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ABSTRACT
Today’s video analytics systems can parse scenes and human ac-
tivity from videos collected by IoT cameras and are increasingly
being deployed for critical tasks such as security and traffic man-
agement. Yet their ability to continuously monitor and identify
individuals also raises significant privacy concerns. In this work,
we propose a method for systematically evaluating the privacy
risks of video analytics using real world IoT surveillance video. Our
method takes into account policy, edge computation, and camera
placement constraints to explore possible configurations and risks.
Our evaluation shows that gait recognition is a significant privacy
threat that should be considered alongside facial recognition and
accounted for in modern privacy policies. Furthermore, we find
edge-based verification methods still perform significantly worse
than those methods requiring cloud computing. Lastly, we find evi-
dence that color recognition, which we use to identify individuals’
shirt colors, can be a helpful modality for increasing identification
confidence and efficiency. We believe that the approach we present
provides a starting point for reasoning about privacy risks of IoT
video analytics under various policy and computation constraints,
in both the present and future.

1 INTRODUCTION
In the last two decades, IoT cameras have become ubiquitous. These
cameras are part of a growing class of everyday objects that are
embedded with sensors and processing and communication abil-
ities, forming an “internet of things” around us. In recent years,
IoT cameras have become not only widespread but also more com-
putationally powerful. Fueled by innovations in edge computing
hardware, IoT cameras can process much of the video they collect
locally (even running machine learning models) rather than having
to stream video to servers in the cloud for processing. This prolifer-
ation of powerful IoT cameras has coincided with the development
of computer vision models for video analytics. Each year, these
models - for tasks including object detection, segmentation, face
recognition, pose estimation, gait analysis, scene recognition, and
social interaction recognition - become faster, more accurate, and
smaller in storage size.

The immense data collection power of IoT cameras, coupled with
the data analysis power of modern machine learning, has enabled
IoT camera deployments to produce previously unseen quantities
and types of information. A growing class of applications leverages
machine learning models to extract information from video cap-
tured by IoT camera endpoints. These IoT video analytics systems
are increasingly being deployed by governments and businesses
to improve interactions with city spaces and enhance safety and
security. However, the potential for these systems to do good is in
tension with concerning privacy risks.

In the absence of explicit protection measures or regulations,
the entities who deploy IoT video analytics systems can continu-
ously and passively monitor all individuals who pass through their
cameras’ fields of view. They may collect and retain information
on people’s behaviors, relationships, locations, and identities. As
IoT video analytics systems spread, understanding the extent of the
privacy risk they pose becomes critical.

In this work, we propose a blackbox evaluation of risk. The goal
of a blackbox evaluation is to explore the space of possible IoT
video analytics system configurations and understand privacy risk
under each. We present a method for systematically exploring this
space using three practical deployment constraints - policy con-
straints, edge computation constraints, and camera deployment
constraints - to narrow down practical configuration candidates.
For each configuration, we evaluate privacy risk using real-world
IoT surveillance video. This method provides a starting point for
reasoning about privacy risks of IoT video analytics under various
policy and computation constraints, in both the present and future.

In our evaluation, we consider face, gait, and shirt color as "iden-
tification modalities." We implement face recognition, gait recogni-
tion, and color recognition pipelines on state-of-the-art edge and
cloud hardware. This forms a re-configurable IoT video analytics
testbed in which we validate our proposed evaluation method.

We find that while policies and camera constraints can prevent
the use of face recognition, this does not significantly reduce privacy
risk due to the flexibility and power of gait recognition. In our
experiments, gait recognition using cloud computing outperforms
all other identification methods. Furthermore, it is amenable to
modern-day surveillance scenarios because it is less sensitive to
camera position than face recognition. We also find that, while
the color of a person’s shirt cannot alone identify him or her, it
can be used as a "secondary modality" in conjunction with gait
or face recognition to reduce processing in the cloud and increase
identification confidence.

2 BACKGROUND AND RELATEDWORK

The Rise of IoT Video Analytics Systems The global video an-
alytics market is projected to grow from $6.35 billion to $28.37
billion in value in the next seven years alone [35], as public and
private entitites deploy video analytics systems for critical tasks.
Researchers in industry and academia have developed IoT video
analytics systems for enhancing safety and security. Such applica-
tions include traffic accident detection [1], fall detection in nursing
homes [6], COVID-19 social distance monitoring [57], and crime
and abnormal activity detection [30, 33, 59]. Many governments
are deploying IoT video analytics systems as part of smart city



Figure 1: IoT video analytics can continuously and passively monitor
human activity, posing privacy risks. Consider how different identification
modalities can be leveraged to identify individuals, like in the two scenarios
above.

programs, with the goal of improving interactions with city spaces
and promoting sustainable urban development [11, 38] .

Video Analytics and Invasions of Visual Privacy Privacy in
computer science most often refers to data privacy - a person’s
ability to choose when, how, and to what extent her personal in-
formation is shared with others. This information can range from
her name and location to her online or real-life behaviors [20]. Vi-
sual privacy [47, 51] is a form of data privacy that encompasses
a person’s right to control how his or her visual information (i.e,
information in the form of videos and images) is collected and used.
Recent events, like Clearview AI’s collection of over 20 billion face
images for facial recognition [5, 32] and the New York City Police
Department’s use of 15,280 cameras for ML-aided surveillance [36],
have drawn attention to the large-scale tracking and recognition
capabilities of IoT video analytics systems.

Even systems that explicitly avoid usage of biometric identifiers,
like some behavior and anomaly detection systems [59], may make
individuals uncomfortable. Surveys have found that even when
people favor the use of IoT video analytics for perceived benefits

such as enhanced security, they are concerned about lack of notifi-
cation and consent, potential unauthorized secondary use of visual
data for purposes such as tracking and verification, and generally,
how their visual data is treated, accessed, and stored [25, 44, 64].

Privacy Policies Visual privacy invasions are just one aspect of
growing misuse of personal data. In light of this trend, govern-
ments and institutions are increasingly implementing policies to
regulate the types of personal information that entities can analyze,
transmit, and store. Many of these regulations directly apply to
IoT video analytics systems. The European Union’s General Data
Protection Regulation (GDPR) is possibly the most sweeping data
privacy policy to date. The GDPR prohibits the processing of any
information “relating to an identified or identifiable natural person,”
except under special cases in which consent has been obtained
or a rigorous assessment that weighs privacy-security tradeoffs
has been carried out. GDPR’s definition of biometric identifiers as
“personal data resulting from specific technical processing relating
to the physical, physiological or behavioural characteristics of a
natural person,” [37] is arguably broad enough to encompass any
form of data collected or generated through IoT video analytics,
from images of faces to gait embeddings.

There is no federal law comparable to the GDPR in the United
States, though individual states such as Illinois, Washington, Texas,
Virginia, and New York have passed their own legislation on bio-
metric data usage [31]. The Illinois Biometric Information Privacy
Act, for instance, defines a biometric identifier as “a retina or iris
scan, fingerprint, voiceprint, or scan of hand or face geometry” and
prohibits the collection of biometric identifiers without explicit,
informed consent of the identifier’s owner [4]. Notably, this defi-
nition of biometric identifiers does not include gait. Despite these
policy examples, many IoT video analytics systems in the United
States remain unregulated, especially those operated by govern-
ments. NYPD’s Domain Awareness System, for example, legally
streams and stores video collected by networked CCTV cameras
for ML analysis in the cloud.

Some non-government institutions have developed privacy poli-
cies for their deployments. For instance, the SAGE (Software-Defined
Sensor Network) project, established by Northwestern University
in 2019, convened community stakeholders to develop a privacy
policy for their network of urban sensor nodes located in the city
of Chicago. They found that citizens were weary of video being
stored in the cloud. Thus their policy allows only one raw image
per 15 minutes to be sent off the edge. All other video is processed
on the node itself and deleted immediately after processing [3].

ExistingWork on Privacy Risks in IoT Video Analytics Most
work relating to privacy risk in IoT video analytics falls into one of
two categories: (1) detailing new forms of visual privacy invasion
or (2) proposing specific privacy safeguards for IoT video analytics
systems.

In the first category, computer vision methods for analyzing
individuals are constantly being developed and improved. These
methods are often discussed in contexts outside of privacy despite
having clear visual privacy ramifications. Facial recognition is per-
haps the most well-known and widespread of these technologies.



Other techniques use soft biometrics - personal attributes like gen-
der, age, ethnicity, hair color, height, weight, and clothing - to
recognize or re-identify individuals [22, 24, 27, 28, 39, 41, 55, 66]. A
recent paper [16] has even claimed that it has achieved a computer
vision system for personality identification.

Perhaps the most alarming new mode of visual privacy invasion
is gait recognition. Gait, or the way an individual walks, has been
shown to be a highly distinctive feature and is the subject of much
computer vision ML research [10, 13, 26, 34, 42, 43, 50, 53, 58, 61].
Gait recognition provides a robust alternative to facial recognition,
which may not always be possible. Consider the difficulties the
COVID-19 pandemic, which necessitates widespreadmask-wearing,
has posed for facial recognition. Furthermore, while someone may
obscure their face, consistently changing the shape of their body
and that they walk is not as straightforward. Gait recognition tech-
nology is already being deployed at large scales in Beijing and
Shanghai [48]. Given that gait recognition will likely gain traction
in the coming years, we consider it as a key recognition modality
in our evaluation.

Significant work has been done to mitigate invasions of visual
privacy through computer vision-based mechanisms. [9, 12, 14, 17,
19, 40, 56, 60, 62, 63, 65], propose to detect privacy-sensitive re-
gions of images and videos using existing person and face detection
methods, and then encode these regions in a manner that reduces
their sensitivity (e.g., through masking, blurring, encryption, dena-
turing). [46] obscures people in scenes to varying degrees based
on the context. In a similar vein, [52] obscures people to varying
degrees based on their expressed privacy preferences. The goal of
these techniques is to protect individual privacy while preserving
the overall utility of the video. In contrast, [67] prevents a scene
from being photographed all together using smart LEDs.

Other solutions focus on data management and storage in IoT
video analytics systems. Several works propose ways of enhancing
‘digital sovereignty,’ or ensuring that a citizen has control over the
data collected on him or her. [23] discovers IoT cameras and notifies
individuals of their presence. [18] obfuscates individuals in video
streams and allows users to determine who may de-obfuscate them.

While these "attack" and "defense" papers are critical to under-
standing the privacy risk posed by IoT video analytics, they differ
from our work along two main axes. Firstly, they often involve
arbitrary attack scenarios and specific system configurations (e.g.,
malicious facial recognition using cloud processing). Our goal is to
zoom out from specific assumptions and scenarios and understand
the factors that enable and impact risk itself: machine learning mod-
els, edge and cloud computing, policies, and IoT cameras. Secondly,
the main contribution of these papers is demonstration of novel
risks. In this paper, we do not aim to uncover new risks but rather
to demystify the process of evaluating IoT video analytics privacy
risk in quickly evolving policy and computation landscapes.

3 THE NEED FOR A BLACKBOX
EVALUATION OF RISK

Whitebox and blackbox testing are two techniques for evaluating
systems. In whitebox testing, specific internal structures are tested
to ensure their functionality. In blackbox testing, the inner workings

of the system are not known. Instead, testing is conducted by ob-
serving system output in response to specific inputs and execution
conditions [45].

These terms accurately describe what we see as two approaches
for evaluating the privacy risks posed by IoT video analytics sys-
tems. Most existing works on video analytics privacy risk take
what we deem a whitebox approach. These works assume a specific
configuration and then evaluate the risk this configuration poses
using test data. A configuration refers to an end-to-end pipeline
consisting of IoT cameras, machine learning models, and edge and
cloud computing hardware that is used to analyze video. For ex-
ample, many papers assume a configuration in which cameras are
positioned so that faces are visible, allowing cloud-based facial
recognition models to be used.

We believe that these whitebox approaches alone are inadequate
because they address just a subset of the space of possible config-
urations and privacy risks. In reality, there are countless possible
configurations, each entailing specific types of degrees of privacy
risk. IoT cameras themselves can be positioned in various scenes, at
varying heights, angles, etc. Humans have various modes of iden-
tifiable information embedded in their appearance and behavior,
from their gait and facial features to the color of their clothing. An
IoT video analytics deployment can consist of various computer
vision models distributed across various computers, at the edge and
in the cloud. How these models are distributed and deployed will
depend on a combination of policy and computation constraints
(i.e., where models are allowed to be placed, if at all, and where
models can be placed), both of which vary and will likely evolve in
the coming years.

Those who have stake in evaluating the privacy risks posed by
IoT video analytics systems, such as privacy policy-makers, are not
always given specific pipelines to analyze and cannot necessarily
base their decisions on individual deployments. Instead, they need a
high-level understanding of privacy risk that takes into account the
diversity and flexibility of modern day IoT video analytics systems.

This type of understanding can be achieved through a blackbox
evaluation of risk. In a blackbox evaluation, we have no knowledge
of the video analytics system’s configuration. To examine privacy
risk, we must vary our input and conditions to explore a range of
practical configurations. In this paper, we establish a method for
identiying these configurations to conduct a blackbox evaluation
of risk.

3.1 Navigating the Blackbox Evaluation Using
Policy, Computation, and Camera
Constraints

We propose that three types of constraints- policy, edge computing,
and camera constraints - can be used to systematically enumer-
ate configurations. We believe these categories reflect the many
practical considerations required to operationalize a deployment
and that they also provide a logic for evaluating risk. To see how
this is the case, suppose a system designer seeks to deploy an IoT



Figure 2: We consider three identification modalities: face, gait, and clothing color. This dependency graph illustrates the flow of computer vision models
needed to identify an individual based on each modality.

video analytics application for verifying the presence of specific
individuals on the street.

Camera constraints Firstly, the system designer is limited by
camera parameters that influence what information can even be
observed in individuals. Are faces visible, enabling facial analysis?
Is the resolution of the portion of the image containing the face
high enough for facial feature extraction to succeed? Are people
walking throughout the scene, enabling gait analysis? If people
are walking throughout the scene, are they walking parallel to the
camera or at unconstrained angles? These questions are determined
by camera parameters, like the distance of the camera from subjects,
the camera’s location (e.g., overlooking a sidewalk or courtyard),
or its resolution. They determine the identification modalities (e.g.,
face, gait, color) that can be used, which influences the types of
models that need to or can be deployed (e.g.,object detection, face
detection). This constraint is the most specific to an individual
deployment, and one system may even consist of many cameras
with many different parameters.

Edge computing constraints Secondly, the system designer faces
computation constraints that limit which implementations of model
types she may deploy and where those models can be run - the
edge or the cloud. A typical machine learning video analytics ap-
plication involves IoT cameras streaming video to the cloud, where
powerful GPUs can run machine learning models and aggregate
insights. However, to reduce network strain and scale their deploy-
ments, many system designers are shifting processing to the edge,
or the IoT camera themselves. Under this paradigm, IoT cameras
- equipped with compact GPU modules - can run video analysis
locally, meaning only extracted information must be sent off the
device. Like its cloud counterpart, edge video analytics must be
done in near real-time, invoking the classic ML accuracy-inference
speed tradeoff.

Furthermore, hardware at the edge is typically significantly less
powerful than that at the cloud. Though models specialized for

mobile computing environments exist, they are usually less accu-
rate than the models intended for larger GPU’s. Some particularly
complex models have yet to be adapted for mobile contexts. During
our experiments, for instance, the edge GPU ran out of memory
when attempting to run an existing gender, color, and height iden-
tification model [29]. Thus, even if the system designer chooses the
fastest, smallest models for the edge, she may often still need to
leverage cloud computing for parts of the processing.

Policy constraints Thirdly, the system designer may need to take
into account the policies restricting her deployment possibilities.
Given local or institutional regulations, what types of information
are allowed to be transmitted and stored, and what processing is
allowed to be run where? This constraint is the broadest in that it
will apply to many different deployments depending on high-level
factors like entity type (e.g., government or private institution) or
geographic location.

Policy, edge computing, and camera constraints each narrow
down the space of possible deployment configurations. Each also
affects the quantity and type of identity factors embedded in hu-
man subjects that can be extracted, which in turn impacts the
deployment’s ability to successfully verify individuals. Thus, each
combination of camera, policy, and computational constraint, and
each configuration it permits, can be associated with different forms
and degrees of privacy risk. If we can enumerate a range of configu-
rations and establish a measure of privacy invasion under each, we
can understand privacy risks broadly posed by IoT video analytics.
In a sense, we use the very diversity of policy and system consider-
ations that makes understanding the privacy risk of IoT analytics
systems difficult, as a roadmap for our blackbox evaluation.

4 OUR BLACKBOX EVALUATION
We have established that policy, edge computing, and camera con-
straints constitute a method for enumerating configurations. In this



section we detail how we practically apply our method to conduct a
blackbox evaluation of privacy risk in IoT video analytics systems.

IdentificationModalities andModels Considered In our eval-
uation, we consider three modalities: face, color, and gait. Face and
gait are biometric identifiers explored in many computer vision
papers. The color of a person’s clothing can also be used to dis-
tinguish a person. For instance, if the goal of a deployment is to
track an individual across multiple checkpoints along a walking
commute, the color of the person’s shirt can be paired with face or
gait information to boost tracking confidence.

Face, gait, and color recognition all require preliminary analysis
by other models. For instance, identifying someone’s gait requires
detecting and tracking them throughout the video in the first place.
To capture these relationships, we present a dependency graph
of computer vision model types and inputs and output (Figure 2).
This dependency graph formalizes the flow of models needed to
analyze a person with a specific modality. Each node represents
either a model or a form of extracted information. In total, we
consider seven types of machine learning models: object detection,
motion tracking, face detection, face recognition, pose estimation,
gait recognition, and color detection.

Impact of Camera Constraints Camera constraints inherently
determine which modalities (color, face, or gait) can be applied
in a configuration. We organize camera constraints along three
axes: quality of the extracted image of the face, walking manner,
and whether samples were collected on the same day. The latter
consideration is relevant because, if samples were collected on the
same day, we might assume that people are wearing the same shirt
(a necessary assumption for color recognition).

Edge Computing Constraints in our Testbed We deploy pub-
licly available models for the seven computer vision tasks discussed
above on two different GPU’s: one comparable to those that are
available at the edge, and one comparable to those that are used for
cloud computing. For our edge hardware, we use a NVIDIA Jetson
AGX Xavier Developer Kit, a state-of-the-art GPU module intended
for edge computing use cases. To simulate cloud hardware, we use
a NVIDIA Titan RTX GPU. When possible, we test multiple models
for each task to explore accuracy-speed tradeoffs. These models
and their inference speeds on both edge and cloud hardware are
listed in Table 1.

In our experiments, we set 5 FPS as the threshold for what is
considered real-time. While this is a low framerate, it is sufficient
to capture motion and activity. Furthermore, we found that gait
recognition performed well at framerates at or above 5 FPS, but be-
gan to suffer at lower framerates. Note that we assume that GaitNet
can only be run in the cloud, since a gait recognition runtime of
over 21 seconds on the edge would significantly interfere with local
real-time processing of video. However, all processing leading up to
gait recognition with GaitNet (i.e., person detection and tracking),
can be run on the edge.

Policies Considered We consider three policies:

• Policy 1: None
• Policy 2: No facial recognition
• Policy 3: No streaming of raw images or video to the cloud

Policy 1 is relevant for adversarial cases or cases in which there
are genuinely no policies pertaining to video surveillance. Policy 2
is one of the most common policies today (e.g., Illinois Biometric
Information Privacy Act). Policy 3 may be motivated by concerns
over storing sensitive video in bulk in the cloud or even network
bandwidth usage considerations. For instance, the Chicago Array of
Things, whose developers consulted with many community stake-
holders to establish privacy policies, only sends one image off the
edge every fifteen minutes and deletes all video immediately after
processing it on the edge [3]. This also makes the deployment much
more scalable, as individual nodes no longer need to consume large
amounts of network resources to stream video to the cloud.

4.1 Applying Our Method to Enumerate
Configurations

Camera, policy, and edge computing constraints culminate in a set
of feasible deployment configurations. A configuration entails a
set of of model type nodes in the graph (Figure 2) associated with
a set of specific models and model deployment locations. Figure
3 illustrates the process of enumerating configurations using our
method. The example in Figure 3 assumes that the camera is posi-
tioned so that individuals are always walking parallel to it (this is
realistic if the camera is positioned facing a sidewalk, for example)
and faces are not visible. Since faces are not visible, the modality of
gait is used. Since people are always walking parallel to the camera,
either GaitGraph or GaitNet can be used (recall that GaitGraph is
angle-variant, meaning it can only function if people walk at the
same angle relative to the camera each time).

Without taking into account edge computing or policy con-
straints, there are at least six possible configurations for gait recog-
nition. (There are more, equally valid hypothetical configurations
that could result from using alternative models for object detection
and pose estimation; for the sake of brevity, these are not shown).
Taking into account the computation constraints captured in Table
1, in which some models run too slowly on the edge for real-time
analysis, only some of the configurations in Figure 3 are feasible.
Specifically, Configuration 4 is not feasible (GaitNet would take
too long on the edge). Now, if we assume that raw video and im-
ages are not permitted to be sent off the camera, Configurations
3, 5, and 6 are also not feasible. Thus, if we assume that the edge
is constrained and raw video cannot be sent off the camera, only
Configurations 1 and 2 are valid. Note that all configurations are
feasible under the “no facial recognition” policy, since the camera
constraints themselves prevents face recognition from being of use.

The example in Figure 3 demonstrates that, combinatorially,
the number of possible configurations is large. Luckily, policy and
computing constraints provide a way to narrow down the space of
possibilities. With this framework for enumerating configurations,
we can explore privacy risk.

4.2 Methodology and Datasets
We enumerate feasible configurations under various combinations
of the camera, policy, and edge computing constraints we consider.

Measuring Privacy Risk For each configuration, we examine
the privacy risk it poses by asking, “how well can verification be



Model Task Input
Compute
Cost in
Cloud

Compute
Cost on Edge Test Flow

Capable
of
Run-
ning
on
Edge?

YOLOX [15] Object Detec-
tion Raw video 42 FPS 8 FPS Video->YOLOX Yes

Faster RCNN
[15]

Object Detec-
tion Raw video 8 FPS 0.5 FPS Video->Faster RCNN No

Centroid
Tracking (not
deep) [2]

Motion track-
ing

Bounding box coordi-
nates Negligible Negligible Video->YOLOX->Centroid

Tracking Yes

BlazeFace [8] Face detection Image of person 23 FPS 5 FPS Video->YOLOX->Centroid
Tracking->BlazeFace Yes

Topdown
heatmapwith
Resnet50
Backbone [21]

Pose estima-
tion Image of person 30 FPS 5 FPS

Video->YOLOX->Ccentroid
Tracking->Topdown Heatmap
with Resnet50

Yes

Topdown
heatmap
with Alexnet
backbone [21]

Pose esti-
mataion Image of person 33 FPS 6.5 FPS

Video->YOLOX->Centroid
tracking->Topdown Heatmap
with Alexnet

Yes

Color recogni-
tion with Top-
down heatmap
Resnet50 back-
bone input

Color recogni-
tion

Coordinate of shoulder
keypoint 30 FPS 5 FPS

Video->YOLOX->Centroid
Tracking->Topddown Heatmap
Resnet50 Backbone->Color
recognition

Yes

Color recogni-
tion with Top-
down heatmap
Alexnet back-
boneinput

Color recognti-
ion

Coordinate of shoulder
keypoint 33 FPS 6.5 FPS

Video->YOLOX->Centroid
Tracking->Topdown Heatmap
Alexnet Backbone->Color
recognition

Yes

GaitGraph
[58]

Angle-variant
gait recogni-
tion

Aggregated joint key-
points of person walking
at same angle each time

Not tested =* .20 seconds per
subjectv

Aggregated joint keypoints-
>GaitGraph Yes

GaitNet [53]

Angle-
invariant
gait recogni-
tion

Aggregated frames of
person walking; may be
walking at different an-
gles each time

21 seconds per
subject (CPU
Only)

NOt tested* Aggregated frames of person
walking -> GaitNet No

FaceNet [49] Face recogni-
tion Image of face Not tested* .015 seconds

per face Image of face->FaceNet Yes

Table 1: Model Zoo. Note that Facenet and GaitGraph were not tested in the cloud since it is assumed their runtimes would be negligible there given their
fast run times on the edge. Due to hardware compatibility issues, GaitNet was only able to be run in the cloud and only the CPU-only version was able to
be tested. We can safely assume the GaitNet runtime on the edge would be significantly higher than that of the cloud. Also note the distinction between
angle-variant and angle-invariant gait recognition. In angle-variant gait recognition, the individual must be walking at the same angle relative to the camera
each time. In angle-invariant gait recognition, individuals can walk at any angle.

achieved?” We focus on verification because it provides a con-
crete and relevant point of departure for understanding the privacy
risks of IoT video analytics. Specifically, verification is commonly
achieved through visual means (i.e., video or photo). Verification
can serve as the basis for tracking. It can also be viewed as a weaker
formulation of recognition. That is, verification can become recog-
nition if the biometric being used to verify is added to a recognition

gallery (e.g., verifying that two pictures are both of John Smith is
equivalent to facial recognition if the first picture is John Smith’s
passport picture and is present in a face recognition gallery).

Datasets To evaluate verification accuracy, we use real-life surveil-
lance video as input to a configuration in our testbed. Using the



Figure 3: Configuration possibilities (before considering policy and computation constraints) for a scene in which faces are not visible and people are
walking parallel to the camera. The graph at the top represents the flow of models that any configuration will have. All rows in the table are based off of this
flow and represent (theoretically) possible placements of models (edge or cloud). Red cells correspond to models being run on the camera (edge), and blue cells
correspond to models being run in the cloud.

dataset’s ground truth identities, we can quantify howwell that con-
figuration achieves the verification task. Our videos were sourced
from five datasets: OutdoorGait [53], 3DPeS [7], MARS [54], Choke-
point [? ], and Sarasota. Samples frames are shown in Figure 4.
Video from each dataset is subject to different camera constraints,
which impacts face visibility, walkingmanner, and color recognition
feasibility. We briefly detail each below.

• OutdoorGait - We use the test set of the OutdoorGait dataset.
This dataset was designed to test and train gait recognition
models with video from realistic surveillance settings. Sub-
jects were filmed walking parallel to the camera from a closer
distance than MARS or 3DPeS but a higher distance than
Sarasota. The comparatively low distance of the camera from
subjcts is offset by low resolution.

• 3DPeS - 3DPeS was designed for pedestrian re-identification
in multi-camera systems. We use a sample of 3DPeS in which
the same individuals are seen from one camera overlooking
a courtyard multiple times within one day.

• MARS - MARS was designed for motion analysis and pedes-
trian re-identification. Video was captured from five cam-
eras positioned in a busy courtyard. We manually inspected
MARS video and selected video clips where participants were
walking (as opposed to sitting or standing in place). This is by
far the most difficult dataset to identify subjects in, as there

are many occlusions, walking is completely unconstrained
and faces are rarely visible.

• Sarasota - We created this dataset for our initial gait recog-
nition experiments. People walk parallel to the camera in
a controlled setting. We blurred subject faces for privacy
requirements.

• Chokepoint - Chokepoint consists of four sequences of peo-
ple walking through a door, captured from 4 cameras. Black
and white images of cropped faces are provided. Gait and
shirt color are thus not observable. We sample five images
from each sequence-camera pair, leading to over 30 test im-
ages per camera.

The characteristics of each dataset are summarized in Table 2.

4.3 Results
We analyze feasible configurations under the edge computing con-
straints established above and our three considered policies: none,
no face recognition , no raw video to cloud. Note that camera con-
straints are implicitly encoded in the input videos, as discussed
above.

For each configuration, embeddings of each subject’s gait and/or
face are generated using the appropriate model(s) (i.e., GaitNet,
GaitGraph, or FaceNet). Optionally, the color of the person’s shirt
is predicted using color recognition. Color cannot be used alone



Figure 4: From left to right, sample frames from the MARS, OutdoorGait,3DPeS,Sarasota, and Chokepoint datasets.

Dataset Number of subjects
and videos/images

Face image
quality

Gait Observ-
able?

Walking
Manner

Shirt color
observable?

Samples
collected on
same day?
(i.e., same
shirt color?)

OutdoorGait
Test

68 identities, across 223
videos Medium Yes Parallel to cam-

era Yes Yes

3DPeS 6 identities, across 13
videos Low Yes Unconstrained Yes Yes

MARS 247 identities, across 736
videos Low Yes Unconstrained Yes Yes

Sarasota 8 identities, across 24
videos N/A (Blurred) Yes Parallel to cam-

era Yes Yes

Chokepoint 25 identities, across 825
images High No N/A No N/A

Table 2: Dataset Summary

to verify an individual, because the color of a person’s clothes is
not necessarily unique. However, it can be used in conjunction
with other modalities to increase accuracy (e.g., by eliminating
false positives). When combined, all modes of information form a
“profile” of a subject that can be used to verify them across multiple
sightings.

During our experiments, we generate a profile for each subject,
and all possible pairs of profiles are compared to each other. If the
distances of all modes of information in the two compared profiles
are below their respective thresholds, we conclude that the profiles
are of the same individual. For instance, if we wish to verify that
two video samples collected within a short span of time (i.e., an
hour) feature the same person, we might do so by verifying that
the gait embeddings and colors of the shirts of the individuals in
each video are sufficiently similar.

We analyze verification accuracy using two standard metrics:
(1) False rejection rate (FRR), which measures how often two
sets of embeddings from the same individual are determined to
be from different individuals, at a specific threshold; and (2) False
acceptance rate (FAR), which measures how often two sets of
embeddings from different individuals are determined to be from
the same individual, at a specific threshold.

Table 3 summarizes our results per dataset and combination of
policy and edge computing constraint being considered. Camera
constraints are implicitly encoded in the input videos, as discussed
above. Note that, when listing configurations in Table 3, we only

report the modality used (i.e., color, face, or gait) and the location
that modality’s recognition model was run at (edge or cloud). All
models in the configurations except GaitNet were able to run on
the edge.

4.4 Key Findings

Finding 1 Edge-based verification methods (i.e., verification with
GaitGraph or FaceNet) perform significantly worse than cloud-based
methods (i.e., verification involving GaitNet). The inability of edge-
based verification methods to perform as well as cloud-based meth-
ods is best summarized by the large increases in FAR under Policy
3 (no video or raw image to the cloud), as shown in Table 3. In
particular, GaitGraph and FaceNet perform poorly.

GaitGraph is an angle-variant gait recognition model capable of
running on edge devices. Since it is angle-variant, we only test it on
datasets in which people were walking at the same angle relative
to the camera in every video. Only Sarasota and OutdoorGait meet
this criteria. Figures 5 and 6 show that GaitGraph-based verification
performs significantly worse than all other forms of verification on
the Sarasota and OutdoorGait datasets.

Face recognition was tested with the ChokePoint and Outdoor-
Gait datasets. Since the Chokepoint dataset consists of black-and-
white images of faces captured from a surveillance camera, facial
recognition is its only viable modality. Table 3 shows that, even on
the relatively high quality face image in Chokepoint, FaceNet has



Dataset Policy 1 Policy 2 Policy 3
FAR Configuration FAR Configuration FAR Configuration

OutdoorGait Test 1.17 %
GaitNet (cloud)
or Color (edge) +
GaitNet (cloud)

1.17%
GaitNet (cloud)
or Color (edge) +
GaitNet (cloud)

75% Color (edge) +
FaceNet (edge))

3DPeS 23.3%
GaitNet (cloud)
or Color (Edge) +
GaitNet (Cloud)

23.3%
GaitNet (cloud)
or Color (Edge) +
GaitNet (Cloud)

N/A N/A

MARS 54.4% GaitNet (cloud) 54.4% GaitNet (cloud) N/A N/A

Sarasota 0% Color (edge) +
GaitNet (cloud) 0% Color (edge) +

GaitNet (cloud) 47.3% Color (edge) +
GaitGraph (edge)

Chokepoint 49% FaceNet (edge) N/A N/A 49% FaceNet (edge)

Table 3: For each dataset, we report the configuration giving the lowest false accept rate (FAR) at false negative rate (FNR) = 5% under the given policy,
assuming the edge is constrained. Note that Policy 3 prevents any configurations for the 3DPeS and MARS datasets from being possible.

Figure 5: False accept rates (FARs) at false negative rate (FNR) = 5% with
all computationally feasible possible configurations on the OutdoorGait Test
dataset. Note that facial feature extraction succeeded on only 68 of the 223
videos in this dataset. We report the performance of FaceNet for just these
68 samples. Also note that policies may make some of these configurations
infeasible. Edge-capable configurations have FARs close to 1, performing
significantly worse than those requiring cloud computing. FaceNet, which
performs poorly on this dataset as discussed in Finding 3, corrupts the
performance of verification using Color, Gait, and Face.

Figure 6: False accept rates (FARs) at false negative rate (FNR) = 5% with
all computationally feasible possible configurations on the Sarasota dataset.
Note that policies may make some of these configurations infeasible.
one of the highest FAR’s at FRR = 5%. Furthermore, Figure 5 shows
that FaceNet has almost zero precision on the OutdoorGait dataset.

Finding 2 Gait recognition in the cloud (i.e., with GaitNet) is a sig-
nificant privacy threat, potentially on par with facial recognition.

GaitNet is an angle-invariant gait recognition model that requires
cloud computing in our testbed. We find that, across datasets, Gait-
Net has the highest verification accuracies.

GaitNet’s accuracies were always comparable to (if not better
than) the accuracy achieved by FaceNet on the Chokepoint dataset,
in which high quality faces are visible. This indicates that gait
recognition - not facial recognition - posed the largest privacy risk
in our evaluation. Facial recognition makes up a large part of the
public discourse on privacy risk, but our results show that gait
recognition can be just as powerful. Perhaps we should elevate our
concerns over gait recognition, developing policies that explicitly
consider gait a sensitive biometric identifier.

Finding 3 GaitNet performs significantly better in controlled settings
and instances in which people are walking parallel to the camera. In
the OutdoorGait and Sarasota datasets, subjects walk parallel to the
camera and the settings are controlled to prevent occlusions and
irregular walking behaviors (e.g., holding bags or wearing baggy
coats). On these datasets, GaitNet has almost perfect accuracy. How-
ever, in the MARS and 3DPeS datasets, in which individuals walk at
any angle and often have coats or bags, performance significantly
dropped (See Table 3).

Finding 4 Video well-suited for gait recognition is often ill-suited for
facial recognition. OutdoorGait Test was the only dataset in which
both gait and sufficiently high quality faces were observable. Yet
face alignment and facial feature extraction only worked on 68 out
of the 223 videos of OutdoorGait Test. This is in stark contrast with
the almost perfect precision and recall achieved by GaitNet on this
data. The disparity between gait recognition and facial recognition
performances is because most gait recognition models achieve peak
performance when subjects are walking parallel to the camera,
which is the worst angle for facial recognition. Walking parallel
to the camera allows walking manner to be observed most easily.
However, this means that only the profile of a person’s face is
visible. Most facial recognition models are intended to take frontal
images of a person’s face as input. While we find that FaceNet
can technically function on face profiles by applying an alignment
step, this is not ideal. Figure 5 demonstrates that, on OutdoorGait
Test data, FaceNet performs almost as poorly as a random guess



when used for verification, while GaitNet achieves almost perfect
verification.

Finding 5 In our evaluation, prohibiting video/raw image from
being streamed to the cloud is more effective than prohibiting facial
recognition. In Findings 1, 2, and 4 we establish that GaitNet, which
requires the cloud, is extremely powerful. However, GaitGraph
and FaceNet, which are capable of running on the edge, perform
significantly worse. Thus, in our evaluation, the largest threat is
a cloud-based model. Furthermore, we see that gait recognition
may be more well-suited to modern surveillance video than face
recognition since it does not require that cameras be positioned
close to individuals’ faces, whichmay not always be possible. This is
supported by the fact that only one of our datasets had high quality
faces present. Policy 3, which prevents GaitNet from being used,
is thus the most effective. Table 3 shows that Policy 3 significantly
reduces the verification accuracies of permitted configurations.

As an aside, we note that GaitNet requires raw images as input.
Contrastingly, GaitGraph and some other gait recognition models
take as input joint keypoints aggregated across frames, which are
generated through pose estimation. We show that pose estimation
can be run on the edge. If GaitNet instead took as input joint key-
points, we would only have to send joint keypoints off the edge and
GaitNet would be unaffected by Policy 3. This raises the question
of whether aggregated joint keypoints should also be considered
biometric identifiers.

Finding 6 Color recognition can sometimes be used for preliminary
processing on the edge to reduce cloud processing workload and in-
crease verification accuracy. Color recognition, which is capable of
running on the edge, strengthened verification in the case of the
Sarasota dataset, but contributed no improvement and even small
reductions in accuracy in the cases of the other tested datasets.

These reductions were due to the inability of the color recogni-
tion model to accurately predict color under some lighting condi-
tions. The color recognition model uses heuristics to predict the
color of the person’s shirt, and in caseswhen lighting in two samples
were significantly different, it predicted that the color of the same
shirt in the two pictures were quite different.However, reductions
in accuracy due to this were minimal when they occurred.

Color recognition thus potentially provides a way for the IoT
video analytics system to use edge processing to reduce workload
on the cloud and in the network. Color recognition can be used to
perform an initial verification step when lighting conditions are
similar. Specifically, color recognition can be run on the edge so
that the edge only sends collected gait video to the cloud for further
processing if the predicted shirt colors are similar.

4.5 Limitations
One key limitation of our blackbox evaluation is that we only con-
sider publicly available models and datasets. Many significant pri-
vacy threats come from privately-owned models or models trained
and finetuned on privately-owned video datasets. We thus do not
claim that the results of our blackbox evaluation fully represent pri-
vacy risk today. Instead, we hope to demonstrate how our method
provides a starting point for achieving a realistic understanding of

risk. After all, models and datasets constantly evolve, necessitat-
ing new analysis. Perhaps a method for facilitating this analysis is
equally as valuable as a definite yet temporary understanding of
risk.

5 CONCLUSION
We propose and conduct a blackbox evaluation of privacy risk in
IoT video analytics systems. Guided by policy constraints, edge
computing constraints, and camera constraints, we explore con-
figurations that leverage face, gait, and shirt color recognition for
verification. Our results highlight the growing risk of cloud-based
gait recognition, which is not addressed by many existing privacy
policies. They also demonstrate that our method for conducting
a blackbox evaluation is a practical approach to understanding
privacy risks.
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