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ABSTRACT

This paper presents DSLog, a system that efficiently capture and represent fine-grained data

provenance in array-programming frameworks for black box functions. It uses a technique

called annotated execution to capture “physical” provenance, automatically without user

specification. We describe a low-level implementation that make this work for arrays up to

100 million (and more) cells, and improve capture performance up to 3400% over an high level

baseline. We contribute a new compression algorithm, named ProvRC, that compresses such

relations. We show that the ProvRC results in a significant storage reduction over functions

with simple spatial regularity, beating alternative baselines by many orders of magnitude.

Finally, we present the concepts of dimensional and generalized views over these compressed

relational representation, which allows DSLog to recognize previously seen function (with

only input array dimension information, and no input array information respectively), and

re-use pre-existing materialized provenance views. We demonstrate that these views cover

92% and 73% respectively of 136 tested numpy functions, and preliminary results show that

using the views have a marked improvement over pure naive annotated execution.
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CHAPTER 1

INTRODUCTION

Manipulating multi-dimensional numerical arrays, or array programming, is a fundamental

part of data science Soroush et al. [2011], Papadopoulos et al. [2016], Boehm et al. [2016],

Stonebraker et al. [2011]. These arrays represent the vectors, matrices, and tensors used in

machine learning, science, and geospatial applications. Since many of the core operations

resemble relational algebra, and not surprisingly, there have been numerous efforts to bridge

the worlds of “array programming” and relational database systems Boehm et al. [2016],

Wang et al. [2020], Daniel et al. [2018], Nikolic et al. [2014]. Such connections allow for

more effective code optimization Wang et al. [2020], result maintenance Nikolic et al. [2014],

and data provenance Phani et al. [2021] in array programming frameworks. As computing

moves towards machine learning and artificial intelligence as commoditized components,

understanding the principles of data management for numerical arrays will be increasingly

relevant Kumar et al. [2017].

This paper studies how ideas from relational data modeling can address fine-grained data

provenance problems in array programming. Data provenance is the documentation of where

a piece of data comes from and the computational operations by which it was produced.

Provenance is valuable for debugging and auditing data analytics workflows. Collecting,

storing, and managing provenance is well-studied in relational data management Cheney

et al. [2009], Glavic [2021], and initial work has sought to extend these ideas to the array

programming setting Phani et al. [2021], Wu et al. [2013]. While there is over a decade of

research into this topic, provenance in multi-dimensional array workflows has recently had

a surge of interest due to applications in machine learning debugging Vartak et al. [2018],

Xin et al. [2018], Sellam et al. [2019], Rezig et al. [2020], Shang et al. [2019], Zhang et al.

[2017]. These works, however, focus on narrow problem settings that restrict or make strong

assumptions about user workflows.
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We can characterize this lack of generality in two ways: (1) operation constraints and (2)

operation specification. In (1), the system enforces that the user works within the boundaries

of a known set of operations. For example, assume that the user applies neural network

inference with a statically defined network architecture Vartak et al. [2018], Sellam et al.

[2019], or only defines workflows that are compositions of operations in a domain-specific

language (DSL) Phani et al. [2021]. Tracking provenance in such scenarios comes naturally

since one can build a complete manifest of operations and make assumptions about how

inputs to an operation relate to its outputs. Recognizing the limitations of (1), (2) allows

users to specify custom operations with provenance descriptions. A good example of such a

system is SubZero Wu et al. [2013], which defines an API to allow users to specify custom

operations. These systems are complementary to those approaches described in (1) and often

also maintain knowledge bases of common linear algebra, relational algebra, and common

machine learning functions to automatically capture provenance in common cases.

Both approaches above fundamentally require control over the array programming API,

make strong assumptions of what operations a user might use, and/or the technical capa-

bilities of the user. For example, between TensorFlow 1.x and 2.x nearly 1300 new “raw

operations” were added to their computational graph API tfr, most of which do not align

with traditional linear algebra operations. This statistic also ignores the vast repositories

of external contributor code that any user might draw on for their applications. Custom

operations are also highly prevalent in modern scientific and machine learning workflows.

For such “true” black-box settings, provenance options are limited, especially when the user

was not to define the operation specifications. However, such applications are exactly the

kind that could benefit from fine-grained provenance. For example, a user might want to

know why particular results are NaN after applying one of these non-standard operations,

and which input elements contribute to that result.

In an ideal world, provenance capture would be deeply integrated with the execution
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environment where as an array-program is evaluated, the input-to-output relationship is

incrementally built without user specification. We call this alternative strategy “annotated

execution”, where individual array elements are annotated with metadata describing how

they were derived. But, to the best of our knowledge such a framework does not exist for the

Python data science stack. While straightforward in principle, annotated execution comes

at a steep overhead of computation and storage. Without operation-level information, one

loses the ability to logically capture the provenance of known operations (which is faster

and more concise). Thus, the key technical challenge is building an annotated execution

framework is managing the storage and the computational overhead of provenance capture.

We present a new prototype framework called DSLog that takes a step towards efficient

annotated execution in the Python data science stack and tracks provenance in numpy ar-

rays. Our framework captures fine-grained provenance in numpy by defining an extended

numerical data type that log accesses when it is manipulated by any numerical primitive

operations (Section 3.3). A key contribution of DSLog is to use a relational data model to

represent the captured provenance relationships, i.e., how input cells contribute to output

cells. DSLog incorporates a series of post-hoc optimizations that organize and compress the

captured relations, and pre-emptive optimizations to generate “provenance views” that rec-

ognize previously captured sub-routines. We introduce the ProvRC compression algorithm

which uses multi-attribute range encoding and relative indexing to leverage spatial regulari-

ties in a relational representation of provenance (Section 4). We define the dimensional and

generalized provenance views which allow us to capture provenance for function signatures

independent of array content and array dimension size respectively (Section 5).

ProvRC is contribution independent of DSLog and is applicable to other provenance frame-

works and capture methodologies. Integer-indexed multi-dimensional arrays are a sort of uni-

versal interface in data science that can represent dataframes, documents, time series, and

images. The provenance relations of common operations over these data types often have a
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high degree of spatial coherence where nearby input indices often contribute to similar out-

put indices, which can be exploited by a novel multi-dimensional range-encoding algorithm

that efficiently represents long ranges of indices as intervals. We also find that there is a deep

connection between such a compression scheme and relational normalization, where element-

wise operations induce one-to-one functional dependencies, aggregations induce multivalued

dependencies, and compositions of operations resemble relational joins.
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CHAPTER 2

BACKGROUND

First, we motivate our problem setting and implementation. In the context of our system and

all baselines, provenance refers to the contribution relationship between input and output

elements (a cell) in any array operation, i.e., which elements in the input array determine

the values of each output element. The precise semantics of what “contribution” means can

differ between systems but those differences are unimportant for our motivating discussion.

2.1 Three Approaches to Provenance Capture

Provenance capture is the problem of enumerating all provenance relationships between

input elements and output elements in a user-defined procedure. The overarching challenges

of provenance in array workflows have been described in a number of surveys Davidson and

Freire [2008], but we focus our effort on the capture problem. Let us assume that we are

given some such procedure F that operates on an array X and returns a new array Y . There

are three primary approaches to capture provenance relationships between elements in Y

and X.

Approach 1. Operation Constraints. One approach is to have a closed-world of op-

erations that an analys might use through a domain-specific language or pattern matching

known operations. In other words, the function f(X) above is a composition of sub-functions

where the provenance relationships are already known. This approach has had a consider-

able amount of research in machine learning applications. For example, the Lima system

tracks provenance for machine learning workflows written in SystemDS Phani et al. [2021].

Similarly, tools like MLInspect Grafberger et al. [2021] use pattern matching to identify

certain function structures in the Python AST. Several other systems employ a similar ap-

proach Nikolic et al. [2014], Boehm et al. [2016]. Other work limits the scope of the system
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to particular types of workflows such as machine learning model training or inference Vartak

et al. [2018], Xin et al. [2018], Sellam et al. [2019], Rezig et al. [2020], Shang et al. [2019],

Zhang et al. [2017]. While effective, the problems with such an approach are obvious: the

tasks at hand might not be machine learning related, researchers may not have the skill-set

to port an existing codebase to a new DSL, or might use custom operations for functionali-

ty/performance.

Approach 2. Operation Specification. Of course, one could always model unknown

functions as all-to-all relationships where all input elements contribute to each output el-

ement Kuehn et al. [2008], Goecks et al. [2010]. To capture finer-grained information, a

complementary approach is to define specification API that allows a user to define their

own provenance relationships to cover missing user-defined functions. For example, SubZero

provides an extensive API that users can use to seamlessly capture provenance for new, user-

defined functions Wu et al. [2013]. While more flexible than an operation tracking approach,

operation specification can be hard to deploy in certain settings. The provenance relation-

ships of a particular function can be dependent on hyperparameter settings, and describing

the specification might be as hard as developing the function itself. Other systems have

taken a similar laissez-faire approach to provenance capture where they provide a scalable

service that the user can populate with metadata Hellerstein et al. [2017], Zhang et al. [2017],

Namaki et al. [2020].

Approach 3 (Ours). Annotated Execution. In contrast, DSLog automatically cap-

tures and logs data type-level accesses made by an array-programming framework by tracking

the read, write, and copy operations made to individual array elements and correlating these

accesses with the system call stack. This is possible because arrays have a fixed data type

and consistent indexing so low-level accesses can be translated into individual element ma-

nipulations. The user does not need to do anything to use DSLog as all tracking happens

at a low-level. This approach is analogous to physical logging in a database system Haerder
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Figure 2.1: A visual description of two non-standard array operations that are common in
imaging and scientific applications.

and Reuter [1983]. The key downsides are the computational overheads from such tracking

and the storage overhead from low-level physical tracking. We show that with a combination

of systems tricks the capture and storage of such logs can be accelerated to mitigate these

overheads.

Physical v.s. Logical: Point of Clarification. In these approaches, we use word

physical carefully to denote the capturing methodology and not the storage model. One can

capture logical provenance (the function descriptions) but store it physically (materialize each

element-level relationship). A number of provenance systems rely on function descriptions

to capture provenance but store it physically Widom [2004], Ikeda et al. [2011]. On the other

hand, by “physical” we mean that the provenance is captured at the element and index level

agnostic to the function that is calling it. The only thing that we use the function description

for is to avoid recapturing previously captured provenance.

2.2 Motivating Application

Consider a sensing application where an imaging system returns a 2D array of pixels, where

each value in a range 0 to 1 corresponds to an intensity. Such images very common in

industrial part defect detection, thermal imaging, and astronomy. The user is interested in

identifying pixel regions where the intensity is significantly higher than its neighbors. We
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can express this logic in a simplified array programming pipeline:

de f hotspot (X) :

X = smooth (X)

Y = where (X > 0 . 5 )

re turn Y

smooth(X) is a hypothetical function that applies a smoothing filter over the image (e.g.,

a mean of window around the pixel), and where(condition) returns an array of index

locations where the condition is true — if there are k such pixels, the array is of size k × 2

where each row corresponds to a pixel location. These operations are illustrated in Figure

2.1. In terms of provenance, a user may want to look at a row in Y and know what input

pixels in X may have contributed to it – which is simply a window around the pixel internally

defined in smooth.

While conceptually simple, such a pipeline causes a lot of difficulty for existing array

provenance systems. Firstly, the where() 1 is a non-standard function whose behavior is

highly input data dependent. Unlike in linear algebra operations, there isn’t a provenance

relationship that is purely a function of input and output indexes. This makes it hard to

apply the “operation constraint” approaches mentioned before, and would default to an

uninformative all-to-all relationship in most frameworks. Second, the smooth() is actually

what determines the key provenance relationships. An specification based approach would

require a user to either provide specifications for every possible smooth() implementation,

or change the specification for hotspot() each time. In these types of scenarios, we need an

annotated execution capture system.

1. Inspired by numpy.argwhere
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2.3 Related Work

Beyond the aforementioned systems, there are a number of other relevant research areas.

Provenance Compression. There is some prior work in provenance compression in its

own right. Xie et al. studied compression provenance graphs for web search and seman-

tic web applications Xie et al. [2011, 2012]. While theoretically applicable in our scenario,

such approaches do not exploit the numerical regularity of array indices in typical array-

programming applications. Thus, the types of encodings used are ill-suited for our scenario.

For hierarchical data, Chapman et al. proposed a “factorized” provenance approach Chap-

man et al. [2008]. This approach identifies common nodes in graph and combines relation-

ships when possible. Mathematically, this can be interpreted as a polynomial factorization

of the provenance polynomial Olteanu [2011]. It turns to that this approach has a deep

connection to ours, and many of our optimizations can be interpreted as relational factor-

ization. However, the focus on array programming gives us specific spatial patterns that

we can exploit beyond simple factorizations. Compression has also been studied in network

provenance problems Chen et al. [2017], Zhou et al. [2012]. Again, due to differences in the

problem setting, they are not directly comparable to DSLog.

ML Workflow Tracking. There is also a tangentially related field of machine learn-

ing workflow management. Initial prototypes such as HELIX Xin et al. [2018], Alpine

Meadow Shang et al., MLFlow Zaharia et al. [2018], and the Collaborative Optimizer De-

rakhshan et al. [2020] rely on coarse-grained lineage tracing at the level of entire machine

learning programs. Such systems are useful for versioning and dataset discovery, but fail

to give fine-grained information about how individual data values, i.e., individual array ele-

ments, contribute final results.
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CHAPTER 3

DSLOG: SYSTEM DESIGN

We present DSLog, a system for low-level provenance capture. DSLog is designed to track

fine-grained provenance for array workflows and is integrated with the Python numpy library.

DSLog tracks automatic cell level provenance across all array operators, and defines a mod-

ular schema that supports storage and processing optimizations. This section overviews the

system, its capabilities, and our key design choices.

3.1 Interface

Suppose, we have a function F that takes as input a set of multidimensional input arrays

and outputs a multidimensional array. Users can register such a function to DSLog with

function decorators:

@provenance track

de f F(X1 , . . . ,XN) :

This means that DSLog will wrap around the function and re-write it in a way that we can

track the contributions of each input element through the function until the output.

The final output the annotated execution is a bipartite provenance graph that relates

output elements in Y to a set of contributing input elements in each Xi with edges of the

form:

Y [b1, ..., bl]← Xi[a1, ..., ak]

A forward query finds all output cells that a particular input contributed to. A reverse query

finds all input cells that contributed to a particular output.

10



Figure 3.1: The system architecture of DSLog. The user defines Python functions composed
of numpy operations (A), and these are evaluated in an annotated setting that aggregates
contributing elements (B). Final list of provenance relationships are flushed to disk in a
relational model (C), and the result is stored in an indexed database of “views” (D). The
color coded number correspond to key optimizations in our system described in the text
below.
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3.2 Capture Workflow

Figure 3.1 illustrates the under-the-hood workflow that occurs in DSLog during a registered

function call. This function call will be evaluated with annotated execution. As an easy

example, we have a simple addition of two vectors (Figure 3.1A). The basic data structure

in DSLog is a provenance view this is a relational table over the output and input cells with

schema R(b1, ..., bl, a1, ..., ak) where each row represents a contribution relationship captured

through annotated executions. User’s can query these views with standard SQL to answer

forward and reverse queries. The capture workflow works as follows:

1. The function signature is checked against all the provenance views in the system. If the

provenance is already known for the the function, capture is skipped and a duplicate

of the view is made. Provenance views are discussed in Section 5, and there is subtlety

in how views are generalized between functions of slightly different arguments.

2. If no view is returned, the function runs with annotated execution (Figure 3.1B) to

generate the full provenance with low-level tracking. The details of annotated execution

are described in Section 3.3.

3. The provenance resulted from annotated tracking can be compressed asynchronously

in a relational representation (Figure 3.1C). In Section 4, we present the compression

algorithm, ProvRC that takes advantage of the spatial regularities in array operations.

This compressed provenance can be used to compute future provenance views.

To summarize, there are three architectural components that to the best of our knowledge

have not been applied in array provenance problems: (1) a relational representation for

storing the final input-to-output relationships on disk, (2) a compression algorithm that

exploits common structures in numerical arrays, and (3) a framework for generalizing physical

captures to different function arguments.
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3.3 Annotated Execution

We will describe the main mechanism we use to capture provenance during annotated execu-

tion. The basic idea of annotation-based capture is to embed tracking information in every

element so that when it is manipulated the tracking information is propagated through to

the final result. We focus on arrays with double data types. We assume that every user-

defined function takes as input a set of multidimensional double arrays and returns a set of

multidimensional double array s(or cast appropriately to make this so).

Suppose, we extended the double type to be an annotated double, which is a struct

of a double data value and a set of annotations. Now, let op be an n-array operation

over double values — it takes n double values as input and outputs a single double. The

annotated double data type has the following semantics for op:

de f apply ( op , o the r s ) :

v = [ o . data f o r o in o the r s ]

a = [ o . annotat ions f o r o in o the r s ]

r e turn annotated double ( op (v ) , union ( a ) )

where it applies the function to all of the data values and takes a union of all of their an-

notations. With this basic structure, we can simply override all of the primitive numerical

operations used to manipulate double data types such as addition, subtraction, multipli-

cation, division, etc. With the custom data type API in numpy 1, there are a relatively

small number of operations that have to be overridden to make such an annotated double

compatible with a vast majority of the library.

We use these data types track function provenance over arrays as follows. Given a

function and set of input arrays, each array is converted into a annotated double array.

Each element is initialized to have its original value as its data value, and the annotation

1. https://numpy.org/doc/stable/reference/arrays.dtypes.html, https://numpy.org/doc/stable/user/basics.ufuncs.html
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is the singleton set of its current position in the input array. We have to further tag these

positions with a unique identifier of which input array. As numpy operations are applied to

the annotated arrays, the provenance accumulates in the elements annotations. Therefore, at

the output, each element contains a full history of all of the other elements that contributed

to it.

This structure is particularly well-suited for array programming environments because

almost all of the core operations are numerical, where if the input is a double array the

output is also a double array or could be cast into one (e.g., a Boolean array). Of course, it

is always possible to obfuscate the provenance with operations that change the data type or

leverage structures unknown to numpy. For example, serializing the entire array into a string,

manipulating the string, and the deserializing it. In our first implementation, we ignore such

problems. We simply treat the capturing system as a best-effort provenance graph that is

complete if a user stays within numerical and numpy array operations.

3.3.1 In-Memory Annotation Format

Our implementation written completely in C - for efficient computation and low-level memory

management - and linked through Python’s C interface. Each annotation tuple is represented

with 3 32 bit integers. Its first value is the array id and its second and third values are array

indices. This defines an unique cell for an array up-to 2-d dimensions (though the basic

strategy extends to any dimensionality). These tuples are laid out into a C array, and copied

during operations. The first value of the array is directly storied in the annotated double

data type, and the rest is stored as a pointer to a dynamically allocated memory buffer. For

specific functions, our system supports pre-allocating a consistent memory buffer to avoid

frequent memory requests.
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CHAPTER 4

PROVENANCE DATA MODEL

Once the annotated execution finishes, we flush the annotation results to disk. At this point,

there are opportunities for optimization because it can happen asynchronously.

4.1 Relational Representation of Array Provenance

Every provenance relationship can be thought of as an edge in a bipartite graph mapping

input elements to output elements Y [b1, ..., bl] ← Xi[a1, ..., ak]. Such a graph is elegantly

represented as a relation. Let Xi be an m-dimensional input array whose axes are denoted

with a1, a2, ..., am. Similarly, the output array, Y, is an l-dimensional array whose axes

are denoted with b1, b2, ..., bl. The dependency relationships between Xi and Y can be

represented in a relation over the dimensions:

R(b1, b2, ..., bl, a1, a2, ..., am)

Each row in the relation corresponds to a single output dependence Y [b1, b2, ..., bl] ←

Xi[a1, a2, ..., am].

Table 4.1 shows the provenance relationship of Y = np.sum(X, axis = 1) over an array

of size (2, 2). The way to interpret this table is that each row represents a single contribution

relationship, e.g., element at index (0, 1) in the input contributes to element at index 0 in the

output. Forward and reverse queries can simply be cast as SQL queries over such a table.

More importantly, this format allows for compositional forward and reverse queries that

span multiple operations. The provenance relationship over multiple operations can be

reconstructed from these tables with a natural join operation, similar to that in Interlandi

et al. [2015]. Given Rf is provenance of X −→ Y and Rg is the provenance ofY −→ Z,

we can find X −→ Z from Rf ▷◁ Rg. Likewise, the reverse is also true. Any lossless join
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Y = np.sum(X,axis=1)

b1 a1 a2
0 0 0
0 0 1
1 1 0
1 1 1

Table 4.1: Example of relational provenance representation for a 2x2 array.

X = numpy . array ( [ [ 0 , 3 ] , [ 1 , 5 ] , [ 2 , 1 ] ] )
Y = X[ 1 : 3 , 1 ] #(A)
Y = X[ : , 0 ] #(B)
Y = np . sum(X, ax i s=0) #(C)

(B) Slicing
b1 a1 a2
1 2 2
2 3 2

(B) Projection
b1 a1 a2
1 1 1
2 2 1
3 3 1

(C) Sum Along Axis
b1 a1 a2
1 1 1
1 1 2
2 2 1
2 2 2
3 3 1
3 3 2

Table 4.2: For three example operations (A,B,C), we present the provenance relations.

decomposition over R = S ▷◁ T can still answer forward and reverse queries.

While the basic ideas of relational representations of provenance graphs have been studied

before Chapman et al. [2008], Olteanu [2011], Interlandi et al. [2015], to the best of our

knowledge such representations have not been used to support array programming. The

relational model acts as a universal data format that abstracts the capture methodology

away from the downstream query processing. The same relations could have been populated

by operation constraint or operation specification frameworks as well. We see black-box

capture as filling in the gap in cases where such information is not available.
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4.2 Motivation: Compressed Provenance Representation

One of the challenges with the low-level relational representation is that the size of the

captured provenance can be very large compared to frameworks that simply use operation-

level provenance labels.

However, relational modeling gives us a set of well-understood tools to eliminate redun-

dancy in these captures. To understand why relational modeling is so powerful, Table 4.2

illustrates a handful of simple provenance examples over a 3x2 array. All of these examples

illustrate non-trivial redundancy patterns. Table 4.2A shows that sums along axes create

1-to-1 relationships with the summation axis, and 1-to-all relationships with all other axes.

Similarly, projection (Table 4.2C) and slicing (Table 4.2B) show similar functional relation-

ships between output and input axes. An observant reader will note that these examples are

all Multi-Valued Dependencies.

In real data these relationships will not be as clean. The challenge in the compression

algorithm is to exploit any such latent redundancy patterns in the final provenance relations

even if they are only there in a subset of the relation. Even a black-box function likely have

some spatially coherent structures that can be exploited. Interestingly enough, we find that

after compression of simple operations, the final size of the relations is often close to what a

logical capture framework would have produced.

4.2.1 Baseline Compression Algorithm

Given the patterns described above, columnar compression is a strong baseline algorithm.

We first sort the data in R in lexicographical order from outputs to inputs b1, ..., bl, a1, ..., ak.

Then, we partition each column of R. Within each column i, we delta encode the integers

R[i][j] = R[i][j] − R[i][j − 1]. We then compress the resulting column with a state of the

art integer entropy encoder Hanzo et al. [2002]. If there are long ranges of indices, e.g.,

‘1,2,3,4,5”, these are converted to 1’s that are effectively compressed.
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1 Function RangeGroup(S, c, f):
2 S′ ← Table(columns(S))
3 temp row ← S[1]
4 for row ← S[2] to S[RS ] do
5 s← f(row, t, c, columns(S))
6 if s ̸= () then
7 temp row ← s /* Merge current row */

8 else
9 INSERT t IN S’

10 end

11 end
12 if t ̸∈ S′ then
13 INSERT t IN S′

14 end
15 yield S′

We call this a strong baseline, because again, to the best of our knowledge prior work has

not explored this in the context of array programming. In fact, in terms of compression ratio

this approach is highly effective. However, it does have some issues downstream. Columnar

compression is highly-effective for analytical queries that can entire columns. Unfortunately,

both forward and reverse queries are row-oriented queries that are often very selective. The

scheme above effectively requires one to decode the entire relation before answering a forward

or reverse query. Thus, we explore alternatives that avoid this issue but come close to

matching or exceeding the compression performance of columnar compression.

4.2.2 Row-Oriented Range Compression

DSLog introduces a new novel compression algorithm for dealing with relational array prove-

nance named ProvRC. Our ProvRC algorithm uses two main concepts:

1. Multi-Attribute Range Encoding. Express the relation as a union of multidimensional

“ranges”.

2. Relative Value Transformation. Express input axes relative to a output axis to improve

compression.
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Step 1. Multi-Attribute Range Encoding over Inputs

Now, we are ready to describe the compression algorithm. The first steps is a generalization

range encoding over input columns. This has been used before in many integer compression

tasks from time-series compression to information retrieval Pibiri and Venturini [2020]. The

basic idea is given a set of integers one represents the set as a union ranges, e.g.,

range({1, 2, 3, 4, 9, 12, 13, 14, 15}) = {[1, 4], [9], [12, 15]}.

We extend this basic principle to the multi-attribute setting. In the multi-attribute

setting, this encoding can be thought of as decomposing a table into a union of Cartesian

products of attribute ranges. For example,

range

( b1 a1 a2
1 1 1
1 1 2
1 2 1
1 2 2

)
=

b1 a1 a2
1 [1,2] [1, 2]

The decoding can be accomplished by expanding any ranges using a Cartesian product

{0, 1} × {0} × {0, 1} and taking the union of all such tuples (related to results in Ciucanu

and Olteanu [2015]). We apply a simple heuristic to construct such a multi-attribute range

encoding that segments each input column into ranges one at a time. We show the algorithm

as operated over a relational table of provenance in the form of:

R(b1, b2, ..., bl, a1, a2, ..., am)

R is first sorted in lexicographical order over the attributes b1, b2, ..., bl, a1, a2, ..., am we call

the resulting ordered set of tuples S. Note that the order within subsequences [a1, a2, ..., am]

and [b1, b2, ..., bl] are arbitrary, but just must be consistent with how we iterate through the
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Table 4.3: An example output of multi-attribute range compression for the provenance of
(C)

b1 a1 a2
1 1 1
1 1 2
2 2 1
2 2 2
3 3 1
3 3 2

→

b1 a1 a2
1 1 [1, 2]
2 2 [1, 2]
3 3 [1, 2]

attributes in our algorithm.

Notationally, let si be the i
th row in S and si[c] be the projection of the row onto a set of

attributes c (we will use C to denote all attributes). The basic primitive that we implement

is a function which iterates through S and merges “contiguous” rows. A set of rows form

a contiguous range if they match on all other attributes C \ c, and there exists at least one

row for every value in the range at attribute c. Once constructed one can combine the rows

together and replace them with a single row with attributes with the same value for the C \c

attributes and a range for the c.

For each input column, ai ∈ [am, . . . a1], we apply the RangeGroup function. In essence,

this step compresses cases where a single output is dependent on rectangular blocks in the

input array. The exact rectangular blocks formed depends on the original sort order of

input attributes. Table 4.3 shows an example output of this algorithm over the example C

relational provenance representation.

Step 2. Relative Value Transformation and Output Range Encoding

In the second step, we apply as relative value transformation as shown with AddRelative

in Algorithm 1. For every input attribute, ai ∈ Sinput, and output attribute, bj ∈

column(S)output, we append a new column to S named aibj that contains the value bj − ai.

This transformation is performed, because we found that, there is often a functional

relationship in provenance relations where, for a set of rows, X, and some input and output
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attributes, am, bn, we have:

X[am] = X[bn]− δ δ = X[bn]−X[am]

, for some constant δ. Now, there is a clear benefit of using a constant to represent ai when

performing RangeGroup- it possibly allows us to consider more rows to merge. However,

since we do not know where this functional relationship exists in our given table, and we

generate all possible relative columns between input and output columns.

The entire algorithm is summarized in Algorithm 1. We can think of it as running

RangeGroup with two different helper routines InputEqual and OutputEqual. In the sec-

ond phase, we run our RangeGroup with the OutputEqual function over bi ∈ [bl, . . . b1].

OutputEqual allow for matching on relative columns as well as the absolute columns. Our

insight is that, for input array dimension, ai, only one of the columns of ai, aib1, . . . aibl is

needed to determine the dimension index. Therefore, given two rows, r1, r2, we can merge

the rows, given that ∀ai ∈ C, a non-empty subset of ai, aib1, . . . aibl are equal. If a functional

relationship exists between one of the input and one of the output columns, that will be con-

tained in the subset. Because of the subset step, we do not guarantee that we compress the

ranges down a single output column optimally (unlike in Step 1).

Let’s see an example of how this works. In Table 4.4, the values in a1 is the same as b1

for each row. Adding the column a1b1 introduces an exact match in a1 for the RangeGroup

algorithm that didn’t exist before. We can compress down to an even more concise rep-

resentation. Let us give a rough depiction of what ProvRC is doing. We are compressing

rectangular input blocks generated in Step 1 into higher-level rectangles also include output

attributes - on the condition that there are multiple fixed coordinates that can define each

input block. Similar to Step 1, the exact rectangular blocks formed depends on the original

sort order of output attributes, and now, they are also dependent on how the algorithm

iterates through the rows of S (which is fixed in ProvRC).
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Table 4.4: Output Relative Indexing Can Improve Opportunities for Multi-Attribute Range
Encoding

b1 a1 a2
1 1 [1, 2]
2 2 [1, 2]
3 3 [1, 2]

→

b1 a1 a1b1 a2 a2b1
1 1 0 [1, 2] [0, 1]
2 2 0 [1, 2] [-1, 0]
3 3 0 [1, 2] [-2, -1]

→

b1 a1 a1b1 a2 a2b1
[1,3] - 0 [1, 2] -

4.3 Full Examples and Discussion

In Table 4.5, we can seen multiple examples of the compression over different numpy functions.

In the input columns, the label in parenthesis indicates the relative column name used for

representation (if relevant). We observe that the full ProvRC algorithm captures concise

ranges between the input and output arrays, while preserving the input and output relational

model. Not only is this an efficient compression schema, the parse-able format makes it

suitable for downstream tasks such as pre-capture and queries.

Notice that the ranges of each row represent a rectangle over the set of indices. As

a matter of fact, we can view our provenance compression algorithm as an approximate

solution to the “grid covering” problem. Finding the minimum covering is known to be hard

in the number of dimensions (axes) Eppstein [2009]. Instead, the complexity of ProvRC is

O(ND +N logN)), where N is the number of rows and D is the number of dimensions. In

most cases, we found that the provenance given by our annotation to be already sorted and

the average-case complexity can be given as O(ND).

1. To avoid redundancy we only show the provenance of X and not Y
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Algorithm 1: Full ProvRC Compression

1 Function ProvRC(S):
2 for ai ← [am . . . a1] do

/* Input Range Compression (Step 1) */

3 S ← RangeGroup (S, ai, InputEqual)

4 end
/* Relative Transformation (Step 2) */

5 S ← AddRelative (S)
/* Output Range Compression (Step 2) */

6 for bj ← [bl . . . b1] do
7 S ← RangeGroup (S, bj , OutputEqual)
8 end
9 yield S

10 Function InputEqual(r1, r2, ai, C):
11 is eq ←

∧
c∈C,c ̸=ai

r1[ci] = r2[ci]

12 if is eq then
13 r ← r1
14 r[c]← r1[c] ∪ r2[c]

15 else
16 r ← ()
17 end
18 yield r

19 Function OutputEqual(r1, r2, bi, C):
20 is eq1←

∧
bj∈Coutput,bj ̸=bi

r1[bj ] = r2[bj ]

21 is eq2←
∧

ak∈Cinput r1[ak] = r2[ak] ∨ (
∨

bj∈Coutput
r1[akbj ] = r2[akbj ])

22 if is eq1 ∧ is eq 12 then
23 r ← Row(C)
24 for c ∈ C do
25 if c = bi then
26 r[c]← r1[c] ∪ r2[c]
27 else
28 r[c]← r1[c] ∩ r2[c]
29 end

30 end

31 else
32 r ← ()
33 end
34 yield r

35 Function AddRelative(S):
36 S′ ← COPY (S
37 for ai ∈ column(S)input do
38 for bj ∈ column(S)output do
39 INSERT COLUMN aibj : S[bj ]− S[ai] IN S′

40 end

41 end
42 yield S′
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CHAPTER 5

PROVENANCE VIEWS

The previous section describes a relational data model for representing provenance collected

from an array programming framework. This section describes how we can efficiently re-use

previously captured provenance in DSLog.

5.1 Exact Provenance Re-Use

Since the capturing process is so expensive, we would like to utilize prior knowledge whenever

possible to avoid re-capturing the same function. Typical workloads in data science are

highly repetitive with the same function repeatedly called. A researcher training a machine

learning model is likely to test the preprocessing pipeline multiple times during debugging;

hence running many of the same functions on the same data.

In our relational model, we can think of each capture as a “view definition” that represents

a provenance relation. The view definition is parametrized by {f, {X}, {x}}, where f is the

function, {X} is the set of input arrays, and {x} is the set of other arguments.

view(f, {X}, {x}) := R(b1, ..., bl, a1, ..., am)

Note that the same decorator might generate multiple different views based on the inputs

to the function.

In the simplest form of result re-use, the parameters {f, {X}, {x}} can be used as a

signature to determine whether the exact same function call has been previously issued. The

signatures can be hashed to give us a constant lookup-time cache to avoid recomputation.

This basic strategy has been employed in systems like Lima Phani et al. [2021]. As we will

see in the following, our system goes one step further in term of re-use, by utilizing more

general signatures.
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5.2 Dimensional and Generalized Views

5.2.1 Dimensional Views.

In a number of important scenarios, the provenance relation depends on only the dimensions

of the data and not the actual data itself. For example, the provenance for all linear algebra

functions fits this criteria. To make our result re-use component more effective, we support

the case where the provenance is only dependent on the dimensions of the array and not the

actual values:

dim view(f, {dim(X)}, {x})

where dim(X) is a function that outputs the dimensions of X. Now, the view signature

can match previously computed captures even if the data was slightly different. Imagine, a

forward evaluation of a neural network on a different mini-batch of data.

5.2.2 Generalized Views.

Data generalization is not enough to capture provenance views across programs; we have to

be able to create signatures that are independent of array dimensions. We denote provenance

that support these signatures as a generalized view:

gen view(f, {x})

To create these views without human intervention, we can leverage our compressed repre-

sentation as a sort of “model” for how this function behaves. Suppose, that we have already

captured the dimensional view, Y , for (f, {dim(X)}, {x}). To create the generalized view,

for di ∈ dim(X), we identify all intervals [1, di] in Y , and replace them with the generalized

interval [1, Di], where Di is an indicator of that dimension. If there multiple intervals, we

scale the boundaries by the change in dimension.
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5.2.3 Automatic Materialization.

Now, DSLog automatically attempts to recognize when it is correct to materialize dimension

and generalized views. It is not possible to perfectly calculate this for every case without

full logical analysis of functions. However, we can make a best guess by using heuristics

to extrapolating based on past behavior. To extrapolate, DSLog generates a candidate

dimension and generalized view, whenever the full annotated execution of a function is ran.

If m instances of the same view with the same signature is observed, it is added to our cache

of materialized views. In our current implementation, we set m = 2. With generalized views

we set the condition that those views are re

5.2.4 Irrelevant Provenance Arguments.

There may be scalar arguments in {x} that do not affect the provenance. For example,

in numpy’s sort function, the parameter, kind determines sorting algorithm, but has no

effect on the final sorted array. Irrelevant provenance arguments, such as kind, leads to

multiple provenance signatures that map to duplicate provenance views within the same

function. This is space inefficient, especially when storing generalized views that persistent

indefinitely across programs.

DSLog automatically finds these arguments as follows. Given a scalar argument x ∈ {x},

DSLog define x as an irrelevant provenance argument if all function signatures that only differ

in x have the same materialized provenance view, and there exists n function signatures that

differ in x and have the same materialized provenance view. Irrelevant provenance arguments

are checked for after every view materialization, and removed from function signatures if

found.
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5.2.5 Examples of Generalized Views.

Table 4.5 shows a selection of generalized views for different functions in the “Generalized

Provenance View” column. From the table, we observe that generalized views create compact

representations for one-to-one element-wise functions (1) (2), axis aggregates (3) (4), and

axis pivots (5). I.e. the generalized view provide exactly defines these patterns of provenance

in an universal and parseable format.
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CHAPTER 6

EXPERIMENTS

Our experiments were performed on Chameleon, a large scale computer science research

platform Cloud [2022], with a Intel Xeon Gold 6126 Processor and 192 GiB of RAM. All our

experiments, including baselines, are single-threaded. We performed detailed experiments

on the three main components of DSLog: annotated execution, provenance compression, and

materialized views.

6.1 Feasibility of Annotated Execution

The objective of the first experiment is to demonstrate that annotated execution is a feasible

technique for capturing provenance. We illustrate the overheads (additional cost over normal

execution) of capturing this provenance.

6.1.1 Experiment Design

We simulate the example in the introduction where a user wants to understand the prove-

nance relationships in contributor code in an array programming library for these array

operations. We select 12 numpy operations that range from typical in prior work (linear

algebra) to less well-studied (histogram construction). DSLog does not know how these

operations behave beforehand. Seven of the operations are data independent (meaning the

provenance is independent of the values of the array) and five are data-dependent. In Table

5.1, we these operations are summarized in detail. For the data-dependent operations, we

will briefly describe the content of their array to give an intuition to what each operation’s

provenance relation is. XRandFilter and XRandBin4 are drawn randomly from [0, 1]. For

every cell, c[i], in XCorrFilter, we have c[i] = N (i,m/10), where m = 100000000 is the first

dimension size. We also draw XSortedBin4 from [0, 1], but then sort the elements physically.
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XImgFilter is an up-scaled MNIST image of a handwritten digit that is 0 for all elements in

the background.

The primary metric is overhead over standard numpy execution. For additional mi-

crobenchmark performance tests, we found consider two function types: a one-to-one

element-wise operation, and one axis aggregation functions. These show extremes in terms

of how many input cells correlated to output cells - only a single input in the first case, and

along a whole dimension in the second case.

6.1.2 Capture Time

In our first experiment, we evaluate our annotated execution environment on our workload.

Note, we did not modify the numpy functions in any way to capture this information other

than registering them to DSLog. Figure 6.1 shows the results of our workload executed

over 1M element input arrays. We find that the cost of annotated execution is steep in

relative terms (sometimes 40x slower than the standard execution). However, in absolute

terms, the differences are relatively small considering the debugging (less than 100ms for

every operation other than o5) and introspection benefits provenance provides.

6.1.3 Micro-Benchmark Baselines

Secondly, we compared the performance of DSLog on the annotated execution to two baseline

systems. To the best of our knowledge, there doesn’t currently exist another system with

this type of annotation for direct comparison so this set of experiments serves more as an

ablation study.

• Python Baseline. A Python-implemented baseline and that supports the exact

behavior of element annotation as our DSLog implementation. It tracks all provenance

with Python bindings and function overrides in numpy.
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Figure 6.1: The overhead of annotated execution on 1M cell inputs. Annotated execution
adds a significant overhead in relative terms to fast operations, but is still small in absolute
terms.

• C Baseline. A baseline that extends the Python baseline but uses C data types

to track the provenance. It supports the exact behavior of DSLog but without our

optimization of a pre-allocated buffer (which guesses at how big the provenance of an

element will be).

6.1.4 Deep Diving Performance

We show that baseline approaches cannot even match the high overheads seen in the last

experiment – they are simply infeasible at any realistic scale. Figure 6.3 shows the cost

of execution for baselines of over an element-wise function, and an aggregation function.

Figure 6.3(A) shows the “easy case” of this problem, where the amount of annotations for

each output element is minimal (only a single input). In this case, the C baseline and DSLog

have equivalent performance and thus we omit the C baseline. On the element-wise function,

DSLog performs up 275x faster than the Python baseline, but is still up to 5x slower than

the bare function.

Figure 6.3(B) is more interesting and shows the other extreme of annotated execution,
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Figure 6.2: To use annotated execution, input arrays need to be converted to annotated
arrays. Without optimization, this can be a significant overhead.

where each output element contains annotations from input cells along a whole axis. Figure

6.3(B) shows that without optimizations the baselines simply fail at large scales, we even see

this for our C baseline without our optimization of a pre-allocated buffer. This is because

they re-allocate new memory for every binary operation that occurs within reduce, leading

to memory space overuse.

On the aggregate function, DSLog performs up to 34000x faster than the Python baseline,

but is up to 44x slower than running without annotation. We have demonstrated that

detailed low-level memory management can lead to a marked improvement over baseline,

but annotations on every cell is inherently costly. We also note that DSLog is able to scale to

large array sizes more efficiently than the baselines. It is able to maintain a consistent relative

overhead on element-wise functions, while relative overhead in the Python implementation

increases dramatically.

6.1.5 Function Registration Cost

A hidden cost in annotated execution is initialization time, or the time needed to convert

the input arrays from their numerical data types into their annotated data types (one can
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actually think of this as a running an additional element-wise function!). This was included

in our workflow experiment but not captured in the micro-benchmarks. Figure 6.2 shows

cost of annotation initialization for both the Python baseline and DSLog’s implementation

(the annotated initialization cost for the C-baseline would be same as DSLog). This includes

the time to convert the array’s data type from double to annotated double and the time

to fill the initial annotation with each cell’s current index. We can see from the figure

that, DSLog performs an order of magnitude better than the Python baseline. The Python

baseline requires initialization of a full Python object for each cell. In contrast, DSLog

directly implements a numpy data type that is stored within the array – this is interfaced

to Python with a C API. Results suggest that the overhead of dealing with the Python

object is responsible for most of this performance difference. Both implementations have a

performance that is roughly linear with respect to the number cells, which is expected since

filling the initial annotation requires iteration over all cells.

6.1.6 Summary

To conclude, annotated execution is relative expensive but it might be worth it as the

only solution to debugging black-box functions. Typical functions will not be as bad as

the aggregate shown in our experiments (having a smaller “blast radius”) of provenance.

Additionally, relative performance might not be significant on smaller arrays (¡1M) because

the operation themselves are still performed quickly. Note, that by using provenance views

as described in the paper, one only has to incur this cost once per function call with the

same or similar arguments.

6.2 Compression

Our compression algorithm, ProvRC, is evaluated alongside two axes: compression ratio and

compression latency. We deemed that the compression ratio of ProvRC is more important,
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since the compression latency is asynchronous. However, we wish to show that this latency

is within range of baseline compression algorithms used in practise.

6.2.1 Experiment Design

To evaluate storage, our compression algorithm was ran over the raw provenance result from

the annotated results of the 12 operations summarized in Table 5.1 and Section 6.1.1. To

evaluate performance, we measured the latency of compressing the two extremes of function

types: one-to-one element-wise operation, and one axis aggregation functions.

6.2.2 Baselines

We experimentally compare ProvRC against other compression algorithms.

• gzip We use gzip as a generic compression algorithm that is unaware of the typical

structures in provenance relations.

• SubZero SubZero introduced the concept of Region Lineage, which are pairs of sets

that contain all-to-all relationships. This is subtly different from our range encoding,

which describes one-to-all relations over a range of cells. Since SubZero is implemented

over SciDB, we present our best effort reproduction of their paper for numpy ndarrays.

• Columnar We use the columnar compression described in Section 4.2.1 that uses

integer entropy coding on each column Hanzo et al. [2002]

• ProvRC- No Rel. We also compare compression ratio against a version of ProvRC with

only multi-attribute encoding and no relative compression.

In terms of metrics, we consider the compression ratio that measures the compressed

size of the provenance versus the raw size of the provenance generated from an annotated

execution. We also consider the compression latency as the time needed to fully compress
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Figure 6.3: (A) The annotation overhead of element-wise operations, (B) the annotation
overhead of aggregation operations.

that raw provenance. We exclude SubZero from the performance comparison, since its

Region Lineage pairs are generated through user-defined functions, and does not perform

actually perform compression over the raw provenance (and is more analogous to fetching

materialized views in DSLog).

6.2.3 Compression Ratio

In Table 6.1, we show the size of the provenance file on disk for each compression algorithm.

Interestingly, each algorithm presented a different pattern on the compression over prove-

nance data. GZIP consistently compressed the file to about 20%-30% of the original size,

which is in line with its compression ratio for other files of integers, and a good baseline for

a data-agnostic approach. Subzero showed some successful compression on functions with

aggregations, but does not show improvements in the other cases. This suggests that the

all-to-all model is not a good general representation of provenance for many array functions.

Note that Subzero does not prescribe a method for generating provenance pairs, and the com-

pression ratio is dependent on how the user chooses to use this representation. For example,

in MatMul, we paired slices of each input array with slices of each output array. Another
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valid representation that would lead to much poorer compression would be to compress slices

of both input arrays with the one corresponding output cell.

Columnar compression with had consistent good performance over every function, and

was the best algorithm for array provenances with low spatial correlation. Turbo’s perfor-

mance indicates that the relational model of provenance leads to column regularity that

arithmetic coders can recognize, and is a useful model for efficient compression. ProvRC is

still able to beat its compression ratio on provenance with higher spatial correlation. An-

other major downside compared to ProvRC is that its output is not parse-able for downstream

tasks.

We see that ProvRC without relative indexing performs poorly in many cases where the

original ProvRC algorithm is able to optimally find a pattern. This suggests that relative

indexing is an essential concept to capture the relationship between input and output array

indices for many patterns. In cases without spatial regularity that matches those detected

in ProvRC, the processed file can be relatively worse than the original file, due the additional

scaffolding used in ProvRC to describe relative indices and ranges. However, the benefit of

ProvRC is that it doesn’t necessarily scale with array size; for example, the provenance used in

Table 4.5 for an array of size 1000 to describe the negative function is the exact same size as

the one generated in our results for an array of size 1 million. ProvRC is notably the optimal

choice for array provenance with simple spatial regularity, we see up to approximately 109x

in reduction of storage size with the tested common numpy functions.
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Figure 6.4: (A) and (B) benchmark the compression algorithms in terms of their latency as
a function of input size. At large scales, ProvRC and Columnar are largely similar in terms
of compression latency, but gzip is about an order of magnitude slower.

6.2.4 Latency

6.2.5 Compression Latency

Figure 6.4 shows the asynchronous latency of compression for GZIP, columnar compression

with TurboRC, and ProvRC over different input array sizes for element-wise and aggregation

functions. Our compression algorithm performed up to 6x better than GZIP in both element-

wise and aggregation. Turbo is significantly slower on small arrays, but has similar latency on

larger arrays with aggregation lineage, and is faster on element-wise lineage. Considering that

ProvRC wasn’t designed to optimize performance, we found that its latency is comparable

to current state-of-the-art and popular solution.

6.3 Materialized Views

The views in DSLog are useful under two conditions: (1) they generate provenance with a

lower overhead than annotated execution DSLog, and (2) they have significant coverage over

1. Memory usage for full provenance compression exceeded our machine’s limit during compression, so
row-level provenance were individually compressed
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array-based function signature.

6.3.1 Overhead

The point that materialized views have lower overhead than annotated execution is obvious.

For the sake of completion, we evaluated the overhead of finding pre-materialized provenance

views compared to running the bare function for element-wise and aggregation functions -

given that DSLog first loads a hash map of function signatures to views in memory. These

results are not shown in the paper as, even smoothed over 100 runs, the overhead is unde-

tectable over the natural variance in performance in running the functions.

We should aim to materialize and take advantage of repeated function signatures when-

ever possible, and reduce the number of annotated executions needed. In a sense, this is

re-framing what past systems established with operation specifications and operation con-

straints. However, our contribution is that DSLog generates and uses unconstrained views

without human intervention.

Now we discuss the more important consideration of materialized view: can we frequently

generate these views for common array operations?

6.3.2 Coverage Experiment Design

We evaluate coverage of DSLog’s view framework by assessing a full set of 136 different func-

tions in numpy in a simulated user workflow. These functions consists of all the functions in

numpy’s API that meet the criteria of current supported function signatures: they (1) can

intake annotated double arrays and output an annotated double, and (2) only intakes

scalar arguments outside of annotated double arrays. For each function, a list of possi-

ble scalar arguments are are hand-generated and we decorate each function to run within

DSLog’s framework. In our simulated workflow, DSLog populates the materialized views

over 100 runs. For each run, scalar arguments are randomly selected from our list, and array
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Function Total dim view global view Error
element-wise 75 75 75 0
complex 61 51 24 1
total 136 126 99 1
total (%) - 92.65 72.79 0.73

Table 6.2: A table showing how many numpy API functions are covered in our view generation
and accurately characterized.

sizes random picked for each input array. We then perform the annotated execution twice

with the selected arguments and array sizes, randomly re-populating the content of the array

before each executions. DSLog automatically materializes views as described in Section 5.

Each run represents an individual program where the same dimensional function signature

might be repeated multiple times. Multiple runs represent use across multiple programs,

where the function signature varies with each program.

We evaluate functions with this workflow as follows. We consider that the function is

covered by dimensional views, if, after each run, a dimensional view is created for that

dimensional signature. We consider that the function is covered by generalized views, if a

set of generalized views are created after all 100 runs. A detailed list of all 136 functions

has been uploaded onto Github2. For each individual function, this includes a list of tested

arguments, and whether DSLog was successful in generating the dimensional and generalized

views.

As automated view capture is a novel task, there does not exist any baselines to compare

our coverage against. We simply evaluate the percentage of all functions we are able to cover

with both dimensional and generalized views.

6.3.3 Coverage Over numpy Library

Table 6.2 summarizes the results. We divide the numpy functions into two categories -

element-wise function and other more complex patterns. As one can see from the table,

element-wise functions make up over half of our results. DSLog is well suited to deal with
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these functions; they are easily identifiable after applying the ProvRC compression, and are

completely captured with both dimensional and generalized views. For complex patterns, we

are able to generate dimensional and generalization views for 86% and 39% of the functions

respectively. In total, we cover 92% of functions with dimensional views and 72% with

generalization views. If DSLog is deployed for full array-based programs in the future, we

expect views to be a significant part of our performance optimization strategy.

The coverage of generalize views is particular interesting outside of optimization. As dis-

cussed in Section 5, these views are extrapolated based on our compression framework, and

actually suggest that our compression framework is capable of some logical inference. Com-

bined with our experimental results, we show that DSLog is implicitly capable of predicting

the underlying logical provenance pattern of the majority of the tested numpy functions.

There is one mis-prediction that occurred, where DSLog generated a wrong generalized

view for the function numpy.cross. This is due to the fact that numpy.cross has different

provenance patterns depending on the size of the second dimension. However, there are only

two valid sizes of that dimension (2 or 3), so it is likely that we observe only one pattern

after m runs is high. This is the downside of setting m to be a low value. Mis-predictions

like this can be mitigated, by periodically re-evaluation the materialized view with new calls.

Overall, we still found an error rate of less than 1% on our simulated workflow. Of course,

workflows in the wild are more unpredictable, and the set of function signatures used not

purely random, leading the higher likelihood of similar generalization errors.

2. https://github.com/j2zhao/DSLog-Coverage-Functions
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CHAPTER 7

DISCUSSION AND CONCLUSION

This paper explores techniques to efficiently capture and represent fine-grained data prove-

nance in array-programming frameworks. Our system, DSLog, uses a technique called anno-

tated execution to capture provenance automatically without user specification. The design

decisions of DSLog draws from a set of core concepts:

1. User effort should be minimized. Outside of decorating the function, we do not require

user any user interaction to generate function provenance.

2. Low-level array annotations are important and can be optimized. We’ve established

that low-level array annotations address the issue of black-box provenance. Unfor-

tunately, these annotations naturally have a significant impact on performance. We

believe that, while this impact cannot be mitigated, it can be reduced. These leads to

our low-overhead implementation of the annotated double data type.

3. Physical provenance over the entire array should be accessible to the user. This means

that the user should be able to easily query our system to know the provenance of

every cell in the output array. We currently guarantee this by tracking every cell

during annotated execution, and storing the full provenance in a lossless manner with

ProvRC.

4. There are similarities in provenance across functions with different prove-

nance patterns. This is the most important idea in this paper, and leads to

our ProvRC compression algorithm and generalized provenance views. For example,

element-wise functions, and tiling functions both benefit from relative indexing during

compression (Table 4.5). Similarly, transpose and matrix multiplication functions can

have their provenance be generalized by simply scaling [1, Di].
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As we noted before, we use word physical carefully to denote the capturing methodology

and not the storage model. One can capture logical provenance (the function descriptions)

but store it physically (materialize each element-level relationship). In a sense, the workflow

in DSLog does the reverse - creating generalized arrays from array annotations is a specific

case of translating physical provenance to logical provenance.

There is an interesting equivalence between operation specification (a form of logical

capture) and generalized views. Generalized views are defined on function signatures that

are independent of array specifications. Hence, an materialized generalized view is function-

ally equivalent to the output of an user-defined operation specification. This leads us to

conclude that our process in creating generalized views is actually making and encoding a

predication on the underlying logic of physically-gathered provenance. ProvRC and gener-

alized views provide a method where this encoding could be automatically generated from

low-level physical provenance. This contribution is independent of the system metrics of the

performance and space efficiency of DSLog. Future work can expand on this concept, and

extend the encoding for more functions.
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