanding cv. Then there are coefficients ‘CV| < Crourier - CAut such that
veP

where Croyrier 15 @ bound on the magnitude of Fourier coefficients in the expansion and
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| Aut(y)]
Cayt = maxyep [Aut(a)|”

Proof. The number of realizations of a graph matrix giving a particular ribbon is exactly

the number of automorphisms, therefore

1
Mo = )] 2 Mot

realizations o

Expand each improper ribbon M, o(a) into proper ribbons with coefficients at most C'pyypier-
Because the realizations of a and any ~ are the same, this exactly sums over all v and all
realizations of 7. The Fourier coefficient on each realization of ~ is the same; let it be ¢

gl

with |c’7‘ < CFroyrier- Continuing,

\Aut |Z Z Mo ()

767’ realizations o

Z / |Aut
7\Aut My

Proposition 5.4.30. Letly < --- <. €Nandlet L=11+---+ 1. Assume L > 1. In
the Fourier expansion of hy, (z) -+ hy, (2), the mazimum coefficient is bounded in magnitude

by (2L)F k.

Proof. In the boolean case, the coefficient is 1. In the Gaussian case, the “linearization

coefficient” of hy(2) in this product is given by orthogonality to be

Eonvo)lhay (2) -y (2) - hp(2)] B0,y iy (2) - By (2) - hp(2)]

E.n 00 h5(2)] p!

A formula from, e.g., [163, Example G (Continued)] shows that E[hy, - - by, - hp| equals the

number of “block perfect matchings”: perfect matchings on Iy +- - - +1;, +p elements divided
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into blocks of size [; or p such that no two elements from the same block are matched. Bound

the number of block perfect matchings by:

e Pick a partial function from blocks Iy, . ..,l;._q to [L] in at most (L + 1)X~% ways.

e If this forms a valid partial matching and there are p unmatched elements remaining,

match them with the elements from the block of size p in p! ways.
Therefore the coefficient is bounded by (L + 1)F~% < (2L0)L~ k. n

Proposition 5.4.31. For a shape «, let a e denote the shape with edge e added or deleted.

Then
|Aut(a £ e)
[Aut(e)|

2
V().
Proof. We show that the two groups have a large subgroup which are equal. Consider
Aut(a £ e) and Aut(a) as group actions on the set (V(Qa)). Letting G® denote the stabilizer
of edge e, observe that Aut(a 4 €)¢ = Aut(a)®. By the orbit-stabilizer lemma, the index
|G : G¢| is equal to the size of the orbit of e, which is at least 1 and at most |V (a)|?. So,

|Aut(a £ e) _ |Aut(a £ e) : Aut(a £ €)€|
|Aut(a)| |Aut(a) : Aut(a)€|

<V@P. =
Lemma 5.4.32. If « is a left spider, there are coefficients cg for each § € Ly such that

L, - Mpody(a) = 2Ma + Y, csMp,
BE€Ln

160 [V(a)|" |E(a)2 eIt
|ep] < .
160[V ()| |E(a) [?

ser®

Proof. We express each Mg, 5 € fa in Lemma 5.4.27 in terms of proper shapes. We ap-
ply Proposition 5.4.29 using the following bounds on C'gypier and C 44,4 The only improper-

ness in § comes from collapsing (at most) the two end vertices, which have a single incident
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edge each. Therefore the set of labels of any parallel edges is either {1,k} or {1, 1, k}, for
some k < |E(a)|. By Proposition 5.4.30, we have Cpoyricr < 4 |E()[>. There are at most
|4

two extra parallel edges in 3, so we have C g, < |V (a)|* using Proposition 5.4.31. Therefore

4, u

the coefficients increase by at most Crourier - Caut < 4|E () |V (a)

Corollary 5.4.33. If « is a right spider, there are coefficients cg with the same bounds given

m Lemma 5.4.32 such that
T _
Myody(a) * Ly, | = 2Ma + > epMp.
BELn

Corollary 5.4.34. If v L Null(My;,) and « is a spider, then for some cg with the same

bounds given in Lemma 5.4.32,
z (Mg — Z cgMp)r =0
BELy
Proof. For a left spider, since
Mfm(QMa + Z CﬁMﬁ) = Mfix . L\Ua| M, =0
BEL

we are in position to use Fact 5.2.1. For a right spider, the proof is analogous. [

5.4.3 Killing all the spiders

The strategy is to start with the moment matrix M and apply Corollary 5.4.34 repeatedly
until we end up with no spiders in our decomposition. For each spider, killing it via Corol-
lary 5.4.34 leaves only intersection terms. Some of those intersection terms may themselves
be smaller spiders, in which case we will apply the corollary again and again until only

non-spiders remain. The difficulty during this procedure is to bound the total coefficient
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accumulated on each non-spider. To capture this process, we define the web of a spider «,
which will be a directed acyclic graph that will capture the spider killing process. For the

sake of distinction, we will call the vertices of this graph “nodes”.

Definition 5.4.35 (Web of a). The web W(a) of a spider a is a rooted directed acyclic

graph (DAG) whose nodes are shapes and whose root is «. Fach spider node v has edges to

nodes 3 for each shape B € I. The non-spider nodes are leaves/sinks of the DAG.

Remark 5.4.36. The DAG structure arises because each shape in I, has strictly fewer
square vertices than ~y for any spider . As a consequence, the height of a web W («) is at

most |V (a)].

Each node 7 of W (a) also has an associated value v, which is defined by the following

process:
e Initially, set vq = 1 and for all other v, set vy = 0.

e Starting from the root and in topological order, each spider node v adds vycg to vg

for each child § € Zy, where the cg are the coefficients from Corollary 5.4.34.

Proposition 5.4.37. If z L Null(My;,), then

leaves v of W(a)
Proof. Start with the equation xTMyx = xTvg Max. In each step, we take the topologically
first spider v, which in this case means the spider closest to the root of W(«), that is
present in the right hand side of our equation and using Corollary 5.4.34, we replace v M,
by > Bechildren(y) vycgMg. Precisely by the definition of the vy, this process ends with the
equation

T Myx = 2T( Z vy M)z
leaves v of W (a)
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Proposition 5.4.38. For any node 5 in W(a), |parents(8)] < 4|V ()| - |E(a)* where

parents(f) is the set of nodes v in W () such that 5 € .

Proof. The following process covers all parent left spiders v which could possibly collapse

their end vertices to form . Starting from v = f3,

e Pick a circle vertex @ € V(v) to be the neighbor of the end vertices.

e Pick a square vertex [i] € V() to be the collapse of the first end vertex. “Uncollapse”
it by adding a new square to Uy with a single edge to @ with label 1. Flip the value
of Uy([7)). Modify the label of {[i], @} to any number up to |E(a)|.

e Pick a square vertex [j] € V(7) to be the second end vertex. Optionally uncollapse it

by adding a new square to « in the same way as above.

The process can be carried out in at most |V (o)> |E(a)| (|E(a)| + 1) < 2|V (a)]? |E(e)]?

ways. We multiply by 2 to accommodate right spiders. ]

Let us label each parent-child edge (v, 5) as either a “type 17 edge if 5 € Iq(yl) or a “type
2” edge if § € Zp(yz).

Proposition 5.4.39. Let p be a path in W(«) with #1(p) type 1 edges and #9(p) type 2

edges. Then #1(p) < |E(a)] + 2#2(p).

Proof. For a shape v, let S, be the set of square vertices in . Then, S, N W, will be
the set of middle vertices of v which are squares. We claim that the quantity ‘87 N WW‘ +
|Uy\ (Uy N V5)| + [V4 \ (Uy N V4)| decreases during a collapse.

Fix a pair of consecutive shapes (y, ) which form a type 1 edge. Looking at the definition
of Igl), each end vertex either collapses with (1) nothing, or (2) a vertex of Wy, or (3) a
vertex from Vy \ Uy (if v is a left spider; for a right spider, U, \ Vy). Furthermore, case (2)

or (3) must occur for at least one of the end vertices and also, they do not collapse together.
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If case (2) occurs, then }Sﬁ NWs| < S, N W, | while |U5 \ (UgN VB)} = |Uy\ (UyNV5)|
and |V \ (Ug NV;)| = |V5 \ (Uy NVy)|. If case (3) occurs, then W = W, while [Ug \ (Ug N V3)| <
Uy \ (Uy N V5)| and [V \ (Ug N V)| < |V4 \ (Uy N Vy)|. Inall cases, |Sz N Wg|+|Ug \ (Ug N V3)|+
Ve \ (Ug N Vp)| < [SynWa| + Uy \ (Uy N V)| + [Vy \ (Uy NV5)] as desired.
Now we bound this expression for a. From the definition of £, Definition 5.3.6, for
spiders appearing in the pseudocalibration, the square vertices in W, Uy \ (Uy N V) and
Va \ (Ua N V) have degree at least 1 and can only be connected to circle vertices. There-
fore their number is bounded by |E(«)|. Hence, initially |So N Wy | + [Ua \ (Ua N Va)| +
Vo \ (Ua NVa)| < |E(a)].
Finally, each type 2 edge in p can only increase !87 N W7|+‘Ufy \ (UyNVy) H‘ny \ (Uy N V7)|

by at most 2. Therefore, we have the desired inequality #1(p) < |E(«)| + 2#2(p). [

Corollary 5.4.40. #3(p) > % — |Ega)|.

Proof. Plug in |p| = #1(p) + #2(p) and rearrange. ]

Finally, we can bound the accumulation on each non-spider by a term which only depends

on the parameters of the spider a.

Lemma 5.4.41. There are absolute constants C1,Co so that for all leaves v of W (a),
[or] < (C1- V(@) - [B(a) hOIE

Proof. To bound ‘vﬂ we will sum the contributions of all paths p = (g =a,..., 8 =) in
W (a) starting from a and ending at . This path contributes a product of coefficients cg

towards Vny.

Remark 5.4.42. Here it is important that type 2 edges have stronger bounds on their coef-
ficients |cg| < C- (|V(@)| |[E(a))OM) /n < 1.
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Before we proceed with the proof we establish some convenient notation and recall some
facts. For consecutive shapes (;_1,0; (i.e., B; is a child of 5;_1), we denote by cg, the
coefficient from Corollary 5.4.34 applied on ;1. By Proposition 5.4.38, the in-degree of
W (a) can be bounded as By - (|V (a)| |E(a)|)P2 for some constants By, By. Thus, the number
of paths of length r ending at ~ is at most (By |V ()| |E(a)|)P2". Using Corollary 5.4.34,
set By, By large enough so that cg, is at most By - (|V(«) |E(a)|)B2 for a type 1 edge (resp.
By - ([V(a)||E(a)])P2/n for a type 2 edge).

) r
MEDY > [1lesl
r=0  p=(Bo=cv,....Br=7y) i=1
path from « to v in W(a)

3 (B - V()] [E(@))22) P (B, - ((V(0)| |E(a)]) B2 fn) (Corollary 5.4.34)

M

r=0  p=(Bo=0,....Br=7)
path from « to v in W(a)
> E(a 2 o
<y 3 (By - IV ()] |E(a)])B2) P20 (B (v ()] |E())) P2 /n) **P (Proposition 5.4.39)
=0 p=(Bo=a,...,8r="7)
path from « to v in W (a)
S Bay|B@)] [ By, 2P
-y > (Br - (V@) 1B@))%) " (B (V(@)]|B(@))) /n)
r=0 p:(ﬁ(l:av“:ﬁr:"/)

path from o to v in W(«)

for some constants Bj, By. We split the above sum into two sums, r < 3|E(a)| and
r > 3|E(a)]. For r < 3|E(«a)|, upper bounding the #2(p) term by 1 and upper bounding
the number of paths by (B |V (a)| |E(a)])P2" gives a bound of (BY V()] |E(o¢)|)B§/‘E(O‘)| for
some constants B, BY. For larger r, we lower bound #2(p) > /9 = |E(«)| /3 using Corol-
lary 5.4.40. Applying the same bound on the number of paths, the total contribution of the
terms corresponding to larger r is bounded by 1 using the power of n in the denominator

(assuming d, 7 are small enough). [

We define the result of all this spider killing to be a new matrix M™.
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Definition 5.4.43. Define the matriz M™ as the result of killing all the spiders,

spiders o leaves v of W (a)

5.4.4 Finishing the proof

The final step of the proof is to argue that, after the spider killing process is completed, the
newly created non-spider terms in M™ also have small norm. Towards this, we would like
to prove a statement similar to Corollary 5.4.11. In that proof, we used special structural
properties of the non-spiders in £ to prove that non-spiders in the pseudocalibration were
negligible. But now, the non-spiders in M™ need not have the properties of £ — for instance,
there could be circle vertices of degree 2 or isolated vertices. To handle the potentially larger
norms, we will use that the coefficients of these new non-spider terms S come with the
coefficients A\, of the spider terms « in whose web they lie. Since a has more vertices/edges

than [, the power of % in Ay is larger than the “expected pseudocalibration” coefficient of

Ug|+|Vs| . __1
nlUsl+] 6\.n|E(BW2_

vertices or a smaller vertex separator using a careful charging argument.

We prove that these extra factors of % are enough to overpower isolated

Lemma 5.4.44. If B is a nontrivial non-spider and € W{(«) for some spider o € L, then

1 w(V(8)) —w(Syin) +w(W;

SO) ]_
E@)]/2 =1

nSHelE(@)])

plUal+Val

where Sypin and Wis, are the minimum vertex separator of 5 and the set of isolated vertices

of V(B) \ (Ug U Vp) respectively.

Proof. We start by giving the idea of the proof. Suppose we try to use the same distribution
scheme as in the proof of Lemma 5.4.7. It doesn’t work for two reasons. Firstly, the circle
vertices in [ still have even degree, which follows from Remark 5.4.18, but now, they could

have degrees 0 or 2. For the previous distribution scheme to go through, we needed them
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to have degree at least 4 which gave the necessary edge decay to handle the norm bounds.
Secondly, the square vertices can now have degree 0 hence getting no decay from the edges.

The first issue is relatively easy to handle. Since § was obtained by collapsing «, the
circle vertices of degrees 0 or 2 in 5 must have had degree at least 4 in o to begin with.
Hence, we can fix a particular sequence of collapses from « to § and then assume for the sake
of analysis that the removed edges are still present. In this case, the same charging argument
as in Lemma 5.4.7 would go through. This is made formal by looking at the sequence of
improper collapses of this chain of collapses.

To handle the second issue, let’s analyze more carefully how degree 0 square vertices
appear. Fix a sequence of collapses from « to § and consider a specific step where v collapsed
to 7/ and a square vertex of degree 0 was formed. Let the two square vertices that collapsed
in v be [i],[j] and let the square vertex of degree 0 that formed in 7 be [k]. In light of
Remark 5.4.18, since [#] has degree 0, it must not be in (U, U V,/)\ (U, NV,/) and hence,
Uy([&]) = Vs ([&]) = 0 or Uy([&]) = V.([£]) = 1. But in the latter case, this vertex does not
contribute to norm bounds since it’s in U,» N V., so it can be safely disregarded. Note that
it doesn’t have to stay in this set since future collapses might collapse this vertex, but this
is not a problem as we can charge for this collapse if it happens.

So, assume we have U./([x]) = V.,([&]) = 0. But by the definition of collapse, at least one

.
of [ or [j] must have been in U, \ (Uy NVy) or V4 \ (Uy N V5). Also from the definition

of collapse, we have U./([x]) = Uy([d) + Uy([i]))( mod 2) and V. ([&]) = V(@) + V5 ([Z)(
mod 2). Putting these together, we immediately get that the only way this could have
happened is if either [7],[j] € Uy \ (Uy NVy) or if [{,[7] € V4 \ (Uy N V5).
When such a collapse happens, observe that |Uy| + [Vy| > [Uy| + [V,/[ + 2. This is
precisely where the decay from our normalization factor n = \/Lﬁ kicks in. This inequality
1

means that an extra decay factor of n? = - 1s available to us when we compare to the

"expected pseudocalibration” coefficient of 3. We will use this factor to charge the new
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square vertex of degree 0.

We now make these ideas formal.

Let Q =UgN Vg, P = (UgUVp)\Q and let P’ be the set of degree 1 square vertices in
[ that are not in Sy,;,. Let sg be the number of degree 0 square vertices in V(3) \ Q. All
the square vertices outside P’ U Q U Sy;,, have degree at least 2, let there be s>9 of them.

Because of parity constraints, Remark 5.4.18, and because there are no circle vertices in
Ug U V3, all circle vertices have even degree in 3. Let ¢y be the number of degree 0 circle
vertices in 3. Let cg,c>4 be the number of degree 2 circle vertices and the number of circle

vertices of degree at least 4 in V(53) \ Syipn respectively. Then, we have

w(V (8))—w(Spin)+w(Wig) |P/|+s50+(1.5—¢)(cat+e>4)
n 2 <n 2

. S0+ (L5—€)co

Using n = \/%;7 it suffices to show
|1 B(a)[+(|Ual+Val=|Ug = [V5]) = | P'[+s>0+(1.5—¢)(cotesa)+2s0+2(15—¢)co+Q(e | E(a)])

There can be many ways to collapse « to (3, fix any one. We first use a charging argument

for the degree 0 square vertices.

Lemma 5.4.45. |Uq| + |[Val| — |Ug| — [Vg| > 259

Proof. In the collapse process, in each step, a vertex [i] € Uy \ (UyNVy) or[i] € V4 \ (UyNVy)
of degree 1 in an intermediate shape v collapses with another square vertex [k]. We have that
\Uy| +|V5| decreases precisely when [] collapses with [k] € U, (resp. [k] € V5 ). In either case,
the quantity decreases by exactly 2 which we allocate to this new merged vertex. Each degree
0 square vertex in V(f) \  must have arisen from a collapse, and hence must have had at
least an additive quantity of 2 allocated to it. This proves that |Un|+[Va|—|Ug|—[V3| = 25¢.
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We will now prove a structural lemma.

Lemma 5.4.46. Any vertex @ that has degree at least 2 in V() \ Spmin is adjacent to at

most 1 vertex of P’.

Proof. Observe that @ cannot be adjacent to 3 vertices in P’ because otherwise, at least
2 of them would be in Ug \ Q or in V3 \ @ which means 8 would be a spider which is a
contradiction. If @ is adjacent to 2 vertices in P’, then one of them is in Ug \ @ and the
other is in Vg \ @ respectively. Since both of these vertices are not in S, it follows that
@ 18 in Sy, since there is no path from Ug to Vj that doesn’t pass through Spyj,. This is

a contradiction. Therefore, @) is adjacent to at most 1 vertex in P’. [ ]

This lemma immediately implies |P'| < co + ¢>4.

To account for edges of o that are not in /3, we let B be the result of improperly collapsing
a to f; note that |E(a)| = ‘E(g)‘ We call the edges that disappeared when properly
collapsing “phantom” edges. Let degg() (resp. degg(@)) denote the degree of vertex
(resp. @) in 3. Observe that any circle vertex @ in V() has degg(@) > 4.

Lemma 5.4.47. |E(a)| > |[P'| 4+ s>9 + (1.5 — ¢)(co + c>4) + 2(1.5 — €)cg + Qe | E(a)])

Proof. We will use the following charging scheme. Each edge of 3 incident on P’ allocates
1 to the incident square vertex, which is in P’. Every other edge of 3 allocates % to the
incident square vertex and % — 1% to the incident circle vertex. Each phantom edge allocates
1 — {5 to the incident circle vertex @. So, a total of 15(|E()| —|P’|) has not been allocated.

All square vertices in P’ have been allocated a value of 1. And observe that all square
vertices of degree at least 2 in 8 have been allocated at least 1 from the incident edges of f3,
for a total value of s>9. So, the square vertices get a total allocation of at least |P!| + 5>9.

Consider any degree-0 circle vertex @) in V(). It must be incident to at least 4 phantom
edges and hence, must be allocated at least a value of 4(1 — {5) > 2(1.5 — ¢). Hence, the
degree-0 circle vertices in V() have a total allocation of at least 2(1.5 — ¢)cg.
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Suppose the degree of @ in V(f) is 2. Then, it is incident on at least 2 phantom edges.
By Lemma 5.4.46, it is also adjacent to at most one vertex of P’ and so, must have been
allocated a value of at least 2(1 — 155) + (degg(@) - 3)(% — 1g)- This is at least 1.5 — ¢ + {5.

Suppose the degree of @) in V(p) is at least 4. By Lemma 5.4.46, it is adjacent to at most
one vertex of P’. Then it must have been allocated a value of at least (degg(@) — 1)(% —10)-
Using degg(@) > 4, this is at least 1.5 — ¢ + 5.

This implies
[B(a)] 2 |P| + 522 +2(15 = £)ag + (15— + )ea + e24) + 1= (1B(@)| = |P)

Using |P'| < ¢g + ¢>4 completes the proof. [ ]
Adding Lemma 5.4.45 and Lemma 5.4.47, we get the result. ]

Corollary 5.4.48. If B is a nontrivial non-spider and B € W(«) for some spider a € L,

then
1

Ual+IVal , __1 Ugl+[vs] . 1
n [Msll < QGEE@)

nlE(@)]/2

Proof. From Lemma 5.6.3, we have

[Msll <2+ (V- (14 B - log(m))® Vel HBED =yt

We have [V (5)|- (1+]E(8)])-log(n) < n?("). Also, [V,ei(8)] < 2(|E(a)|+| E(B)]) since all
the degree 0 vertices in V,..;(8) would have had vertices of V,..;(«) collapse into it in the chain

of collapses and there are no degree 0 vertices in V,.;(«). Finally, since |E(a)| > |E(B)],

the factor 2- ([V(8)]- (14 |E(8)]) - log(n))C IVretDIHEPB)) can be absorbed into m

The result follows from Lemma 5.4.44. ]

Proposition 5.4.49. If 3 is a trivial shape, N}, = Ag-
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Proof. A trivial shape cannot appear in W(«) for any «, since every collapse of a spider

always keeps its circle vertices around. ]

Lemma 5.4.50. For k,l1 € {0,1,...,D/2}, let By, ; denote the set of nontrivial non-spiders

on block (k,1). Then
1

‘/\E‘ Mg <ttt ()

BEB

Proof.

HA%H< Dol 8]+ 32 S sl Il a2
k,l

BEB BeB BEB,; spiders a:
pew ()

To bound the first term, we checked previously in Corollary 5.4.14 that the total norm of
nontrivial non-spiders appearing in the pseudocalibration (i.e. this term) is nk+lon(1). For
the second term, via Lemma 5.4.41 we have a bound on the accumulations v of one spider

on one non-spider, so it is at most

<3 3 (@) [E@)CE@OL x| M)

BEBy,; spiders a:
pew (@)

Use the bound on the coefficients |\q|, Proposition 5.4.13,

3|E(a
Z Z (C1|V(a !E(a)\)@lE(a)l - plUal+1Val . M . HMﬂH
BeBy, ; spiders a: nlE(a)]/2
’ BeW (a)
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Invoking the norm bound for non-spiders which are collapses, Corollary 5.4.48,

Oy V()] - 1E(a) C2lE(@)]
< T ( 1] (n()zl(g)\ ()I)

BEBy, ; spiders a:
BeW (a)

<7 A Z Z (W) .

BEBy,; spiders a:
pew (@)

Bound the sum over all spiders by the sum over all shapes. By Proposition 5.4.12, the
number of shapes with ¢ edges is nO(T(i+1)) Summing by the number of edges, observe that

|E(a)| > max(|E(5)],2) since spiders always have at least 2 edges.

o0 ) C T . T C&Z
<pht 3 ST ROt (1”9—(6)”>
BEBy, | i=max(|E(B)],2)

k+l1 !
<1 ) (BT
BEB

0 O(5(i+1))
k+1 n
S 2_; (e max(i,2))

Corollary 5.4.51. For k € {0,...,D/2}, the (k,k) block of M™ has minimum singular

value at least 77%(1 — Ql(a)), and for k,l € {0,...,D/2},1 # k, the (k,l) off-diagonal block

has norm at most nk‘H . %
n

3

Proof. By Proposition 5.4.49 the identity matrix appears on the (k, k) blocks with coefficient

nzk. By construction, M™T has no spider shapes. By Lemma 5.4.50, the total norm of the

non-spider shapes on the (k,[) block is at most nkH . nﬂl(a)- u

Theorem 5.4.52. W.h.p. My, = 0.

Proof. For any x € Null(M y;,.), we of course have 2T M ¢;,x = 0. For any z L Null(M ;)
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with [Jefy = 1,

tTMypipr = 2T (M + E)x

="MV e+ 2T Z X | Mo — Z vy M x
spiders leaves v of W (a)
+aT€x
=2T(MT + &)z (Proposition 5.4.37)

Because the norm bound on £ is significantly less than n? = n’ (see [70]), the bound on
the norm of each block of M™ in Corollary 5.4.51 also applies to the blocks of M™T + &.
Therefore, we use Lemma 5.4.2 to conclude Mt + & = 0 and the above expression is

nonnegative. u

5.5 Sherrington-Kirkpatrick Lower Bounds

Here, we prove Theorem 4.1.5 and Theorem 4.1.2.

Recall that in the Planted Boolean Vector problem, we wish to optimize

1
OPT(V) := — max bTIlyb,
n be{£1}"

where V' is a uniformly random p-dimensional subspace of R".

Theorem 4.1.5. There exists a constant ¢ > 0 such that, for all e > 0 and § < ce, for

p > n2/3+€, w.h.p. over V there is a degree-n5 SoS solution for Planted Boolean Vector of
value 1.
Proof. We wish to produce an SoS solution E on boolean variables bi,...,by such that

E[bTIIyb] = n. Instead of sampling a uniformly random p-dimensional subspace V' of R™,

we first sample dp, ..., dy, 1.i.d. p-dimensional Gaussian vectors from N(0, I), then form an
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n-by-p matrix A with rows dy,...,dy, and finally take V' to be the span of the columns of
A. Since the columns of A are isotropic i.i.d. random Gaussian vectors, we have that V' is a
uniform p-dimensional subspace® of R™.

We will consider V' as the input for the Planted Boolean Vector problem while the vectors

dyi,...,dy will be used to construct a pseudoexpectation operator for the Planted Affine

6 3/2-0Q(e)

Planes problem®. Since n < p , by Theorem 4.1.4, for all § < ce for a constant
c > 0, w.h.p., there exists a degree—n5 pseudoexpectation operator E’' on formal variables
v = (vy,...,vp) such that E'[(v, dy)2] = 1 for every u € [n].

Define E by E[by] := E'[(v,dy)] for all u € [n] and extending it to all polynomials on
{b,} by multilinearity. This is well defined because E'[(v, dy)?] = 1. Note that E is a valid

pseudoexpectation operator of the same degree as E. Finally, observe that

1~ 1~ 1~
—E[pTIy b = —E[vT ATl Av] = —E/[oT AT Av] = 1.
n n n

Now we prove lower bounds for the Sherrington-Kirkpatrick problem, using a reduction
and proof due to [129]. We include it here for completeness. Recall that the SK problem is
to compute

OPT(W) := max zTWauz,
ze{£1}n"

where W is sampled from GOE(n).

Theorem 4.1.2. There exists a constant § > 0 such that, w.h.p. for W ~ GOE(n), there

5 a degree-n(s SoS solution for the Sherrington—Kirkpatrick problem with value at least (2 —

on(1)) - n3/2.

5. Except for a zero measure event.

6. Note that the vectors d,, are not “given” in the Planted Boolean Vector problem, though the construc-
tion of E is not required to be algorithmic in any sense anyway.
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We will use the following standard results from random matrix theory of GOE(n).

Fact 5.5.1. Let A\ > ... > A\, be the eigenvalues of W ~ GOE(n) with corresponding

normalized eigenvectors wi,...,wy. Then,

1. For every p € [n], the span of wy, ..., wp is a uniformly random p-dimensional subspace

of R™ (see e.g. [138, Section 2]).
2. W.h.p., X061 > (2 —o0(1))y/n (Corollary of Wigner’s semicircle law [185])

Proof of Theorem 4.1.2: Let p = n967 and W ~ GOE(n). Let Ay > ... > A\,
be the eigenvalues of W with corresponding orthonormal set of eigenvectors wi,...,wy,.
By Fact 5.5.1, we have that A, > (2 — o(1))y/n and that wy,...,wp span a uniformly
random p-dimensional subspace V' of R".

We consider V' as the input of the Boolean Planted Vector problem and by Theorem 4.1.5,
for some constant ¢ > 0, w.h.p. there exists a degree—n‘s pseudoexpectation operator E such

that ]E[a:?] =1 and ]E[Zle@, w;)?] = E[zTy 2] = n. Now,

ElzTWa] = ]E[Z i, w;)?]
i=1
> ME[TTya] — Ml Bl S (2, w3)?)
1=p+1

p
2(2—0(1))713/2 IAn| E[(z, ) wal
1=1

= (2= o(1))n%/2.

Remark 5.5.2. Using the same proof as above, we can obtain Theorem 4.1.2 even if we

were only able to prove SoS lower bounds for Planted Affine Planes for some m = w(n).

182



3/2—¢

So, pushing the value of m up to n , which is Theorem 4.1.4, offers only a modest

improvement.

5.6 Omitted technical details

5.6.1 Norm Bounds

The precise norm bounds we use come from applying the trace power method in [2], but
qualitatively, the bounds from Chapter 2 also work. The paper [2] uses a slightly different
definition of matrix index. They define a matriz index piece as a tuple of distinct elements
from either C,, or S, along with a fixed integer denoting multiplicity. A matrix index is
then a set of matrix index pieces. Our graph matrix M, appears as a submatrix of those
matrices: for a given set of square vertices, order the squares in increasing order in a tuple,
and assign it multiplicity 1. Hence the same norm bounds apply.

Boolean norm bounds:

Lemma 5.6.1. Let V. (o) :=V(a)\ (UyNVy). There is a universal constant C' such that

the following norm bound holds for all proper shapes o w.h.p.:

w(V(a)) 7w(55nin)+w(wiso)

My <2-(|V()] -log(n))c'|Vrel(a)| ‘n

Proof. From Corollary 8.13 of [2], with probability at least 1 — ¢ for a fixed shape «,

0 (Snin) [Vier(@)]
> w(v(a))_w(sénin)""w(wiso)

log
| Mq || <2 |V(04)||Vrel(a)| .| 6e 6|( Y

g
Vier(@)]
Letting N;. be the number of distinct shapes on k vertices (either circles or squares), we
apply the corollary with ¢ = 1/(mnN \V(a)\)- Union bounding, the failure probability across

all shapes of size k is at most 1/mn, and since the number of vertices in a shape is at most
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m+n < 2m, we have a bound that holds with high probability for all shapes. It remains to

simplify the exact bound.

Proposition 5.6.2. N, < 8k2#

Proof. The following process forms all shapes on k vertices: starting from %k formal variables,
assign each variable to be either a circle or a square, decide whether each variable is in Uy,

and/or Vi, then among the k2 variable pairs put any number of edges. [

We also bound n®(Smin) < (mn)!V (@),

w . |Vrel(a)‘
M| < 2V (@) Vi (e | 0B mn Ny (o)) B B )
- 6“/7"el(a)|

Veer(@)l w(vV(e) =w(Syin)+wWis,)
<2 ‘V(a)‘l‘/rel(a)l ) (126 log (nw(smin) . mnN|V(a)\)) ‘n 2

[Veet(@)l w(V(a)—w(Smin)+w(W;a0)
. 2

< 2[V(a)| Vet (126 log ((mn)\vw - 8\V(a>\2\wa>\2>)

Veet()]  w(V(a) —w(Spmin)+w(Wiso)
. 2

< 2|V ()| Vrer (@l (1006 IV (@)]? log (mn)) n

w(V(a))=w(Syin)+w(Wise)
2

<2+ (|V(a)| - log(mn))* "l

Note that we now assume m < n2. [}

We have the following norm bound for Hermite shapes. For a Hermite shape «, define

the total size to be |Uqy| + |Vao| + [Wa| + |E()].

Lemma 5.6.3. Let V() :== V(a) \ (Uy N Vy) as sets. There is a universal constant C
such that the following norm bound holds for all proper shapes o with total size at most n

w.h.p.:

w(v(a))_w(sénin)'i'w(wiso)

[Mall < 2- (V(@)] - (1+|E(a)]) - log(n))C Ve @HE@D

The proof performs the same calculation starting from [2, Corollary 8.15]. Note that in
our notation, I(«a) = |E(«)|. There is a further difference which is that [2] uses normalized

Hermite polynomials whereas we use unnormalized Hermite polynomials; this contributes
184



the additional term H€€E<a) 1(e)! < (14 |E(a))E@] We must replace Proposition 5.6.2
with the following:

Proposition 5.6.4. The number of Hermite shapes with total size k is at most k2k(/€ +
1)2k+k2'

Proof. Such a shape has at most k distinct variable vertices. Each of these is either a circle
or a square. Each variable can be in U, with multiplicity between 0 and (at most) k, and
also in V,, with multiplicity between 0 and k. The k2 possible pairs of vertices can have edge

multiplicity in F(«) between 0 and k. |

5.6.2  Properties of e(k)

We establish some properties of the e(k) used in the analysis. Recall that e(k) = E,. S(y/n) [z1 ..

where S(y/n) = {x € {£1}" | Y1 x; = v/n}.

Claim 5.6.5. e(2) = 0.

Proof. Fix y € S(y/n). Note that (321 y;)> = n implying Zi<j y;iy; = 0. Using this fact,
we get

Eres(ym) [m122] = Boes, Yo (1)Y0(2) = 0,
concluding the proof. |

Definition 5.6.6. We say that a tuple A\ = (A1, ..., A\) of non-negative integers is a partition
of k provided Zle Ni =k and A\ > -+ > A\p. We use the notation A\ = k to denote a

partition of k. We refer to \; as a row/part of \.

In the following, we will dealing with polynomials that can be indexed by integer parti-

tions. For this reason, we now fix a notation for partitions and some associated objects.

Definition 5.6.7. The transpose of partition A = (\q,...,\;) is denoted M and defined as

No=|{jekl|A =i}
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Remark 5.6.8. For a partition A\ -k, Xi is the number of rows/parts of \.

Definition 5.6.9. The automorphism group of a partition Aut(\) < S)\ﬁ s the group gen-

erated by transpositions (i,j) of rows A\; = A;.

Remark 5.6.10. Let A - k and p1()),...,pg()) be such that p;(\) = |{j € [\] | Aj = i}|.
Then Aut(A) >~ Sp; X - X Sp, .

Lemma 5.6.11. We have

(”))\tl

Al M Ml
A-E

k/2

Proof. For z € S(y/n), we have (31, x;)F = n¥/2. Then expanding (3P ;)F in the
previous equations and taking the expectation over S(y/n) on both sides yields the result of

the lemma (after appropriately collecting terms). [ ]

Claim 5.6.12. Let A+ k. We have

3

(n)xt - |Eyes(ym) [1’1 - T

Proof. We induct on k. For k£ = 1, we have n -

E.’L‘ES(\/H) [i[)l]‘ = \/ﬁ <3 nl/Q. NOW,

suppose k > 2. We consider three cases:

1. Case A1 > 3: Let X be the partition obtained from A by removing two boxes from \j.

t ¢ Y N A Ap
! N
By the induction hypothesis, we have (n)()\,)g . EmES(\/ﬁ) [mi\l . :ckkzﬂ < 3(k=2) |

n(k=2)/2

2. Case A\ = 2: Let X be the partition obtained from A\ by removing ;. Note that
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,\tl - (/\’)’i + 1 < k — 2. By the induction hypothesis, we have

A Ak—2

EIES(\/H) [1‘1 N } ‘ < n(n)o\,)i < 3(/(1—2)3_”]@’/2'

(”))\g

Y Ne—2
EIES(\/E) |:I’11 - .mk_2 :|

3. Case A\; = 1: To bound (n); - Eres(yn) [xi‘l . :Egk}, we use Lemma 5.6.11 and the
two preceding cases. Let p(k) be the partition function, i.e., p(k) = [{A\F k}|. We
deduce that

Al ()
A A k/2 i A Ak
()i [Baesim [o1toat]| <4 3 S gy [Beesm [ o]
ks A1>2
S nk/2 + k! Z (n))\fl . E'EGS(\/E) |:(Ei\1 .. .’E?k:|
APk Ag>2
ARk A1 >3
ARk A=2
< 302" g1 (14 p(k) + k) -nF/2 < 3K ph/2)
as desired.
]
Claim 5.6.13. Suppose k < \/n/2. We have
kS —k/2
Eres(ym) [T1.. 2] <2-3% -n /2.
Proof. Follows from Claim 5.6.12 and the bound on k. ]

Remark 5.6.14. In Claim 5.6.13, the factor 35 is too lossy to allow a meaningful bound

with k = n®, where ¢ > 0 is a constant.

Refining the ideas of Claim 5.6.12, we prove a stronger lemma below which will imply a

tighter bound on e(k) sufficient for our application.
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Lemma 5.6.15. There exists an universal constant C > 1 such that

(n) Y

Al
Z W '
pyars Al JAut(N)|

Eres(ym) [mi‘l . :132’“} ‘ < kCF k2, (5.1)

In particular, for n > 6, Eq. (5.1) holds with C' = 2.

Proof. We induct on k. For k = 1, we have n-

ExeS(\/ﬁ)xl‘ < v/n as desired. Using e(2) =0
from Claim 5.6.5 and the case k = 1 of Eq. (5.1), we get that Lemma 5.6.15 also holds for
k = 2. Now, consider k > 3. Let Ay = {AF k| X =1}, Ao ={AF k| A\ = 2} and
A>3 ={AF k| =3} Note that Ay UAgU A>3 ={AFEk} and |[Aq] = 1.

For convenience define ay to be the term associated to A - k on the LHS of Eq. (5.1),

ie.,
N ()t
DTN JAutO]

2eS(Vi) [:L’i\l . xgk] ‘ .

First we bound the contribution of the terms associated to partitions from A>3 in the

LHS of Eq. (5.1). Let X' be the partition obtained from A by removing two boxes from A.

N N A A
Note that A} = (\)] < k —2 and E, (/) {xll : -xkli;] = Bres(vm) [xll . '@"kli;]

Thus,

Al (”),\fj A A
" Al [Aut(V)] Eyes(ym [:Cl e ”
_ Aoy JawOn] v W L&a IA;}]
MM —1)  JAut(N)| )\’1!...)\2! [Aut(V))| weS(yn) [T1 - Tp_g
Aut(X)|
= k2 . }— . , < k3 . ,
Aug(y] =

since |Aut(X)| /[Aut(X)| < k —2 < k. For each X' - k — 2, we can form a partition A b k

in k — 2 < k ways by adding two blocks to a single row of \. Hence, we have

SToan<k Y K ay <k RCED 22 (5.2)
/\GAZ3 NHk—2
188



where the last equality follows from the induction hypothesis.
Now we bound the contribution of the terms a) associated to partitions A from Ag in the
LHS of Eq. (5.1). Let i > 1 be the number of parts of size two of A and let \’ be the partition

obtained from A by removing these i parts of size two. Note that \] = (\)! +i < k—1. We

have
Al (”)/\t1 NN
" MMl [Aut(A)] Eres(ym) [xl Ty H
o, B AL oot | ]
=" 2t |Aut(\)] )\’1! e )\z! [Aut(V))] zeS(yn) 11 - Th—2i
ST SR N CLCY I o1 2]
B 20 gl )\’1!...)\2[ |Aut(\)] weS(y/m) F1 - Th—2i]| »

where in the last equality we used |Aut(\)|/|Aut(X)| = 1/(i!). Since A € Ay is uniquely

specified by its number of parts of size two, applying the induction hypothesis we have

)

Lk/2] / (n)
N1 (V)
/\%i ax > Z n' 7! ()\/1! . )\;C! |Aut(\)] zeS(y/n) [z1 ... 2p o]

k/QJ k); ‘ :
< Z n' .__,f_kC~(k—22) p(k=20)/2

Y

where in the last inequality we used k£ > 3 and C' > 1.

Finally, we consider the case Ay = 1. To bound a), we use Lemma 5.6.11 and the two
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preceding cases. We deduce that

3
ay < nk/2 4+ Z ay + Z a, < nk/2 4 A O (k=2) p(k=2)/2 5 LC-(k=1) k/2
pEA2 HEA>3

4
.k k2 1 k 3
=k m <k0~k+n.k2-0+2.k0 :

We can bound the LHS of Eq. (5.1) as

. 1 2. k4 3
S ot ot 3w <kt (e B )
peAL HEA2 HEA>3 "

< kCk k)2

)

provided C' > 0 is a sufficiently large constant. In particular, the constant C' can be taken

to be 2 for n > 6. ™

Corollary 5.6.16. We have
ko —k/2

Proof. Suppose k < /n. Note that Lemma 5.6.15 implies that for A = k with \; there exists

a constant C' > 0 such that

Y ()i
Al Akl [Aut(N)]

EmES(\/ﬁ) [xi\l e xgk] ) = (n) - Eggeg(\/ﬁ) (1 ... 2]

Simplifying and using the assumption k& < y/n, we obtain

LCk ., —k/2

ExES(\/ﬁ) [.’L’l xk’]‘ < Hk—l <1 - L) <2. kC-k _n—k/Q'
=1 n

190



Furthermore, for n > 6, Lemma 5.6.15 allows us to choose C' = 2. Since |E, g, /) [z1]| =

1/4/n, the simpler bound applies for all values of k

E,cs(m o1 ol < KRk

Now the assumption n > 6 can be removed since, for k > 2, we have(k?/\/n)¥ > 1, where 1
is the trivial bound. Similarly, our initial assumption of k < /n can also be removed as the

bound also becomes trivial in the regime k > /n. ]
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CHAPTER 6
THE MACHINERY AND QUALITATIVE BOUNDS

In this chapter, we state the main machinery that we use to prove our results. The complete
proof of the machinery can be found in [149]. After that, we exhibit the qualitiative bounds
for applying the machinery to our problems of interest. The material in this chapter is

adapted from [149].

6.1 Statement of the machinery
6.2 Qualitative bounds for Planted slightly denser subgraph

6.2.1 Pseudo-calibration

We will pseudo-calibrate with respect to the following pair of random and planted distribu-

tions which we denote v and u respectively.

e Random distribution: Sample G from G(n, %)

e Planted distribution: Let k£ be an integer and let p > % Sample a graph G’ from

G(n, %) Choose a random subset S of the vertices, where each vertex is picked in-
dependently with probability % For all pairs 7,5 of vertices in S, rerandomize the
edge (i,7) where the probability of (i, j) being in the graph is now p. Set G to be the

resulting graph.

We assume that the input is given as G; ; for i,j € ([Z]) where G ; is 1 if the edge (4, )
is present in the graph and —1 otherwise. We work with the Fourier basis xp defined as

Xe(G) =11 jieg Gi,j- For asubset I C [n], define zj := [[;cr =y
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Lemma 6.2.1. Let [ C [n], E C ([g]). Then,

" (2p— 1)\

A UV (E)|
Elerxp(C)] = (—)

Proof. When we sample (G, S) from p, we condition on whether I UV(E) C S.

G)| =P ITUV(E)CS G)IIITUV(E)CS
(G,%NM[WXE( )| = Prg.g)~ull WV(E) € 5] G7%NM[$IXE( JTUV(E) C 5]

PrigsIUVIE)ZS] B (@I UVE) ¢ S
(Gvs)NM

We claim that the second term is 0. In particular, E(g g)~,[z1xp(G)[I UV(E) € S] =0
because when I UV (E) € S, either S doesn’t contain a vertex in I or an edge (i,7) € F is
outside S. If S doesn’t contain a vertex in I, then x; = 0 and hence, the quantity is 0. And
if an edge (7,j) € F is outside S, since this edge is sampled with probability %, by taking
expectations, the quantity E(g g)~u[z1xp(G)[I UV (E) € S]is 0.

) [TUV(E)|

Finally, note that Prg g)., [l UV(E) C S] = (% and

E [exp(@IIUV(B)CS]= E [e(@[V(E)CS]=@p-1)F
(G.S)~p (G,S)~p

The last equality follows because for each edge e € F, since e is present independently with

probability p, the expected value of xyeis 1-p+ (—=1)- (1 —p) =2p— 1. [ ]
Now, we can write the moment matrix in terms of graph matrices.

Definition 6.2.2. Define the degree of SoS to be Dgos = nCisose for some constant Csps > 0

that we choose later.

Definition 6.2.3 (Truncation parameter). Define the truncation parameter to be Dy =

nEve for some constant Cy > 0.
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Remark 6.2.4 (Choice of parameters). We first set € to be a sufficiently small constant.
Based on this choice, we will set Cy to be a sufficiently small constant to satisfy all the
inequalities we use in our proof. Based on these choices, we can choose Csos to be sufficiently

small to satisfy the inequalities we use.

We will now describe the decomposition of the moment matrix A.
Definition 6.2.5. If a shape a satisfies the following properties:

® (v 1S proper,

e « satisfies the truncation parameter Dgos, Dy .

then define

n

V()
Mo = (ﬁ) (2p — 1)/E@)

Corollary 6.2.6. A = > A\M,.

6.2.2  Proving positivity - Qualitative bounds

We use the canonical definition of H; from ??. In this section, we will prove the main

qualitative bounds Lemma 6.2.7, Lemma 6.2.9 and Lemma 6.2.11.
Lemma 6.2.7. For allU € Z,;,;q, Hyq,, = 0

We define the following quantity to capture the contribution of the vertices within 7 to

the Fourier coeflicients.

Definition 6.2.8. For U € 1,,;q and 7 € My, define

_ NE@)
" (2p—1)

S(r) = (E) [V (r)|-|Uz|
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Lemma 6.2.9. For allU € Z,,;4 and 7 € My,

)
TAuton] 1 dy Hr -
T S(7) -
7 Tut o] A 1dy

We define the following quantity to capture the contribution of the vertices within v to

the Fourier coeflicients.

Definition 6.2.10. For all U,V € T,,;q where w(U) > w(V') and v € Uy y, define

S(y) = (2p — )P0

(k)wwn—%'v”

n

Lemma 6.2.11. For all U,V € L,,,;q where w(U) > w(V) and all v € Ty,

| Aut (V)] 1 v /
: H " =H
[Aut(U)] - S(y)2 1dv 1

In order to prove these bounds, we define the following quantity to capture the contribu-

tion of the vertices within o to the Fourier coefficients.

Definition 6.2.12. For a shape o € L, define

o)|- L4l
T(0) = (§>W( T o 1)

n

Definition 6.2.13. For U € 1,4, define vgy to be the vector indexed by o € L such that

vy(o) =T (o) if o € Ly and 0 otherwise.
Proposition 6.2.14. For allU € 1,,,q,p € Py, Hyg, = mv(ﬂ%.
Proof. This follows by verifying the conditions of Definition 6.2.5. ]

This immediately implies that for all U € Z,,,;4, Hyq,, = 0, which is Lemma 6.2.7.
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Proposition 6.2.15. For any U € I,,,;4 and 7 € My, Hr = 1 ‘QS(T)UUU?}.

|Aut(U)
Proof. This follows by a straightforward verification of the conditions of Definition 6.2.5. =

We can now prove Lemma 6.2.9 and Lemma 6.2.11.

Proof of Lemma 6.2.9.

S(r S(7) S(7)
—|Auz(€(l)])\ Higy, Hr _ | rAwy v U AU
S(r S(r S(t -
Hy —\Auga)mﬂfdv Wt((rf)n vy —|Aw(s<z)f>\“U”5

Proof of Lemma 6.2.11. Fix 0,0’ € Ly such that |V (o o ¥)|,|V (¢’ o )] < Dy. Note

v, V. Uy +V4l\
that |V (o) — YL+ (v(o") = 5 1 oqvin)) - BEBAD = (g oy 04T 0 0'T)). Us

ing Definition 6.2.5, we can easily verify that \ Tog/T = T(o)T(c")S()%. There-

O'O’}/O’y
=, Aut(U .
fore, Hldz/v(a’ o) = ||AZtEV§|\S<7)2HIdU(U’ o’). Since ny(a, o) = Hpgp, (o, o’) whenever
V(0 079)]|,|V (¢’ o7)| < Dy, this completes the proof. n

6.3 Qualitative bounds for Tensor PCA

6.3.1 Pseudo-calibration

—Cae

Definition 6.3.1 (Slack parameter). Define the slack parameter to be A = n for a

constant C'n > 0.

e Random distribution: Sample A from N(0, I k-

.. . _ 1 1 _\n
e Planted distribution: Let A, A > 0. Sample u from { A 0, m} where the values
are taken with probabilites %, 1—-A, % respectively. Then sample B from N (0, [, [n] k)

Set A = B 4+ \u®F,
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Let the Hermite polynomials be ho(z) = 1, hi(x) = z, ho(x) = 22—1,.... Fora € Nl
and variables A, for e € [n]F, define hq(A) = Hee[n}k he(Ae). We will work with this

Hermite basis.

Lemma 6.3.2. Let I € N" a € NP For i e n], let dj = Let ¢ be the

icee[n]k e

number of © such that I; + d; is nonzero. Then, if I; + d; are all even, we have

1] e
R G ((AA)k>
e€[n]k n)?

Else, Eplu’hq(v)] = 0.

Proof. When A ~ p, for all e € [n]¥, we have A. = Be + M Li<k te;- where Be ~ N(0, 1).
Let’s analyze when the required expectation is nonzero. We can first condition on v and

use the fact that for a fixed ¢, g ar(0,1)[he(9 +1)] = t* to obtain

E ()= E W [T O\JJue)™l= E [T] o™ T A

(g, we)~ (ug)~p ecn]f i<k (“i)N”z‘e[n] ecln]®

Observe that this is nonzero precisely when all I; + d; are even, in which case

. . 1 Ezgn Il+dl 1 ‘I‘ 1 Qe
5 (T] ol a0 (<) -2 (75)
ol an ) D\

where we used the fact that celn]k Ge = k> icln) di- This completes the proof. n

Now, we can write the moment matrix in terms of graph matrices.

Definition 6.3.3. Define the degree of SoS to be Dgps = nCsose for some constant Csps > 0

that we choose later.

Definition 6.3.4 (Truncation parameters). Define the truncation parameters to be Dy =

nve Dp = nCEe for some constants Cy,Cp > 0.
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Remark 6.3.5 (Choice of parameters). We first set € to be a sufficiently small constant.
Based on the choice of €, we will set the constant Ca > 0 sufficiently small so that the planted
distribution is well defined. Based on these choices, we will set Cyy,Cp to be sufficiently small
constants to satisfy all the inequalities we use in our proof. Based on these choices, we can

choose Cgos to be sufficiently small to satisfy the inequalities we use.

Remark 6.3.6. The underlying graphs for the graph matrices have the following structure;

There will be n vertices of a single type and the edges will be ordered hyperedges of arity k.
Definition 6.3.7. For the analysis of Tensor PCA, we will use the following notation.

e For an index shape U and a vertex i, define degU (i) as follows: If i € V(U), then it is
the power of the unique index shape piece A € U such that i € V(A). Otherwise, it is
0.

e For an index shape U, define deg(U) = > ey () degV (i). This is also the degree of

the monomial that U corresponds to.

e [or a shape a and vertex i in «, let deg®(i) = ZieeeE(a) le.

e For any shape «, let deg(a) = deg(Uy) + deg(Vay).

We will now describe the decomposition of the moment matrix A.
Definition 6.3.8. If a shape « satisfies the following properties:

o deg®(i) 4 degUe (i) + deg"e (i) is even for all i € V(a),

® ( is proper,

e « satisfies the truncation parameters Dgos, Dy, Dfg.

then define

deg(a) v\
Ay = AlV(@)] (L) 11 ( )
An ecE(a) (An)%
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Otherwise, define Ao = 0.

Corollary 6.3.9. A =) A\ M,.

6.3.2 Proving positivity - Qualitative bounds

We use the canonical definition of H% from ??. In this section, we will prove the following

qualitative bounds.
Lemma 6.3.10. For allU € Iy, Hyg, = 0

We define the following quantity to capture the contribution of the vertices within 7 to

the Fourier coefficients.

Definition 6.3.11. For U € Z,,q and T € My, if deg” (i) is even for all vertices i €

V() \ Ur \ V;, define

[VES

le
S(r) = AVOIT ] < A )

ccE(r) \(An)

Otherwise, define S(1) = 0.

Lemma 6.3.12. For allU € Z,,;4 and T € My,

S5(7)

M) 14y y fIT -0
T T
Hr TAut (o] M 1dy

We define the following quantity to capture the contribution of the vertices within v to

the Fourier coefficients.
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Definition 6.3.13. For all U,V € Z,,,;q where w(U) > w(V') and v € Ty y, if deg” (i) is

even for all vertices i in V(y) \ Uy \ Vs, define

JU7|-2HV'V|

S(y) = AV

Otherwise, define S(v) = 0.
Lemma 6.3.14. For all U,V € L,,,;q where w(U) > w(V) and all v € Ty,

Awt(V)] 1
. H, "' < H
[Aut(U)] - S(y)2 v =77

Proof of Lemma 6.3.10

When we compose shapes o, 0’, from Definition 6.3.8, observe that all vertices i in A,y
should have degooa,(i) +degUso0’ (i) +deg"soo’ (i) to be even, in order for A,/ to be nonzero.

To partially capture this notion conveniently, we will introduce the notion of parity vectors.
Definition 6.3.15. Define a parity vector p to be a vector whose entries are in {0,1}.

Definition 6.3.16. For U € Z,,,;4, define Py to be the set of parity vectors p whose coordi-

nates are indezed by U.

Definition 6.3.17. For a left shape o, define ps € Py, called the parity vector of o, to

be the parity vector such that for each vertex i € Vi, the i-th entry of ps s the parity of

degU (i) + deg® (i), that is (py); = degUs (i) + deg® (i) (mod 2).

Definition 6.3.18. For U € Z,,;q and p € Py, let Ly, be the set of all left shapes o € Ly

such that ps = p, that is, the set of all left shapes with parity vector p.

Definition 6.3.19. For a shape 7, for a 7 coefficient matriz Hr and parity vectors p €

Pu,.p € Py, define the T-coefficient matriz H. ,y as H (0,0") = Hy(0,0") if 0 €

7,050

Ly, p 0 € Ly, y and 0 otherwise.
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Proposition 6.3.20. For any shape T and T-coefficient matric Hy, Hy = ZpEPU PPy H
Proposition 6.3.21. For any U € Lpyq, Hyay, = - e, Hidy pp

Proof. For any 0,0’ € Ly, using Definition 6.3.8, note that in order for Hpqp, (o, o) to be

nonzero, we must have ps = p,. ]

We define the following quantity to capture the contribution of the vertices within o to

the Fourier coeflicients.

Definition 6.3.22. For a shape o € L, if deg®(i) + degU7 (i) is even for all vertices i €
V(o) \ Vg, define

Vol 1 deg(Us) Y le
T(o) = AV(@I-7% ( ) I1 <_
VAn ecE(o) (An)?

Otherwise, define T'(o) = 0.

Definition 6.3.23. For U € 1,,,;4 and p € Py, define v, to be the vector indexed by o € L

such that vy(o) is T'(0) if o € Ly, and 0 otherwise.

Proposition 6.3.24. For allU € Z,,;q,p € Py, Hyqp; pp = mv[,vg.

Proof. This follows by verifying the conditions of Definition 6.3.8. ]

Lemma 6.3.10. For allU € 1,4, Hyg,, = 0

— _ 1 T
Proof. We have HIdU = ZPEPU HIdU,p,p = TAw(0)] ZpEPU UpUp = 0. u

Proof of Lemma 6.3.12

"

The next proposition captures the fact that when we compose shapes o, 7,0'", in order for

A, oro/T 10 be nonzero, the parities of the degrees of the merged vertices should add up

correspondingly.
201

N

/



Proposition 6.3.25. For all U € Z,,;4 and 7 € My, there exist two sets of parity vectors

Pr,Qr C Py and a bijection 7 : Pr — Qr such that Hy = ZpEPT HT,p,ﬂ'(p)'

Proof. Using Definition 6.3.8, in order for H;(o,0’) to be nonzero, in o o 7 o ¢/, we must
have that for all i € Uy U Vy, degUe (i) + degUs’ (i) + degUOTOU/T (7) must be even. In other
words, for any p € Py, there is at most one p’ € Py such that if we take o € Ly, p, o' € Ly
with H;(o,0’) nonzero, then the parity of o’ is p’. Also, observe that p’ determines p. We
then take P; to be the set of p such that p’ exists, Q to be the set of p/ and in this case,

we define 7(p) = p'. u

We restate Definition 6.3.11 for convenience.

Definition 6.3.11. For U € I,,;q and 7 € My, if deg” (i) is even for all vertices i €
V(T)\Ur \ Vz, define

Otherwise, define S(7) =

Proposition 6.3.26. For any U € 7,,,;4 and T € My, suppose we take p € Pr. Let m be the

bijection from Proposition 6.3.25 so that w(p) € Qr. Then, H (p) = WS(T)%U;(M.

T,0,7(p

Proof. This follows by a straightforward verification of the conditions of Definition 6.3.8. =

Lemma 6.3.12. For allU € Z,,;4 and T € My,

\Aut(U)|HIdU Hr 0
T S(7) -
Hr a2 1dy
Proof. Let Pr, Q7,7 be from Proposition 6.3.25. For p,p/ € Py, let W,y = Up(vp/)T.

Then, Hrg, = Ypepy Hrdypp = taamy) 2opery Wop and Hr = Y cp Hy () =

WS( )Zpep w, m(p): We have
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S(7)

|[Aut(U)] HIdU Hr _ S(r ZpEPU Wo.p EpEPT Wp,ﬂ'(p)
T S(r) Aut(U)|2 T
Hr Aut)] A 1dy [4ut(U)] 2peP- Won(p)  2pery Wop
%% w
Since \Ait(ﬁ > 0, it suffices to prove that ZPGPU Tp,p ZPGPT p(p) = 0. Con-
ZpEPT Wpﬂr(p) ZpGPU Wp,p
sider
Z/)GPU Wp’p ZpEPT 144 ,(p) _ Zpe’PU\PT W,O,,O 0
T

2 pepr, Wop 2 per W, 7 (p)

Y peP Wiy Zoerr Wao) (o)

We have - cp \p. Wop = D P\ P, vpvg = 0. Similarly, > ,cp, 1\, Wp,p = 0 and

W 0
so, the first term in the above expression, Zp SUCACE is positive
0 2 pePi\Qr Wop
semidefinite. For the second term,
ZPGPT Wo.p ZPGPT W x(p) _ Z Wo.p Wox(p)
T T
2peP- Won(p) 20eP-Wato)n(o) | 2P |Wpn(p) Wrlo)m(o)
= Uty Up(vn(p))"
peP: _Uﬂ(p)(UP)T Vr(p) n(p) "
Yp
- Z Yp Un(p)
PEPr | Un(p)
=0



Proof of Lemma 6.3.14

T

The next proposition captures the fact that when we compose shapes o, 7, yT, o'*, in order

for A /7 to be nonzero, the parities of the degrees of the merged vertices should add

Jo'yo'y’Tog

up correspondingly.

Definition 6.3.27. For all U,V € Z,,,q where w(U) > w(V), for v € T'yy and par-

: / T : ; =Y = AN
ity vectors p,p € Prr, define the v o v* -coefficient matrix HIdV,p,p’ as Hld%p’p,(a,a) =

Hl_dwvﬁ(a, o)ifoeLy,d e Ly y and 0 otherwise.

Proposition 6.3.28. For all U,V € TI,,;q where w(U) > w(V), for all v € Ty, there

exists a set of parity vectors Py C Py such that

=, _ -
HIdV - Z Hfdv,p,p
peP,

— A Too!T
! ; Y N _— _0oy9y” oo
Proof. Take any p € Py. For o € Ly,0° € Ly, since HIdV (0,0") = (V)]

HI_CX/”Y(U, o) is nonzero precisely when \ o7 is nonzero. For this quantity to be

O'O’YO’)/TO
nonzero, using Definition 6.3.8, we get that it is necessary, but not sufficient, that the parity
vector of ¢/ must also be p. And also observe that there exists a set Py of parity vectors p

for which H, .,
or wnic 1d 0.p

b ]

is nonzero and their sum is precisely HI_dVVW' ]

Definition 6.3.29. For all U,V € 1,,,;q where w(U) > w(V'), for all v € Ty y and parity

vector p € Prr, define the matriz H,/%p’p as H!

%p’p(a, 0/) = H%(J,a/) if 0,0 € EU,p and 0

otherwise.

Proposition 6.3.30. For all U,V € I,,;q where w(U) > w(V), for v € I'yy, H@ =

/
ZPEP’y H%p,p'

We restate Definition 6.3.13 for convenience.
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Definition 6.3.13. For all U,V € Z,,,;q where w(U) > w(V') and v € Ty y, if deg” (i) is

even for all vertices i in V(v) \ Uy \ Vs, define

le
_ Uy[+VA| A
S(y) = AV ) H ( ’5)

Otherwise, define S(v) = 0.
Proposition 6.3.31. For allU,V € I,,;q where w(U) > w(V), for ally € Ty and p € Py,

Ao
tivapp = a7
Proof. Fix 0,0" € Ly, such that [V (g 07)],|V(¢’ 07)| < Dy. Note that [V(o)| — @ +

V(") — WT"A + 2(|V(y)| — W) = |[V(6 0oy ot ooT)|. Using Definition 6.3.8,

we can easily verify that A . r,om = T(0)T(6")S(7)%. Therefore, HI_CZ/’L’P(U’ o) =
Aut(U .

%S(V)QHMU@/J(@ o). Since HLY’p’p(a, o) = Hray 0,000 o') whenever |V (cov)|, |V (¢0
v)| < Dy, this completes the proof. u

Lemma 6.3.14. For all U,V € Z,,,;5 where w(U) > w(V) and all v € Ty,

|AUt<V)| 1 -, /
. <
Aut(0)] S ey =
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Proof. We have

[Aut(V)| 0 _ |Aut (V)] 1 vy
5 H 5 H

T SR = i) Se

peP,

Z pr

peP,

= Z ww
pPEPyY
/

where we used the fact that for all p € Py, we have H& p,p = 0 which can be proved the

same way as the proof of Lemma 6.3.10. [ ]

6.4 Qualitative bounds for Sparse PCA

6.4.1 Pseudo-calibration

Definition 6.4.1 (Slack parameter). Define the slack parameter to be A = d—Cac for a

constant C'p > 0.

We will pseudo-calibrate with respect the following pair of random and planted distribu-

tions which we denote v and p respectively.

e Random distribution: vy, ..., vy, are sampled from N(0, I;) and we take S to be the

m X d matrix with rows v{,...,vp,.

e Planted distribution: Sample u from {_\/LE’ 0, ﬁ}d where the values are taken with

probabilites %, 1-— %, 2—% respectively. Then sample vq,...,v, as follows. For each

i € [m], with probability A, sample v; from N(0,I; + Auu®) and with probability

1 — A, sample v; from N(0, ;). Finally, take S to be the m x d matrix with rows

,U]_,...,’Um.
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med

We will again work with the Hermite basis of polynomials. For a € and variables

(2t)! -

Wzlx?)x...xt, if tis odd
Definition 6.4.2. For a nonnegative integert, definet!! = ¢

0, otherwise

Lemma 6.4.3. Let [ € N% a € N™¥4_ Fori e [m], let ¢; = > jeld) %ij and for j € [d], let
fi=1I;+ Zie[m] ajj. Let cy (resp. c3) be the number of i (resp. j) such that e; > 0 (resp.

fj >0). Then, if e;, f; are all even, we have

a”

IE[tha(v)] = (%)u <§)02 A€ H (e; —1) HH NG

i€[m)|

FElse, Eu[ulha(v)] =0.

Proof. v1,...,um ~ j can be written as v; = g; + VAblju where g; ~ N(0,1;),1; ~
N(0,1),b; € {0,1} where b; = 1 with probability A.
Let’s analyze when the required expectation is nonzero. We can first condition on b;, l;, u

and use the fact that for a fixed ¢, By pr(0,1) k(9 +1)] = t* to obtain

E - [Wha@]= E W [Vl = B[] @t [T o)) ITLVA"
(u,li,bi g3 ) ~p (wlisbi)~p 55 (W disbi)~h i) jeld o

For this to be nonzero, the set of ¢; indices 7 such that e; > 0, should not have been resampled
otherwise b; = 0, each of which happens independently with probability A. And the set of co
indices j such that f; > 0 should have been such that u; is nonzero, each of which happens
independently with probablhty g+ Since lj, u; are have zero expectation in v, we need e;, f;

to be even. The expectation then becomes

a,]

Ac (k) LIl fﬂHf “”=(7)||(a) AT L (e ”H\/'a”

[m] i€lm]
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The last equality follows because, for each j such that u; is nonzero, we have u i =

and EgNN(O,l)[Qt] = (t — ) if ¢ is even. n
Now, we can write the moment matrix in terms of graph matrices.

Definition 6.4.4. Define the degree of SoS to be Dgys = dCsose for some constant Csps > 0

that we choose later.

Definition 6.4.5 (Truncation parameters). Define the truncation parameters to be Dy =

deve, Dg = dCEE for some constants Cy,Cg > 0.

Remark 6.4.6 (Choice of parameters). We first set e > 0 to be a sufficiently small constant.
Based on the choice of €, we will set the constant C A > 0 sufficiently small so that the planted
distribution is well defined. Based on these choices, we will set Cy,, C' to be sufficiently small
constants to satisfy all the inequalities we use in our proof. Based on these choices, we can

choose Csos to be sufficiently small to satisfy the inequalities we use.

Remark 6.4.7. The underlying graphs for the graph matrices have the following structure:
There will be two types of vertices - d type 1 vertices corresponding to the dimensions of the
space and m type 2 wvertices corresponding to the different input vectors. The shapes will

correspond to bipartite graphs with edges going between across of different types.
Definition 6.4.8. For the analysis of Sparse PCA, we will use the following notation.

e For a shape o and type t € {1,2}, let Vi(«) denote the vertices of V(«) that are of type
t. Let afs = [Vi(a)].

e For an index shape U and a vertez i, define degV (i) as follows: If i € V(U), then it is

the power of the unique index shape piece A € U such that i € V(A). Otherwise, it is
0.

e For an index shape U, define deg(U) = > ey () degV (i). This is also the degree of

the monomial pg;.
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o [or a shape a and vertex i in «, let deg®(i) = ZiEeEE(a) le.
e [For any shape «, let deg(a)) = deg(Uq) + deg(Vy).

e For an index shape U € Z,,;q and type t € {1,2}, let Uy € U denote the index shape
piece of type t in U if it exists, otherwise define Uy to be 0. Note that this is well
defined since for each type t, there is at most one index shape piece of type t in U since

U € T,iq- Also, denote by |U|; the length of the tuple Uy.
We will now describe the decomposition of the moment matrix A.
Definition 6.4.9. If a shape « satisfies the following properties:
e Both Uy and V,, only contain index shape pieces of type 1,
o deg®(i) 4 degUe (i) + degV (i) is even for all i € V(a),
® (v 1S proper,
e « satisfies the truncation parameters Dgos, Dy, D .

then define

. (ﬁ)deg@ (g)thb T et — vt T \/Xj

Otherwise, define Ao = 0.

Corollary 6.4.10. A = > A\, M,.

6.4.2 Proving positivity - Qualitative bounds

We use the canonical definition of ny from ?7?7. In this section, we will prove the following

qualitative bounds.
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Lemma 6.4.11. For allU € Ip;q, Hyg, = 0

For technical reasons, it will be convenient to discretize the Normal distribution. The

following fact follows from standard results on Gaussian quadrature, see for e.g. [51, Lemma

43).

Fact 6.4.12 (Discretizing the Normal distribution). There is an absolute constant Cy;g,. such
that, for any positive integer D, there exists a distribution £ over the real numbers supported

on D points p1,...,pp, such that
o pil < CuiseV'D for alli < D and
® FEgoe [gt] = EgNN(0,1)[gt] forallt=0,1,...,2D —1

We define the following quantity to capture the contribution of the vertices within 7 to

the Fourier coefficients.

Definition 6.4.13. For U € 1,4 and 7 € My, if deg” (i) is even for all vertices i €
V(T)\ Ur \ Vr, define

g\ ITh=1U-l N\
S(r) = (E) A'T‘2_|UT‘2' I[I ey —r ] j-;z
JEVa(T)\Ur\V7 ecE(T)

Otherwise, define S(1) = 0.

Definition 6.4.14. For any shape 7, suppose U' = (Ur)o, V' = (V;)9 are the type 2 vertices

in Ur, Vi respectively. Define

R(r) = (Cyisey/Dpg) =i0"ov 4970)

where Cy;q. 1s the constant from Fact 6.4.12.
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Lemma 6.4.15. For allU € Z,,;4 and T € My,

Tauo) 1y » )Pf; -0
T T T
H Tauton] H1dy

We define the following quantity to capture the contribution of the vertices within v to

the Fourier coeflicients.

Definition 6.4.16. For all U,V € 1,,,;q where w(U) > w(V') and v € T'yy, if deg” (i) is

even for all vertices i in V(y) \ Uy \ V5, define

[U~x[1+1Vyl1

=" Uyla+Val le
se0= (%) Al EEEE T ey - TT Y

IBAGAVA ecB(y) VK*

B

Otherwise, define S(y) = 0.

Lemma 6.4.17. For all U,V € Z,,,;5 where w(U) > w(V) and all v € Ty,

|AUt(V)| 1 -7, /
. H. " <H
|Aut(U)|  S(7)?R(y)? 1dv =7

Proof of Lemma 6.4.11

When we compose shapes o,0’, from Definition 6.4.9, observe that all vertices i in A,/
should have degaoal(i) +degUso0’ (i) +deg"so0’ (i) to be even, in order for A,/ to be nonzero.

To partially capture this notion conveniently, we will introduce the notion of parity vectors.
Definition 6.4.18. Define a parity vector p to be a vector whose entries are in {0, 1}.
Definition 6.4.19. For U € Z,,,;4, define Py to be the set of parity vectors p whose coordi-

nates are indezed by Uy followed by Us.
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Definition 6.4.20. For a left shape o, define ps € Py, called the parity vector of o, to
be the parity vector such that for each vertex i € Vi, the i-th entry of ps is the parity of

degU7 (i) + deg® (i), that is, (po); = degU (i) + deg? (i) (mod 2).

Definition 6.4.21. For U € L,,;q and p € Py, let Ly, be the set of all left shapes o € Ly

such that ps = p, that is, the set of all left shapes with parity vector p.

Definition 6.4.22. For a shape T, for a 7 coefficient matrix Hr and parity vectors p €

Pu,.p € Py, define the T-coefficient matriz H. ,y as H (0,0") = Hy(0,0') if 0 €

T.p.0
Ly p 0 € Ly, y and 0 otherwise.

Proposition 6.4.23. For any shape 7 and T-coefficient matric Hy, Hr = ZpE'PU Py H_ o
T T gl

Proposition 6.4.24. For any U € L4, Hyay, = - ep, Hidy pp

Proof. For any 0,0’ € Ly, using Definition 6.4.9, note that in order for Hpqp, (o, a’) to be

nonzero, we must have ps = p,. [ ]
We will now discretize the normal distribution while matching the first 2D —1 moments.

Definition 6.4.25. Let D be a distribution over the real numbers obtained by setting D = Dg
in Fact 6.4.12. So, in particular, for any x sampled from D, we have || < Cyise/DE and

fort <2Dp —1, Egoplz!] = (t — 1)L

We define the following quantity to capture the contribution of the vertices within o to

the Fourier coeflicients.

Definition 6.4.26. For a shape o € L, if deg®(i) + degUe (i) is even for all vertices i €
V(o) \ Vg, define

Otherwise, define T'(o) = 0.
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Definition 6.4.27. Let U € Z,,;4. Let x; for i € Uy be variables. Denote them collectively
as ry,. For p € Py, define Up,ay, 1O be the vector indexed by left shapes o € L such that

the oth entry is T'(o) [ [y, x?eg (@) if o € Ly, and 0 otherwise.

Proposition 6.4.28. For any U € Z,,;4,p € Py, suppose x; fori € Uy are random variables
sampled from D. Then,

1 T
HIdUanP - W IE[UP@UQUp,xUQ]

Proof. Observe that for ,0" € L7, and t € {1,2}, (|o; — @) + (o] — %) =lood;.
The result follows by verifying the conditions of Definition 6.4.9 and using Definition 6.4.25.

Lemma 6.4.11. For allU € Zp,;q, Hyg, = 0

_ _ 1 T
Proof. We have Hrq;, =3 pepy Hidy.p.p = Taut@n] 2-pePy Euyy~pV2Voav, Vp,op,) = 0-

Proof of Lemma 6.4.15

T

The next proposition captures the fact that when we compose shapes o, 7,¢'", in order for

A 7 to be nonzero, the parities of the degrees of the merged vertices should add up

goTO

correspondingly.

Proposition 6.4.29. For allU € I,,;q and 7 € My, there exist two sets of parity vectors

Pr,Qr C Py and a bijection w : Pr — Qr such that Hr = ZpGPT HT’WT(p).

Proof. Using Definition 6.4.9, in order for H;(c,0’) to be nonzero, we must have that, in
T

cortod, forallie U UVy, degls (i) + degUs (i) + deg°m°’ (¢) must be even. In other

words, for any p € Py, there is at most one p’ € Py such that if we take o € Ly ps o € Ly

with Hr(o,0’) nonzero, then the parity of o’ is p’. Also, observe that p’ determines p. We
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then take P to be the set of p such that p’ exists, Q to be the set of p’ and in this case,

we define 7(p) = p'. u

We restate Definition 6.4.13 for convenience.

Definition 6.4.13. For U € 1,4 and 7 € My, if deg” (i) is even for all vertices i €

V() \ Ur \ V;, define

L\ [Tl 1Ur B ‘ e
s = (%) Al T ey - e [T Y2
JEVa (U ecE(r) Vk

Otherwise, define S(1) = 0.

Proposition 6.4.30. For any U € 7,,,;4 and T € My, suppose we take p € Pr. Let w be the
bijection from Proposition 6.4.29 so that w(p) € Qr. Let U' = (Uy)o, V' = (V3)g be the type
2 wvertices in U,V respectively. Let x; for i € U' UV’ be random variables independently
sampled from D. Define xg (resp. xy) to be the subset of variables x; for i € U’ (resp.

i€V’'). Then,

_ 1 deg™(i) | T
Hepr(0) = Tauay > E | Vo Il = Vr(p).y

iceU'uv’
Proof. For 0 € Ly 0’ € Ly(py and t € {1,2), we have (el — U} + (ol — 514) +
(|o’|¢ — %) = |o o7 00’|s. The result then follows by a straightforward verification of the
conditions of Definition 6.4.9 using Definition 6.4.25. ]

Lemma 6.4.15. For allU € Z,,;4 and T € My,

S(T)R(r)
Aat(0y] M 1dy Hy -
S(T)R(T -
HY |f(1u)t((§)\)H]dU
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Proof. Let Pr,Q, 7 be from Proposition 6.4.29. Let U’ = (U;)9, V' = (V;)9 be the type
2 vertices in Uy, V; respectively. Let x; for i € U’ UV’ be random variables independently
sampled from D. Define zyy (resp. zy7) to be the subset of variables z; for i € U’ (resp.
ieV').

For p € Py, define W, , = EyU2~DU2 [UP»yUQU/:)F,yUZ] so that Hyg, », = \Aut—l(U)|WPvP‘
Observe that W, , = E[prU,Ugij/] = E[vp,xv,vgjxvl] because x; and xy/ are also sets of

variables sampled from D and, U’, V' have the same size as Uy because Uy = V; = U.

d

For p,p € Py, define Y, ; = E [U,omcU/ (Micvrovraf ™ )l - Then, He =
ZpEP T.pm(p) = |At— S(r )Zpep (p)- We have

S(r)R(7)

|Aut(U)| HIdU Hr S(1) R(7) ZPEPU Wo.p ZpEPT Yp,w(p)

T S(7)R(7) Aut(U T
Hz O] 1y OF | s, Vorto) B Lpepy Worp
R(T W Y
Since % > 0, it suffices to prove that ( )ZpEP; PP ZpEPT p,m(p) - 0
ZPGPT Yp,ﬂ'(p) R(T) ZpGPU WP’P_

Consider

R(T) ZpGPU Wo.p ZpGPT Yp,ﬂ'(p) _R(r) ZpEPU\PT Wo.p 0

T
ZPEPT Yp,w(p) R(T) ZPEPU WP7P 0 ZpEPU\QT WP:P_

R(T) ZpGPT Wp7p ZPGP‘I‘ Ypaﬂ'(p)
YpeP Yonip) B Zper, Wrip)2(n

W 0
0. Also, R(7) > 0 and so, the first term in the above expression, R(T) Zpepo\p, Wor
0 ZPEPU\QT Wo.p
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is positive semidefinite. For the second term,

R(T) ZpEPT Wo,p ZpEPT Ypﬂr(p)
YpeP Yomip) B Lper, Wrip)n(p)

_ R(7) E[”p,azUzvng,] E [Up,xU/ (HiEU’UV’ x?egT(i)) Uz(p),xv/}
peP; |E [Ug,xU, <HZ‘€U/UV, x;iegr(i)> UW(P),IV/] R(7) E[UW(P)J\//U;F(p),xV/]

_ Z E R(T)UpwU/Ug,zyf Up,xyr (HiEU’UV’ xgegT(i)> Uv?(p)7xvl
pEP; v,f,xU, (Hz‘eU’UV’ QS?GQT(Z)) Y (p),ayr R(TWW(P)?QJV'U;(P)@V/

We will prove that the term inside the expectation is positive semidefinite for each p € Pr

and each sampling of the x; from D, which will complete the proof. Fix p € Pr and any

. deg™ (i
sampling of the z; from D. Let wy = Up Xy W2 = Vr(p) 20 Let B = [T;cprov 2, g ).
R(T)wlwlT Ew1w2T

We would like to prove that > 0. For all y sampled from D,

Ewlwy  R(m)wyw]
ly| < Cpisev/DE and so, |E| < (Cdisc‘/DE)szU/UV/ deg™ (j) _ R(r).

If £ >0, then
R(T wle Ewle wle 0 wle wle
Ewlng R(T)wngT i 0 waQT w?wg w2w2T
w1 0 w1
GG R N R e M I 1 ol P
0 wo w2
=0
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since R(1) — E >0 And if £ <0,

R(T wle Ewle wle 0 wle —wle
EwlTwQ R(T)wngT i 0 wgwg —wlTwQ w2w2T |
wy 0 wy
= (R(T) + E) wyp 0] + 0 woy -F w] —w9
0 w9 —wW9
=0
since R(1) + E > 0. n
Proof of Lemma 6.4.17
The next proposition captures the fact that when we compose shapes a,~, fyT, o T, in order

for A /7 to be nonzero, the parities of the degrees of the merged vertices should add

UO’yO’yTOU

up correspondingly.

Definition 6.4.31. For all U,V € Z,,;q where w(U) > w(V), for v € T'yy and par-

: / T ; ; =Y = AN
ity vectors p,p’ € Py, define the v o y* -coefficient matrix HIdV,p,p’ as HIdV,p,p'<U’U> =

H;df:;py(ff, o) ifo e Ly p; o' € Ly, and 0 otherwise.

Proposition 6.4.32. For all U,V € I,,;q where w(U) > w(V), for all v € Ty, there

exists a set of parity vectors Py C Py such that

-,y _ -
Hig ' = > Hiayly,
peP,

A T T
P ! ; Y / oyoy~ o
PT’OOf. Take any p < U- For ¢ € ‘CU,p7 o € LU, since Hld (O’, o ) = o" ;IUZ(V()Tl s

HI_dA‘Y/ﬁ(U’ o) is nonzero precisely when A o is nonzero. For this quantity to be

O'O")/O’}/TOO'

nonzero, using Definition 6.4.9, we get that it is necessary, but not sufficient, that the parity
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vector of ¢/ must also be p. And also observe that there exists a set Py of parity vectors p

for which H; "7 is nonzero and their sum is precisely H; "7 ]
IdV:ﬂap IdV

Definition 6.4.33. For all U,V € T,,;q where w(U) > w(V), for all v € Tyyy and parity

vector p € Py, define the matriz H! as H!

N0, 50,00 o) = H,'y(a, o) ifo,0 € Ly, and 0

otherwise.

Proposition 6.4.34. For all U,V € T,;q where w(U) > w(V), for v € Tyy, H, =

/
ZpePy Hy pp-
We will now define vectors which are truncations of Up,xy, -

Definition 6.4.35. Let U,V € I,,;q where w(U) > w(V), and let v € 'y y. Let x; for
i € Uy be variables. Denote them collectively as xy,. For p € Py, define v;}UQ to be the

vector indexed by left shapes o € L such that the oth entry is vp .z, (o) if V(o oy)| < Dy

and O otherwise.
We restate Definition 6.4.16 for convenience.

Definition 6.4.16. For all U,V € Z,,,;q where w(U) > w(V') and v € Ty y, if deg” (i) is
even for all vertices i in V(v) \ Uy \ Vs, define

Uy 11 +IVAlq !

eliey 2 2+[Vyl2
se=(5)" I s | T UE) RO | A

FEVR(M\Ux\Vy e€E(7)

e

e

<

Otherwise, define S(v) = 0.

Proposition 6.4.36. For any U,V € I,,;q where w(U) > w(V), and for any v € Ty y,

suppose we take p € Py. When we compose v with ’yT to get fyOfyT, let U = (U,YO,YT>2, V=
T respectively. And let W' be the set of type

(V. OVT)2 be the type 2 wvertices in U,

0t Yoy V-

Yoy

2 wvertices in 7y o fyT that were identified in the composition when we set V, = UWT. Let x;

218



fori e U'UW' UV’ be random variables independently sampled from D. Define xy (resp.

xyr, ) to be the subset of variables x; fori € U (resp. i € Vi € W'). Then,

_ 1 d yoy T (s
VY 2 — eg?7 (i) -7 \T
cU'uw’'uv’

Proof. Fix 0,0’ € ﬁU,o such that |V (o 0 7¥)|,|V (¢’ ov)| < Dy. Note that for ¢t € {1,2},

|V0|t ‘ | Uy le+[V4 e T
) It

lo|s — + 0’|t — + 2(|v|e — =|covyo 'yT oo’ |t. We can easily verify

the equality using Definition 6.4.9 and Definition 6.4.25. |

Proposition 6.4.37. For any U,V € 1,4 where w(U) > w(V), and for any v € Ty y,

suppose we take p € Prr. Then,

/ 1

Hpp=imm E |0 @)
YsP,P |AUt(U)| yU2NDU2 p7yU2 payUz

We can now prove Lemma 6.4.17.

Lemma 6.4.17. For all U,V € Z,,,;5 where w(U) > w(V) and all v € Ty,

Aat(V)] 1 ,
Aut(0)] SRR a2 1

Proof. Let U', V', W' be as in Proposition 6.4.36. We have

|Aut(V)] HId’I/’Y B Z |Aut V 1 o

[Aut(U)] 5(7) R(

1 - deg?" (i) \ ( —y T
Z |Aut Rm)zlgl(”plw)( I = (V)

We will now prove that, for all p € Py,

1 1 v deg1" (i) 7| <
|Aut(U)| ' 3(7)2 IE; (Up,xU/) H x,; (vp xv') >y
eU'uw’'uv’
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This reduces to proving that

2 — deg'YO'VT i - T - - T
R( )2 E <UP7¥U/> H xl ( ) (UP7;5YV/) j 2 E U [(UP7;U2>(UPa;JYU2) ]
v ieU'UW'uv! yup~D2

= E (03,0 ) T + W) (0

where the last equality followed from linearity of expectation and the fact that U’ = V' = Us.

3 =77 3 :
Since H dypp 18 symmetric, we have

T T
— deg"®7" (i — T — deg?®7" (i — T
Elepd,) | I o V) )| = lwdo | I = 9w
ev'uw’'uv! ieU'uw'uv’

So, it suffices to prove

T T
— deg?°7" (i — T — deg?°7" (i — T
el Gl SR SR N AR Ol S | IR KO
iev'uw’uv’ ieU'uw’'uv’

- —y T | () —y \T
We will prove that for every sampling of the x; from D, we have

1
R(7)?

T T
- deg?®V" (i —~ \T - deg?®Y" (i —y T
o) | T =7 ) o)+ o | TT 5 9 wpd)
cU'uw’'uv’ eU'uw’'uv’

- —y T | ()~ —y T
= (Up,;:YU/)(Up,’mYU/) + (Up,gv/)(vp,zv/)

Then, taking expectations will give the result. Indeed, fix a sampling of the x; from D. Let

T
deg?°7" (i — — . .
E = TLeurowrov 0y g ®) and let wy = vng,,wQ = v/)’;cyv,. Then, the inequality we
need to show is
L T T T T
R(fy)g(wluﬁ +wowy ) 2 wiwy + waws
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(¢} T -
Now, since |z;| < Cyisev/DE for all i, we have |E| < HieU’UW’UV’(Cdisc\/DEyiegv 7o) =
R(7)%.

If £ >0, using #(wl — wo) (w1 — wa) T = 0 gives
K T T L T T
—— (wiwy + wowy ) <X (wiwi + wowy )
R(y)2" R(y)2 ?

= wlw{ + wgwg

since 0 < E < R(v)?.

And if E <0, using ﬁ(wl + wo)(wy +w)T = 0 gives

E
R(7)?

T T —F

(wiwy + wowy ) =
(7)?
T

= wlwlT + wow;y

(wlw? + waQT)

since 0 < —E < R(v)?.
Finally, we use the fact that for all p € Py, we have H& p,p = 0 which can be proved the

same way as the proof of Lemma 6.4.11. Therefore,

[ Aut(V)] 1 =75y /
: H, "= H
[Aut(U)] S(7)?R(y)? I~ 2 M
peP,
/
<2 Hpy
pPEPY
/
= H’Y
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6.4.3 Intuition for quantitative bounds

In this section, we will give some intuition on the bounds needed for our main theorem
Theorem 4.4.1, which is formally proved in Section 7.3. Informally, the theorem states that

4 and m < k2 then A >~ 0 with high probability.

when m < 2 VL

)\ ) T hOldS.

O'OO'T o'o0

We will try and understand why the inequality Aioroo—/T M2 < A
Assume for simplicity that d < n and consider the shapes in Fig. 6.1. The assumption d < n
is used in this example since otherwise, if d > n, the decomposition differs from what’s shown

in the figure.

Shape com oo’ Shape comoo' Shape o oo'
U{TOTIOJT ‘/:TOTIO(TT ______ UooUT = VaogT

UaorgooT Vgoq—QooT

Figure 6.1: Shapes c oy o0l ,00m ool and o ool. All edges have label 1.
: T : 1\ (k)2
Firstly, the shape o o 0 has a coefficient of A___r =~ <\/_E> <3> .

4 4 4

The first shape o o7y o ol has a coefficient of )‘aonogT =~ (ﬁ) (%) (%) and with

high probability, upto lower order terms, ||[Mr| < md (these norm bounds follow from

gooT Tearranges to m < )\% But this

2]). So, the inequality A2 . [|Mn |2 < A 7A

ooT100 goo

is precisely one of the assumptions on m. Moreover, this also confirms that we need this

(G0 (8) (3

and with high probability, upto lower order terms, ||Mn| < m2d. So, the inequality
222

assumption on m in order for our strategy to go through.

Q

The second shape o o 7 o ol has a coefficient of A T
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2 . . .
)\iOTQOO'T HM72||2 < A ogTAgo,T TearTanges to m? < %. But this is obtained simply by
2
multiplying our assumptions on m, namely m < % and m < )\%

Moreover, consider a shape of the form o o 75 o ol where 75 is similar to 79 except it
has t (instead of 3) different circle vertices that are common neighbors to the top 2 square
vertices. Analyzing our required inequality, we get for our strategy to go through, m has

2
5 2
to satisfy m < k. ( d ) =t By taking ¢ arbitrarily large, we can see that the condition

A2\ k2
2
m < % is needed.
2
So, we get that for our analysis to go through, the assumptions m < )\% and m < %

are necessary. We will prove that in fact, these are sufficient. To do this, we use a charging
argument that exploits the special structure of the shapes a that appear in our decomposition

of A and their coefficients A\, as we obtained in Definition 6.4.9. For details, see Section 7.3.
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CHAPTER 7
QUANTITATIVE BOUNDS
In this chapter, we will prove the main SoS lower bounds Theorem 4.2.1, Theorem 4.3.1 and

Theorem 4.4.1 by building on the qualitative bounds from Chapter 6. The material in this

chapter is adapted from [149].

7.1 Planted slightly denser subgraph: Full verification

In this section, we will prove all the required bounds to prove Theorem 4.2.1.

Theorem 4.2.1. Let Cp > 0. There ewists a constant C' > 0 such that for all sufficiently
1 -C,

small constants ¢ > 0, if k < n27° and p = % + Lﬁ, then with high probability, the

candidate moment matrix A given by pseudo-calibraton for degree nCe Sum-of-Squares is

PSD.

In particular, we will use ?? where we choose ¢ in the theorem, not to be confused with
the € in Theorem 4.2.1, to be an arbitrarily small constant.
To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.

Lemma 7.1.1. For allU € Z,,;4 and T € My,

1
A0 g Brorm(MHz

T 1
Brorm(TV A ragoyetey o
Lemma 7.1.2. For all U,V € T,,;q where w(U) > w(V') and all v € Ty,
IN(v)2B(y)*Hy )" = H!
¢V N B() Hpg ' = H;
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Lemma 7.1.3. Whenever | My|| < Bnorm(a) for all o € M/,

d ! Hpa,)
fact IdU Idy
> it =0\ 323 ST |
UL mid Uelyiavely,

Corollary 7.1.4. With constant probability, A > 0.
Proof. This follows by invoking ?? whose conditions follow from Lemma 6.2.7, Lemma 7.1.1,

Lemma 7.1.2 and Lemma 7.1.3. ]

7.1.1  Proof of Lemma 7.1.1

Lemma 7.1.5. Suppose k < nl/27¢. For all U € Znia and 7 € My,

1
vl s () < eR=yoiea]

Proof. This result follows by plugging in the value of S(7). Using k < nl/2—¢

JRVOHT g = V@I (E)'V(T""UT'

n
1

< -
~ nCpelE(T)]

L\ B

1
2(—
( (2 + 2ncp5

Corollary 7.1.6. For allU € Z,,,;,4 and T € My, we have
c(T)Bnorm/(7)S(1) <1

Proof. Since 7 is a proper middle shape, we have w(l;) = 0 and w(S;) = w(U;). This
implies
w(V(7))+wlr)—w(ST)

, { _ RV
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Since 7 is proper, every vertex i € V(1) \ Uy or i € V(1) \ V; has deg” (i) > 1 and hence,
V(T \Ur| + [V(7) \ Va| < 4|E(7)|. Also, ¢ = nOM<Cv  We can set Cy sufficiently small

so that, using Lemma 7.1.5,

o(7) Brorm (7)S () = 100(3Dy)|Ur\Vr I+ VAU |42 E()|o[V(T)\ (U7 UV7 )|

6Dy ,4/—26q>\V<T>\UT|+|V<T>\VT| SRV gy
SnO( )eCy|E(T \/_|V )= |UT|S( )

o)yeCy-E(m) 1
=n Gl B

<1

|
We can now prove Lemma 7.1.1.
Lemma 7.1.1. For allU € T,,,;4 and 7 € My,
A H B 7)H
[Aut (U)]e(r) 1 1dy norm(7) Hr . 0
T 1
Brorm(THz ey Hidy
Proof. We have
1 S(T)Bnorm(T)
mmare Hidw  Brorm(T)Hr (\Aut(U)|c(T) = T TAut(0)] )HMU 0
1 S(T)Bnorm(T)
Buorm(TVH: Traznyeey Hidw 0 <|Aut<zlf)|c<r> ~ TR )Hfdv
+ Bno’rm (T) ‘A’U«t(U)‘ HIdU HT
HT Tty Hiay
S(r)
Auty Hid Hr
By Lemma 6.2.9, [Aut(U)| v S(r) > 0, so the second term above is posi-
HT

TAaroy M 1dy
tive semidefinite. For the first term, by Lemma 6.2.7, Hyg, = 0 and by Corollary 7.1.6,
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1 _ S(7) Bnorm(7)
[Aut(U)]e(7) |Aut(U)]

> 0, which proves that the first term is also positive semidefi-

nite. []

7.1.2  Proof of Lemma 7.1.2

Lemma 7.1.7. Suppose k < n*/27¢. For all U,V € I,,;4 where w(U) > w(V) and for all

yelyy,
1

wV(Y\Ur) g(~)2
n VS(y)” < BV ULV [HE())

for some constant B that depends only on C,. In particular, it is independent of Cy/.
P \%4

Proof. Since v is a left shape, we have |Uy| > |V4| as V5 is the unique minimum vertex

_\U'y\;r\Vvl

separator of v and so, n@(VONUy) = plVOII=IUy < VI Also, note that

2V = Uy = VAl = Uy \ VAl + [Vy N Uyl +2lV(0) \ Uy \ V| = V() \ (Uy 0 V4]

Therefore,
2[V(N)I=1Uy]=V4| 1 1
(VAN g2 — nlVENT)] (F o1 _2E()]
" ()7 =V N (£ G+oe) D
2lV(0)|=1Uy =V [EM)|
< Vel s 1 L
- n1/2—|—e n26’p€
1 2V ()|=1Uy[=V4] 1 [E(7)]
() ()
< 1
= BEVONULOVA) [+ e () le)
for a constant B that depends only on C),. |

We can now prove Lemma 7.1.2.

Lemma 7.1.2. For all U,V € T,,;q where w(U) > w(V') and all v € Ty,
(VPN B() Hy " = HY,
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Proof. By Lemma 6.2.11, we have

o Aut(U)]

c()’N()?*BO) " = e(7)’N(7)*B(7)*S () Aur ()P

Using the same proof as in Lemma 6.2.7, we can see that H% > 0. Therefore, it suffices to

prove that
Aut(U
PN BOPS)R <1
Since U,V € T, |Aut(U)| = |U|l,|Aut(V)| = |V|I. Therefore, mg g'l } } <

DLI/jW\Vﬂ. Also, ¢ = n?W€Cv | Let B be the constant from Lemma 7.1.7. We can set Cy
sufficiently small so that, using Lemma 7.1.7,
Aut(U)]
2N 2B 2| <1 2 D 2|U'7\V“rH‘2|V'7\U"r‘+4|E(0‘)‘4|V(’Y)\(UWUVW)‘
3Dy ) VOV 2V (6 Dy, &/Beq)?V (N H21V ()\V5 |

VO G ()2 Dl‘ﬁfw\le

< pOM<Cy-(V NV Ty 1) L VN ()2

< pOW£Cy - (IVINUANV) + e o Le) L
< BV OONULNVL) [+ e s Le)

<1

7.1.3 Proof of Lemma 7.1.3

In this section, we will prove Lemma 7.1.3.

Lemma 7.1.3. Whenever | My|| < Bnorm(a) for all o € M/,

d H )
fact IdU Idg;
2 Mgy (Hra) =6 | 3 Z GO R
UL mid Ul iqav€ely,

We use the strategy from [149, Section 10]. We will prove the following lemmas.
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Lemma 7.1.8. Whenever | My|| < Bnorm(a) for all o € M/,

fact 1
E M[dU (HIdU) K Dgos Idsym
Uelnia

for a constant K1 > 0.

Lemma 7.1.9.
dIdU HIdU’ Hl ) nKQDsos

Z Z | Aut(U)|c(7y) = 2Dy

Uelpiqavelu«

for a constant K9 > 0.

If we assume these, we can conclude the following.

Lemma 7.1.3. Whenever |My|| < Bnorm(a) for all « € M/,

d1a, (L, Hyg,)
fact IdU Idg;
Z MIdU (Hray,) = 6 Z Z |Aut Idgym

Uelid Ul iniq 'VGFU ,y)
Proof. Let ||My|| < Bporm(a) for all a € M’. By Lemma 7.1.8,
My Y — 1
> My (Hrgy) = Dz, [dsym

UGImzd

for a constant K1 > 0. By Lemma 7.1.9,

dldU HIdU’ H/ ) nKQDsos

Z Z | Aut(U)|e(7) = 2Dy

Uelia ’}/GF

for a constant Ko > 0.

KoD
We choose Uy sufficiently small so that 1 5 6" 2 sos

n™*1sos

which can be satisfied by

setting Csos < K3Cy for a sufficiently small constant K3 > 0. Then, since Idgy,, = 0, using
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Lemma 7.1.8 and Lemma 7.1.9,

n 1
> Mgy (Hiay) = T dsym
U€L i oo8
nKZDsos
dray ( HId )
-6 U U Id
Ul iqv€ely,

The rest of the section is devoted to proving Lemma 7.1.8 and Lemma 7.1.9.
In the proofs of both these lemmas, we will need a bound on Byorm (0) Bporm (o) H Idy (0,0")

that is obtained below.

Lemma 7.1.10. Suppose k < nl/27¢. For all U € Tnia and 0,0’ € Ly,

1
Bnorm(U)Bnorm(U/)HIdU(U, U’) < W

Proof. Let o = o o 0’. Observe that |V (o) + |V (¢')| = |[V(a)| + |U|. By choosing Cy,
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sufficiently small,

w(V(e))=w(U)
n

Bnorm(U)Bnorm(Ul)HIdU(U; UI) = (6Dy v4 QGQ)W(O)\UUHW(U)\VU‘ 2

w 0'/ —w
6Dy /3eq)|V O NNV HV (0)\V,y ], “EATY =D

1 (E>|V(a)| (2(1 . 1 - 1)|E(a)|

Taut(0)] \n 2 2nChe
Sno(l).gcv.w(a”ﬁ|v(g)‘_|U|\/ﬁ|V(a’)|—|U| (%)V(a)m
< O <Cy V()] n€|vl(a)| . ncp;E(a”
< T

|

Proof of Lemma 7.1.8

To prove Lemma 7.1.8, we will use the strategy from [149, Section 10]. We will also use the
notation from that section. We recall that for U € Z,,,4, E'U C L7 was the set of non-trivial

shapes in L.
. AV
Proposition 7.1.11. For V. € 7,4, \yv = <ﬁ> .

v
Proof. We have Ay = [Aut(V')|H g, (Idy, Idy) = (k>| |' -

n
1
Corollary 7.1.12. \y > ,0(0) Dsos

Lemma 7.1.13. For any edge e = (V,U) in G, we have

1 O(1) Dsos

w(e) < ——
(e) < n0-1elU]|
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Proof. Let e = (V,U) be an edge in G. Then, w(U) > w(V) and w(e) = %g’v) Using

Lemma 7.1.10, we have

2
2W(U,V) = TAut(D] Z Z Bnorm(U)Bnorm(Ul)HIdU(Ua (7/)
(At O] | T o' eLy U AV

2 1
< | Aut (U))| Z Z n0-5¢|V (go0’)|

o€Ly Us=U o' €Ly, U 1#V

2
< - -
- Z n0-5¢|V (ao0’)|
o,0’eLy,
D
< Z D05
- A, n0.15|V(000’)|Ds’%%osnFs|V(aoa’)|
o0’ €Ly,
D:SDOSSOS Z 1
= p0.1elU| DPsos ), Fe|V(oo0)|
o0'eL], 1508
Dg%os
— n0.1e|U]
)\Vno(l)DSOS
<ZZvVe
- p0.1elU]
where we set (', small enough so that 0.4 > F. This proves the lemma. ]

Corollary 7.1.14. For any U,V € Z,,;q such that w(U) > w(V),

Z H w(e) < nO(l)Dgos

P:P is a path from V to U in GecE(P)

Proof. The total number of vertices in G is at most Dgos + 1 since each U € Z,,;4 has at
most Dgyg vertices. Therefore, for any fixed integer j > 1, the number of paths from V to
U of length j is at most (Dses + 1)7. Take any path P from V to U. Suppose it has length
j > 1. Note that for all edges e = (V/,U’) in E(P), since |U’| > 1, we have

nODss 0Dy

01U = p01e
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So, HeeE(P) w(e) < (%) Therefore, by setting Csos small enough,

Dysos nO(l)DSOS J
)3 1T wle)= 3 (Dsos + 1) | — g
P:P is a path from V to U in G ee E(P) j=1

0(1)D?

S0s

IA

n

]
We can now prove Lemma 7.1.8.
Lemma 7.1.8. Whenever | My|| < Bporm(a) for all « € M/,
Z Mfact (Hygy) = %Eos[ dsym

Uelia
for a constant K1 > 0.
Proof. For all V € Z,,;4, we have
gy <2 Y > [T wie)) ooy,

UeZ iqw(U)>w(V) \P:P is a path from V to U in G ecE(P)
Summing this over all V' € Z,,,,4, we get

- DS > [T wie) | Miectting,)

UeZpia U \VeT, . w(U)>w(V) P:P is a path from V to U in G ecE(P
mid

2 O(l)DSQ,os fact
= > e > n M7 (Hray,)
U€Lnia VeLyiawU)Zw(V)

For any fixed U € Z,,,;4, the number of V' € Z,,,;; such that w(U) > w(V) is at most Dgps+1.
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Also, \ip > — for all U € Z,,;4. Therefore,

dO(l
O(1)D3os prfact
Tdgym = Z Dsos +1)n sos MP*(Hpgy,)
UEImzd
D2
=< Z nO( )DsostaCt(HIdU)
Uelia
where we used the fact that for all U € Z,,,;4, MfaCt(HIdU) = 0. |

Proof of Lemma 7.1.9

We restate the lemma for convenience.

Lemma 7.1.9.
dIdU HId[]’ Hl ) nKQDsos

Z Z | Aut(U)|e(y) = 2Dy

Uelpiqavelu«

for a constant Ko > 0.

Proof. We have

D A1y HIdU,H’)
U€Tmia 7€l U | Aut(U)|c(7)
Z Z Aut ( ) Z Bnorm(U)Bnorm(U/)deUw (0,0")

U€lmia VGFU* 0,0/ €Ly |V (@)|<Dy,[V(o)|<Dy,
|V (g07)|>Dy/ or |V (c/oy)|>Dy,

The set of o,0’ that could appear in the above sum must necessarily be non-trivial and

hence, 0,0’ € E’U. Then,

dray (Hray, HY)

ZZW

U€ZLpia vEl'D,

/ / 1
Z Z Bnorm(U)Bnorm (U )HIdU (07 o ) Z W

U€Zmia o,0'€Ly; YEly, +:|V (00v)|>Dy or |[V(o’'ov)|>Dy
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For o € Ly;, define mg = Dy +1—|V(0)| > 1. This is precisely set so that for all v € I'y,

we have |V (0 o ~)| > Dy if and only if [V (y)| > |U| + ms. So, for 0,0’ € L};,

1 1
2 |[Aut(U)]e(y) 2 | Aut(U)]e(v)

1€T 2|V (007)[> Dy or [V(o'oy)|>Dy VEL eV (3) |2 U+ min(me,m 1)
1

— omin(mg,m,/)—1

Also, for o,0" € L};, we have |V (¢ o 0’)| + min(mgy, my) — 1 > Dy,. Therefore,

dIdU HIdU Y / / 1
Z Z |Aut Z Z Bnorm Bnorm( >HIdU (J’ g ) 21’I1i1’1(mo';m01)_1

Uelniavely, U €Lmiqdo,0'€ /;’
nO1)Dsos

Z Z n0-5¢|V (goo”)|gmin(mg,m /)1

where we used Lemma 7.1.10. Using n0-5¢|V (o00”)| > n0'15|v(‘7°‘7,)|2|v(‘70‘7,)|,

Z Z dIdU HIdU7 Z Z nO1)Dsos
| Aut(U 0.1V (g00’)[9|V (go0’)|gmin(mg,m,r)—1

U€Znia €Ty « UeImld o.0€Ly, n

DSOS

Z Z Ol&?\V JOJ)\2DV

UEIm'Ld og,0 6»6/

nO(1)Dsos

Z Z DDsos 0.1¢|V (ooo’ )‘2DV

UEImzd ag,0 G»C/

The final step will be to argue that ) ;o7

m

1 . .
id ZO‘,O”E[:/U Dg)ssosnl),la\\/(aoa/ﬂ <1 which will

complete the proof. But this will follow if we set Cy, small enough. [ ]

7.2 Tensor PCA: Full verification

In this section, we will prove all the bounds required to prove Theorem 4.3.1.
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Theorem 4.3.1. Let k > 2 be an integer. There exist constants C,CaA > 0 such that for all
k

sufficiently small constants € > 0, if A < n1 ¢ and A = n~CAE then with high probability,

the candidate moment matrix A given by pseudo-calibration for degree nCe Sum-of-Squares

1s PSD.

In particular, we will use ?? where we choose ¢ in the theorem, not to be confused with
the € in Theorem 4.3.1, to be an arbitrarily small constant.
To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.
Lemma 7.2.1. For allU € I,,;4 and 7 € My,

1
M) Hdy - Brorm(7)Hr

T 1
Brorm(7)H WHIdU

=0

Lemma 7.2.2. For all U,V € T,,;q where w(U) > w(V') and all vy € Ty y,

C(V)QN(V)QB( ) H]dz/v = Hl

Lemma 7.2.3. Whenever |My|| < Bnorm(a) for all a« € M/,

A1y (L, Hyg,)
fact IdU Idy;
S i =o ¥ ¥ ),
Ul id Ul iqv€ely,

Corollary 7.2.4. With constant probability, A > 0.

Proof. This follows by invoking ?? whose conditions follow from Lemma 6.3.10, Lemma 7.2.1,

Lemma 7.2.2 and Lemma 7.2.3. []
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7.2.1 Proof of Lemma 7.2.1

k
Lemma 7.2.5. Suppose A <nd~°. For allU € Z,,;q and T € My, suppose deg” (i) is even

for alli € V(1) \ Ur \ V;, then

1

V=10 gy <
Vi (7) 055 e le

Proof. Firstly, we claim that }_oc p(r) kle = 2(]V(7)[ — |Ur|). For any vertex i € V(1) \ Uz \
V7, deg” (i) is even and is not 0, hence, deg” (i) > 2. Any vertex i € Uy \ V; cannot have
deg™ (i) = 0 otherwise U; \ {i} is a vertex separator of strictly smaller weight than U, which

is not possible, hence, deg” (i) > 1. Therefore,

ecE(T) 1€V (1)
> N degT(i)+ Y deg"()+ Y. deg™(i)
ieV(m\UA\ V> ieU\Vr i€eVA\Ur

Z 2|V(T> \ U'r \ V’r‘ + ‘U'r \ V7—| + ‘VT \ UT’

=2(|V(7)| = |Ur)
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By choosing Ca sufficiently small, we have

le
VAV OOy — VOO AV @I T ( A}g)
)

ecE(T (An)f

\/—IV T=1Ur| AV ()| 1U-| H (—5—0.5¢)
ecE(T)
_ AVl |—%A|V(T)|—\UT| T n 0ot
ecE(T)

_ AlVOI-U] ] n oot

ecE(T)
1
—= n05€ ZSEE(T) le

Corollary 7.2.6. For allU € 1,,;q and 7 € My, we have
c(T)Bnorm/(7)S(1) <1

Proof. Since 7 is a proper middle shape, we have w(/7) = 0 and w(S; in) = w(Ur). This

implies
w(V (7)) +w(Ir)=w(Sr min)

. s _ Vel

If deg” (i) is odd for any vertex i € V(7) \ Ur \ Vr, then S(7) = 0 and the inequality is
true. So, assume deg” (i) is even for all © € V(1) \ Ur \ V. As was observed in the proof
of Lemma 7.2.5, every vertex ¢ € V() \ Ur or i € V(1) \ V; has deg” (i) > 1 and hence,
VO\UR|+V T\ Vel S48 epr) le- Also, [B(7)] € Leepr) le and g = nOU=(OvCp),
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We can set Cy, C'p sufficiently small so that, using Lemma 7.2.5,

o(7) Brorm(7)S(7) = 100(3Dy )T \Vr [HVAU [HRIE(T) [ 9]V (T (U7 UV

.26(6qDV>‘V<T)\UT|+|V(T>\VT| H (400D‘2/D%q)le\/E‘V(T)‘_|UT|S(7-)
ecE(T)

IN

nOW)e(Cv+CE) Y eep(r)le | \/E|V(T)|_|UT|S(T)

< n0<1)'5(CV+CE)'Ze€E(T) le . 1
= n05€ ZEGE(T) le

<1

[ ]
We can now prove Lemma 7.2.1.
Lemma 7.2.1. For allU € I,,;4 and 7 € My,
1
POy My Brom Mz
T 1 o
Brorm(TMHr - fraroryerry H1d
Proof. We have
1 H B (T)H ( 1 _ S(T)Bnorm(T)) H O
TAut(U)]e(r) 11 1du norm T [Aut(U)c(r) [Aut(O)] Idy
S(7)Bnorm(T
Buorm(MHT fraoyecs) Hiao 0 (et — “ Pt ™) Hra
S(r)
+Bn07‘m(7—) |:Aut(U)HIdU H‘r
HY Tatctny Hrdo
S(7) H
TAut(O)] 1 1d Hr
By Lemma 6.3.12, | Aut(U)] 14U s > 0, so the second term above is posi-
T T
Hz —|Aut(U)|HIdU
tive semidefinite. For the first term, by Lemma 6.3.10, Hyg, = 0 and by Corollary 7.2.6,
1 _ 8(7)Bnorm(7) . . . .

At (]e(r) CAut (0] > 0, which proves that the first term is also positive semidefi-
nite. [
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7.2.2  Proof of Lemma 7.2.2

Lemma 7.2.7. Suppose \ < ni. For all UV € I,q where w(U) > w(V) and for all

velyy,
1

w(V\Uy) g2
n R = | (I NCAA S S

for some constant B that depends only on Ca. In particular, it s independent of Cy and

Cp.

Proof. Suppose there is a vertex ¢ € V() \ Uy \ Vy such that deg? (¢) is odd, then S(y) =0
and the inequality is true. So, assume deg”(i) is even for all vertices i € V(y) \ Uy \ V5.
We first claim that kZeeE('y) le > 2|V (y) \ Uy|. Since v is a left shape, all vertices ¢
in V(v) \ Uy have deg?(i) > 1. In particular, all vertices i € Vy \ Uy have deg?(i) > 1.
Moreover, if i € V(v) \ Uy \ V5, since deg” (i) is even, we must have deg? (i) > 2.
Let S” be the set of vertices ¢ € Uy \ V5 that have deg?(i) > 1. Then, note that
15" 4+ |Uy N Vy| > V4| = |S'| > |Vy \ U] since otherwise S’ U (Uy N Vy) will be a vertex

separator of v of weight strictly less than Vs, which is not possible. Then,

S kle= Y deg(i)

ecE(y) i€V (v)
> Y deg?()+ Y degV(i)+ Y deg)(i)
i€V (7)\Uy\ V4 i€Uqy\Vy i€Vy\Uy

> 2[V(y) \ Uy \ V4| + 5’| + VA \ Uyl
> 2[V () \ Uy \ Vo] +2|Vy \ Uy|

=2[V(7)\ Usl

Finally, note that 2|V (y)| — [Uy| = [V5| = [Uy \ V3| + Vo \ Uy +2[V(7) \ Uy \ V4| =
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V(7)) \ (Uy NVy)|. By choosing Cx sufficiently small, we have

le
0 VON) §()2 — VD A2V O3 - VA T < A )

k

ech(y) AT
< plVONUDAZIV ()05 =[VA] H n—(5+e)le

ecE(y)
< AVOI T e

ecE(7)
1

<

R (OO CAIAIE) Sy

for a constant B that depends only on Ch. ]

Remark 7.2.8. In the above bounds, note that there is a decay of nP¢ for each vertex in
V() \ (Uy N V). One of the main technical reasons for introducing the slack parameter
CA in the planted distribution was to introduce this decay, which is needed in the current

machinery.
We can now prove Lemma 7.2.2.

Lemma 7.2.2. For all U,V € T,,;q where w(U) > w(V') and all v € Ty y,
(V)N B(y) Hy" = HY,

Proof. By Lemma 6.3.14, we have

2 AUt

()N’ BO) Hpg " 2 e)* N’ BO)Y S0 ey

Using the same proof as in Lemma 6.3.10, we can see that H@ > 0. Therefore, it suffices to

prove that



[AutU)] - _ UL
» At (V)] VT

D|‘£]7\Vv|' Also, |E(7)] < Yeep(y) le and ¢ = nOW)e(Cv+CE)  Let B be the constant from

Lemma 7.2.7. We can set Cy,, Cp sufficiently small so that, using Lemma 7.2.7,

Since U,V € T,ia, |Aut(U)| = |U|!,|Aut(V)| = |V|!. Therefore

Aut U «
()N ()2B()2S (4 )Q:AutEV;: < 1002(3 Dy )2U~\Va F2IV\US 142k ()] glV O\ (U 0V:)

- (3Dy )V ONVAH2IVONUS (6 Dy, )21V (NS [ 2IVN\VA | H (400D3%, D%q)*-

e€E(y)

. nw(v("/)\Uw)S(,y)Q . D“y‘v\v’y‘
< ROWVE(CU+CR)(VENT W)+ Secpin ) . oV NT) ()2

< pOWE(CrtCR)(V (N WV oy o) 1
- nBE(lv('Y)\(U'yme)H‘ZeeE(w)le)

<1

7.2.83 Proof of Lemma 7.2.3

In this section, we will prove Lemma 7.2.3 using the strategy sketched in [149, Section 10].

Lemma 7.2.3. Whenever | Myl < Bnorm(a) for all o € M/,

d1ay (L, Hyg,)

t 1d 1d

> M) =e | Y > M) gy
IAwf )le(v)

Ul id U€lpmiq VGFU

In particular, we prove the following lemmas.

Lemma 7.2.9. Whenever |My|| < Bnorm(a) for all « € M/,

Z Mfact HIdU> -2
U€l,ia
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Lemma 7.2.10.

Z Z dIdU HIdUaH ) < 1
- 2Ds0s9D
UTmia el [Aut(U)le(y) = APsos2By

Assuming these, we can conclude the following.

Lemma 7.2.3. Whenever |My|| < Bporm(a) for all o € M/,

d ! Hig)
j : fact 2 : 2 : IdU IdU
Ul id Ul iqgv€ely,

2D2
Proof. We choose Clyys sufficiently small so that AnDSZZS = A2DsSs2DV

which is satisfied by

setting Csos < 0.5Cy . Then, since Idgy,, = 0, using Lemma 7.2.9 and Lemma 7.2.10,

2D?
¢ A4sos
Z My fac (Higy) =
UEImzd

sym
nDsos y

= MDDy B

dray, ( Hld )

- > E = ) Id

=0 |Aut le() sym
Ul qvely,

The rest of the section is devoted to proving Lemma 7.2.9 and Lemma 7.2.10.
In the proofs of both these lemmas, we will need a bound on Byorm (0) Bnorm (o) H Idy (0,0")

that is obtained below.

k
Lemma 7.2.11. Suppose A\ =n1"¢. For allU € T,,;4 and 0,0’ € Ly,

1

/ /
Buorm () Brorm(7') H1ay (9, 7') < 5 o A Draera 0

Proof. Suppose there is a vertex i € V(o) \ V, such that deg?(i) + degU (i) is odd, then

Hpqy, (o, ¢') = 0 and the inequality is true. So, assume that deg® (i) + degU7 (i) is even for
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all i € V(o) \ Vg. Similarly, assume that deg"l(i) + deg¥<’ (i) is even for all i € V(o) \ V.
Also, if po # pyr, we will have Hpg, (o, 0’) = 0 and we’d be done. So, assume py, = p,.

Let a = 0 oo’. We will first prove that ZeeE(a) kle + 2deg(a) > 2|V ()| + 2|U]|. Firstly,
note that all vertices i € V(a) \ (Uq U V) have deg®(i) to be even and nonzero, and hence
at least 2. Moreover, in both the sets Uy \ (Uy N Vy) and Vi, \ (Uy N V), there are at least
|U| — |Ua N V| vertices of degree at least 1, because U is a minimum vertex separator. Also,

note that deg(a)) > |Uq| + |Va|. This implies that

Z kle + 2deg(a) > 2|V (a) \ (Ua U V)| +2(JU| — |Ua N Val|) + 2(|Ua| + |Val)
ecE(a)

= 2(|V(04)| - |Ua U Val) + 2(|U| - |Ua N Va|) + 2(|Ua U Va| + |Ua N Va|)

=2|V(a)| +2|U]

where we used the fact that U, NV, C U. Finally, by choosing Cy/, Cg sufficiently small,

w(V () —w(U)
2

Brorm(0) Brorm (0") Hray (0,0') = 2¢(6¢Dy )1V NIV T (400DF, D) en
e€E (o)

w(V (o) —w(lU)
2

.26(6qDV)|V(0')\Uo/|+|V(0’)\Vo/| H (400D%/D%Eq)len
ecE(o’)

deg(a) le
L AV (1) ! I ( A )
|Aut(U)| VAn i (An)

1 deg(a)
< OOy +CE) (V@IS e gy 1) AV (@0) (ﬂ)

[NIE

deg(a
v @l-1wl (1) 9(e) I nt4-ooon.
e€E(a)

Vn
OO O V(e 2ecmce ) . ! \/E‘V(O‘)H’|U‘*deg(&)7%ZeeE(a) Kl
neCalV(a)]p0-5¢ Xeer(a) le ADsosplU|
1

<
= 10560V (@) ADsos U]

where we used the facts A < 1,deg(a) < 2Dgps. [ ]
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Proof of Lemma 7.2.9

To prove Lemma 7.2.9, we will use the strategy from [149, Section 10]. We will also use the
notation from that section. We recall that for U € Z,,,4, E'U C L7 was the set of non-trivial

shapes in L.
Proposition 7.2.12. For V. € 7,4, \yv = ﬁ
i1 VAV
Proof. We have Ay, = [Aut(V')|H gy, (Idy, Idy) = A <\/T) = T |

Lemma 7.2.13. For any edge e = (V,U) in G, we have

(¢) < ~groat
w(e
= ,0.1CAe|U[ A2Ds0s
p . . _2W(U,V) .
roof. Let e = (V,U) be an edge in G. Then, w(U) > w(V) and w(e) = - Using
Lemma 7.2.11, we have
2
WOV = ) 2 " Buorm(0)Buorm(0') Hyay (0,0")
0€ﬁv,Ug:U Uleﬁv,Ua/?éV
2 1
Sy >
— | Aut 0.5eCA |V (000”)| ADsosm |V
[Aut(U)] 5 i oely U AV " alV(oeo)| ADsosn |V
2
< Z n0-5¢CAlV (a00”)| ADsosp| V|
o,0’eLy,
1
< 2 5D ,
oot n0-1Cae|V (oo0 )|D30‘?SOSRF€|V(UOU NA2Dsosp|V|
1 1
<
— n0.1CAe|lU| A2Dsosp| V| 070/26:5"/ D£§OSRF€|V(UOU/)|
1
<
= 01CAe|U| A2Dsos V|
_ Av
o nO.lECA|U\A2DSOS
where we set 'y, C'p small enough so that 0.4C'aA > F'. This proves the lemma. ]
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Corollary 7.2.14. For any U,V € Z,,;q such that w(U) > w(V),

1
5 T o<
P:P i . 2ZDSOS
:P is a path from V to U in GeeE(P)
Proof. The total number of vertices in G is at most Dgys + 1 since each U € Z,,,;4 has at
most Dgyg vertices. Therefore, for any fixed integer j > 1, the number of paths from V' to
U of length j is at most (Dges + 1)j. Take any path P from V to U. Suppose it has length
j > 1. Note that for all edges e = (V/,U’) in E(P), since |U’| > 1, we have

1 1

w(e) < <
( ) - n0~1CA5|U/|A2Dsos - nO.lCA{-:AQDSOS

J
So, HeeE(P) w(e) < (W) . Therefore, by setting C,s small enough,
Dsos 1 7
> [T w€)< Y O+ 1 (o
P:P is a path from V to U in G ecE(P) j=1
1
T 2D0s A2D50s
|
We can now prove Lemma 7.2.9.
Lemma 7.2.9. Whenever | My|| < Bporm(a) for all « € M/,
2D?
n A+“Vsos
Z Mfac HIdU) nDsos sym
Uel,nid
Proof. For all V € Z,,;4, we have
1 t
ldsym,y =2 > > [ we EMfac (Hrqy,)
UeZiqw(U)>w(V) \P:P is a path from V to U in G e E(P)
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Summing this over all V' € Z,,,4, we get

Idgym = D > > [T wie) | mfoct(myy,)

UEImld VeLigw(U)>w(V) P:P is a path from V to U in G ecE(P)
SO -l (D D el R/
N AU 2D 05 A2D30s Tdy
U€Lnia VeLyigwU)>w(V) 77508

For any fixed U € Z,,,;4, the number of V' € Z,,,;4 such that w(U) > w(V) is at most Dgps.

Therefore,

1
]dsymj Z \ A2D2 MfGCt(HIdU)
U€Lpig U=
— Z D7 |U|Mfact(Hd )
UeImid
1
=3 A2D2 neo I (Hpg, )
UEImid s0s

where we used the fact that for all U € Z,,,;4, we have |U| < Dgos and Mf“Ct(H[dU) 0. m

Proof of Lemma 7.2.10

We restate the lemma for convenience.

Lemma 7.2.10.

Z Z dIdU HIdUJ H ) < 1
- 2Ds0s9D
UeTmiavely, [Aut(U)le(y) = APsos2By
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Proof. We have

DY 1y HIdU,H’)
U€lpmid ’YGF |AUt (7)
/ /
Z Z Aut ( ) Z Brorm(0) Brorm (o )lqde7 (0,0")

U€lmia VEFU* 0,0/€Lyy |V (@)|<Dy,[V(o))|<Dy,
[V (007)[>Dy; or |V(a'07)[>Dy,

The set of o,0’ that could appear in the above sum must necessarily be non-trivial and

hence, 0,0’ € E’U. Then,

drd, HIdUaH/>

2 Z |[Aut(U)]e(y)

UeImzd ’YEF

’ / 1
Z > Buorn(0)Buorm (o) Hya, (0.0') 2 [Aut(0)]e()

U€Zmiao,0'€Ly; v€T vy, 2|V (007)[>Dy or |V(o'0v)|>Dyv

For o € Ly;, define mg = Dy +1—|V(0)| > 1. This is precisely set so that for all v € I'y,

we have |V (o 0~)| > Dy if and only if |V (y)| > |U| + ms. So, for a,0’ € L],

1 1
2 [Aut(U)]e(y) 2 [Aut(U)[e(7)

V€ly«:[V(g07)[>Dy or [V(d'0y)|>Dy VL[V ()2 |U[H+min(meg,mg)
1

— gmin(mg,m,s)—1

Also, for 0,0’ € L};, we have |V (0 0 ¢')| + min(mg, m,) —1 > Dy,. Therefore,

dray, (Hrq 1

U U’ / /

Z Z |Aut Z Z Bnorm Bnorm( )HIdU (Ua o )Qmin(mg,mgz)—l
U€Lpmiq YELy UEImzd 0,0 E,C/

1
UE; Zﬁ’ no- 5eCA|V (ooo )|ADSOSn‘U|2m1n(mo’7m -1
mde'O' S

1
UEXI: Ze:ﬁ’ n0-5eCAlV (d00”)| A Dsosomin(me,m 1) —1
mid T, o’

248



where we used Lemma 7.2.11. Using n0-5Ca |V (oo0’)] > no'l*ECMV(UOU,)|2|V(UOU,)|,

NPV T GTRIP I !
| Aut (U n0-1eCA|V (500”)| ADsos9|V (000”)|gmin(me,m,r)—1
Uelniavely, U €Tmido,0'€ ,c’

1
Z Z n0-1eCA |V (o00’)| A Dsos9 Dy
UEImzd g,0 EE’ A 5082

1
Z Z Dsos 0.16CA|V(O'OO'/)| 2D DV
U€lpmid o,0’'€Ly; Dsoi”n AZFv0s2

where we set Csps small enough so that Dgos = ntCsos < peeCa = % The final step will

be to argue that ) ;7c7

m

1 . .
2 oole Ly DDy 0 I0AeV (o5 < 1 which will complete the proof.

But this will follow if we set Cy,, Cr small enough. [ ]

7.3 Sparse PCA: Full verification

In this section, we will prove all the bounds required to prove Theorem 4.4.1.

Theorem 4.4.1. There exists a constant C' > 0 such that for all sufficiently small constants

. di— k275
5>0,me§77m§77

A <k < dlfAE, and \\% < d*Ae, then with high probability, the candidate moment matrix

and there exists a constant A such that 0 < A < zlp

A given by pseudo-calibration for degree dce Sum-of-Squares is PSD.

In particular, we will use ?? where we choose ¢ in the theorem, not to be confused with
the € in Theorem 4.4.1, to be an arbitrarily small constant.
To invoke the machinery, we basically have to verify the following conditions, the quali-

tiative versions of which have already been shown in Section 6.2.
Definition 7.3.1. Define n = max(d, m).

Remark 7.3.2. The above definition conforms with the notation used in ?7?. So, we can use

the bounds as stated there.
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Lemma 7.3.3. For allU € Z,,;4 and 7 € My,

1
AUy Bnorm () Hr

T 1
Bporm(7)Hz WHICZU

=0

Lemma 7.3.4. For all U,V € T,,;q where w(U) > w(V') and all vy € Ty y,

c(7)*N()?*B(y)*Hp, " < HY,

Lemma 7.3.5. Whenever |My|| < Bnorm() for all « € M/,

d ! Hig,,)
fact IdU Idyy
E M HIdU) =6 E E |Aut ’Y) Idsym
Uel id U€l,ia ’VEF

Corollary 7.3.6. With high probability, A > 0.

Proof. This follows by invoking 77 whose conditions follow from Lemma 6.4.11, Lemma 7.3.3,

Lemma 7.3.4, and Lemma 7.3.5. ]

7.3.1 Proof of Lemma 7.5.3

Lemma 7.3.7. Suppose 0 < A < ZII 1s a constant such that \\% < d=—4¢ and \/LE < d—24.

1- 2
For all m such that m < d/\—;,m < k)\—;, for allU € Z,,;q and T € My, suppose deg” (i) is

even for alli € V(1) \ Ur \ V;, then

\/C_Z|T|1*\Ur|1\/E\T|2—|UT|QS(T) < H (deg™ (j) — 1)I! - 1

Ae Ze T le
JeVa(T\U,\Vr " ZeeB)
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Proof. Let r1 = |71 — |Ur|1,7m2 = |7|2 — |Ur|2. Since A < 1, it suffices to prove

> oecE(r) le
Lk s \/X ecE(T) 1
B o= \/37"1 19 (_) v < - -
" d \/E o dAE ZCEE(T) le

We will need the following claim.

Claim 7.3.8. ZeEE(T) le > 2max(ry,rs).

Proof. We will first prove 3 .c p(r)le = 2r1. For any vertex i € Vi() \ Ur \ V7, deg” (i)
is even and is not 0, hence, deg” (i) > 2. Any vertex i € U \ V; cannot have deg” (i) = 0
otherwise U; \ {i} is a vertex separator of strictly smaller weight than Ur, which is not
possible, hence, deg” (i) > 1. Similarly, for i € V; \ Uy, deg” (i) > 1. Also, since Hr is

bipartite, we have ) . deg™ (i) =, deg le. Consider
1€Vi(T) JEVR(T) e€E(T

Z le = Z deg™ (i

ecE(T) 1€Vi(r)
> Z deg’ (i) + Z deg” (i) + Z deg’ (1)
i€V (T)\UA\Vr i€(Ur)1\Vr Z'E(Vﬂ')l\Ur

> 2V (T)\ U\ V| + [(Ur)1 \ Ve | + [(V7)1 \ Ur|

=2r

We can similarly prove ) o E(r) le > 219 |

To illustrate the main idea, we will start by proving the weaker bound £ < 1. Observe

r1 2max(r1,r2)
that our assumptions imply m < )?2 ,m < k2 and also, £ < \/_T ! (%) <\\%>
where we used the fact that % < d—Ae < 1.

Claim 7.3.9. For integers 1,79 > 0, if m < )\2 and m < then,

)\2’

r 2max(ry,r2)
v (5)" (%) <1
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Proof. We will consider the cases 71 > ro and ry < r9 separately. If r{ > r9, we have

v (i) () = ()6 (3)

(%)
(&
<1

And if 1 < r9, we have
r N\ (VT B\ (VA
@aﬂm(a) <_) NN N <3) <ﬁ>

vk
<G (7 ()6 ()

=1

For the desired bounds, we mimic this argument while carefully keeping track of factors

of df.

Claim 7.3.10. For integers r1,79 > 0 and an integer r > 2max(ry,r9), if m < % and
2—¢
(VA 1\
drl ro [V vAa < (=
i ()" () = ()

k
mg)\

, then,
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Proof. 1f r{ > r9,

And if | < ro,

™
£
B
w
f
_ﬂik
SN—
™
&
N
VRS

VA
vk

'

N

< |3
E
_n

S
S

I
£y

(

&

L
SIS
SN—

&
YR

VA
vk

)6

~<

[

—
=~
[a\]
~
a

!
\A

<

(\l/

by
=

VI

e\njr\l/
[\

|
VR
—~ N /7

)
17_M —

N—— N

m.

clai

ult follows by setting r = ZeEE(T) le in the above

The res
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Corollary 7.3.11. For all U € 1,,;q and 7 € My, we have

c(T)Brorm(7)S(T)R(T) < 1

Proof. First, note that if deg” (¢) is odd for any vertex i € V(1) \ Ur \ V7, then S(7) = 0 and
the inequality is true. So, assume that deg” (i) is even for all i € V() \ Uy \ Vr.

Since 7 is a proper middle shape, we have w(Ir) = 0 and w(S; i) = w(Ur). This
implies

w(V (7)) +w(lr)—w(Sr min) _
n 3 : :\/E‘Th ‘UT|1\/E‘T|2_|UT|2

As was observed in the proof of Lemma 7.3.7, every vertex i € V(7)\Ur ori € V(7)\ Vr
has deg” (i) > 1 and hence, |V (7)\Ur|+|V (7)\V7| < 4266]3(7) le. Also, ¢ = d9(1)e(Cv+CE),
We can set Cy,, C'p sufficiently small so that

() Brorm (7)S(T)R(T) = 100(6Dy) | U AV [+ VAU |42 E(7) [ 4|V (TN (U UV:)|

.26(6qDV)IV(T)\UTIHV(T)\VTI H (400D% D%q)'
e€E(T)

AT T2 g (1) (C gy D) T 497 0)

1
O(1)(Cv+CE)eX cep(ry le . AN B | I
<d ) I | (deg™(j) — D! FYE DRy
jGVZ(T)\VQ(UT)\VQ(VT)
1

< dOWHCVEOR) e cenn b (Dy D) 2eerm e . dAe X een(n be

<1

We can now prove Lemma 7.3.3.
Lemma 7.3.3. For allU € Z,,;4 and 7 € My,

1
MUy Bnorm () Hr

T 1
Bporm(7)Hz WHICZU

=0
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Proof. We have

1
AUy Bnorm () Hr

T 1
Bporm(7)Hz WHICZU

1 S(7)R(7) Bnorm(7)
(e — = ™) Haay 0
1 S(7)R(T) Bporm(T)
0 (e — = ™) Haay
S(r)R(r)
+ Brorm(T) [Aut(U)] HIdU r
gr SERE)
T [Aut(0)] T dy
S(T)R(T)H H.
By Lemma 6.4.15, [Aut(U)] Ay ! > 0, so the second term above is posi-
T S(r)R(T) 17
T [Aut(U)] Ly
tive semidefinite. For the first term, by Lemma 6.4.11, Hyg = 0 and by Corollary 7.3.11,
Tu t(éﬂC(T) — S(T)lf/(@)f(?g‘)’]"m(ﬂ > 0, which proves that the first term is also positive semidef-
inite. [ |

7.8.2  Proof of Lemma 7.5.4

1 \/_X < —Ae L < —2A
Lemma 7.3.12. Suppose 0 < A < 7 is a constant such that T d v d and

m < for allU,V € T,,;q where w(U) > w(V)

lfl <d~ Ae - For all m such that m < d

T )\2’

and for all v € Ty y,

1
VN5 ()% < [T  (deg?() -1
= RGN GARAIES Spmrn
JEVa(N\UY, d T ey
for some constant B > 0 that depends only on Ca. In particular, it is independent of Cy,

and Cg.

Proof. Suppose there is a vertex ¢ € V() \ Uy \ Vy such that deg?(¢) is odd, then S(v) =
and the inequality is true. So, assume deg?(7) is even for all vertices i € V() \ Uy \ V. We
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have n@(VOONUy) = ghvhi=1Uyl1pvl2=1Uy 2, Plugging in S(), we get that we have to prove

1
S B VNG, VA S e piy 1)

le
L T | | 27
e€E(y)

k 2[v)1 = Uy 1= V5|1
d

B e qh—1Us 11 72— 10512 (

Let S be the set of vertices i € U, \ V5 that have deg”(i) > 1. Let e, f be the number of
type 1 vertices and the number of type 2 vertices in S’ respectively. Observe that S’ U(UyNVy)
is a vertex separator of 7.

Let g = |V5 \ Uy|1 (resp. h = |Vy\ Uy|2) be the number of type 1 vertices (resp. type 2
vertices) in Vy \ U,.

We first claim that d®mf > d9m". To see this, note that the vertex separator S’ U
(Uy N'V4) has weight \/E€+‘U70V7|1\/ﬁf+|UVOV'Y‘2. On the other hand, V, has weight

U,NV. . . . . ..
\/c_ig+| 7 7|1\/777,h+|U“VmVAY|2. Since 7 is a left shape, V5 is the unique minimum vertex sepa-

rator and hence, \/c_leHUVm/Vh\/ﬁfHUVmV7|2 > \/EgHUVﬂVVh\/thUVOVV'Q which implies
dem/ > dImh.

Let p = [V(7) \ (Uy U V4)|1 (xesp. ¢ = [V (7) \ (Uy U Vy)|2) be the number of type 1
vertices (resp. type 2 vertices) in V() \ (Uy U Vy).

To illustrate the main idea, we will first prove the weaker inequality £ < 1. Since A < 1,

it suffices to prove

2|v[1—=|U~|1—|V-
JAh=IU311, Pl E Y 1=1Uy 1=V~ 11 H )\_le <1
d kle —
e€E(v)

We have

h
A =105 e 1Us 2 — gptg,a+h < o+ he g+ LH"

since dm/ > d9m/. Also, 2171 = |Uyl1 = [V4]1 = 2p+ e+ g. So, it suffices to prove

l
/\ e
— <1

2p+etg
+ +h
np_tr_% mq—’_fT ( k >

d
e€B(y)
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We will need the following claim.

Claim 7.3.13. Y c () le > max(2p + e+ g,2q + [ + h)

Proof. Since H, is bipartite, we have >-ccpy)le = D ievi(y) deg” (i) = Xicvy(q) deg? (i)
Observe that all vertices i € V() \ Uy \ V4 have deg”(i) nonzero and even, and hence,

deg” (i) > 2. Then,

Z le = Z deg’ (i)

e€E(y) i€Vi(v)
> Z deg’ (i) + Z deg’ (i) + Z deg” (i)
1EVI(Y\UA\Vy i€(Uqy)1\Vy i€(Vy)1\Uy
>2p+e+g
Similarly,

Z le = Z deg’ (i)

e€E(y) i€Va(y)
> Z deg’ (i) + Z deg? (i) + Z deg’ (1)
Z'EVQ(’V)\U»Y\V’Y iE(U»y)Q\V»y Z'E(V»\/)Q\U»y
>2q+f+h
Therefore, ZeeE(v) le >max(2p+e+g,2qg+ [+ h). [ ]

Now, let 71 = p+ 6—;—9,7”2 =q+ # Then, ZeeE(y) le > 2max(rq,ry) and we wish to

prove

L 2r1 \ 2max(r1,r2)
dtm" [ = — <1
(@) G)

This expression simply follows by squaring Claim 7.3.9.
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Now, to prove that F < 7y, We mimic this argument while

1
gZEVONUN)+2 e ()

carefully keeping track of factors of d°. Again, using dm/ > d9m™, it suffices to prove that

le
AZnl=U =Vl T A 1

Z_ <
ey B PV OV sy

2|V|1_|Uv|1_|V'y|1
I (g)

The idea is that the d¢ decay for the edges are obtained from the stronger assumption on

m, namely m < d > m < B And the dB? decay for the type 1 vertices of V(v N (UyNVy)

)\2 )
are obtained both from the stronger assumption on m as well as the factors of & g the latter
especially useful for the degree 0 vertices. Finally, the dB€ decay for the type 2 vertices of
V(7)\ (UyNVy) are obtained from the factors of A.

Indeed, note that for a constant B that depends on Ca, A217l2= Uy 2= V5l2 < g=BelV(y\UyNV5)l2,

So, we would be done if we prove

dp+e+gmq+f+h E 2 =10y =Vy é ZeGE(w)l€< 1
d k - ng(W(V)\(UWva)|1+ZeeE(7)le)

Let ¢y be the number of type 1 vertices i in V() \ (Uy N V;) such that deg”(i) = 0.
Since they have degree 0, they must be in (U)1 \ V5. Also, we have 2|y[1 — |Uy|1 — [V4]1 =

k>2|7|1—|Uw|1—|V7|1 B (k)2p+€+9+60

2p+e—+ g+ cp and hence, (8 a . For these degree 0 vertices,

we have that the factors of 5 < d—4¢ offer a decay of ﬁ. Therefore, it suffices to prove

2pt-e+t e le
P+ L (k> e <’\>Z€Em < !

d k = Betatet frgt )+ e gy le)

for a constant B > 0. Observe that p+q+e+ f+g+h < 2(3ccp(y)le). Therefore, using

the notation r; = p + e+g , 79 = q + f+h , it suffices to prove

i (k) (A)ZEGEW AP S
d ]C - dBE ZEEE(V) le
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for a constant B > 0. But this follows by squaring Claim 7.3.10 where we set r = ZeEE('y) le.

Remark 7.3.14. In the above bounds, note that there is a decay of dbe for each vertex in
V() \ (Uy N V). One of the main technical reasons for introducing the slack parameter
CA in the planted distribution was to introduce this decay, which is needed in the current

machinery.
We can now prove Lemma 7.3.4.

Lemma 7.3.4. For all U,V € T,,;q where w(U) > w(V') and all v € Ty y,
N (v)*B(y)*Hy )" = H!
(V)N B() Hp, ' = H;
Proof. By Lemma 6.4.17, we have

o |Aut(U)]

0(7)2]\7(7)23(7)2]‘-’]_;/’7 = 0(7)2N(7)2B(7>25(7)2R(7> Aut(V)] 7

Using the same proof as in Lemma 6.4.11, we can see that H% > 0. Therefore, it suffices to

prove that
Aut(U
PN OPBOPSOPROP i <1
Since U,V € T4, Aut(U) = [UL|U|2!, Aut(V) = [V];!|V]s!. Therefore, }ﬁ“i( %I

foftivtzr < Dy Also, 1B(0)] € Sy e and g = aOW = +CE). Note that

R(7)* = (Cdisc\/D_E)2Zj€(U7)2U(V'Y) deg™ (j) < OV ECE Y cen(y) le

and

[[ (eg(h-nr] < (Dy D)2 2ecbm e < qOWE(CvHOR)Deepe)le
FEVa(V)\UY\Vy
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Let B be the constant from Lemma 7.3.12. We can set Cy, C'g sufficiently small so that,

using Lemma 7.3.12,

[Aut(U)|
0(7)2N(7>2B(7)25(7>2R(7)QW

< 1002(6Dy )20\ Vo2V AT HE(@) 6V (AT V5|

- (3D ) VO R2VONU (64 Dy )2V (DN [H2IV ()N H (400D3 D%q)%e
ecE(y)

. nw(V(v)\Uw)5(7)2610(1)’6032@@(7) le . Dyv\vv‘

< JOW)e(Cv+CE)- (VUL [+ e p(y) le) . nw(V(V)\Uw)g(fy)2

< OWE(Cr+C)- (VNN + T e le) | 1
= BV e o)

<1

7.3.3  Proof of Lemma 7.53.5

In this section, we will prove Lemma 7.3.5 using the strategy sketched in [149, Section 10].

Lemma 7.3.5. Whenever |My|| < Bnorm(a) for all « € M/,

d 5 H )
fact IdU Idy;
YDIRTTLUHBIST b Sl SR TS JA
U€linid U€Tiavel'u«

In particular, we prove the following lemmas.

Lemma 7.3.15. Whenever |My| < Bporm(c) for all « € M/,

fact 1
Y. Mg (Hray) = Trpz,, [ sym
UEImid
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for a constant K1 > 0 that can depend on Ch.

Lemma 7.3.16.
dIdU HIdU7 H! ) dKQDsos

Z Z | Aut(U)|e(y) = 2Dy

Uelpiav€lu«

for a constant Ko > 0 that can depend on C .
If we assume the above lemmas, we can prove Lemma 7.3.5.

Lemma 7.3.5. Whenever |My|| < Bnorm() for all € M/,

d JHig )
t Id Id
E Mfac HIdU) i 6 E E |/;]ut ;J ]dsym
U€linid Uelia ’YGFU ,y

Proof. Let |Myl|| < Bporm(a) for all « € M’. By Lemma 7.3.15,

t 1
Z M{;; (HIdU) = mldsym
Uelid

for a constant K; > 0. By Lemma 7.3.16,

dldU HIdU’ H! ) dKZDsos

> X Aut(@)|e(r) = 2Dv

Uelid ’yEF

for a constant K9 > 0.

KoD
We choose Cyps sufficiently small so that pr: 1DQ > 6 22D;OS which can be satisfied by
1" 5so0s

setting Csos < K3Cy for a sufficiently small constant K3 > 0. Then, since Idgy,, = 0, using
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Lemma 7.3.15 and Lemma 7.3.16,

fact 1
Z MIdU IdU)>_dK D2 Idsym

S0s

UGImzd
dKQDsos
dray, (Hy, H Id )
-6 U U Id
Ul iqv€ely,

In the rest of the section, we will prove Lemma 7.3.15 and Lemma 7.3.16.

To begin with, we will need a bound on Bjorm (o) Bporm (o) H IdU(a, o).

1, VA o g-Ae 1 < g24
Lemma 7.3.17. Suppose 0 < A < 7 18 a constant such that i S d and 75 S d )

1- 2—
Suppose m is such that m < d)\—;,m < k/\—; For allU € 1,,;4 and 0,0’ € Ly,

) , dO (1) Dsos
Brorm(0) Bnorm(o )HIdU(U;U) < J0-5AEV (700”)]

Proof. Suppose there is a vertex i € V(o) \ V, such that deg?(i) + degU (i) is odd, then
Hpgy,(0,0") = 0 and the inequality is true. So, assume that deg? (i) + degU7 (i) is even for
all i € V(o) \ Vy. Similarly, assume that degal(i) + degUs' (i) is even for all i € V(') \ V.
Also, if pg # pyr, we will have Hpg, (o, 0’) = 0 and we would be done. So, assume py = p,.

Let there be e (resp. f) vertices of type 1 (resp. type 2) in V(o) \ Uy \ V. Then,

HM \/—\V o)1— ‘U|1\/—|V a)l2—|Ul2
:\/E‘UUll\/m|UU‘2\/C_iemf
< dOWDsos /1 \ /!

where we used the fact that |Uys| < Dgps.
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Let there be g (resp. h) vertices of type 1 (resp. type 2) in V(¢’) \ Uy \ V,s. Then,
w(V(a!))—w(U
similarly, n 2) L < dOO)DSOS\/Eg\/ﬁh.
Let « = o oo’. Since all vertices in V() \ Uy \ Vo have degree at least 2, we have

ZBEE(Q) le > Zievl(a)\Ua\Va dega(i) > 2(€+g). Similarly, ZeeE(a) le > 2(f+ h) There-

fore, by setting riy = e+ g,r9 = f + h in Claim 7.3.10, we have

+g le

ety —f+h E\ € \/X 1

\/C_Z mn <E) H le S Ae EeEE(a) le
eeE(a)\/E d

a1 ety . C le
Also, (%) < (%) and HjEVQ(a)(dega(]) -t < d VZeeE(a) . Therefore,

w(V(0))—w() w(V(e')—wW)
n 2 n 2 HIdU <U7 0/)

< dO(l)Dsos \/ge\/ﬁde(l)Dsos\/Eg\/mh

I

1 ( 1 >deg(a) (k)ml o ‘ \/Xe
(= 2) Akl T @eg®G) -1 JT Y5
Aut(U)] AWk I jeVa() ceB(a) VES

+ le

Sdo(l)DsosdECVZeeE(a)le\/c_leJrg\/mf—l—h E eryg H \/X
d \/—ze

ecE(a) k

< dO(l)Dsos dECV ZEEE(Q) le ;
— dAE ZeEE(Oé) le

Now, observe that since all vertices in V() \ Uy \ Viy have degree at least 1, |V (a)| <
2Dg0s + 2 zeeE(a) le. So, by setting Cy, Cp sufficiently small,

w(V(0)—w(U)
2

Buorm(0) Buorm (") Hray, (0,07) = 2e(6g Dy )1V N VIO T (400D DEg)'*n
ecE(o)

w(V(e"))—w(U)

:26(6gDy )V N VN T (400D% Dyq)len ™

ecE(o’)
-Hypqy, (0,0")
< W) e(Cv+CE) (IV()+2 e p(a) le) JO(1) Dsos geOV Zecp(a) le _r
> dAs ZEEE(&) le
dO(l)Dsos

S J0-5Ac[V (a)]

263



Proof of Lemma 7.3.15

To prove Lemma 7.3.15, we will use the strategy from [149, Section 10]. We will also use the
notation from that section. We recall that for U € T4, L, C Ly7 was the set of non-trivial

shapes in L.
Proposition 7.3.18. For V € 1,4,

AlVI2

Ay = ——————
Vo VIV

2lv| Vi \4
Proof. We have Ay, = [Aut(V')|H g, (Idy, Idy) = (ﬁ) (%) AlVIz = dIVAh%

Corollary 7.3.19. Ay > m

Lemma 7.3.20. For any edge e = (V,U) in G, we have

dO(l)Dsos
< J0-1Ae|V (oo0’)]

w(e

W(U,V)

Proof. Let e = (V,U) be an edge in G. Then, w(U) > w(V) and w(e) = 2 3 . Using
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Lemma 7.3.17, we have

2

QW(U, V) — M Z Z Bnorm(U)BnOTm(al)HIdU (0-, 0-/)
oeLly ,Us=U O'/EE\/,UU/#V
2 d0<1)D805

S ha@)] 2~ 2. sV

| Aut(U)] d

UEﬁv,UUZU O'IE,C\/,UO./#V

_ 940(1)Dsos
- Z (0-5A¢e|V (aod’)|

o0'eL),

4O (1) Dsos

= Z 0.1A¢|V (co0”)| DPsos 1Fe|V (goc”)|

o0'eLl, > Do d

dO(1)Dsos 1

= 0.1Ae|V (oo0’)] Z Dsos 1Fe|V (oo’

> o,0'eL], Dsoyd

dO(l)Dsos

<
= (0-14¢|V(o00’)|

)\VdO(l)DSOS
= (0-14¢|V(o00’)]

where we set (', C'p small enough. Rearranging proves the lemma. ]

Corollary 7.3.21. For any U,V € Z,,,q such that w(U) > w(V),

Z H U)(G) < dO(l)Dgos

P:P is a path from V to U in GecE(P)

Proof. The total number of vertices in G is at most (Dgos + 1)2 since each U € Z,;; has
at most 2 index shape pieces corresponding to each type and each index shape piece has at
most Dgyg vertices. Therefore, for any fixed integer j > 1, the number of paths from V to
U of length j is at most (Dges + 1)2j. Take any path P from V to U. Suppose it has length
j > 1. Note that for all edges e = (V/,U’) in E(P), since |U’| > 1, we have

JOMDss  4O(1) Dy

= J0-1A|U/| < J0.1Ae
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S0Ss j
So, w(e) < dOWDsos . Therefore, by setting Csys small enough,
ecE(P) J0-14c

IA

(Dsos+1)2 , <d0(1)Dsos>j

> T we > (Dsos + 1Y —OTA

P:P is a path from V to U in G e E(P) j=1

S dO(l)Dgos

We can now prove Lemma 7.3.15.

Lemma 7.3.15. Whenever ||My|| < Bnorm(a) for all a € M,

fact 1
Z MIdU (HIdU) = dKngos[dsym
UeImz‘d

for a constant K1 > 0 that can depend on C .
Proof. For all V € Z,,,,4, we have
1 ¢
Mgy <2 Y > [T (o)) 53001,
U€Z,qw(U)>w(V) \P:P is a path from V to U in G c€ E(P) v
Summing this over all V' € Z,,,;,1, we get

Hsm= 3 | % > [T wie) | A/t

U€lnidq VeLigw(U)>w(V) P:P is a path from V to U in G ee E(P)

2 oMD2,, | 1/ fact
= > pye > W M7 (Hipgq,,)
U€Tniq Ve iqgw(U)>w(V)

For any fixed U € Z,,;4, the number of V' € Z,,;; such that w(U) > w(V) is at most
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(Dsos + 1)2. Also, A\jy > for all U € Z,,,;4. Therefore,

pigeye
2 2
]dsym = Z E(DSOS + 1)2d0(1)DsostaCt(HIdU)

2
< Z dO(l)DSOSMfaCt(HIdU)

where we used the fact that for all U € Z,,,;4, MfaCt(HIdU) = 0. |

Proof of Lemma 7.3.16

We restate the lemma for convenience.

Lemma 7.3.16.
dIdU HId(]? Hl ) dKQDsos

Z Z | Aut(U)|c(7y) = %

Uelpiqav€lu«

for a constant Ko > 0 that can depend on C .

Proof. We have

dg . (H ,H’)
> ¥ e

U€T g vely, ()

/ !
Z Z Aut ( ) Z B’I’LO’I"m(O-)Bnorm(O' )]J‘[dU,7 (0" [0} )
Uelnia VGFU* aJIGLU7;|V(J)|§DV,|V(U/)|§DV7
|V (g07)|>Dy/ or |V (c/oy)|>Dy,

The set of o,0’ that could appear in the above sum must necessarily be non-trivial and

hence, 0,0’ € E’U. Then,

dray (Hray, HY)

ZZW

U€ZLpia vEl'D,

/ / 1
Z Z Bnorm(U)Bnorm (U )HIdU (07 o ) Z W

U€Zmia o,0'€Ly; YET'y,«:|V (00v)|>Dyv or |V (o’0v)|>Dyv
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For o € L};, define my = Dy + 1 — |V(o)] > 1. This is precisely set so that for all

v € Ty, we have [V(0 0 )| > Dy if and only if [V (v)| > |U| +mg. So, for 0,0’ € Ly,

1 1
2 |[Aut(U)]e(y) 2 | Aut(U)]e(v)

1€T 2|V (007)[> Dy or [V(o"oy)|>Dy VEL eV (3) |2 U+ min(me,m 1)
1

— omin(mg,m,/)—1

Also, for o,0" € L};, we have |V (¢ o 0’)| + min(mgy, my) — 1 > Dy,. Therefore,

dIdU HIdU Y / / 1
Z Z |Aut Z Z Bnorm Bnorm( >HIdU (J’ g ) 21’I1i1’1(mo';m01)_1

Uelniavely, U €Lmiqdo,0'€ /;’
dO( )Dsos
Z Z d() 5A5|V ogo0 )|2m1n(ma,m /)

UeImzd g,0 EE/

where we used Lemma 7.3.17. Using d0-54e|V (oo0”)] > dOlAgW(UOU/)|2|V(‘7°‘7/)|,

dIdU HIdU7 Hl) dO( )Dsos
Z Z | Aut (U)|c(y) Z Z (J0-1A4e|V (0oa’)|9|V (coo’)|gmin(mg,m,)—1

Uelpiav€lu« U €Lmid 0,0'€Ly;

DSOS

Z Z J0- 1A€|V aoo’)[9Dy

UEImzd g,0 GL:,

dO(l)Dsos
Z Z D£§03d0.1A€|V(UOO—/)|2DV

U€lpmid o,0’'€Ly;

1 . .
The final step will be to argue that teImzd Zo,a’eE’U D D05 LAV (o007 < 1 which will
complete the proof. But this will follow if we set Cy -, C'p small enough. |
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CHAPTER 8
FOLLOWUP AND FUTURE WORK

In this chapter, we go over some followup works that are not covered in this dissertation and

also suggest directions for future work.

8.1 Nonlinear concentration for non-product distributions

Our techniques in Chapter 2 apply to a collection of random variables that are sampled
independently of each other. A natural question is to ask if we can generalize to the case
when they are not independent. For example, this is useful when instead of analyzing Erdos-
Rényi random graphs, we wish to analyze uniform d-regular graphs. Such a generalization
seems extremely likely because our proof techniques essentially requires a Markov Chain
that mixes rapidly to the given distribution, and then we can recursively apply the Poincaré

inequality. We leave this for future work.

8.2 Sum-of-Squares lower bounds

In this dissertation, we saw several SoS lower bounds and while they build on fundamental
conceptual blocks such as the nonlinear concentration results we show, and simple heuristics
like pseudocalibration, an important technical barrier in the current proofs is that the proofs
are highly technical and have many moving parts. It’s an important research question to
understand if the proofs can be simplified. Apart from enabling a better understanding of
the SoS hierarchy, this will also help us understand the computational barriers of several

fundamental problems in computer science. Examples of such problems follow.
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8.2.1 Sparse independent set

In a followup work [95], we prove SoS lower bounds for the important problem of maximum
independent set on sparse Erdos-Rényi random graphs.

An important aspect of the SoS lower bounds until this work (including the ones in this
dissertation) is that they apply for the so-called dense setting, which corresponds to cases
when the input distribution can be specified by a collection of independent Rademacher or
Gaussian variables. In the case of planted clique, this corresponds to the case when the

1 i.e. specified by a collection of (g)

input is a random graph distributed according to G
2

independent Rademacher variables. Similarly, the tensor PCA and sparse PCA lower bounds
we show in this dissertation apply when the input tensor has independent Rademacher or
Gaussian entries. The techniques used to establish these lower bounds have proved difficult
to extend to the case when the input distribution naturally corresponds to a sparse graph
(or more generally, when it is specified by a collection of independent sub-gaussian variables,
with Orlicz norm w(1) instead of O(1)).

In [95], we extend lower bound technology for SoS to the sparse setting, where the input is
a graph with average degree d < n/2. We use as a case study the fundamental combinatorial
optimization problem of independent set. For the dense case d = n/2, finding an independent
set is equivalent to finding a clique and the paper [10] shows an average-case lower bound
against the Sum-of-Squares algorithm. We extend the techniques used in this dissertation,
namely pseudocalibration, graph matrices, and the approximate decomposition into positive
semidefinite matrices, in order to show the first average-case lower bound for the sparse
setting. We hope that the techniques developed here offer a gateway for the analysis of SoS
on other sparse problems.

Sample G ~ Gm d as an Erdés-Rényi random graph with average degree d, where we
think of d < n. Specializing to the problem of independent set, a maximum independent

set in G has size:
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Fact 8.2.1 ([44, 46, 52]). W.h.p. the max independent set in G has size (1+04(1))- 2lgd “n.

The value of the degree-2 SoS relaxation for independent set equals the Lovasz 9 function,
which is an upper bound on the independence number a(G), by virtue of being a relaxation.
For random graphs G ~ G,, 4 /n this value is larger by a factor of about v/d than the true

value of a(G) with high probability.

Fact 8.2.2 ([43)). W.hp. 9(G) = 6(2).

In [95], we prove that the value of higher-degree SoS is also on the order of n/ Vd, rather
than n/d, and thereby demonstrate that the information-computation gap against basic
SDP /spectral algorithms persists against higher-degree SoS.

In considering relaxations for independent set of a graph G = (V, E), with variables
being the 0/1 indicators of the independent set, the SoS relaxation searches for pseudoex-

pectation operators satisfying the polynomial constraints
Yo e V. x%:xv and V(u,v) € E. xyxy =0.

The objective value of the convex relaxation is given by the quantity E[Zvev Ty) =Y ey E[mv]
For the results below, we say that an event occurs with high probability (w.h.p.) when it
occurs with probability at least 1 — O(1/n¢) for some ¢ > 0. The following theorem states

our main result.

Theorem 8.2.3. There is an absolute constant co € N such that for sufficiently large n € N

and d € [(logn)?,n%?], and parameters k, Dg,g satisfying

n
= D logn- a1’

it holds w.h.p. for G = (V, E) ~ G, d/n that there exists a degree-Dg,g pseudoexpectation
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satisfying

VoeV. 2=, and V(u,v) € E. xyxy =0,

and objective value ]E[ZUEV xy] > (1 —o0(1))k.

d1/2>1/00

Remark 8.2.4. This is a non-trivial lower bound whenever Dg,g < <1
ogn

Remark 8.2.5. It suffices to set cg = 20 for our current proof. We did not optimize the
tradeoff in Dg,s with k, but we did optimize the log factor (with the hope of eventually

removing it).

Remark 8.2.6. Using the same technique, we can prove an nie) SoS-degree lower bound

for all d € [\/n,n'~¢].

For nf < d < nY5, the theorem gives a polynomial n® SoS-degree lower bound. For
smaller d, the bound is still strong against low-degree SoS, but it becomes trivial as Dg,g
approaches (d'/2/1og n)'/€ or d approaches (log n)? since k matches the size of the maximum
independent set in (G, hence there is an actual distribution over independent sets of this size
(the expectation operator for which is trivially is also a pseudoexpectation operator).

The above bound says nothing about the “almost dense” regime d € [n1_5 ,n/2]. To
handle this regime, we observe that our techniques, along with the ideas from the Q(logn)-

degree SoS bound from [10] for the dense case, prove a lower bound for any degree d > n°.

Theorem 8.2.7. For any 1,69 > 0 there is 6 > 0, such that for d € [n°l,n/2] and

k< it holds w.h.p. for G = (V,E) ~ G, d/n that there exists a degree-(0 log d)

_n_
d1/2+52 )

pseudoexpectation satisfying
Yo eV x%:xv and V(u,v) € E. xyxy =0,

and objective value E[Zvev xy] > (1 —0(1))k.
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In particular, these theorems rule out polynomial-time certification (i.e. constant degree
SoS) for any d > polylog(n).

One of the important conceptual innovations in this work was to improve our understand-
ing of sparse graph matrices by obtaining better norm bounds, which was done in Chapter 2.
We also employ several other techniques such as pseudocalibration with connected trunca-

tion, conditioning and generalized intersection tradeoff lemmas.

8.2.2 Planted Affine Planes and Maximum Cut

We conjecture that for the Planted Affine Planes problem, defined in Chapter 5, the problem

remains difficult for SoS even with the number of vectors increased to m = n2~¢.

Conjecture 8.2.8. Theorem /.1.4 holds with the bound on the number of sampled vectors

m loosened to m < n?~¢.

The reason for the upper bound comes from Remark 5.4.9. As we saw in Chapter 3,
analyzing IE[l] is an established way to hypothesize about the power of SoS. We will revisit
this point in the next section.

Dual to the Planted Affine Planes problem, we conjecture a similar bound for Planted

Boolean Vector problem whenever d > nl/2+e.

Conjecture 8.2.9. Theorem 4.1.5 holds with the bound on the dimension p of a random

subspace loosened to p > nl/2+e,

We remark that recent work [186] has exhibited a polynomial time for the search variant
of Planted Affine Planes for m > n + 1, as opposed to prior known algorithms that required
m > n2, some of which were SoS based. Their algorithm is lattice-based, uses the special
algebraic structure present in the problem, and is not captured by SoS. It’s not clear if their

search algorithm can be used for certification.
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We conjecture that the Planted Boolean Vector problem/Planted Affine Planes problem
is still hard for SoS if the input is no longer i.i.d. Gaussian or boolean entries, but is drawn
from a “random enough” distribution. For example, if in the random instance of PAP the
vectors dy, are i.i.d. samples from S, or a random orthonormal system, degree n% SoS should
still believe the instance is satisfiable (after appropriate normalization of v). Or, taking the
view of Planted Boolean Vector, if the subspace is the eigenspace of the bottom eigenvectors
of a random adjacency matrix, the instance should still be difficult. This last setting arises

in Maximum Cut, for which we conjecture the following.

Conjecture 8.2.10. Let d > 3, and let G be a random d-reqular graph on n vertices. For
some § > 0, w.h.p. there is a degree—n5 pseudoexpectation operator E on boolean variables x;

with mazimum cut value at least

Y10 0g,()

N —

The above expression is w.h.p. the value of the spectral relaxation for Maximum Cut,
therefore qualitatively this conjecture expresses that degree n% SoS cannot significantly
tighten the basic spectral relaxation.

We should remark that, with respect to the goal of showing SoS cannot significantly
outperform the Goemans-Williamson relaxation, random instances are not integrality gap
instances. The main difficulty in comparing (even degree 4) SoS to the Goemans-Williamson
algorithm seems to be the lack of a candidate hard input distribution.

Evidence for this conjecture comes from the fact that the only property required of the
random inputs dq,...,d;, was that norm bounds hold for the graph matrix with Hermite
polynomial entries. When the variables {d, ;} are i.i.d from some other distribution, if we
use graph matrices for the orthonormal polynomials under the distribution and assuming
suitable bounds on the moments of the distribution, the same norm bounds hold [2]. When

dy, €g S™ or another distribution for which the coordinates are not i.i.d, it seems likely that
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if we use e.g. the spherical harmonics then similar norm bounds hold, but this is not proven.

8.2.8 Unique Games

The famous Unique Games conjecture (UGC) [100] postulates that a graph theory prob-
lem known as the Unique Games problem is NP-hard. This conjecture gained tremendous
traction in the community because of it’s numerous consequences (e.g. [100, 102, 152]))
and connections to various other fields such as metric geometry [104] and discrete Fourier
analysis [103]. An exciting array of recent works [53, 16, 175] has shown that a problem
closely related to unique games, known as 2-to-2 games, is NP-hard. This is an important
step towards proving the UGC and offers evidence that the UGC is true.

On the algorithmic side, there have been various attempts (see for e.g. [179, 37, 5])
to disprove the UGC. In particular, Barak et al. [12] showed that degree 8 SoS can effi-
ciently solve integrality gap instances of the Unique Games problem that were proposed for
linear programs and SDPs considered earlier. This work caused significant interest in the
community, since it suggests that SoS might be a way to refute the UGC.

Therefore, it’s tremendously important to understand the performance of SoS on the
unique games problem. A good first step would be to understand the performance of SoS
for the problem of maximum cut, which is also a Unique Games problem. In fact, we can
be even more concrete and ask for the performance of SoS for the problem of maximum cut
on random graphs, more precisely Conjecture 8.2.10. Lower bounds were shown for degree 2
and degree 4 in [133, 129] and generalizing their analyses for higher degree SoS is a nontrivial

but important open problem.

8.3 Low degree likelihood ratio hypothesis

As explained in Chapter 3, the low-degree likelihood ratio hypothesis analytically predicts

the computational barriers for hypothesis testing in bounded time, for sufficiently nice dis-
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tributions. See [91, 116, 79] and references therein for more details. A full proof of this
hypothesis is beyond current techniques, since it’s likely harder than proving say P # NP.
But confirming the hypothesis in restricted proof systems is a fascinating and important field
for future research. In particular, building on the notation from Chapter 3, we would like to
prove that for sufficiently nice distributions v, s, after pseudo-calibrating, if E[1] = 1+ o(1),
then there exists an SoS lower bound. Indeed, in this work, we confirm this for several fun-
damental problems. But proving this in general will go a long way towards understanding

the power of bounded-time algorithms.

8.4 Technical improvements

Having covered the general directions for future research, we now specify a few directions

for improving some technical aspects of our results.

8.4.1 Improving parameter dependences

In many of our lower bounds, we require polynomial decay in the Fourier coefficients. For
example, we require a decay of n® for each new Fourier character, where n is the input size.
This is done to handle various other factors that appear in norm bounds when doing the
charging arguments. In the proofs, we term these as vertex or edge decay, corresponding
to how they are encoded in the graph matrix arguments we use. By doing this, we obtain
a slightly weaker lower bound. For example, instead of getting a n1/4 lower bound (upto
polylogarithmic factors) for Tensor PCA, we obtain a n1/4=¢ lower bound for any € > 0. In
general, while they facilitate the proof, it’s not clear that this sort of decay is necessary and
it’s open to find a tighter analysis so as to close the gap from known upper bounds upto a
polylogarithmic factor.

Related to the above discussion, another open problem is to push the degree of SoS higher

in our lower bounds. For example, for the Sherrington-Kirkpatrick lower bound, it’s open
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to push the SoS degree from n® to 2(n). Our current techniques do not handle this but we

expect the lower bound to nevertheless hold.

8.4.2 Satisfying constraints exactly

In some of our lower bounds, our planted distributions only approximately satisfy constraints
such as having a subgraph of size k, having a unit vector u, and having u be k-sparse. While
we would like to use planted distributions which satisfy such constraints exactly, the moment
matrix becomes much harder to analyze.

We do resolve it for the Sherrington-Kirkpatrick lower bound by using a rounding tech-
nique. This same issue also appeared in the SoS lower bounds for planted clique [10], which
was fixed in a recent paper by Pang [140]. We leave it to future work to resolve this in

general.
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