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Abstract

In this paper, we investigate the total coefficient size of Nullstellensatz proofs. We
show that Nullstellensatz proofs of the pigeonhole principle on n pigeons require total
coefficient size 2Ω(n) and that there exist Nullstellensatz proofs of the ordering principle
on n elements with total coefficient size 2n − n.
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1 Introduction

In this paper, we investigate the total coefficient size of Nullstellensatz proofs. We
start by introducing the Nullstellensatz proof system and then define total coefficient
size as a measure of the complexity of Nullstellensatz proofs.

A Nullstellensatz proof is a way to certify that a system of axioms is infeasible. In
this paper, we take a system of axioms to be a system of equations of the following
form.

Definition 1. Let x1, . . . , xN be variables that take values in {0, 1}. Let x̄i denote

1 − xi. We define a monomial to be a product of the form
(∏

i∈S xi
) (∏

j∈T xj

)
for

some disjoint subsets S, T of [N ]. We define a system of axioms to be a system of m
equations {pi = 0 : i ∈ [m]} where each pi is a monomial. We call each pi an axiom.

For example, the following system of axioms expresses the pigeonhole principle,
which says that if n pigeons are assigned to n − 1 holes, then some hole must have
more than one pigeon. The pigeonhole principle is one of two systems of axioms we
will consider in this paper, together with the ordering principle.

Definition 2. For n ≥ 1, we define PHPn to be the following system of axioms.
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• For each i ∈ [n] and j ∈ [n−1], we have a variable xi,j . xi,j = 1 represents pigeon
i being in hole j, and xi,j = 0 represents pigeon i not being in hole j.

• For each i ∈ [n], we have the axiom
∏n−1

j=1 x̄i,j = 0 representing the constraint
that each pigeon must be in at least one hole.

• For each pair of distinct pigeons i1, i2 ∈ [n] and each hole j ∈ [n − 1], we have
the axiom xi1,jxi2,j = 0 representing the constraint that pigeons i1 and i2 cannot
both be in hole j.

We now define the notion of weakenings, which are used in Nullstellensatz proofs.

Definition 3. Let {pi = 0 : i ∈ [m]} be a system of axioms. If W is a monomial such
that W = rpi for some monomial r and some pi, we say that W is a weakening of pi.

For example, if we have variables x1, x2, x3 and an axiom x1x2 = 0, then the possible
weakenings of this axiom are x1x2, x1x2x3, and x1x2x̄3. We use the following notation:

Definition 4. If x ∈ {0, 1}N , we call x an assignment and view it as a choice of
{0, 1}-values for x1, . . . , xN . For an axiom pi or a weakening W , we let pi(x) or W (x)
denote pi or W evaluated on x. Thus, if W is a weakening of pi, then any assignment
x satisfying pi(x) = 0 also satisfies W (x) = 0.

Now we define the Nullstellensatz proof system.

Definition 5. Let {pi = 0 : i ∈ [m]} be a system of axioms. A Nullstellensatz proof
that {pi = 0 : i ∈ [m]} is infeasible is an equality of the form

1 =
∑
W

cWW,

where W ranges over all possible weakenings of axioms and cW ∈ R.

If we can write 1 =
∑

W cWW , then {pi = 0 : i ∈ [m]} is infeasible because
any assignment x satisfying pi(x) = 0 for all axioms also satisfies W (x) = 0 for all
weakenings. The example below is a Nullstellensatz proof for PHP2. The axioms are:

1− x1,1 = 0

1− x2,1 = 0

x1,1x2,1 = 0

We have the Nullstellensatz proof:

1 = (1− x1,1)

+ x1,1 (1− x2,1)

+ (x1,1x2,1) .

Finally, we define total coefficient size, which is the complexity measure of Nullstel-
lensatz proofs that we will be consider in this paper.
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Definition 6. Given a system of axioms {pi = 0 : i ∈ [m]} and a Nullstellensatz proof
1 =

∑
W cWW , we define the total coefficient size of this Nullstellensatz proof to be∑

W

|cW |.

The Nullstellsatz proof above for PHP2 has total coefficient size 3. Total coefficient
size is a complexity measure of Nullstellensatz proofs that is relatively explored, unlike
degree which has been extensively studied [BIK+94, BP96, Bus96, CEI96, BIK+97,
BCE+98]. We believe that total coefficient size is a natural complexity measure in
its own right, and it is also an interesting open problem whether there are tradeoffs
between total coefficient size and other complexity measures like degree.

In this paper, we show the following results. In section 2, we show how the problem
of minimizing total coefficient size can be expressed as a linear program.

In section 3, we prove our main result, which is an exponential lower bound on total
coefficient size for the pigeonhole principle:

Theorem 1. Any Nullstellensatz proof of the pigeonhole principle on n pigeons and

n− 1 holes has total coefficient size at least Ω
(
n

3
4

(
2√
e

)n)
.

In section 4, we introduce the ordering principle and show an exponential upper
bound on total coefficient size:

Theorem 2. For all n ≥ 1, there is a Nullstellensatz proof of the ordering principle
on n elements with total coefficient size 2n − n.

Finally, in section 5 we discuss open problems that our work raises.

2 Linear program for total coefficient size

Given a set of axioms {pi = 0 : i ∈ [m]}, we can express the problem of minimizing
total coefficient size with the following linear program.

Variables: For each weakening W , we have a variable cW and a variable cabsW

representing the absolute value of cW .
Constraints: For each weakening W , we have the two constraints

cabsW − cW ≥ 0,

cabsW + cW ≥ 0.

For each assignment x, we have the constraint∑
W

cWW (x) = 1

expressing the condition that
∑

W cWW evaluates to 1 on all assignments.
Objective:

min
∑
W

cabsW .
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We now derive the dual linear program in the standard way.

Variables: For each weakening W , we have a variable u+W ≥ 0 (corresponding to
the primal constraint cabsW − cW ≥ 0) and a variable u−W ≥ 0 (corresponding to the
primal constraint cabsW + cW ≥ 0).

For each assignment x, we have a variable vx (corresponding to the primal constraint∑
W cWW (x) = 1).
Constraints: For each weakening W , we have a constraint corresponding to the

primal variable cW : (∑
x

vxW (x)

)
+ (−u+W + u−W ) = 0.

For each weakening W , we have a constraint corresponding to the primal variable cabsW :

u+W + u−W = 1.

Objective:

max
∑
x

vx.

Because u+W , u−W ≥ 0 and u+W + u−W = 1, we have that (−u+W + u−W ) can be any
value in the range [−1, 1]. Therefore, the dual constraints can be rephrased as

∀W :
∑
x

vxW (x) ∈ [−1, 1].

3 Total coefficient size lower bound for the pi-

geonhole principle

In this section, we prove Theorem 1, an exponential lower bound on total coefficient
size for the pigeonhole principle PHPn (Definition 2).

We will prove our lower bound by constructing and analyzing a dual solution D.
For an assignment x, let D(x) denote the value of vx in our dual solution. The only
assignments x for which D(x) ̸= 0 will be those where each pigeon goes to exactly one
hole (i.e., for each pigeon i, exactly one of the xi,j is 1). Note that there are (n− 1)n

such assignments. In the rest of this section, when we refer to assignments or write
a summation over assignments x, we refer specifically to these (n − 1)n assignments.
Further, if W is a weakening of an axiom of the form

∏n−1
j=1 x̄i,j = 0, then D trivially

satisfies the dual constraint
∑

xD(x)W (x) ∈ [−1, 1] because D(x)W (x) = 0 for all x.
Therefore, in the rest of this section when we refer to weakenings, we refer specifically
to weakenings of the axioms xi1,jxi2,j = 0.

For convenience, we will construct a function D that does not necessarily satisfy
∀W :

∑
xD(x)W (x) ∈ [−1, 1]; we can then obtain a valid dual solution by dividing

each D(x) by maxW |
∑

xD(x)W (x)|. Letting E denote expectation over a uniform
assignment (where each pigeon goes to exactly one hole), we obtain a dual value of∑

x D(x)
maxW |

∑
x D(x)W (x)| = E(D)

maxW |E(DW )| . So, we will construct D and analyze E(D) and

maxW |E(DW )|.
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First, we provide some intuition for our construction. Consider the following func-
tions on assignments, which indicate whether a subset of pigeons is in different holes:

Definition 7. Let S ⊊ [n] be a subset of pigeons of size at most n− 1. We define the
function JS that maps assignments to {0, 1}. For an assignment x, JS(x) = 1 if all
pigeons in S are in different holes, and JS(x) = 0 otherwise.

Note that if |S| = 0 or |S| = 1, then JS is the constant function 1. In general, the

expectation of JS over a uniform assignment is E(JS) =
(∏|S|

k=1(n− k)
)
/(n− 1)|S|.

Naively, we might want D to be the indicator for whether all n pigeons are in
different holes. Of course, this wouldn’t work because it is impossible for all n pigeons
to be in different holes. Perhaps the next best thing would be that if we only consider
a subset S of n − 1 pigeons, then D “mimics” JS . More concretely, suppose p is
a monomial that does not depend on some pigeon i (i.e., p does not contain any
terms xi,j or x̄i,j). Then, we might hope that D mimics J[n]\{i} in the sense that
E(Dp) = E

(
J[n]\{i}p

)
. Given this intuition, we now construct D.

Definition 8. Our dual solution D is

D =
∑
S⊊[n]

cSJS ,

where the coefficients cS are cS = (−1)n−1−|S|(n−1−|S|)!
(n−1)n−1−|S| .

We will lower-bound the dual value E(D)/maxW |E(DW )| by computing E(D) and
then upper-bounding maxW |E(DW )|. In both calculations, we will use the following
key property of D, which we introduced in the intuition for our construction:

Lemma 1. If p is a monomial that does not depend on pigeon i (i.e., p does not contain
any terms xi,j or x̄i,j), then E(Dp) = E(J[n]\{i}p).

Proof. Without loss of generality, suppose p does not contain any terms x1,j or x̄1,j .
Let T ⊊ {2, . . . , n}. Observe that

E(JT∪{1}p) =
n− 1− |T |

n− 1
E(JT p)

because regardless of the locations of the pigeons in T , the probability that pigeon 1
goes to a different hole is n−1−|T |

n−1 and p does not depend on pigeon 1. Since

cT∪{1} =
(−1)n−2−|T |(n− 2− |T |)!

(n− 1)n−2−|T |

= − n− 1

n− 1− |T |
· (−1)n−1−|T |(n− 1− |T |)!

(n− 1)n−1−|T | = − n− 1

n− 1− |T |
cT ,

we have that for all T ⊊ {2, . . . , n},

E(cT∪{1}JT∪{1}p) + E(cTJT p) = 0.

Thus, all terms in E(Dp) except E(c{2,...,n}J{2,...,n}p) cancel. Since c{2,...,n} = 1, we
have that E(Dp) = E(J{2,...,n}p), as needed.
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The value of E(D) follows immediately:

Corollary 1.

E(D) =
(n− 2)!

(n− 1)n−2
.

Proof. Let p = 1. By Lemma 1, E(D) = E(J{2,...,n}) = (n− 2)!/(n− 1)n−2.

3.1 Upper bound on maxW |E(DW )|
We introduce the following notation:

Definition 9 (HW,i). Given a weakening W , we define a set of holes HW,i ⊆ [n − 1]
for each pigeon i ∈ [n] so that W (x) = 1 if and only if each pigeon i ∈ [n] goes to one
of the holes in HW,i. More precisely,

• If W contains terms xi,j1 and xi,j2 for distinct holes j1, j2, then HW,i = ∅ (i.e. it
is impossible that W (x) = 1 because pigeon i cannot go to both holes h and h′).

• If W contains exactly one term of the form xi,j , then HW,i = {j}. (i.e., for all x
such that W (x) = 1, pigeon i goes to hole j).

• If W contains no terms of the form xi,j , then HW,i is the subset of holes j such
that W does not contain the term x̄i,j . (i.e., if W contains the term x̄i,j , then for
all x such that W (x) = 1, pigeon i does not go to hole j.)

The key property we will use to bound maxW |E(DW )| follows immediately from
Lemma 1:

Lemma 2. Let W be a weakening. If there exists some pigeon i ∈ [n] such that
HW,i = [n− 1] (i.e., W does not contain any terms xi,j or x̄i,j), then E(DW ) = 0.

Proof. Without loss of generality, suppose W is a weakening of the axiom x2,1x3,1 = 0
and HW,1 = [n]. By Lemma 1, E(DW ) = E(J{2,...,n}W ). However, E(J{2,...,n}W ) = 0
because if W = 1 then pigeons 2 and 3 must both go to hole 1.

We make the following definition and then state a corollary of Lemma 2.

Definition 10 (W flip
S ). Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons

i1, i2 and hole j. Let S ⊆ [n] \ {i1, i2}. We define W flip
S , which is also a weakening of

the axiom xi1,jxi2,j = 0, as follows.

• For each pigeon i3 ∈ S, we define W flip
S so that H

Wflip
S ,i3

= [n− 1] \HW,i3 .

• For each pigeon i3 /∈ S, we define W flip
S so that H

Wflip
S ,i3

= HW,i3 .

(Technically, there may be multiple ways to define W flip
S to satisfy these properties; we

can arbitrarily choose any such definition.)

In other words, W flip
S is obtained from W by flipping the sets of holes that the

pigeons in S can go to in order to make the weakening evaluate to 1. Now we state a
corollary of Lemma 2:

6



Corollary 2. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and
hole j. Let S ⊆ [n] \ {i1, i2}. Then

E
(
DW flip

S

)
= (−1)|S| · E(DW ).

Proof. It suffices to show that for i3 ∈ [n] \ {i1, i2}, we have E
(
DW flip

{i3}

)
= −E(DW ).

Indeed, W + W flip
{i3} is a weakening satisfying H

W+Wflip
{i3}

,i3
= [n − 1]. Therefore, by

Lemma 2, E
(
D
(
W +W flip

{i3}

))
= 0.

Using Corollary 2, we will bound maxW |E(DW )| using Cauchy-Schwarz. We first
show an approach that does not give a strong enough bound but shows how Corollary
2 and Cauchy-Schwarz can be useful. We then show how to improve the bound.

3.1.1 Unsuccessful approach to upper bound maxW |E(DW )|

Consider maxW |E(DW )|. By Corollary 2, it suffices to take the max only over weak-
enings W such that, if W is a weakening of the axiom xi1,jxi2,j = 0, then for all pigeons
i3 ∈ [n] \ {i1, i2}, we have |HW,i3 | ≤ ⌊(n− 1)/2⌋. For any such W , we have

∥W∥ =
√

E(W 2)

≤

√(
1

n− 1

)2(1

2

)n−2

= (n− 1)−1 · 2−(n−2)/2.

By Cauchy-Schwarz,

|E(DW )| ≤ ∥D∥∥W∥
≤ ∥D∥(n− 1)−12−(n−2)/2.

Using the value of E(D) from Corollary 1, the dual value E(D)/maxW |E(DW )| is at
least

(n− 2)!

(n− 1)n−2
· (n− 1)2(n−2)/2

∥D∥
= Θ̃

((
e√
2

)−n

· 1

∥D∥

)
by Stirling’s formula. Thus, in order to achieve an exponential lower bound on the dual
value, we would need 1/∥D∥ ≥ Ω(cn) for some c > e/

√
2. However, this requirement is

too strong, as we will show that 1/∥D∥ = Θ̃
(
(
√
e)

n)
. We now improve our approach.

3.1.2 Successful approach to upper bound maxW |E(DW )|

Definition 11 (W {−1,0,1}). Let W be a weakening of the axiom xi1,jxi2,j = 0 for
pigeons i1, i2 and hole j. (If W is a weakening of multiple such axioms, we choose one
of those axioms arbitrarily.) We define the function W {−1,0,1} that maps assignments
to {−1, 0, 1}. For an assignment x,

• If pigeons i1 and i2 do not both go to hole j, then W {−1,0,1}(x) = 0.
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• Otherwise, let V (x) = |{i3 ∈ [n]\{i1, i2} : pigeon i3 does not go to HW,i3}|. Then
W {−1,0,1}(x) = (−1)V (x).

W {−1,0,1} is a linear combination of the W flip
S :

Lemma 3. Let W be a weakening of the axiom xi1,jxi2,j = 0 for pigeons i1, i2 and
hole j. We have

W {−1,0,1} =
∑

S⊆[n]\{i1,i2}

(−1)|S| ·W flip
S .

It follows that
E
(
DW {−1,0,1}

)
= 2n−2 · E(DW ).

Proof. To prove the first equation, consider any assignment x. If pigeons i1 and i2
do not both go to hole j, then both W {−1,0,1} and all the W flip

S evaluate to 0 on x.

Otherwise, exactly one of the W flip
S (x) equals 1, and for this choice of S, we have

W {−1,0,1}(x) = (−1)|S|.
The second equation follows because

E
(
DW {−1,0,1}

)
=

∑
S⊆[n]\{i1,i2}

(−1)|S| · E
(
DW flip

S

)
=

∑
S⊆[n]\{i1,i2}

(−1)|S|(−1)|S| · E(DW ) (Corollary 2)

= 2n−2 · E(DW ).

Using Lemma 3, we now upper bound maxW |E(DW )|:

Lemma 4. The dual value E(D)/maxW |E(DW )| is at least (n−2)!
(n−1)n−2 · (n−1)2n−2

∥D∥ .

Proof. For any W , we have

E(DW ) = 2−(n−2) · E
(
DW {−1,0,1}

)
(Lemma 3)

≤ 2−(n−2) · ∥D∥∥W {−1,0,1}∥ (Cauchy-Schwarz)

= 2−(n−2) · ∥D∥
√

E
((

W {−1,0,1}
)2)

= (n− 1)−12−(n−2) · ∥D∥.

Using the value of E(D) from Corollary 1, the dual value E(D)/maxW |E(DW )| is at
least (n−2)!

(n−1)n−2 · (n−1)2n−2

∥D∥ .

It only remains to compute ∥D∥:

Lemma 5.

∥D∥2 = (n− 2)!

(n− 1)n−2
· n! ·

n−1∑
c=0

(−1)n−1−c

n− c
· 1

(n− 1)n−1−cc!
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Proof. Recall the definition of D (Definition 8):

D =
∑
S⊊[n]

cSJS ,

cS =
(−1)n−1−|S|(n− 1− |S|)!

(n− 1)n−1−|S| .

We compute ∥D∥2 = E(D2) as follows.

E(D2) =
∑
S⊊[n]

∑
T⊊[n]

cScT · E(JSJT ).

Given S, T ⊊ [n], we have

E(JSJT ) = E(JS)E(JT | JS = 1)

=

 |S|∏
i=1

(n− i)!

 /(n− 1)|S|

 |T |∏
j=|S∩T |+1

(n− j)!

 /(n− 1)|T\S|


Therefore,

cScT · E(JSJT ) =

cS

 |S|∏
i=1

(n− i)!

 /(n− 1)|S|

cT

 |T |∏
j=|S∩T |+1

(n− j)!

 /(n− 1)|T\S|

 .

Note that the product of (−1)n−1−|S| (from the cS) and (−1)n−1−|T | (from the cT )
equals (−1)|S|−|T |, so the above equation becomes

cScT · E(JSJT ) = (−1)|S|−|T |
(

(n− 2)!

(n− 1)n−2

)(
(n− 1− |S ∩ T |)!
(n− 1)n−1−|S∩T |

)
.

We rearrange the sum for E(D2) based on |S ∩ T |:

E(D2) =
∑
S⊊[n]

∑
T⊊[n]

cScT · E(JSJT )

=
(n− 2)!

(n− 1)n−2

n−1∑
c=0

(n− 1− c)!

(n− 1)n−1−c

∑
S,T⊊[n],
|S∩T |=c

(−1)|S|−|T |.

To evaluate this expression, fix c ≤ n− 1 and consider the inner sum. Consider the
collection of tuples {(S, T ) | S, T ⊊ [n], |S ∩ T | = c}. We can pair up (most of) these
tuples in the following way. For each S, let mS denote the minimum element in [n]
that is not in S (note that mS is well defined because S cannot be [n]). We pair up the
tuple (S, T ) with the tuple (S, T△{mS}), where △ denotes symmetric difference. The
only tuples (S, T ) that cannot be paired up in this way are those where |S| = c and
T = [n]\{mS}, because T cannot be [n]. There are

(
n
c

)
unpaired tuples (S, T ), and for

each of these tuples, we have (−1)|S|−|T | = (−1)n−1−c. On the other hand, each pair
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(S, T ), (S, T△{mS}) contributes 0 to the inner sum. Therefore, the inner sum equals
(−1)n−1−c

(
n
c

)
, and we have

E(D2) =
(n− 2)!

(n− 1)n−2

n−1∑
c=0

(−1)n−1−c(n− 1− c)!

(n− 1)n−1−c

(
n

c

)

=
(n− 2)!

(n− 1)n−2

n−1∑
c=0

(−1)n−1−c(n− 1− c)!

(n− 1)n−1−c
· n!

c!(n− c)!

=
(n− 2)!

(n− 1)n−2
· n! ·

n−1∑
c=0

(−1)n−1−c

n− c
· 1

(n− 1)n−1−cc!
.

Corollary 3. E(D2) ≤ n!
(n−1)n−1

Proof. Observe that the sum

n−1∑
c=0

(−1)n−1−c

n− c
· 1

(n− 1)n−1−cc!

is an alternating series where the magnitudes of the terms decrease as c decreases. The
two largest magnitude terms are 1/(n−1)! and −(1/2) ·1/(n−1)!. Therefore, the sum
is at most 1

(n−1)! , and we conclude that

E(D2) ≤ (n− 2)!

(n− 1)n−2
· n!

(n− 1)!
=

n!

(n− 1)n−1

as needed.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. By Lemma 4, any Nullstellensatz proof for PHPn has total coef-

ficient size at least (n−2)!
(n−1)n−2 · (n−1)2n−2

∥D∥ . By Corollary 3, ∥D∥ ≤
√

n!
(n−1)n−1 . Combining

these results, any Nullstellensatz proof for PHPn has total coefficient size at least

(n− 2)!

(n− 1)n−2
· (n− 1)2n−2√

n!
(n−1)n−1

=
2n−2

√
n

·
√

(n− 1)!

(n− 1)
n
2
− 3

2

=
2n−2(n− 1)√

n

√
(n− 1)!

(n− 1)n−1

Using Stirling’s approximation that n! is approximately
√
2πn

(
n
e

)n
,
√

(n−1)!
(n−1)n−1 is ap-

proximately 4
√
2π(n− 1)

(
1√
e

)n−1
so this expression is Ω

(
n

3
4

(
2√
e

)n)
, as needed.
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3.2 Experimental results

For small n, we computed the optimal dual values shown below. The first column of
values is the optimal dual value for n = 3, 4. The second column of values is the optimal
dual value for n = 3, 4, 5, 6 under the restriction that the only nonzero assignments are
those where each pigeon goes to exactly one hole.

n dual value dual value, each pigeon goes to exactly one hole

3 11 6
4 41.469 27
5 - 100
6 - 293.75

For comparison, the table below shows the value we computed for our dual solution

and the lower bound of 2n−2(n−1)√
n

√
(n−1)!

(n−1)n−1 that we showed in the proof of Theorem

1. (Values are rounded to 3 decimals.)

n value of D proven lower bound on value of D

3 4 1.633
4 18 2.828
5 64 4.382
6 210.674 6.4

It is possible that our lower bound on the value ofD can be improved. The following
experimental evidence suggests that the dual value E(D)/maxW |E(DW )| of D may
actually be Θ̃(2n). For n = 3, 4, 5, 6, we found that the weakenings W that maximize
|E(DW )| are of the following form, up to symmetry. (By symmetry, we mean that we
can permute pigeons/holes without changing |E(DW )|, and we can flip sets of holes as
in Corollary 2 without changing |E(DW )|.)

• For odd n (n = 3, 5): W is the weakening of the axiom x1,1x2,1 = 0 where, for
i = 3, . . . , n, we have HW,i = {2, . . . , (n+ 1)/2}.

• For even n (n = 4, 6): W is the following weakening of the axiom x1,1x2,1 = 0.
For i = 3, . . . , n/2 + 1, we have HW,i = {2, . . . , n/2}. For i = n/2 + 2, . . . , n, we
have HW,i = {n/2 + 1, . . . , n− 1}.

If this pattern continues to hold for larger n, then experimentally it seems that
E(D)/maxW |E(DW )| is Θ̃(2n), although we do not have a proof of this.

4 Total coefficient size upper bound for the or-

dering principle

In this section, we construct an explicit Nullstellensatz proof of infeasibility for the
ordering principle on n elements with total coefficient size 2n − n.

Definition 12. Intuitively, the ordering principle says that any well-ordering on n
elements must have a minimum element. Formally, for n ≥ 1, we define ORDn to be
the following system of axioms.
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• We have a variable xi,j for each pair i, j ∈ [n] with i < j. xi,j = 1 represents
element i being less than element j in the well-ordering, and xi,j = 0 represents
element i being more than element j in the well-ordering.
We write xj,i as shorthand for x̄i,j .

• For each i ∈ [n], we have the axiom
∏

j∈[n]\{i} xi,j = 0 representing the constraint
that element i is not a minimum element. We call these axioms non-minimality
axioms.

• For each triple i, j, k ∈ [n] with i < j < k, we have the two axioms xi,jxj,kxk,i =
0 and xk,jxj,ixi,k = 0 representing the constraint that elements i, j, k satisfy
transitivity. We call these axioms transitivity axioms.

In our Nullstellensatz proof, each cW will be either 0 or 1. If A is a non-minimality
axiom, then cA = 1 and cW = 0 for all other weakenings W of A. The only weakenings
of transitivity axioms that can have coefficient 1 are of the following form.

Definition 13. Let W be a weakening of the axiom xi,jxj,kxk,i or the axiom xk,jxj,ixi,k
for some i < j < k. Let G(W ) be the following directed graph. The vertices of G(W )
are [n]. For distinct i′, j′ ∈ [n], G(W ) has an edge from i′ to j′ if W contains the term
xi′,j′ . We say that W is a nice transitivity weakening if G(W ) has exactly n edges and
all vertices are reachable from vertex i.

In other words, if W is a weakening of the axiom xi,jxj,kxk,i or the axiom xk,jxj,ixi,k
then G(W ) contains a 3-cycle on vertices {i, j, k}. W is a nice transitivity weakening
if and only if contracting this 3-cycle results in a (directed) spanning tree rooted at
the contracted vertex. Note that if W is a nice transitivity weakening and x is an
assignment with a minimum element then W (x) = 0.

Theorem 3. There is a Nullstellensatz proof of infeasibility for ORDn satisfying:
1. The total coefficient size is 2n − n.
2. Each cW is either 0 or 1.
3. If A is a non-minimality axiom, then cA = 1 and cW = 0 for all other weakenings

W of A.
4. IfW is a transitivity weakening but not a nice transitivity weakening then cW = 0.

Proof. We prove Theorem 3 by induction on n. When n ≤ 3, the desired Nullstellensatz
proof sets cA = 1 for each axiom A. It can be verified that

∑
W cWW = 1 and that

this Nullstellensatz proof satisfies the properties of Theorem 3.
Now suppose we have a Nullstellensatz proof for ORDn satisfying Theorem 3, and

let Sn denote the set of transitivity weakenings W for which cW = 1. The idea to
obtain a Nullstellensatz proof for ORDn+1 is to use two “copies” of Sn, the first copy
on elements {1, . . . , n} and the second copy on elements {2, . . . , n+1}. Specifically, we
construct the Nullstellensatz proof for ORDn+1 by setting the following cW to 1 and
all other cW to 0.

1. For each non-minimality axiom A in ORDn+1, we set cA = 1.
2. For each W ∈ Sn, we define the transitivity weakening W ′ on n+ 1 elements by

W ′ = W · x1,n+1 and set cW ′ = 1.

12



3. For each W ∈ Sn, first we define the transitivity weakening W ′′ on n+1 elements
by replacing each variable xi,j that appears in W by xi+1,j+1. (e.g., if W =
x1,2x2,3x3,1, then W ′′ = x2,3x3,4x4,2.) Then, we define W ′′′ = W ′′xn+1,1 and set
cW ′′′ = 1.

4. For each i ∈ {2, . . . , n}, for each of the 2 transitivity axioms A on elements
1, i, n+ 1, we set cW = 1 for the following weakening W of A:

W = A

 ∏
j∈[n]\{i}

xi,j

 .

In other words, W (x) = 1 if and only if A(x) = 1 and i is the minimum element
among the elements [n+ 1] \ {1, n+ 1}.

The desired properties 1 through 4 in Theorem 3 can be verified by induction. It
remains to show that for each assignment x, there is exactly one nonzero cW for which
W (x) = 1. If x has a minimum element i ∈ [n + 1], then the only nonzero cW for
which W (x) = 1 is the non-minimality axiom for i. Now suppose that x does not have
a minimum element. Consider two cases: either x1,n+1 = 1, or xn+1,1 = 1. Suppose
x1,n+1 = 1. Consider the two subcases:

1. Suppose that, if we ignore element n+ 1, then there is still no minimum element
among the elements {1, . . . , n}. Then there is exactly one weakening W in point
2 of the construction for which W (x) = 1, by induction.

2. Otherwise, for some i ∈ {2, . . . , n}, we have that i is a minimum element among
{1, . . . , n} and xn+1,i = 1. Then there is exactly one weakening W in point 4
of the construction for which W (x) = 1 (namely, the weakening of the axiom
xn+1,ixi,1x1,n+1).

The case xn+1,1 = 1 is handled similarly by considering whether there is a minimum
element among elements {2, . . . , n + 1}. Assignments that do have a minimum ele-
ment among elements {2, . . . , n + 1} are handled by point 3 of the construction, and
assignments that do not are handled by point 4 of the construction.

4.1 Experimental results

For small values of n, we computed the minimum total coefficient size for the ordering
principle. For n = 3, 4, 5, the minimum total coefficient size is 2n − n, so the primal
solution given by Theorem 3 is optimal. However, for n = 6 this solution is not optimal
as the minimum total coefficient size is 52 rather than 26 − 6 = 58.

5 Open problems

In this paper, we proved an exponential lower bound on total coefficient size for the
pigeonhole principle and an exponential upper bound on total coefficient size for the
ordering principle. The total coefficient size of Nullstellensatz proofs is still relatively
unexplored, and our work leaves many open questions including the following.

1. For the pigeonhole principle, can we improve our lower bound (Theorem 1) or
prove any nontrivial upper bound?
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2. What is the minimum total coefficient size for the pigeonhole principle on n
pigeons when the number of holes is less than n− 1?

3. For the ordering principle, can we improve our upper bound (Theorem 2) or prove
any nontrivial lower bound?

4. Are there tradeoffs between Nullstellensatz total coefficient size and other com-
plexity measures for Nullstellensatz or other proof systems?
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