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ABSTRACT

Data-intensive computation has increasingly become prevalent and critical for a wide variety of applica-

tions that underpin the modern world. Such computation jobs are usually expensive in terms of time

and resource consumption, thus it is beneficial but challenging to efficiently share the resource among

them in a resource-constrained environment. Our studies show that by exploiting workload character-

istics and leveraging resource traits, the constrained resource could be efficiently shared among multiple

data-intensive computation jobs to achieve the same performance objective as they only achieve when

competing for resources fiercely.

In our research, we explore efficient resource sharing for data-intensive computation and implement

various prototype systems to realize them. We propose and implement Pack primitive for deep learning

training to share common I/O and computing processes among models on the same device. We further

propose and design a resource arbitration framework that can continuously prioritize the data-intensive

computation jobs and determine if/when to reallocate and preempt the resources for them.
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CHAPTER 1

INTRODUCTION

Data-intensive computation is vital for a wide variety ofmodern services and applications spanning from

healthcare and market analytics to autonomous driving and natural language processing [11]. As best

exemplified by two prevalent cases, approximate query processing (AQP) [10] and deep learning training

(DLT) [18], most of the modern data-intensive computation jobs run in an iterative and progressive

fashion where data are received in a batch mode and current results can be reused and merged with the

latest results of processing the new batch of data. Such long-running data-intensive computation jobs are

prohibitively expensive in terms of time and resource consumption, especially in a resource-shared and

-constrained environment.

Yet, prior data-intensive computation systems are inefficient from the perspective of resource shar-

ing. A key factor in the inefficiencies of prior data-intensive computation systems is that their design and

implementation are mostly agnostic of the resources and workloads. They typically treat the modern

data-intensive computation jobs as the classic data processing job without identifying the unique traits

of the resources and jobs. For example, the deep learning training jobs rely on specialized hardware such

as GPUs which makes fine-grained resource sharing (i.e., training multiple networks on the same device)

significantly harder than the classic CPU-based computation job. Moreover, considering the efficiency

of resource sharing is jointly described by the resource utilization and the progress per unit of resource,

another common but unobtrusive inefficiency example is that some long-running data-intensive com-

putation jobs can occupy the constrained resource for an extended period but only make subtle progress

towards their performance objective.

To achieve efficient resource sharing for data-intensive computation, we argue that it is necessary to

leverage resource traits and exploit workload characteristics. The modern resources bring new traits in-

cluding multi-core processors, specialized computation capability, and heterogeneous data transmission

and storage. Taking advantage of these traits requires extensive effort and great care because they are often

indistinguishably exposed to different data-intensive computation jobs and integrated into a single infras-

tructure; using them naively or in a unified way could degrade performance. Applying optimization can
1



become efficient under specific workloads with certain properties; interruption to long-running jobs is

typically considered harmful because it may bring additional computation and context-switch overhead,

but it cal also improves the performance of the entire workload when exploited properly.

1.1 Towards Efficient Resource Sharing for Data-Intensive Computation

Our efforts in designing and implementing efficient resource sharing systems touch two prevailing data-

intensive computation scenarios as aforementioned, deep learning training (DLT) andapproximatequery

processing (AQP). We provide a high level overview for each work as following.

Pack: As neural networks are increasingly employed inmachine learning practice, how to efficiently

share limited training resources among a diverse set of model training tasks becomes a crucial issue. To

achieve better utilization of the shared resources, we explore the idea of jointly training multiple neural

networkmodels on a single GPU in this paper. We realize this idea by proposing a primitive, called Pack.

We further present a comprehensive empirical study of Pack and end-to-end experiments that suggest

significant improvements for hyperparameter tuning. The results suggest: (1) packing two models can

bring up to 40% performance improvement over unpacked setups for a single training step and the im-

provement increases when packingmoremodels; (2) the benefit of the Pack primitive largely depends on

a number of factors including memory capacity, chip architecture, neural network structure, and batch

size; (3) there exists a trade-off between packing and unpacking when training multiple neural network

models on limited resources; (4) a Pack-aware Hyperband is up to 2.7× faster than the original Hyper-

band, with this improvement growing as memory size increases and subsequently the density of models

packed.

Rotary: Increasinglymodern computational applications employprogressive iterative analytics. In

comparison to classic computation applications that only return the results after processing all the input

data, progressive iterative analytics keep providing approximate or partial results to users by perform-

ing computations on a subset of the entire dataset until either the users are satisfied with the results, or

the predefined completion criteria are achieved. Typically, progressive iterative analytic jobs have diverse

completion criteria, produce diminishing returns, and process data at a different rate, which necessitates

2



a novel resource arbitration that can continuously prioritize the progressive iterative analytic jobs and de-

termine if/when to reallocate and preempt the resources for them. We propose and design a resource

arbitration framework, Rotary, and we implement two resource arbitration systems, Rotary-AQP and

Rotary-DLT, for approximate query processing and deep learning training. We build a TPC-H based

AQP workload and a survey-based DLT workload to evaluate the two systems respectively. The eval-

uation results demonstrate that Rotary-AQP and Rotary-DLT outperform the state-of-the-art systems

and heuristic baselines and confirm the generality and practicality of the proposed resource arbitration

framework.

In the rest of this dissertation proposal, we first present the aforementioned systems inChapter 2 and

Chapter 3. Then we discuss the current progress and research plan of the next project in Chapter 4.
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CHAPTER 2

UNDERSTANDING ANDOPTIMIZING PACKEDNEURAL NETWORK

TRAINING FORHYPER-PARAMETER TUNING

The successes of AI are in part due to the adoption of neural network models which can place immense

demand on computing infrastructure. It is increasingly the case that a diverse set of model training tasks

share limited training resources. The long-running nature of these tasks and the large variation in their

size and complexity make efficient resource sharing a crucial concern. The concerns are compounded

by an extensive trial-and-error development process where parameters are tuned and architectures have

tweaked that result in a large number of trial models to train. Beyond the monetary and resource costs,

there are long-term questions of economic and environmental sustainability [77, 70].

Efficiently sharing the same infrastructure among multiple training tasks, or multi-tenant training,

is proposed to address the issue [89, 40, 62, 57]. The role of a multi-tenancy framework is to stipu-

late policies and constraints on how contended resources are partitioned and tasks are placed on physical

hardware. Most existing approaches divide resources at the granularity of full devices (e.g., an entire

GPU) [34]. Such a policy can result in low resource utilization due to its coarse granularity. For ex-

ample, models may greatly vary in size, where the largest computer vision models require multiple GBs

of GPU memory [9] but mobile-optimized networks use a significantly smaller space [69]. Given that

GPUs today have significantly more on-board memory than in the past (e.g., up to 32 GB in commercial

offerings), if a training workload consists of a large number of small neural networks, allocating entire

devices to these training tasks is wasteful and significantly delays any large model training.

Furthermore, the reliance on specialized hardware such as GPUsmakes fine-grained resource sharing

(i.e., training multiple networks on the same device) significantly harder than the typical examples in

cloud systems. Unlike CPUs, the full virtualization of GPU resources is nascent [65]. While modern

GPU libraries support running multiple execution kernels in parallel, sharing resources using isolated

kernels is not a mature solution in this setting. Many deep learning workloads are highly redundant,

for example, the typical parameter tuning process trains the same model on the same data with small
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tweaks in hyperparameters or network architectures. In this setting, those parallel kernels would transfer

and store multiple copies of the same training data on the device. This is analogous to the redundancy

problems faced with conventional hypervisors running many copies of the same operating system on a

single server [86].

To avoid these pitfalls and provide efficient sharing, we need an approach that is aware of common

I/O and computing processes amongmodels that share a device. We consider a scheme, packing models,

where multiple static neural network architectures (e.g., ones that are typically used in computer vision)

can be rewritten as a single concatenated network that preserves the input, output, and backpropagation

semantics through a pack primitive. Not only does such concatenations facilitate partitioning of a single

device it also allows us to synchronize data processing on GPUs and collapse common variables in the

computation graph. It is often the case during hyperparameter tuning that the same model with various

hyperparameter configurations are trained, and pack can feed a single I/O stream of training features to

all variants of themodel. In contrast, an isolated sharingway (e.g., trainingmodels isolatedly in sequence)

may lead to duplicated work and wasted resources.

One of the surprising conclusions of this paper is that packing models together is not strictly ben-

eficial. Counter-intuitively, certain packing policies can perform significantly worse than whole-device

baselines–in other words, training a packed model can be slower than the sum of its parts (i.e., training

these ”parts” one by one). This paper studies the range of possible improvements (and/or overheads) for

using pack. Further, we deploy pack to hyperparameter tuning and demonstrates that it can greatly im-

prove the performance of hyperparameter tuning in terms of the time needed to find the best or themost

promising model.

Our experimental results suggest: (1) There is a range of performance impact, spanning from 40%

faster execution to 10% slower execution on a single GPU for packing two models over unpacking them

for a single training step, and the improvement is scalable when packingmoremodels. (2) The benefits of

the pack primitive largely depend on a number of factors including memory capacity, chip architecture,

neural network structure, batch size, and data preprocessing overlap. (3) There exists a trade-off between

packing and unpacking when training multiple neural network models on limited resources. This trade-
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off is further complicated by architectural properties that might make a single training step bounded by

computation (e.g., backpropagation is expensive) or data transferring (e.g., transferring training batches

to GPUmemory). (4) The pack primitive can speedup hyperparameter tuning by up to 2.7×.

2.1 Background

2.1.1 Motivation

Figure 2.1 demonstrates the typical data flow in neural network model training with stochastic gradient

descent (or related optimization algorithms). We use the term host to describeCPU/Main-Memory/Disk

hierarchy and device to refer to the GPU/DeviceMemory. In this setup, all of the training data resides on

the host. Considering the typical training setup on the left side, a batch of data is taken from the host and

copied to the device. Additionally, it is common in machine learning (especially in Computer Vision)

that this data is preprocessed before it is transferred. Then, on the device, the execution framework cal-

culates a gradient using backpropagation. Finally, using the results from the backpropagation, themodel

is updated.

Training DataTraining Data

(4) backpropagation

(5) update

(4) backpropagation

(5) update

(1) batch

(2) preprocess

(3) transfer

(1) batch

Single Mode Packed Mode

(2) preprocess

(3) transfer

CPU
Main Memory

GPU
Device Memory

Potential 
Sharing

Figure 2.1: The dataflow of a training step in the single mode v.s. the packed mode. The training data
resides in main-memory and is copied over to the device in batches during each training step resulting in
a backprogation computation and then a parameter update. By synchronizing the dataflow, the packed
mode can reuse work when possible.
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In the typical ”multiple-tasks-single-device” mode, resource sharing is often temporal–where one

training task uses the wholeGPUfirst and then switches full control to another task. Resource sharing in

single mode is wasteful if the models are small and there is sufficient GPUmemory to fit both models on

the device simultaneously. The right side of Figure 2.1 motivates a different solution. It allows multiple

models to be placed on a single GPU. This packed mode could bring some potential benefits. Suppose,

we are training twomodels on the same dataset to test if a small tweak in neural network architecture will

improve performance. The same data would have to be copied and transferred twice for training. If the

system could pack together models when compatible in size, then these redundant data streams can be

fused together to improve performance.

2.1.2 Basic Framework API

We desire a framework that can pack models together and jointly optimize their respective computation

graphs when possible to reduce redundant work. We assume that we have access to a full neural network

description, as well as theweights of the network. Each training task is characterized by four key traits: (a)

Model. Acomputation graph architecture of themodelwithpointers to the input andoutput, equipping

with some training hyperparameters (e.g. learning rate, optimizer, etc.) and assigning to a logical name

that is uniquely identified. (b)Device. The target device to be used for placing and training models. (c)

Batch Size. The batch size used in the training process, where each batch refers to the size of input data

used in a single training step. (d) Training Step. The number of steps to train the model, which is also

relevant to the number of epochs since typically one epoch consists of numerous steps.

Our objective is the following isolation guarantee: given these four traits, our frameworkwill train the

models in a fine-grained way but preserve the accuracy as if the training tasks were trained isolatedly and

sequentially on a dedicated device. No action that the framework takes should affect training accuracy.

Such a framework requires three basic primitives load, free, and pack. Users should be able to interact

withour frameworkwithoutworrying about exactly how the resources are allocated andonwhichdevices

the models are placed.

Theprimitivesload andfree can ”copy in” and ”copyout”models. Given a device name andmodel,

7



load places the model on the device:

load(model, device)

Given a device name andmodel, free retrieves themodel and frees the resources taken by themodel:

checkpt = free(model, device)

State-of-the-art neural network training algorithms have additional state as a part of the optimizer.

This state is stored with the model (see our experiments on computer vision models with optimizers

in Section 2.3). Then, the API provides the primitive pack for packing. Suppose, we have two neural

network models:

output1 = nn1(input1)

output2 = nn2(input2)

The pack primitive combines both models into a new neural network by concatenating the output

layers:

[output1 output2] = packed_nn([input1 input2])

This packing operation is fully differentiable and preserves the correctness semantics of the two orig-

inal networks. Crucially this allows the execution layer to process inputs simultaneously.

Thus, the models can be jointly trained using pack. The training steps have to be synchronized in

the sense that themodels are differentiated and updated at the same time. This synchronization leads to a

complex performance trade-off, if the models are too different the device may waste effort stalling on one

modelwhile either updating or differentiating on the other. Thismeans that training a packedmodelmay

be significantly slower than sequentially training each constituent model in it. However, the overheads

from stalling may be counteracted by the benefits of reducing redundant computation. Navigating this

complex trade-off space is themotivation for this study, andwe seek to understandunderwhat conditions

is pack beneficial.

8



2.2 Implementation

Webuild a prototype systemon top ofTensorFlow to implement the above frameworkAPIs and take im-

age classification as our motivating application in our implementation, but the idea of pack is generally

compatible with other platforms and applications.

2.2.1 Packing

Pack is a lossless operation that concatenates the outputs of two or more neural network models. Since

it is lossless, it preserves the forward and backward pass semantics of the model. The basic operation can

be written as packing multiple output variables, as illustrated in the following example:

mlp_out = #reference to mlp output

resnet_out = #reference to resnet output

densenet_out = #reference to densenet output

packed_out = pack([mlp_out resnet_out densenet_out])

This packed_out can be thought of as a new neural network model that takes in all input streams

(even possible different input data types) and outputs a joint prediction. Thus, we can do everything to

a packedmodel that we could do to a single neural network. The packedmodel can be differentiated and

the model parameters can be updated iteratively. The model can be placed on a device, such as GPU or

TPU, as a single unit.

While this gives us scheduling flexibility, there is a major caveat. By packing the models together, we

create an artificial synchronization barrier. If one of the models is significantly more complex than the

others, it will block progress. Likewise, if one of the operations saturates the available compute cores,

progress will stall as well. Naive packing leads to a further issue where the input batch has to be syn-

chronized in dimension as well (each model is differentiated or evaluated the same number of times).

Therefore, without further thought, the scope of pack is very narrow.
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2.2.2 Misaligned Batch Sizes

Requiring that all packed models have the same batch size is highly restrictive, but we can relax this re-

quirement. Our method is to rewrite the packed model to include a dummy operation that pads models

with the smaller batch size tomatch the larger ones in dimension. Thepadprimitive is exploited for pack-

ingmodels with different batch sizes. The originalmodels are packed and trained based on the batchwith

the largest size, but the batches for the models with smaller batch sizes will be padded. During training

and inference, the padding is sliced.

...

Model 1 Model 2 Model NModel 3

Batch: 100 

Batch 2:
50/100 

Batch 1:
100/100 

Batch 3:
80/100 

Batch N:
20/100 

Used for 
current epoch

Padded and recorded 
for future epoch

Figure 2.2: All the models share the batch input stream, each batch is padded and sliced for training the
packed model.

As depicted inFigure 2.2, there are a set of originalmodelswith various batch sizes, the largest training

batch size (i.e., 100) is selected and fed to the packed model for a single training step accordingly. Then,

the batch will be replicated for n original models in the packed model. The model 1 takes the entire

batch, whereas the replicated batches 2, · · · , N are sliced to match the models’ requirement. Thus, all

the models can be trained together.

Simply slicing may result in statistical inefficiency since only a fraction of the entire dataset is used

during each epoch for the models with smaller batch size. To address this issue, we track the progress of

each model individually to ensure that there is no loss in training dataset. Assuming we train the packed

model in Figure 2.2 for one epoch. Whenmodel 1 finishes training and is unloaded,model 2 achieves50%

progress and uses 50% of the training dataset, model 3 has been training using 80% dataset, and so do the

other models (dataset usage is recorded for all models). Then, the packed model takes the current largest

batch size (i.e. 80 frommodel 3) and uses the rest training dataset of model 3 to train the packed model.
10



Due to slicing, it is obvious that unused training dataset of model 3 are included in the unused dataset of

other models. The process continues until all models are trained completely and thus no training data is

missing.

2.2.3 Misaligned Step Counts

Another issuewith synchronization is that differentmodelsmay need to be trained for a different number

of steps. Even if all of the models are the same, this can happen if the user is trying out different batch

sizes.

We use load and free to address this issue. As demonstrated in Figure 2.3, we train three models

with batch size 20, 50, and 100 for one epoch using 10, 000 images and labels, and they require 500 steps,

200 steps, and 100 steps. We pack them for training, and when the model with 100 steps is finished, it

is freed and checkpointed. Then, a new model can be loaded and packed with the incomplete models to

continue training. This mechanism may bring an overhead of loading models but can support training

models with a different number of steps.

0/500

0/200

0/100batch size: 100

10000 imgs/epoch

100/500

100/200

100/100

100/500

free and checkpoint

…

0/400

batch size: 50

batch size: 20

load new model and pack

Pack batch size: 100 Pack batch size: 100 Pack batch size: 100-->50

100/200…

… …

…

…

load and pack

Figure 2.3: Early finished model is freed and checkpointed, new model is packed with the others for
further training.
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2.2.4 Eliminating Redundancy

Pack forces synchronization, which means that dimensional differences between the models or training

differences between themodels can lead towastedwork. However,Pack can allow the system to eliminate

redundant computations and data transfers. Consider a hyperparameter tuning use case where we are

training the same network with a small configuration tweak on the same dataset:

nn_conf1_out = nn_conf1(input1)

nn_conf2_out = nn_conf2(input2)

In this case, input1 and input2 refer to the same dataset. We can avoid transferring the batch mul-

tiple times by symbolically rewriting the network description to refer to the same input:

nn_packed_out = pack([nn_conf1_out nn_conf2_out])

[output1 output2] = nn_packed_out(input)

The potential upside is significant as it reduces the amount of data transferred along a slower I/Obus.

Furthermore, eliminating redundant computation goes beyond identifying common inputs. Preprocess-

ing is a common practice for machine learning training tasks. The preprocessing operations (e.g., data

augmentation, image decoding) happen before training and can actually dominate the total execution

time of some models. When packing models that take the same preprocessing, the pack primitive can

fuse the steam processing and eliminate redundant tasks. This idea can be extended if multiple models

have fixed featurization techniques or leverage the same pretrained building blocks.

2.3 Profiling Model Packing

As it stands, model packing leads to the following trade-offs. Potential performance improvements in-

clude: (1) eliminating redundant data transfers whenmodels are trained on the same dataset, (2) combin-

ing redundant computations including preprocessing, (3) performing computations (forward and back

propagation) in parallel if and when possible. On the other hand, the potential overheads include (a)
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models that dominate the device resources and block the progress of the others, (b) overhead due to mis-

aligned batch sizes, and (c) overhead due to loading and unloading models with a differing number of

training steps.

This section describes a series of experiments that illustrate when (what architectures and settings)

packing is most beneficial.

2.3.1 Profiling Setup

Our server is 48-core Intel Xeon Silver 4116@2.10GHzwith 192GBRAM, runningUbuntu 18.04. The

GPU is NVIDIA Quadro P5000. Our evaluation uses 4 models: Multilayer Perceptron with 3 hid-

den layers (MLP-3), MobileNet [69], ResNet-50 [26], and DenseNet-121 [31] – with all models im-

plemented in TensorFlow 1.15. The default training dataset is 10, 000 images from ImageNet [68] and

the required input image size of each batch is 224× 224which is commonly used. Batch sizes start from

32 and goes up to 100 in the experiments [6].

In our experimentalmethodology, the first training step is always omitted formeasurement due to the

CUDAwarm-up issue, and the measurement of the single step excluded loading time. We only measure

the loading cost for investigating whether it dominates the performance (middle column in Figure 2.6).

So, thismeasurement is orthogonal to any pipelining thatmight happen at a different level of abstraction.

The results in the paper are averaged over 5 independent runs.

2.3.2 ProfilingMetrics

We evaluate the pack primitive against three performance metrics defined as follows.

Improvement: We measure the time of a single training step of the packed model. Since one training

epoch can be treated as a series of repeating training steps and a complete training process is made with

multiple epochs, the single training step measurement can be used to estimate the overall training time.

We denote the step time as Ts and assume that there arenmodels (model 1, · · · , n), andwe compare the

time of a single training step in packed and sequential mode. We first train models 1, · · · , n isolatedly
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and sequentially, and measure the time of a single training step:

Ts(Seq) = Ts(Model 1) + · · ·+ Ts(Model n) (2.1)

Then, we pack these models for training andmeasure the single training step, which is defined as follows:

Ts(Pack) = Ts(Pack(Model 1, · · · , n)) (2.2)

Thus, we define the improvement metric as follows:

IMPV =
Ts(Seq)− Ts(Pack)

Ts(Seq)
(2.3)

The improvement metric can quantify the benefits brought by pack primitive, and comparing IMPV

of various training setups can identify performance bottlenecks.

Memory: Fine-grained resource sharing (e.g., training multiple models together on a single device) re-

quires sufficient device memory, thus measuring the memory usage of the packed model can provide

insights for scheduling different models given a specific device memory capacity. We evaluate the peak

of memory usage over the training epoch. This is because if the usage peak is over the GPU memory

capacity, the training process will be terminated due to a GPUmemory error. We measure the allocated

memory and not the active memory used.

Switching Overhead: Training the models isolatedly and sequentially on a single device can bring an

additional switching overhead. For example, the GPU has to unload the old model and the associated

context and then load the newmodels and prepare the context. Pack significantly reduces such overhead

since packing models suffer from model switching less often (multiple models can be trained together

given enough GPU memory so that loading and unloading operations can be avoided). The switching

overhead is measured through the following method: We train nmodels isolatedly and sequentially for

one epoch and capture the training time, which is denoted as Te(Seq). Then we train n models indi-

vidually and denote Te(Model) as the training time of one epoch for each model. Thus, the switching
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overhead of training nmodels is defined as:

SwOH(n) = Te(Seq)− Te(Model 1) · · · − Te(Model n) (2.4)

However, we hypothesize that the overhead amortizes over an entire training procedure. This is because

SwOH depends on the number of models instead of the number of training steps and epochs. Since

training a model usually involves numerous training steps and many training epochs, compared with

much longer training time, the switching overhead is minor (section 2.3.5).

2.3.3 Improvement

Weevaluatepackingperformance as a functionofbatch size and thenumber ofmodels. Figure 2.4a shows

that as the number of packedmodels increases so do the relative benefits until the resources are saturated.

The line of DenseNet-121 ends early because that packing four DenseNet-121 takes too much GPU

memory and results in an Out-Of-Memory (OOM) issue. However, the potential for resource savings

is significant. If one is training multiple MLP models, there can be up to an 80% reduction in training

time. In short, it is wasteful to allocate entire devices to small models.
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Figure 2.4: Improvement of packing models when increasing number of models and batch size on GPU.
Y-axis indicates the reduction in training time compared to sequential execution (Eq. 2.3).

Figure 2.4b illustrates the relationship between batch size and relative improvement when packing
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twomodels. The lines of ResNet-50 and DenseNet-121 both end early because the OOM issue emerges

when the batch size goes to 80 and 64 respectively. These models are mostly GPU-compute bound.

Increasing the batch size has a negligible improvement in time even if the packing setup can combine the

data transfer. We will see that this story gets more complicated when considering preprocessing.

2.3.4 Memory Usage

We track the GPUmemory usage of training individual models and packed models with different batch

sizes for one epoch. We particularly care about the memory peak and whether it is beyond the memory

capacity.

Figure 2.5: GPUmemory peak of different models

As depicted in Figure 2.5, for convolutional neural networks likeResNet,MobileNet, andDenseNet,

the GPU memory usage is proportional to the batch size as more intermediate results will be stored as

batch size increases. Similarly, when packing two models the GPUmemory usage is the sum of memory

usage. However, theGPUmemory usage peak ofMLP-3modelmaintains the same as the batch size goes

up. This is mainly due to two reasons: (1) we find that for simple models TensorFlow’s greedy memory

allocationpolicy over-allocatesmoreGPU’smemorywhen the actual usage is lower than a specific thresh-

old; (2) themajority of computations forMLP-3 are dot products and are placed onCPUbyTensorFlow

and do not occupy much GPU memory. More specifically, without any annotations, TF automatically

decides whether to use the GPU or CPU for an operation [19] (we also used the TF profiler to trace the

training process and found the majority of operations in MLP-3 are placed on the CPU). Thus, GPU
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memory usage of single MLP-3 remains the same due to the pre-allocation.

2.3.5 Switching Overheads

We profile the switching overhead of twomodels to illustrate howmuch the overhead can accumulate as

more models are trained (the time pack can save).

Model Te(Seq) Te(Model) SwOH(2)

GPU

MLP-3 133s 61s 11s
MobileNet 227s 107s 13s
ResNet-50 274s 130s 14s

DenseNet-121 305s 144s 17s

Table 2.1: SwOH of training two models sequentially

As shown in the Table 2.1, albeit the accumulation, the switching overhead (using Eq. 2.4) is minor

compared to the overall training time and it is even negligible whenmore epochs are involved in a training

process. This also confirms our hypothesis of the switching overhead.

2.3.6 Pack vs CUDA Parallelism

CurrentNVIDIAGPUs support executingmultipleCUDAkernels in parallel at application level. Thus,

we conduct an experiment under the same environment as we used in the paper to trainmodels in parallel

at theCUDAGPUkernel. We runmultiple simultaneous training processes onTensorFlow. We evaluate

thismethod in the experimentswhere twoprocesses are boosted at the same time to train the samemodels

(MLP, MobileNet, ResNet, DenseNet) with the same optimizer and same batch size (ranging from 32

to 100).

AlthoughCUDA supports it, our results show that it is not an efficient technique. When themodels

train on the same data, parallel training in isolated kernels leads to duplicated I/O and duplicated data in

memory. In the image processing tasks that we consider, the training data batch takes up a substantial

amount of memory. We find that in all but the simplest cases lead to an OOM error: ”failed to allocate

XXX from device: CUDA_ERROR_OUT_OF_MEMORY”. We also find similar results when the models train
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on different data—as there is duplicated TensorFlow context information in each of the execution ker-

nels. This error happens all the above experiments except packing theMLPmodel (due to its lightweight

size).

Evenwith theMLPmodel, the pack primitive shows benefits at scale. For instance, the training time

of a single stepbased onCUDAparallelism is184ms for both twoprocesses and the packingmethod takes

200ms. However, as the batch size is increased to 100, the former one takes 1660ms, while the latter one

costs 1500ms. We interpret these numbers as an indication that thepackprimitive incurs smaller context

overhead over the native CUDA parallelism at application level.

2.3.7 Ablation Study

Factor Config Description

Model

Same Packing two same models

Different
Packing two different models. To figure out more configurations, we evaluated
MLP-3 vs. MobileNet, MobileNet vs. DenseNet-121, ResNet-50 vs. MobileNet,
and DenseNet-121 vs. ResNet-50.

Training Data
Same All packing models take the same training batch data

Different All packing models take the different training batch data.

Preprocess
Yes

Preprocessing is included in each training step. Training batch are raw image (e.g.,
JPEG), transferring from disk to GPU.

No
Preprocessing is excluded in each training step. Training batch are preprocessed and
formatted before transferring to GPU.

Optimizer
Same

Two models use the same optimizer for single training step, e.g., both of them use
Momentum optimizer.

Different
Two models use the different optimizer for single training step, e.g., one uses Mo-
mentum, the other uses SGD.

Batch Size
Same

Twomodels take the same batch size for single training step, e.g., both of them take
32 batch size.

Different
Twomodels take the different batch sizes for single training step, e.g., one is 32 batch
size, the other is 50 batch size.

Table 2.2: Model configurations for ablation study

To further evaluate the performance of packing models on GPU, we test more cases based on the

five factors: (1) whether the models have the same architecture; (2) whether the models share the same

training data; (3) whether the models take the preprocessed data or raw data for training, i.e., if the pre-
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processing is included in training; (4) whether the models use the same optimizer; and (5) whether the

models have the same training batch size. In this ablation study, we follow the configurations illustrated

in Table 2.2 and evaluate the pack primitive. Without loss of generality, we focus on packing two mod-

els to understand the relationship between the training time and the above factors, packing more models

follows the trends as demonstrated in Figure 2.4.
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Figure 2.6: Ts(Seq) vs. Ts(Pack) (milliseconds) when packing two models on a GPU (NVIDIA
Quadro P5000)

Figure 2.6 presents the results of the ablation study. In the figure, the data points in each sub-

figure represent the Ts(Seq) and Ts(Pack) of various configurations with fixing one configuration

(e.g., same batch size or same model). The red point (triangle pointed down) indicates that packing

two models brings more overhead compared with training them sequentially with this configuration,

i.e., Ts(Pack) > Ts(Seq), while the green point (triangle pointed up) means the opposite. The further

from the line, the more significant the performance difference.

As we can see from Figure 2.6, the best scenarios are where the same training data and the same batch
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size are used. Over all the configurations, the pack primitive always brings benefits whenwe trainmodels

with the same data since it will reduce the data transfer. Similar benefits happen with the same batch

size configuration. This is important to note because even when the same models are trained but with

different data inputs and batch sizes, there can be significant downsides to packing. It is not simply a

matter of looking at the neural network architecture, but the actual training procedure factors into the

decision of packing.

2.4 Pack-Aware Hyperparameter Tuning

We demonstrate how pack benefits hyperparameter tuning in this section. As we show in the previous

section, pack brings the biggest improvement when the models trained are similar and train on the same

input data. Such a scenario naturally arises in hyperparameter tuning. Developers have to search over

adjustable parameters such as batch sizes, learning rates, optimizers, etc. Tuning such hyperparameters

is crucial to finding models that generalize to unseen data and achieve promising accuracy.

There are a number of real-world scenarios where multiple models are trained on the same data, we

demonstrate hyperparameter tuning as a representative application. Furthermore, pack is a simple but

practical mechanism that can be implemented at application level, which allows for a wide variety of

deployment scenarios.

2.4.1 Hyperband

We explore how we can extend a state-of-the-art hyperparameter tuning algorithm, Hyperband [50], to

better share GPU resources. Hyperband works by repeatedly sampling random parameter configura-

tions, partially training models with those configurations and discarding those configurations that do

not seem promising. Prior work suggests that Hyperband is effective for parallel hyperparameter search

in comparison to sequential algorithms such as Bayesian Optimization [48].

Hyperband poses the search as an online resource allocation problem. GivenN discrete model con-

figurations to test, it partially trains each configuration and discards those that do not seem promising

based on a technique called successive halving. The search routine follows the structure of Algorithm 1.
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Algorithm 1:Hyperband
input :R, η
output:Conf with the smallest intermediate loss so far
for r ← 0 to blogη(R)c do

Randomly sample T fromN confs without replacement;
for i← 0 to r do

Train conf i for multiple epochs;
Calculate the intermediate loss of confs i;
Keep a fraction of the best confs for the next iteration;

end
end

Intuitively, Hyperband only allocates resources to the most promising configurations. At the max-

imum iteration, the most promising configurations are trained for the longest. This basic loop can be

trivially distributed a random partition of N configurations. Although Hyperband is able to optimize

the process of hyperparameter tuning, the algorithm is long-running since it consists of a large number

of trial hyperparameter configurations to run and each of themusually occupies the entire GPU resource

when running.

2.4.2 Pack-aware Hyperband

Our pack primitive allows Hyperband to jointly train configurations when possible thereby reducing

the overall training time. We propose a pack-aware Hyperband that leverages model packing to improve

its performance when there are more models to evaluate than available GPU devices. The challenge is to

determine which configurations to train jointly and which to train sequentially.

For each iteration, our pack-aware Hyperband will partition sampled T models to multiple packed

groups that can fit on a single device (the size of packed group do not exceed the amount of memory of

the GPU). Then, the optimization problem is to search over all packable groups to find the best possible

configuration (one thatmaximizes the overall run time). Note that the singletonpartitioning (every single

model forms a group) is always a viable solution and potentially even an optimal solution in some cases.

We call this primitive pack_opt, which solves the search problem by producing feasible packing groups

and identifying the most promising configuration. Accordingly, we can run amodifiedHyperband loop
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that packs models when beneficial, as shown in Algorithm 2.

There are two challenges inpack_opt: (C1)developing an accurate costmodel to evaluate the cost of

a packed plan, and (C2) a search algorithm that can effectively scale with T . Of course, the combinatorial

nature of this problem makes both (C1) and (C2) hard to accomplish optimally and we need a heuristic

to address this problem. Recognizing that similar models could be packed well together, we design a

nearest-neighbor based heuristic.

The method randomly selects a single configuration (out of T for each round) as the centroid and

packs all other configurations similar to it until the device runs out of memory. This process is repeated

until all models are packed or determined that the best choice is to run them sequentially. For calculating

the similarity, we map hyperparameter configurations to multi-dimensional feature space and measure

the pairwise Euclid distance among all the configurations. A user-tuned similarity threshold decides how

aggressively the systemwill pack models. For example, considering the sampled hyperparameter configu-

rations is shown in the Table 2.3, we take standard distance unit as 1, and compute the distance between

any two configurations. For categorical hyperparameters like optimizer and activation, the distance is 0

if same and 1 if different, for numeric hyperparameters, we use the index to compute distance. So, the

distance between configuration A [batch size:20, optimizer: SGD, learning rate:0.01, activation: ReLu]

and configuration B [batch size:40, optimizer: Adagrad, learning rate:0.01, activation: ReLu] is 5.

Algorithm 2: Pack-aware Hyperband
input :R, η
output:Conf with the smallest intermediate loss so far
for s← 0 to blogη(R)c do

Randomly sample T fromN confs without replacement;
packed_group← pack_opt(T);
for g ← 0 to packed_group do

Train packed_conf g for multiple epochs;
Calculate the intermediate loss of packed_conf g;
Keep a fraction of the best confs for the next iteration;

end
end

Despite being imperfect, Euclid distance has been proven to be a practical metric. We also applied a
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pairwise Training Time-based distance that reflects the importance of all features using the training time

metric. Specifically, we train two configurations in a packed way and a sequential way for a single step

respectively, measuring the training time, and calculating the difference with normalization. We take the

difference as the distance and deploy it to the pack-ware hyperband. Our empirical experiments show

that the Euclid distance method is still faster than Training Time-based distance method up to 18%.

Note that since the main benefit of pack comes from sharing and padding the input, packing differ-

entmodels can still improve the performance. So, pack is performant in the exploration phase of various

hyperparameter tuning methods. Taking Bayesian Optimization as an example, in its exploration phase,

the hyperparameter configurations are sampled and evaluated for some predefined objective functions.

Thus, the sampled configurations can be packed during the exploration for accelerating.

2.4.3 Evaluation for Hyperparameter Tuning

The goals of our evaluation are two-fold: first to demonstrate that pack can significantly improve hy-

perparameter tuning performance and second to evaluate our pack-aware Hyperband. We conduct the

experiments based on the same hardware environment as illustrated in section 2.3.1. We examine theHy-

perband variants on CIFAR-10 [42] which consists of 60000 color 32× 32 images in 10 classes (50000

for training dataset, 10000 for testing dataset). The system’s goal is to find the best configuration of those

described in Table 2.3, thus all hyperparameter configurations are from the combination of all hyperpa-

rameters which has 1056 configurations in total. The input, R and η, are set to 81 and 3, according to

the original Hyperband paper [50].

Hyperparameter Value
Batch size 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70
Optimizer Adam, SGD, Adagrad, Momentum

Learning Rate 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1
Activation Sigmoid, Leaky ReLu, Tanh, ReLu

Table 2.3: Hyperparameter configurations for evaluation

We also compare our pack-aware Hyperband against two other heuristics:
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Random Pack Hyperband: After sampling hyperparameter configurations, the method randomly se-

lectsm configurations to pack and evaluates them together, then it keeps the best n configurations and

discards the rest as the original Hyperband does.

Batch-size Pack Hyperband: Rather than randomly selecting, Batch-size Pack Hyperband only packs

the models with the same batch size. Although the number of packed models is confined by GPUmem-

ory size, greedy method is employed (i.e. packing as many models as possible until full usage of GPU

memory).

We evaluate the overall running time of Hyperband with the different pack_opt algorithms. As

presented in the Table 2.4, all the pack-aware Hyperband variants can reduce the running time w.r.t the

original Hyperband algorithm for all scenarios. Our proposal, kNN Pack Hyperband, achieves the best

performance since it takes advantage of our findings from the previous section where packing the most

similar models leads to the biggest improvements. The conclusion is that such an approach can save time

(and consequentlymoney) in real end-to-end tasks. A simpler heuristic,Batch-sizePackHyperband, is not

as effective because it under-utilizes the available GPU resources by missing packing opportunities with

models with slightly different batch sizes. To emphasize this point, a Random Pack Hyperband can save

more time than Batch-size PackHyperband since it achieves a better GPU resource utilization. Our kNN

strategy gets the best of both worlds: it finds the most beneficial packing opportunities while completely

utilizing the available resources, and benefits are scalable when deployed in an environment with a larger

GPU resource.

Original Batch-size Random kNN Speedup
MLP-3 9236s 5260s 3682s 3491s ∼ 2.7×

MobileNet 52092s 45787s 36973s 30182s ∼ 1.7×
ResNet-50 98067s 89162s 75436s 70047s ∼ 1.4×

DenseNet-121 131494s 126437s 117405s 108673s ∼ 1.2×

Table 2.4: Performance of pack-aware Hyperband
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2.5 Related Work

There are number of systems that attempt to control resource usage in machine learning, specifically

memory optimization [64, 87, 98, 44, 35, 71, 94, 7], but we see this problem as complementary. For

example, pack is similar in mechanism to a recent proposal, HiveMind [64], where multiple models are

fused into a single computational graph during training. However, we additionally contribute: (1) a

cost-model and optimizer that decides when this fusion is most beneficial, (2) integration with a hyper-

parameter tuning algorithm to demonstrate end-to-end improvements over a training workload, and (3)

a data batching scheme that allows packing models with different batch sizes without hurting statistical

efficiency. These contributions are noted as existing limitations in HiveMind.

We also discuss the related works that study hyperparameter tuning systems and multi-tenancy sys-

tems in machine learning.

2.5.1 Systems for Hyperparameter Tuning

Since hyperparameter tuning is a crucial part of the machine learning development process, a number of

systems have been proposed to scale up such search routines. For example, Google Vizier [17] exposes

hyperparameter searching as a service to its organization’s data scientists. Aggressive ”scale-out” has been

the main design principle of Vizier and similar systems [53, 47, 50].

Recently, there has been a trend toward more controlled resource usage during hyperparameter tun-

ing. Cerebro borrows the idea ofmulti-query optimization in database system to raise resource efficiency

[61]. HyperSched proposes a scheduling framework for hyperparameter tuning taskswhen there are con-

tended specialized resources [52]. And, some work has been done on resource management [75] and

pipeline re-use [49] in the non-deep learning setting. We believe that pack and pack_opt are two prim-

itives that are useful in hyperparameter tuning when specialized hardware such as GPUs and TPUs are

limited in usage. Also, although our experiments focus on hyperparameter tuning, pack and pack_opt

primitives can be easily extended to other scenarios.
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2.5.2 Systems forMulti-tenancy

Most current projects about buildingmulti-tenant systems for machine learning deployment is based on

device-level placement, i.e., dividing resources at the granularity of full devices (e.g., an entire server or

GPU). Here, the scheduler partitions a cluster of servers where each server has one or more GPUs for

various model training tasks and seeks to reduce the overall training time by intelligent placement. Other

schedulingmethods have followed, such as Tiresias [21] andOptimus [66]. Several extensions have been

proposed to this basic line of work including fairness [57], preemption [93], and performance predic-

tion [101]. Gandiva is a cluster scheduling framework for deep learning jobs that provides primitives

such as time-slicing andmigration to schedule different jobs. CROSSBOW is a system that enables users

to select a small batch and scale to multiple GPUs for training deep learning models [39]. PipeDream is

a deep neural network training system for GPUs that parallelizes computation by pipelining execution

acrossmultiplemachines that partitions and pipelines training jobs acrossworkermachines [62]. Ease.ml

is a declarative machine learning service platform that focuses on a cost-aware model selection problem

in a multi-tenant system. [51]. Some recent works also exploit data parallelism to accelerate the training

process. MotherNets can ensembles different models and accelerate the training process by reducing the

number of epochs needed to train an ensemble [88]. FLEET theoretically proves that optimal resource

allocation in deep learning training is NP-hard and propose a greedy algorithm to allocate resources [23].

Compared with these previous works, our prototype implements a method that can pack diverse

models with different batch sizes. We also conduct a comprehensive evaluation that differentiates per-

formance wins from variable elimination v.s. improved utilization, and highlight potential for packed

models to train slower than the sum of their parts, which is only apparent with modern architectures.

Taking these inspirations, we further deploy our primitives to hyperparameter tuning and show the per-

formance improvement.
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2.6 Discussion

Our core contribution is demonstrating thepotential benefits (andoverheads) of combining similarmod-

els into a single computational graph, and thus collapsing commondata inputs during training iterations.

This was the reason why we chose not to optimize this process at a lower level (e.g., MPS/Hyper-Q [8]),

where we found that the majority of benefits could be attributed to simply sharing common inputs and

context variables. Thus, the key goal of our proposed optimizer is to decide whether two models share

enough to see a potential benefit, and controlling the exact execution order of the computation is orthog-

onal to our contribution.

Our long-term goal is to build a system for multi-tenant deep learning deployment, and we believe

the packwill be one of the core parts of multi-tenancy systems for machine learning. In hyperparameter

tuning there is a single-user and a clear SLO (find the bestmodel configuration over all), then to extend to

more general multi-tenancy settings where concurrent models are trained, we will reason about multiple

users, priorities, and user-specified objectives. For this, we decide to first make a deep investigation on a

single GPU so that we will know how to optimize when there are multiple GPUs. Thus, any distributed

training and the regarding optimization is out of the scope of the paper.

We implemented pack onTensorFlow to conduct a comprehensive evaluation and highlight its ben-

efits in hyperparameter tuning. Although we believe that a custom execution platform could improve

performance, pack doesn’t require the modification of any specific framework and can be implemented

across frameworks. We focus pack as a higher-level primitive due to (1) the optimizations will be more

transferable acrossMLexecution frameworks and thus increase the impact or applicability of our insights,

and (2) many low-level libraries are highly optimized and introducing these changes (e.g. supporting

jagged arrays) we believe are interesting research questions on their own.

2.7 Conclusion

We analyze the benefits and limitations of packing multiple models together to take advantage of avail-

able GPU resources for model training. Under the proper conditions, this packing can bring up to 40%
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reduction in latency per model packed, compared with training the models sequentially on a GPU. We

further demonstrate that pack primitive can be used to accelerate a state-of-the-art hyperparameter tun-

ing algorithm. Our end-to-end tuning system demonstrates a 2.7x speedup in terms of time to find the

best model by improving GPU utilization. Our analysis opens many interesting optimization opportu-

nities, such as the training process can be decomposed and scheduled for packing to reduce the overall

training time, or trading off accuracy or training time to improve overall resource utilization.
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CHAPTER 3

ROTARY: A RESOURCE ARBITRATION FRAMEWORK FOR

PROGRESSIVE ITERATIVE ANALYTICS

Agrowing number of organizations are concerned about resource usage in data analytics [41, 78, 12, 72].

The concerns have become particularly acute over the last two years where a confluence of factors, includ-

ing supply chain shortages and awaningMoore’s law, have discouraged organizations from simply scaling

out to cope with the ever-increasing analytics demands. In this resource-limited world, every organiza-

tion needs to determine how to partition and share computational infrastructure to adequately support

all of its analytics users [5, 24, 4, 16, 59]. While similar to traditional scheduling and resource allocation

problems, existing solutions do not fully exploit properties of modern data analytics workloads.

Modern analytics algorithms are often progressive, where an iterative loop repeatedly refines an an-

swer until a desired convergence criterion is met. In this setting, completion is a matter of user opinion,

where a user-defined rule has to be used to terminate the job when the answer is deemed sufficiently ac-

curate or unchanged. A traditional job scheduler would place an immense level of trust in a user’s ability

to appropriately specify these termination criteria. For example, consider a user training a convolutional

neural network for a fixed time of 500 epochs. Suppose the model actually converges in accuracy af-

ter only 100 epochs, then 80% of this model’s training time is a wasteful block on system resources. The

longer an analytics job runs, the risk increases that amis-specified completion criterion (e.g., an overly am-

bitious accuracy or convergence threshold) can block key resources from others for an extended amount

of time. Ideally, a scheduler has introspection into the convergence progress of a progressive analytics job

to detect and preempt such anomalies. These decisions cannot bemade in a vacuumandneed to consider

a job’s prioritization, specified completion criteria, limited available resources, and other jobs waiting for

the resources — a decision we call resource arbitration.

We identify two very different analytics applications that fit this resource arbitration paradigm: ap-

proximate query processing (AQP) and deep learning training (DLT). In AQP, one executes queries on

a subset of the overall dataset or a data stream to return an approximate answer within a user-specified er-
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(a)Online aggregation progress ofQuery 5, 7, 19 ofTPC-H.The percentage of data processed achieves 100%when
the queries received and processed the entire TPC-H dataset (SF=1) in batches from a data source.

(b) Evaluation accuracy of five well-tuned popular convolutional neural networkmodels on CIFAR-10 with batch
128 and learning rate 0.01.

Figure 3.1: Progress curves of AQP and DLT jobs

ror. Consider an AQP scenario where multiple users are issuing approximate queries to the same OLAP

infrastructure, the need for resource arbitration arises because complex jobs with lower error tolerances

(higher accuracy) can dominate execution and starve jobs with higher error tolerances (lower accuracy).

InDLT, one updates the parameters of the neural network basedmodel with a variant of gradient descent

repeatedly until the desired objective (e.g., accuracy or convergence) is reached. Consider a DLT scenario

where multiple users use the same GPU cluster to train their models, the need for resource arbitration

arises because larger neural networks with tighter convergence criteria can dominate GPU utilization,

and starve resources from smaller networks or ones with looser convergence criteria. In both of these

scenarios, one needs a resource arbitration system that can pause a running job at the risk of dequeuing

it in a partially complete state, in favor of jobs that could better use the same resources. This strategy is

only useful in a setting where an intermediate result has significant utility to a user, and might even be

indistinguishable from the fully complete result.

The connectionbetweenAQPandDLT is not arbitrary, we treat themas two representative examples

of progressive iterative analytics, and there are threeunique traits of these twoprogressive iterative analytic
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applications that make them particularly attractive for an initial study in resource arbitration. First, users

have diverse completion criteria for different progressive iterative analytic jobs, and there is no unified

finish-line as found in classic data processing jobs (i.e., going through all the data). For example, some

users can have an ambitious objective (e.g., 99% accuracy), but the others only need to run their jobs for

a while (e.g., 10 mins) to get a rough idea. Second, progressive iterative analytic jobs often (eventually)

produce diminishing returns. For instance, for a progressive iterative analytic job, the first batch of data

can take users from zero knowledge of the final result to a very rough estimation, but the final batch of

data may only allow users to go from a very precise estimation to the final result, and in between, and

the improvement of each batch are not linear. Third, progressive iterative analytic jobs process data at

a different rate, which indicates the jobs may take different amounts of time to reach the same degree

of progress. Such a difference would overly prioritize short jobs when the jobs are ranked based on the

likelihood that theywill complete sooner or achieve higher progress. We plot the progress curve of sample

AQP and DLT jobs in Figure 3.1 to demonstrate these three traits.

Motivated by the traits of progressive iterative analytic applications, we propose a resource arbitration

framework, which essentially determines how to prioritize progressive iterative analytic jobs for limited

resources and if/when to interrupt a currently running job in favor of another. The need for a resource

arbitration framework arises for two reasons: (1) from the perspective of single jobs, it is reasonable to sacrifice

precision for a quicker result; (2) from the perspective of the overall workload, it is beneficial to dynamically

allocate and preempt resources to different jobs, for example, giving more resources to more promising jobs

and constraining the resources for jobs stop progressing.

While scheduling systems [84, 13, 82, 28, 66, 90, 22, 34, 100, 85, 67] and resource arbitration sound

similar in nature, they actually solve different, complementary problems. Scheduling systems are gen-

erally designed to optimize the execution and placement of the jobs according to the users’ resource re-

quirements and ensure the jobs can be completed on time. By contrast, resource arbitration systems are

responsible for continuous resource allocation and preemption, determining when to start (or resume)

and stop (or checkpoint) the progressive iterative analytic jobs based on the processing progress, real-

time available resources, and users’ completion criteria. One application scenario of resource arbitration
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is hyperparameter optimization [50] for deep learning models, where a set of hyperparameter configu-

rations are sampled from a hyperparameter space and formed a number of training trails that run iter-

atively and keep returning intermediate training results. Such a process is executed repeatedly until the

best-performed hyperparameter configurations are selected. Thus, resource arbitration could stop the

trials that contain unpromising hyperparameter configurations prematurely and allocate more resources

to the promising ones so that the best-performing hyperparameters can be discovered as soon as possible.

To realize this framework, we implement two prototype systems Rotary-AQP and Rotary-DLT for

approximate query processing and deep learning training applications. For Rotary-AQP, we first extend

a single-user progressive query processing system based on Apache Spark [74] and modify it to a multi-

tenantAQP system. Then,webuild the resource arbitration systemon top themulti-tenantAQP system.

We evaluate Rotary-AQP using the TPC-H benchmark, and the evaluation results show that Rotary-

AQP outcompetes the state-of-the-art system and other baselines by allowing more TPC-H queries to

reach their goals within the same amount of time. For Rotary-DLT, we build the system on top of Ten-

sorFlow [81] and conduct an evaluation using the workloads derived from a survey of 30 deep learning

researchers across multiple research organizations. The evaluation results demonstrate the performance

of Rotary-DLT by outperforming three heuristic baselines across a variety of optimization objectives.

The two system implementations and their outstanding performance confirm the generality and practi-

cality of our resource arbitration framework.

To summarize, our primary contributions include: (1) defining the resource arbitration for iterative

applications and highlighting its importance; (2) proposing a general resource arbitration framework,

Rotary, and a new costmodel that leverages the estimation of progress and resource consumption for job

prioritization; (3) implementing two resource arbitration systems for approximate query processing and

deep learning training, following the proposed framework.

3.1 Resource Arbitration Framework

Here, we describe our resource arbitration framework, Rotary.
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3.1.1 Terminology and Setup

First, we define a common set of terms to describe progressive iterative analytic jobs. In a progressive

iterative analytic job, data are processed in batches, where each batch is a subset of the entire dataset or a

data stream that is progressively sampled from the overall data, each batch has the (approximately) same

batch size. A progressive iterative analytic job moves one step when it finishes processing a single batch.

After a fixed number of such steps (called an epoch), the job’s performance can be evaluated based on con-

vergence metrics on the returned results. Convergence metrics are usually some proxy for result accuracy.

One progressive iterative analytic job typically runs for multiple epochs until the user is satisfied with its

convergence.

Example 1. Approximate Query Processing in SQL

Approximate query processing can provide quick, approximate results to users by running queries on a

subset of the overall dataset or a data stream. One technique to realize AQP is online aggregation [46].

Online aggregation systems process data iteratively using data batches, each progressive sampling of the

data is a batch and processes roughly the same amount of data, as they are each of approximately the same

size. Online aggregation systems calculate error bounds such as confidence intervals after each batch is

processed so that users can make decisions about whether to continue processing. In AQP, a batch and

an epoch can be synonymous, and the convergence metric is the size of the confidence interval.

Example 2. Deep Learning Training

A typical DLT job consists of a neural network model (e.g., ResNet [25] or Bi-LSTM [20]), a dataset

for training and evaluation, and a set of hyperparameters (e.g., batch size, learning rate, optimizer, etc.).

During the training process, the training dataset is iteratively sampled in batches, and each training step

is one optimization step updating the parameters (or gradients) of the neural network model based on

the batch. In the context of DLT, an epoch normally is a complete pass of the training data. Once the

neural network model has been trained for one epoch, it will be evaluated on the evaluation dataset in

terms of either training loss or validation set accuracy. This process is applied repeatedly until the desired
33



convergence target is achieved. As models have become more complex, DLT largely relies on specialized

hardware devices like GPUs and TPUs.

3.1.2 User-defined Completion Criteria

Rotary allows users to define three types of completion criteria based on the common practice of DLT

and AQP. As presented in Figure 3.2, there are 1 accuracy-oriented completion criteria, 2 convergence-

oriented completion criteria, and 3 runtime-oriented completion criteria. Essentially, such completion

criteria are add-ons to the regular query and training commands and should be orthogonal to the execu-

tion of AQP and DLT.

Figure 3.2: Templates of user-defined completion criteria

Figure 3.3 shows examples of completion criteria templates. Specifically, in the three examples, the

left one illustrates how to add a completion criterion of achieving at least 95% accuracy within 3600

seconds, the middle one defines a completion criterion for training a ResNet model until reaching the

convergence of 0.001 within 30 epochs, the right one will train the MobileNet model for 2 hours and

return the training results anyway.

Figure 3.3: Examples of user-defined completion criteria

1 Accuracy-oriented completion criteria are widely used and allow users to explicitly specify an ex-

pected accuracy within maximum training epochs. In the above example, we use ACC (i.e., training

accuracy) which is a common metric, but other user-defined metrics such as F1 score and Perplexity are
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supported as well. Additional error bound such as confidence interval are optional as well. The deadline

could be expressed in epochs or time units such as seconds, minutes, and hours.

2 Convergence-oriented completion criteria are also typical, especially for DLT jobs. With this kind

of criteria, a job is considered “complete” once its performance is found to no longer increase. In the

middle example of Figure 3.3, ACC is used for measuring convergence, but other metrics such as LOSS

[18] are also supported for convergence. The convergence-oriented criteria also allow users to specify a

deadline, which means a job will be terminated if it fails to converge until the deadline.

3 Runtime-oriented completion criteria are proposed for the users who want to execute their pro-

gressive iterative analytic jobs for a while without any explicit objective or threshold. As theWITHIN

predicate we have in the other two completion criteria, the runtime can be the number of epochs or a

period of time such as training a model for 100 epochs or running a query for 6 hours.

3.1.3 Framework Architecture

We identify three opportunities to address resource arbitration problem. First, the diverse completion

criteria of progressive iterative analytics bring the opportunity to allocate various amounts of resources

to different jobs while still achieving their objectives. For example, it makes more sense to give less re-

source to the job that only need to achieve an effortless objective. Second, diminishing returns of pro-

gressive iterative analytic jobs indicates that the value of two data batches to a user may be poles apart.

Thismakes iterative resource allocation and preemption practical and valuable, for example, the jobs that

are processing the data batch which can provide more valuable results to users can be finished sooner if

more resources are allocated continuously. This leads to a cost model which should balance the progress

improvement (i.e., providing more valuable results) and resource consumption (the cost to improve the

progress or produce the results). An example of this can be seen in Figure 3.1b, where we show that

the earlier training epochs could improve the deep learning models’ accuracy more significantly than the

older ones, and the users could get a decent trained model more quickly if more resources are given to

the jobs with more potential for improvement, however, the trade-off between performance improve-

ment and the models’ GPU memory requirements need to be addressed as well. Third, different data
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processing rate of progressive iterative analytic jobs rationalizes the adaptive running epochs, namely,

long-running jobs should be allowed to have a longer running epoch after arbitrating and allocating re-

sources so that they can return expected intermediate results. This can be exemplified by Figure 3.1a,

where we present that the process of query 19 increases more expeditiously than query 7 and 19 when

they are all checked every 60 second, however, we can observe all the queries will have the similar pattern

of progress improvement if query 5 and query 7 are check every 120 and 180 seconds.

Figure 3.4: Framework architecture of Rotary

To exploit these opportunities, we proposed the resource arbitration framework, Rotary. Here we

discuss the framework’s architecture and highlight the core components in Figure 3.4. Rotary allows

users to submit their progressive iterative analytic jobs along with the corresponding completion criteria.

Once submitted, Rotary considers these jobs active and is ready to run them. Rotary’s engine is respon-

sible for resource arbitration. It can estimate howmuch processing progress a job can achieve in terms of

completion criteria andhowmany resources the jobwill consume for suchprogress. Rotary canprioritize

jobs according a cost model and arbitrate the resources for them. Once the process of resource arbitra-

tion is finished, the selected jobs will be deployed in Rotary execution, where the resource is allocated

and preempted to the jobs so that they can run in an execution platform (e.g., PyTorch or TensorFlow

for deep learning, Spark for query processing). When the jobs complete the current epoch, they can be

checkpointed or materialized if they are not granted resources for the next running epoch. Furthermore,

it is beneficial to store the progressive iterative analytic jobs and track intermediate processing results since
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such information can be used to provide a better estimation.

Rotary should be able to consider and select the jobs had been deferred before when it is beneficial to

do so. This ability provides the resource arbitration system a wider range of running option for progres-

sive iterative analytic jobs. More specifically, for each available resource, only the selected job by Rotary

can take it, which could result in deferring some other jobs too far into the future. Such deferment may

be computationally expensive and worsen the diminishing returns. However, Rotary can re-evaluate the

jobs that are not selected for the current available resource so that deferring job far into the future are less

likely to hold.

3.1.4 Resource Arbitration Problem Statement

Workloads. Consider a workloadW that consists of n progressive iterative analytic jobs {j1, · · · , jn},

each job processes data batch-by-batch and returns the intermediate processing results for every epoch.

Each ith job emits a time-series per epoch measuring the convergence acci,0, acci,1..., acci,T . Each job

has a specific user-defined completion criterion c, which terminate if c(acci,t) == true. Thus, there

is a list of criteria C = {c1, · · · , cn} associated with jobs in the workloadW . Once a job w reaches its

completion criteria, it is de-queuedW = W \ w.

Resources. These jobs have to be assigned to a particular “computing resource” (e.g., an available GPU or

CPUcore). There areM such resources considered and they are possibly heterogeneous. These resources

can only process one job at a time and are not sub-dividable. A job holds on to a particular resource for

at least an epoch. Thus, at any given time t, the current resource usage can be modeled as a bi-partite

assignmentwhere a subset of jobs aremapped tounique resourcesassign(W,M). As these assignments

change, jobs have to be loaded to the resources and check-pointed accordingly.

Resource Arbitration Policy. A resource arbitration policy is a function that produces assignments deci-

sions based on the current state of the queueQt, which is the convergence state of all of the jobs currently

in the queue.

π : Qt 7→ assign(W,M)
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The application of this policy results in a sequence of resource assignment decisions at each time-step.

Objective. The queue is empty if all of the jobs in W have been successfully completed. At each time-

step t, At = |W | quantifies the number of jobs remaining in the queue (or the attainment rate). The

objective of Rotary is to maximize the attainment rate of the workload W . However, the objective is

implementation-specific, whichmeans various objectives can be supported in different implementations.

Algorithm 3:Algorithm Sketch for Resource Arbitration
while not all jobs reach completion criteria do

for jobs is active but not attained ji, i← 1 to n do
Estimate the processing progress ϕ̂ji for next epoch;

end
Resource arbitration for active jobs based on {ϕ̂ji |∀i = 1..n};
for selected jobs do

Executing the selected job;
Observe the current progress for the selected job;

end
end

We propose an algorithm sketch for addressing the problem, as presented in Algorithm 3. However,

the system implementations for various applications may have different algorithms to address the prob-

lem. Following the algorithm sketch, we design two algorithms in the system implementations for AQP

(§3.2.1) and DLT (§3.3.1).

3.2 Rotary for AQP

Following theproposed framework,we illustrate howwe implement and evaluate the resource arbitration

system, Rotary-AQP, for approximate query processing applications.

3.2.1 Rotary-AQP Implementation

To implement Rotary-AQP, we modify a single-user progressive query processing system based on

Apache Spark [74] and make it support multi-tenant environments by adding concurrency control and

checkpoint mechanisms. This system serves as our execution platform to run the AQP jobs.
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Rotary-AQP supports AQP jobs with the accuracy-oriented completion criteria, which is a widely-

usedmetric inAQP [96, 76, 3, 72], namely, each job is attachedwith an accuracy threshold and a deadline

to reach such threshold, thus the processing progress in the framework is measured in terms of accuracy

in this implementation of AQP. Rotary-AQP processes AQP jobs and arbitrates the resources for them

so that more jobs can reach their accuracy threshold. Rotary-AQP focuses on online aggregation [27].

The accuracy of an aggregation is calculated as accuracy = αc
αf

, where αc is the current aggregation

result andαf is the final aggregation result. Considering the aggregation operations are column-oriented,

the accuracy of an AQP job that performs multiple aggregation operations on multiple columns can be

calculated as accuracy = 1
k

∑k
i=0 α

k
c /α

k
f , where α

k
c is the current aggregation result on column k and

αkf is the final aggregation result on column k. This is based on the assumption that all columns are of

equal importance (which is applied to our evaluation). However, Rotary-AQP also allows the users to

specify the importance of each column by assigning weights.

We use a non-parametric confidence interval estimator to assess convergence. The technique is based

on envelope functions from empirical process theory [50]. Rotary-AQP keeps tracking the least and

largest aggregation results within a time window (e.g., t epochs) and uses this gap to determine conver-

gence 1. Given that the aggregation will eventually converge, the gap between the least aggregation result

(denoted by p) and the largest aggregation result (denoted by q) can be considerable but should be shrunk

gradually over time. Thus, the accuracy progress canbe expressed as pq , which canprovide an approximate

estimate for the accuracy progress of an aggregation operation in the AQP jobs.

Following the architecture in Figure 3.4, Rotary-AQP has two core components for estimating the

accuracy progress and memory consumption. The former is used to prioritize jobs, and the latter is to

make sure there will be sufficient memory to support jobs. The accuracy progress estimator in Rotary-

AQP is responsible for estimating the potential accuracy of a job j for the next epoch if the resources

are granted. The core idea is to fit a progress-runtime curve leveraging the historical and real-time data.

The historical data can be obtained based on the archived jobs in the job repository which are similar to

the job j according to various factors including predicate, table, dataset, and batch size. The real-time

1. The formal derivation of this estimator has been cut for brevity.
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data can be conveniently obtained since Rotary-AQP tracks the running AQP jobs. Weighted linear

regression [38] is exploited in the accuracy progress estimator for combining the historical and real-time

data. More specifically, the estimator selects top-k similar historical data for an AQP job from the job

repository to fit an initial progress-runtime curve that can be used for the first estimation. Then, when

the job is placed and launched, Rotary-AQP records the real-time intermediate aggregation results and

continuously adjusts the fitted curve by adding these real-time results of the job. Due to the importance of

the real-time results, each of them should share equal weights with all the historical data when fitting the

progress-runtime curve. For example, when adding a real-time result, it is granted 0.5 weight and all the

historical results of the selected historical jobs from the job repository as a piece gets another 0.5weight.

This continuous joint fitting method makes the estimated progress-runtime curve reasonably close to

the ground truth and sufficient for estimating the progress if the jobs are allocated with the resource and

could run for a specific time.

The memory consumption estimator is designed to predict the memory consumption of the AQP

jobs. Inspired by the cost-based optimization [14] in Apache Spark, the estimator can estimate the mem-

ory consumption of AQP jobs based on the table and column statistics of each batch and the predicates

in the AQP. The column statistic and the predicates can be obtained by utilizing EXPLAIN, which can

provide logical and physical plans for a query statement, before actually running the AQP jobs. Rotary-

AQP also tracks the number of table rows has been scanned, filtered, and aggregated. This estimate need

not be perfect but it needs to be close enough to allow the system to estimate howmuchmemory anAQP

query will require.

Thememory consumption is also used to support adaptive running epoch and determine the length

of the running epoch (e.g., the number of batches in an epoch). Due to our observation that the AQP

jobs consume larger memory usually proportionally take a longer time to process a batch, which deserves

a longer running epoch. Thus, Rotary-AQP makes the length of the running epoch of every AQP job

proportionate to the estimated memory consumption.

In light of the estimated accuracy progress and memory consumption, Rotary-AQP can arbitrate

resources, namely CPU cores, for the jobs. This process is presented in Algorithm 4.
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Algorithm 4:Resource Arbitration for AQP
Input :WorkloadW = {j1, · · · , jn}

Completion CriteriaC = {c1, · · · , cn}
Total CPU coresD
Total memoryM

//All jobs are placed in an active queue when arriving
for job ji ∈W that arrives do

Mark ji as active and place it to the active queueAQ;
end
//Resource arbitration for the jobs in the waiting queue
whileAQ 6= ∅ do

Initialize priority queue PQ;
for active jobs ji, i← 1 to n do

Estimate the memory consumption m̂ji ;
Assign running epoch eji for job ji;
Estimate the accuracy progress ϕ̂ji ;
Place ji in PQ due to ϕ̂ji ;

end
ResourceArbitration(active jobs);
Run active jobs, and mark them as running;
for active jobs ji, i← 1 to n do

if ji finish one epoch eji then
Observe the accuracy progress ϕji for current epoch;
if job ji meets cji then remove fromAQ ;
Mark job ji as active;

end
end

end
Function ResourceArbitration(jobs):

for job jk in jobs do
if m̂jk ≤M then

allocate 1 core to job;
D = D − 1;
M = M − m̂jk ;

else
if job jk in PQ then remove job jk from PQ ;

end
end
whileD 6= 0 do

for job jk in PQ do
allocate extra 1 core to job jk;
D = D − 1;

end
end

End Function;
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3.2.2 Rotary-AQP Evaluation

Our evaluation for Rotary-AQP addresses the following questions:

• Can resource arbitration improve the number of jobs that attain their performance objective, com-

pared to greedy baselines and a state-of-the-art approach? (§3.2.2)

• What is the overhead of resource arbitration? (§3.2.2)

• Howdoes the distribution of job resource requirements impact the performance of Rotary-AQP?

(§3.2.2)

• How does the progress estimation impact the performance of Rotary-AQP? (§3.2.2)

All the experiments are conductedon a serverwith two IntelXeonSilverCPUs (2.10GHz, 12physical

cores) and 192GBmemory, running Ubuntu Server 18.04. For all experiments, we use 20 physical cores

and leave the rest for theOS (Ubuntu 18.04). Weuse anApacheKafka [36] cluster on a differentmachine

with the same hardware configuration as the data source for AQP queries.

We implement four baselines for comparison: ReLAQS [76], EDF (Earliest Deadline First), LAF

(Least Accuracy First), and roundrobin. As a naive baseline, roundrobin allocates one core to each job in

turn until there are no more cores and run them for an epoch per time until they reach their completion

criteria (either achieve the accuracy threshold or beyond the deadline). EDF and LAF are two heuris-

tic baselines, which always prioritizes the jobs have the earliest deadline and least accuracy respectively.

ReLAQS is the state-of-the-art work, which is a multi-tenant system for AQP that aims to reduce the

average latency of a workload by schedulingCPU cores to jobs with themost potential for improvement.

InReLAQS, the potential improvement of each job is simply estimated according to previous processing

results. Compared with ReLAQS, Rotary-AQP considers both CPU and memory for resource arbitra-

tion, combines historical and real-time data to estimate the accuracy progress and overcome issues like

cold-start, and supports adaptive running epoch for short-running and long-running AQP jobs.
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AQPWorkload

We evaluate Rotary-AQP using the TPC-H benchmark. Rotary-AQP supports all 22 queries and runs

them on the TPC-H dataset with the default scale factor. Larger scale factors should not affect the per-

formance of Rotary-AQP but require more memory to run multiple AQP jobs simultaneously. Given

the number of concurrent jobs and Spark’s in-memory requirement, we limit the scale-factor to 1.

Theworkload consists of 30AQP jobs, each ofwhich is a randomquery selected from the 22TPC-H

queries. According to the observed memory consumption of queries, we categorize the TPC-H queries

into three groups: light, medium, and heavy query. The workload is a mixed collection of jobs for the

queries from the three groups, and the proportions of the jobs in the three groups can be tweaked to

reflect different purposes. In the workload, each job is attached with a accuracy threshold and deadline,

which are both randomly selected from twoparameter spaces. Furthermore, to simulate users submitting

approximate queries to the shared cluster, the job arrives according to a Poisson distribution with the

mean arrival time of 160 seconds. The configurations of the workload are elaborated in Table 3.1.

Queries
Light q1, q2, q4, q6, q10, q11, q12, q13, q14, q15, q16, q19, q22

Medium q3, q5, q8, q17, q20
Heavy q7, q9, q18, q21

Completion
Criteria

Accuracy 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%

Deadline

Light Queries Deadline (sec):
360, 420, 480, 540, 600, 660, 720, 780, 840, 900
MediumQueries Deadline (sec):
1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160
Heavy Queries Deadline (sec):
1440, 1620, 1800, 1980, 2160, 2340, 2520, 2700, 2880, 3060

Workload
40%AQP jobs with light queries
30%AQP jobs with medium queries
30%AQP jobs with heavy queries

Table 3.1: Synthetic AQP workload. The selection of query type, accuracy threshold, and deadline, are
all random and based on a uniform distribution. Job arrival is based on a Poisson distribution.
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Attainment

Attainment rate serves as the most important benchmark since it measures how many jobs reach their

accuracy threshold, namely, users are satisfied with the results. Figure 3.5 shows the overall number of at-

tained jobs (e.g., jobs thatmet their convergence criteria before their deadline) underRotary-AQP,which

exceeds those using the four baselines. Although Rotary-AQP can attain more jobs for light, medium,

and heavy queries, it performs best for the jobs with heavy queries. This is mainly due to two reasons.

First, Rotary-AQP can provide better progress estimation by jointly leveraging historical and real-time

data, so that it can always find the jobs with the most potential for improvement. Second, Rotary-AQP

can give the proportional running epochs to various jobs according to their job size (i.e., estimate mem-

ory consumption in the implementation) so that the heavy jobs which often are long-running jobs can

return progressive results and be fairly compared with the short-running jobs during resource arbitra-

tion. Thus, compared with the baselines, Rotary-AQP allows the heavy jobs to have a higher chance to

gain more resources for running. Such results confirm the efficiency and effectiveness of Rotary-AQP in

terms of attainment rate.

(a) Roundrobin (b) EDF (c) LAF

(d) ReLAQS (e) Rotary-AQP

Figure 3.5: Evaluation of Rotary-AQP and four baselines (Roundrobin, EDF, LAF, ReLAQS) on the
synthetic AQP workload
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False Attainment andWaiting Time

Sincewe use an envelope function to determinewhen to stop the jobs, it is possible for the envelope func-

tion to make mistakes, namely stopping the jobs which are not supposed to be permanently terminated,

whichwe consider as false attainment. We present the false attainment for Rotary-AQP and the baselines

in Figure 3.6a. As we can see, the envelope function can provide reliable decisions generally, but still

make mistakes. This issue can be mitigated by lengthening the time window of the envelope function.

(a) False Attainment (b) Average Waiting Time

Figure 3.6: False attainment and waiting time of Rotary-AQP

We also tally the average waiting time of the jobs in the workload, as shown in Figure 3.6b. The

waiting time of a single job is calculated as the difference between its running time under Rotary or other

baselines and the time of running it independently and isolated. Our system also outperforms other

baselines due to the adaptive running epochs. More specifically, unlike Rotary-AQP, other baselines are

in favor of short-running jobswhich can achieve higher accuracy progress in a short timewhichmay defer

the heavy job far into the future and lead to an unexpected long waiting time for the long-running jobs.

Job Distribution

To evaluate Rotary-AQP on a balanced workload, we have 40% jobs with light queries, 30% jobs with

medium queries, and 30% jobs with heavy queries. However, it is also reasonable to fathom the perfor-

mance of Rotary-AQP on the workload with various job distributions. For this, we deploy Rotary-AQP

and the baselines in three “extreme” case: theworkloads only consist of jobswith light jobs, medium jobs,

and heavy jobs.
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As we can see from Figure 3.7, Rotary-AQP can achieve the best performance for all three skewed

workloads, especially in the workload that only contains heavy jobs. Rotary-AQP and ReLAQS can

defeat other baselines due to the ability of progress estimation, whereas Rotary-AQP performs better

than ReLAQS because Rotary-AQP can collect more accurate real-time intermediate results due to the

adaptive running epochs to make more reliable progress estimation for the next epoch.

Figure 3.7: Attained jobs in the various workloads (30 jobs)

Progress Estimation Sensitivity

Since the accuracy progress estimator serves as a core component to Rotary-AQP, we investigate how

much it affects the performance of Rotary-AQP. Thus, we design a new baseline which is essentially

Rotary-AQPbut their accuracy progress estimatorwill randomly return the estimated progress following

a uniform distribution from 0 to 1. Such artificial progress estimation is misleading, and Rotary-AQP

may make unwise resource arbitration accordingly.

Figure 3.8b displays the number of attained jobs under such artificial estimation, which is slightly

better than roundrobin (Figure 3.5a) and almost tied to EDF (Figure 3.5b) and LAF (Figure 3.5c). More

specifically, the artificial estimation attains fewer light jobs than EDF and LAF but outperforms them in

terms of the attainment rate of medium and heavy jobs. Such results indicate that the accuracy progress

estimator is vital to Rotary-AQP or the resource arbitration framework even if the adaptive running

epochs still can help some medium and heavy jobs to attain their goals.
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(a) Rotary-AQP (b) Rotary-AQP with artificial progress estimation

Figure 3.8: Impact of progress estimation

3.3 Rotary for DLT

We implement a resource arbitration system, Rotary-DLT, for deep learning training applications and

evaluate it using a workload we developed based on a survey. We also discuss similarities and differences

between Rotary-DLT and Rotary-AQP.

3.3.1 Rotary-DLT Implementation

Rotary-DLT follows the architecture in Figure 3.4. Compared to Rotary-AQP, Rotary-DLT has the

following differences: (1) two estimators to predict the number of training epochs to achieve a specific

accuracy and the memory usage of a deep learning model; (2) a time recorder to measure the time of a

training epoch; (3) GPU resource arbitration for the DLT jobs; and (4) TensorFlow is deployed as the

execution platform to run the DLT jobs. Furthermore, Rotary-DLT stores the information of the his-

torical DLT jobs in a repository, so that the system can provide more accurate estimates for attainment

progress and memory consumption. Specifically, all the completed jobs’ information including model

architecture, training hyperparameters, training epochs, and evaluation accuracy are stored.

A key feature of Rotary-DLT is the ability to estimate the number of epochs for training DLT jobs

to achieve specific accuracy, which is accomplished by training epoch estimator (TEE). Considering that

DLT jobs always center on the accuracy metric, TEE is beneficial for Rotary-DLT to know whether it

should allocate or preempt resources for the jobs. Similar to the progress estimator of Rotary-AQP, the

basic idea ofTEE is to fit an accuracy-epoch curve by jointly leveraging the historical data in the repository
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and the real-time data of active jobs during the training process. The only difference is that Rotary-DLT

selects the similar historical data that have the same training dataset and hyperparameters (e.g., batch size,

learning rate, and optimizer).

The training memory estimator (TME) is another key component, and its primary function is to

predict the maximum GPU memory usage of the models in the jobs. This is because a DLT job can

only be launched if the target GPU has sufficient available memory. As we mentioned in §3.1.1, a DLT

job is fed a batch of training data of the same size during each iteration, thus it is viable to estimate the

memory usage for every training iteration if themodel specification information and batch size are given.

The batch size of training data decides howmuch data will be transferred from host to GPU during each

batch, and all the learnable parameters in the deep learning model require space in memory and these

parameters where historic gradients are being calculated and used also accumulate inmemory. We also fit

a batch size-memory curve by leveraging the data from historical jobs for TME. More specifically, when

estimating the memory usage of a job, TME first retrieves all the data of historical jobs that use the same

training dataset and then computes the similarity between the job for estimation and other historical

jobs according to the number of model parameters (i.e., model size). The similarity between two jobs

is defined as similarity(x, y) = 1 − |x−y|
max(x,y)

, where x and y are the number of model parameters

of two jobs respectively. TME then picks top-k similar historical jobs from the job repository to fit the

batch size-memory curve. We also exploit the weighted linear regression to fit the curve but in a different

way, the more similar a historical job is, the higher weights the job will be granted. Furthermore, we pad

the estimated memory by an additional offset, such as 5%, to minimize the likelihood of out-of-memory

(OOM) issues occurring.

There are two fundamental differences between AQP and DLT, which should be considered for im-

plementing Rotary-DLT. First, DLT jobs can be evaluated every one or multiple epochs using an evalu-

ation dataset, thus it is unnecessary for Rotary-DLT to have a mechanism like an envelope function in

Rotary-AQP to approximately evaluate the progress of each job. Second, the batch processing time of

AQP jobs can be quite different due to the query predicates and heterogeneous data batch, for example,

a batch may trigger numerous join and aggregation operations, but the others may not. However, DLT
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jobs usually have similar batch processing time due to the stable model architecture and the same batch

size. Thus, Rotary-DLThas a side component, training time recorder (TTR), to record the training time

of a single step or an epoch. TTR records the time of a training step or a training epoch for each DLT

job on different devices to reduce the overhead of recording. Due to a CUDA warm-up issue [54], the

very first training step always takes a longer time, so we always discard the first training step whenTTR is

running and recording. Since the deep learning training job is launched in an iteration fashion, recording

the single training time of each job is sufficient to measure the overall time of the training process.

Following the problem statement (§3.1.4), we propose a practical resource arbitration algorithm for

DLT, as shown in Algorithm 5. The crux of the algorithm is to prioritize the jobs and iteratively allocate

and preempt the available GPU resources for specific objectives such as fairness or efficiency. For this,

the algorithm ranks all the active jobs based on their training progress ϕ and prioritizes them in terms of

an adaptive threshold T . This adaptive threshold allows the resource arbitration algorithm to first picks

up the jobs that have the lowest ϕ so that no single job will considerably fall behind to maintain fairness,

and the algorithm starts to select the jobs with the highest ϕ once all the jobs in the workload achieve at

least T progress so that more jobs can be attained in a shorter time with a higher chance. Furthermore,

our resource arbitration algorithm is adaptive and spans all solutions between fairness and efficiency by

tuning the threshold T . The algorithm becomes pure-fairness when T = 100%, and it could only care

about efficiency if T = 0%.

As a core in the resource arbitration algorithm forDLT, the computationof trainingprogressϕdiffers

for various completion criteria. For example, for the jobs with runtime-oriented completion criteria,

calculating ϕ is trivial, which is the ratio of current runtime (e.g., number of epochs) to the runtime

threshold. For the jobs with accuracy-oriented and convergence-oriented completion criteria, ϕ can be

obtained by estimating the current accuracy and comparing it with the target accuracy. We present the

computation of training progress in Algorithm 6.
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Algorithm 5:Adaptive Resource Arbitration for DLT
Input :WorkloadW = {j1, · · · , jn}

Completion CriteriaC = {c1, · · · , cn}
Total GPUD
GPUmemory {M1, · · · ,MD}

//All jobs are placed in an active queue when arriving
for job ji ∈W that arrives do

Place job ji to the active queueAQ
end
//Resource arbitration
whileAQ 6= ∅ do

if MeetProgressThreshold(W) then
Initialize a priority queue PQ that prioritizes the jobs with highest training process;

else
Initialize a priority queue PQ that prioritizes the jobs with lowest training process;

end
for i← 1 to n do

Estimate the resource consumption m̂ji for job ji;
Estimate the training progress ϕ̂ji for job ji;
Place job ji inAQ according to ϕ̂ji

end
for d← 1 toD do

for job jk inAQ do
if mjk ≤Md then

Run job jk on GPU d;
Remove job jk from PQ;

end
end

end
for job inAQ do

if job achieves the completion criteria then
Remove job fromAQ

end
end

end
Function MeetProgressThreshold(W):

if all jobs meet T then return True ;
return False;

End Function;
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Algorithm 6: Progress Computation in Rotary-DLT
Input :WorkloadW = {j1, · · · , jn}

Completion CriteriaC = {c1, · · · , cn}
for i← 1 to n do

e∗i ← job running progress (training epochs) of ji;
if ji has runtime-oriented completion criteria then

Obtaining expected training epoch ei according to ci;
ϕi =

e∗i
ei
;

else if ji has accuracy-oriented completion criteria then
Obtaining maximum training epoch emax

i according to ci;
Estimating the necessary epochs êi according to ci;
if êi > e∗i then ϕi =

e∗i
emax
i

;
else ϕi = e∗

êi
;

else if ji has convergence-oriented completion criteria then
Obtaining maximum training epoch emax

i according to ci;
Obtaining expected accuracy acci according to si;
Estimating the necessary epochs êi according to acci;
if êi > e∗i then ϕi =

e∗i
emax
i

;
else ϕi = e∗

ci
;

end
end

3.3.2 Rotary-DLT Evaluation

To evaluate Rotary-DLT,we conduct a synthetic workload based on a survey of 30 experience deep learn-

ing researchers. We implement Rotary-DLT on top of TensorFlow 1.15 [81]. All the experiments are

conducted on a server with Intel Xeon Silver CPU (2.10GHz), 192GB memory, and 4 GPUs (RTX

2080 8GB graphicmemory), runningUbuntu Server 18.04. All the results in the evaluation are averaged

over 3 independent runs.

Survey-based DLTWorkload

We surveyed 30 experienced deep learning researchers across the following affiliations listed alphabeti-

cally: Microsoft Research, National University of Singapore, Northeastern University, Singapore Man-

agement University, University of California-Berkeley, University of Chicago, University of Illinois at

Urbana-Champaign, andUniversity of Toronto. According to their responses about training infrastruc-

ture, model architecture, running time, and completion criteria, we synthesize a DLT workload. The
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Model

Architecture

Inception[79], MobileNet[30], MobileNetV2[69], SqueezeNet [32],
ShuffleNet[99], ShuffleNetV2[55], ResNet[25], ResNeXt[92],
EfficientNet[80], LeNet[45], VGG[73], AlexNet[43], ZFNet[95],
DenseNet[31], LSTM[29], Bi-LSTM[20], BERT[83]

Batch size Computer vision models: 2, 4, 8, 16, 32 [58]
Natural language processing models: 32, 64, 128, 256

Optimizer SGD, Adam, Adagrad, Momentum
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001

Dataset

Computer vision models:
CIFAR-10 [42]
Natural language processing models:
UD Treebank [15], Large Movie Review Dataset [56]

Completion
Criteria

Convergence-oriented criteria
(delta accuracy)

5%, 3%, 1%, 0.5%, 0.3%, 0.1%, 0.05%, 0.03%, 0.01%, 0.005%, 0.003%,
0.001%

Accuracy-oriented criteria
(final accuracy)

70%, 72%, 74%, 76%, 78%, 80%, 82%, 84%, 86%, 88%, 90%, 92%

Runtime-oriented criteria
(epoch)

From scratch 5, 10, 30, 50, 100
Pre-trained (Fine-tuned): 1, 2, 3, 4, 5

Maximum epoch for criteria 1, 5, 10, 15, 20, 25, 30

Workload Synthetic workload

60%DLT jobs with convergence-oriented completion criteria
20%DLT jobs with accuracy-oriented completion criteria
20%DLT jobs with runtime-oriented completion criteria

Table 3.2: Synthetic DLT workload. The selection of model architecture and proportion of jobs with
various completion criteria distribution are based on the responses to our survey, and the selection of
other hyperparameters and the parameters about completion criteria follow the uniform distribution.

elaborate the configurations of the synthetic workload are presented in Table 3.2. We implement a num-

ber of representative deep learning models in Computer Vision (CV) and Natural Language Processing

(NLP)with randomizedhyperparameters and completion criteria. Weuse the small batch sizes to training

the CVmodels due to the empirical study [58] but choose bigger sizes for NLPmodels due to common

practice [6]. For other specific hyperparameters of some models (e.g., growth rate for DenseNet), we

follow the design in their original paper. We also have pre-trained versions of BERT, VGG, and ResNet

since the jobs of fine-tuning pre-trained models are also common.

For the models that have multiple variants like ResNet, DenseNet, ShuffleNet, VGG, BERT, we use

the shrunk variants (e.g., ResNet-18, ResNet-34, DenseNet-121) to fit them on a single GPU.
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Attainment

We consider fairness and efficiency as two vital but opposite optimization objectives. Achieving fairness

can guarantee that no single job is stalled due to a myriad of jobs being in front of it or some upfront

jobs taking an unexpectedly long time. Efficiency focuses on completing more jobs in a shorter time if

possible, and this objective can be only achieved by always picking up the jobs that can be finished faster.

If we stick with fairness, the jobs that can be completed quickly may have to wait a long time. On the

contrary, concentrating on efficiency can result in zero progress in some jobs, whichmeans they are never

triggered.

We define metrics of attainment rate for DLT jobs with various completion criteria to evaluate the

performance of Rotary-DLT.

Accuracy-oriented attainment rate: Similar to attainment progress ϕ, this shows the completion per-

centage of a jobwith accuracy-oriented completion criteria but from the perspective of accuracy, which is

defined as current accuracy
completion criteria . For instance, if a job has an accuracy target of 80% and obtains 56% accuracy

after training one epoch. The current attainment rate of this job is 56%80% = 70%.

Convergence-oriented attainment rate: We measure the attainment rate of jobs with convergence-

oriented completion criteria in terms of epochs. When retrospecting the training process, if the jobs con-

vergedbefore themax training epochs,wemark the epochwhen themodel is converged as the convergence-

line and define the attainment rate as current epoch
convergence-line . For the jobs that failed to converge, we define the

progress rate as current epochmax epochs .

Runtime-oriented attainment rate: The runtime-oriented attainment rate is denoted as
current epoch

completion criteria , which is further exemplified by the following case. If a job has a runtime-oriented

completion criterion of 15 epochs, and the attainment rate is 5
15 = 33.3% after training 5 epochs.

We evaluate the Rotary-DLT against three greedy baselines:

(a) ShortestRuntime First (SRF): it always runs the jobswith the shortest runtime completion criteria

first and handles the other jobs following a round-robin strategy.

(b) Biggest Convergence First (BCF): it always runs the jobs with the biggest convergence completion
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criteria first and handles the other jobs following a round-robin strategy.

(c) Lowest Accuracy First (LAF): it always runs the jobs with the lowest accuracy completion criteria

first and handles the other jobs following a round-robin strategy.

(a) Adaptive Rotary-DLT (T = 50%): Rotary-DLT is pure-fairness from 0 to 120minutes and can push themini-
mum attainment rate of the workload. Rotary-DLT becomes more aggressive on efficiency and successfully makes
more jobs achieve 100% attainment rate starting from 180 minutes since all the jobs make substantial progress
(50%) toward their completion criteria.

(b) Fairness Rotary-DLT (T = 100%): Rotary-DLT always picks up the jobs with the lowest ϕ and can maximize
the minimum attainment rate of all jobs in the workloads considerably faster than other baselines. For example,
Fairness Rotary-DLT and SRF achieve the same minimum attainment rate of all jobs using 120minutes and 300
minutes.

(c) Efficiency Rotary-DLT (T = 0%): Rotary-DLT only selects the jobs with the highest ϕ and makes more jobs
meet their completion criteria in a relatively short period. Considering the results at120minutes, EfficiencyRotary-
DLT completes (achieving 100% attainment rate) more jobs than the other baselines.
Figure 3.9: Evaluation of Rotary-DLT variants and three baselines (BCF, LAF, SRF) on the synthetic
DLT workload

We demonstrate all the results in Figure 3.9 using violin plots. In Figure 3.9a, Rotary-DLT is adaptive

which fuses the fairness and efficiency policy. It starts with the pure-fairness policy that always selects the

jobs with the lowest ϕ. Once all the jobs in the workload achieve at least 50% progress toward their com-

pletion criteria, adaptive Rotary-DLT switches to an efficiency-centric policy, which starts to pick up the
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jobs with the highest ϕ. Figure 3.9b and 3.9c demonstrate the performance of two Rotary-DLT variants

that optimizes fairness and efficiency objectives, respectively. All the Rotary-DLT variants outperform

the three baselines according to optimization objectives.

Impact of Training Epoch Estimation

Training epoch estimation is positioned at a vital place in developing and evaluating Rotary, and it is

critical to understand its effect of it. We conduct a micro-benchmark workload with 8 DLT jobs and

track the job placement under efficiency Rotary-DLT with and without accurate epoch estimation, re-

spectively. Among the 8 jobs, job4 is for BERT, job5 is for Bi-LSTM, and job6 is for LSTM.To evaluate

how the epoch estimation impacts the performance, we remove all the archived jobs about NLPmodels

in the repository of Rotary-DLT so that the estimation for jobs 4, 5, 6 is unreliable and even erroneous

(e.g., the number of epochs formeeting the completion criteria is 2 but an erroneous estimate can be 100

epochs).
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Figure 3.10: Job placements under efficiency Rotary-DLT. Rectangles with hatches indicate the jobs
meet the completing criteria. The job 4, 5, &6 are completed faster based on accurate epoch estimates
(Figure 3.10a), but they are deferred due to the erroneous epoch estimates (Figure 3.10b).

We demonstrate the placements for 8 jobs in Figure 3.10. Each rectangle denotes a job placement and

the onewithhatchesmeans the jobmeets the completion criteria. Figure 3.10apresents the jobplacement

under efficiencyRotary-DLTwith the accurate epoch estimation. In light of the accurate epoch estimate,

jobs 4, 5, and 6 are triggered to run after the trial phase in Rotary-DLT and complete early. However, as
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shown in Figure 3.10b, the epoch estimate is inaccurate and the placement is inefficient accordingly. For

example, job 4 can reach the complete criteria in 2 epochs, but the inaccurate estimate for that is 125

epochs, so its progress ϕ is much lower than others and cannot be placed as it should be. Therefore, jobs

4, 5, and 6 are finished later than those under accurate estimation.

Overhead of TTR, TEE, and TME

We investigate the overhead of recording the training epoch time of DLT jobs, namely measuring how

the overhead of TTR andTEE inRotary-DLT scales when theDLTworkload grows. As shown in Table

3.3, taking the workloads with the sizes of 10, 20, 30, and 40 as examples, the overhead of TTR and TEE

takes an imperceptible proportion of the whole workload processing time even for the larger workload.

Workload
Size

Overall Running
Time

Overhead of
TTR

Overhead of
TEE

Overhead of
TME

10 8142s 0.225s 0.74s 0.58s
20 23790s 0.6s 1.31s 1.03s
30 34014s 0.87s 1.98s 1.49s
40 43124s 1.12s 2.56s 2.11s

Table 3.3: The overall process time and overhead in Rotary

3.4 Related Work

To the best of our knowledge, Rotary is the first resource arbitration system for DLT jobs to support

user-defined completion criteria. Thus, we broadly review the related works to position our work.

3.4.1 Scheduling for AQP

Approximate query processing scheduling works are related to our framework since they focus on or-

chestrating the AQP jobs. However, to the best of our knowledge, there is not much work in this area

[46, 10].

iOLAP is one of the representative works [96], which returns intermediate results by processing the

input data a batch at a time rather than running the query on the entire dataset. iOLAP partitions the
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input data into mini-batches and schedules the delta update query on each batch and collects query re-

sults. It also can schedule recomputing jobs to recover the query result when a failure is detected. S-AQP

is similar work to iOLAP lies in this area [2]. However, they mainly focus on scheduling query plans.

For scheduling AQP jobs, ReLAQS [76], which serves as one of the baselines in our experiments, is

the state-of-the-artwork. It is can preempt theAQP jobs according to the estimation and try to helpmore

jobs achieve their objectives. However, our framework has additional contributions: (1) ReLAQS only

schedulesCPUcores, Rotary-AQP further considersmemory consumptionwhenpreempting resources;

(2) Estimation of ReLAQS only uses real-time results to predict the progress of each AQP job for the

next running epoch, the estimators in Rotary-AQP jointly utilize historical and real-time data to make

predicationwhich can overcome some issues such as cold-start or data bias; (3)ComparedwithReLAQS,

Rotary-AQP can support adaptive running cycling for short-running and long-running AQP jobs.

3.4.2 Scheduling forMachine Learning

We consider scheduling systems for machine learning as the most relevant works. We first review the

works that define fixed scheduling objectives for DLT jobs. MArk allows users to specify the response

time formachine learningmodel serving and schedules by selecting betweenAWSEC2 andAWSLambda

to support unpredictableworkloadbursts [97]. Someworks likeTiresias [22] andOptimus [66] schedule

machine learning jobs with time constraints.

Scheduling systems for machine learning are widely deployed as well. Gandiva is a cluster scheduling

framework that utilizes the cyclic predictability of intra-batch in a DLT job and the feedback of early

training to improve training latency and efficiency in a GPU cluster [90]. Philly analyzes a trace of ma-

chine learning workloads run on a cluster of GPUs in Microsoft and schedules the jobs according to a

trade-off between locality and GPU utilization [34]. HiveD [100] is designed to be a Kubernetes sched-

uler extension for Multi-Tenant GPU clusters, which can guarantee resource reservation for DLT jobs.

PipeDream [63] is a deep learning training system that schedules computation by pipelining execution

across multiple machines to accelerate the training process. AntMan [91] is a large-scale deep learning

multi-tenant infrastructure in Alibaba, which utilizes the spare GPU resources to co-execute multiple
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jobs on a sharedGPU and dynamically scales memory and computation. Pollux [67] is resource-adaptive

deep learning (DL) training and scheduling framework which optimizes inter-dependent factors both at

the per-job level and at the cluster-wide level.

As we emphasized before, scheduling systems and our resource arbitration framework, Rotary, solve

different but complementary problems. The scheduling systems pay more attention to resource reser-

vation and job placement according to jobs’ requirements, however, Rotary addressed the issues about

resource allocation and job preemption.

3.4.3 Multi-tenant Systems

Multi-tenant systems, which don’t focus on job scheduling but also have been deployed for AQP and

DLT applications, should also be mentioned.

BlinkDB [3] is an AQP system that is based on Apache Hadoop and devises effective strategies to

select proper samples (offline generated) in distributed clusters to answer newly coming queries. Quickr

[37] is designed for executing ad-hoc queries on big-data clusters that do not need any pre-computing of

the whole dataset spread over the clusters. SnappyData [60] is a platform to support OLTP, OLAP, and

stream analytics based on Apache Spark.

Multi-tenant systems for deep learning are also proposed and deployed recently. FfDL is a deep learn-

ing platform in IBM to support the multi-tenant distributed training of models based on Kubernetes

[33]. Facebook also reveals some design choices for building a datacenter to handle multi-tenant train-

ing and inference, like the importance of co-locating data with computation [24]. Ease.ml is a declarative

machine learning service platform that focuses on a cost-awaremodel selection problem in amulti-tenant

system [59]. CROSSBOW[39] is a system that supports users to select a small batch and scale tomultiple

GPUs for deep learning training.

3.5 Discussion

Here we discuss some implementation limitations and future work.
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Implementation Limitations:We faced several designs trade-offswhen implementingRotary-AQP and

Rotary-DLT. However, it should be noted that all the trade-offs are implementation-specific and frame-

work independent, which could be mitigated by different implementations. We discuss two examples.

One implementation trade-off is how to persist the AQP jobs that have been paused (i.e., deferred

to future execution) due to resource arbitration. When a job is paused, its intermediate states and re-

sults should be persisted either in memory or disk so that it can be resumed. Persisting AQP jobs in

memory is more efficient from the perspective of performance, but may quickly saturate the memory,

which is a relatively scarce resource compared with disk andmay lead to an out-of-memory error. There-

fore, we checkpoint the AQP jobs in disks. Such a mechanism will bring additional overhead but allows

more jobs to run simultaneously. The same issue happens whenwe implementedRotary-DLT, however,

checkpointing DLT jobs in disks is a common practice due to the unique characteristics of GPU.

The second implementation choice we made is that we assume the AQP and DLT jobs are executed

in a single machine even though our framework and system implementations support distributed exe-

cution. This is because we decide to first make a deep investigation of a resource arbitration framework

and its implementations so that we can have a better understanding of progressive iterative analytic jobs

and verify our framework design. Our system implementations, Rotary-AQP and Rotary-DLT, and the

corresponding evaluations confirm the generality and practicality of the proposed framework. Thus, any

distributed iterative processing job is out of the scope of this paper.

Materialization for Progressive Iterative Analytics: Progressive iterative analytic jobs need to be per-

sisted. Such requirement essentially asks for a materialization mechanism as in database systems and

brings a similar trade-off between cost and efficiency [1]. How and when to materialize the progressive

iterative analytic jobs is an interesting and pivotal research question, and we leave the answers for future

work.

Unified Resource Arbitration Framework: While we compare AQP and DLT and treat them as two

alike progressive iterative analytic applications in different areas and implement two systems for both of

them, it is more interesting to have a unified resource arbitration system on a cluster to handle AQP and

DLT jobs together, such a system can servemore users and enormously improve the resources utilization.
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3.6 Conclusion

In this paper, we argue that resource arbitration is vital but neglected for progressive iterative analytic

applications due to their unique characteristics. We proposed a framework, Rotary, to highlight the

core features and components for resource arbitration. It allows diverse user-defined completion criteria,

prioritizes the jobs for resources, and supports adaptive running epochs. To realize and verify the frame-

work, we implement two resource arbitration systems for AQP and DLT and evaluate them using the

TPC-H benchmark and a survey-based workload respectively. The evaluation results show that Rotary-

AQP and Rotary-DLT outperform the state-of-the-art and heuristic baselines, and confirm that Rotary

is an appealing solution for efficient resource utilization for iterative applications. Our work also opens

interesting opportunities to explore the connection between research problems in ML and DB, such as

balancing accuracy and running time in approximate queries processing and deep learning training.
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CHAPTER 4

RATCHET: EFFICIENT, ROBUST, AND RESOURCE-AWARE

CHECKPOINTING FOR ITERATIVE AND PROGRESSIVE QUERY

PROCESSING

4.1 Research Proposal

As a prevailing case of data-intensive computation, iterative and progressive has recently received sub-

stantial attention. Such long-running computation jobs keep receiving the data and processed them in a

progressiveway so that the previous results can be reused andmerged. Such incremental query processing

jobs are prohibitively expensive in terms of time and resource consumption especially in a resource-shared

and -constrained environment, and interruptions to these jobs are inevitable due to resource reallocation

that is common in a multi-tenant environment. When interruptions occur, the long-running, stateful,

incremental query processing jobs terminate abruptly, wiping out the query and the associated data from

the memory, and erasing the current processing process, which is a significant waste when the interrup-

tions happen frequently. This, therefore, necessitates an operation that can suspend and store the job

if there will be an interruption and resume it when possible, which can be called intermediate check-

pointing. However, supporting intermediate checkpointing in multi-tenant environment poses several

unique challenges which we would like to address as describe blow:

• Checkpointing Triggering: there is no one-size-fits-all checkpointing triggering point that works

across queries, hardware, andmulti-tenant environments. The triggering point depends on several

factors such as query operators, data size, and computation contention. This suggests that trig-

gering a checkpoint operation might not be worthwhile and may lead to additional performance

overhead. For example, an incremental queryprocessing jobmayhave to re-run some long-running

operators like join if the checkpoint happens in the middle or even at the nearly-end point of the

operators. Moreover, we can checkpointing a job just before a long-running operator in favor of

some other jobs that only consist of short-running operators if it is beneficial to do so. Therefore,
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the system that can automatically decidewhen andwhich jobs should be checkpointed is necessary

in a multi-tenancy environment.

• Checkpointing Staleness: when thequery processing job is interrupted, the on-goingdatamaybe

either lost or missed, which leads to rerun or skip the current processing batch. This may result in

accuracy loss if the checkpointed job ismis-matchedwith the current and arriving data. Therefore,

we need to add robustness to overcome this checkpointing staleness. This robustness should be

able to capture the data progress even in the presence of interruptions and checkpointing so that

makes correct, batch-level checkpointing feasible for incremental query processing.

• Resource-Aware Checkpointing: Checkpointing incremental query jobs can consume a sub-

stantial amount ofmemory that is a scarce resource inmulti-tenant environments. One solution is

hierarchical storage for checkpointing, which allows some jobs to be checkpointed on disks which

usually have large storage capacity. However, checkpointing on disks will bring additional I/O

overhead and may significantly affect the processing performance. Therefore, a system that can

arbitrate which jobs should be checkpointed on low-performance devices is desired in a resource-

constrained environment.

4.2 Research Plan

We outline our research plan and milestones for Ratchet as below.

Sep.2022 - Nov.2022: Design and implement a prototype checkpointing system for incremental

query processing with basic functions.

Nov.2022 - Feb.2023: Implement Ratchet on top of the checkpointing system.

Feb.2023 - May.2023: Implement more baselines and have an experiment plan; tackle technical

challenges and collect experiments result to write the paper.
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