
Asymptotic notions of computability:

minimal pairs and randomness

Tiago Royer
Advisor: Denis Hirschfeldt

April 26, 2022

Abstract

The concepts of dense computability, generic computability, coarse
computability, and effective dense computability all generalize the notion
of computability by requiring the algorithm to get the right answer only
for “most of the inputs”, rather than for all inputs (in a similar way that
average-case complexity talks about expected running time, rather than
imposing an upper bound in the running time of all inputs). These asymp-
totic notions of computability give rise to a degree structure analogous to
the Turing degrees, but with different properties. In this paper we focus
on minimal pairs and the level of randomness that they demand. We
survey the main results in the area, and additionally settle the question
of the number of minimal pairs for generic reducibility in the opposite
direction that happens with the other reducibilities.

Contents

1 Introduction 2
1.1 Structure and Contributions of this paper 2
1.2 Notation . 3

2 Background 3
2.1 Tools from Measure Theory . 4
2.2 Notions of Randomness . 5
2.3 Density of Sets . 9
2.4 Asymptotic Notions of Computability 12

2.4.1 Generic Computability . 13
2.4.2 Coarse Computability . 13
2.4.3 Dense and Effectively Dense Computability 16

2.5 Enumeration Operators and Reducibilities 18
2.5.1 Dense and Generic Reducibility 20
2.5.2 Coarse and Effectively Dense Reducibilities 21

1

3 Minimal Pairs and Randomness 22
3.1 Minimal Pairs in the Turing Degrees 22
3.2 Minimal Pairs in the Coarse Degrees 24
3.3 Minimal Pairs in the Dense Degrees 26

4 Minimal Pairs for Generic Computability 30
4.1 There are no minimal pairs for relative generic computability . . 30
4.2 There are minimal pairs for generic reducibility 32

5 There are only a few minimal pairs for generic reducibility 35

6 Functions and Sets 37

7 Open Problems 39

1 Introduction

The classical setting of computability and complexity theory is of worst-case
scenarios; for example, the time complexity of an algorithm is the maximum
number of steps, among all inputs of length n, that it takes to return an answer,
and in a Turing reduction from a set A to a set B the algorithm must halt on
every single input.

There is now general awareness that the strictness of worst-case scenarios
may not capture a full picture of a problem or algorithm [11, 10]. Perhaps
the best-known example of this phenomenon is the simplex algorithm for linear
programming: there are families of instances in which the simplex algorithm
takes exponential time to halt; however, on average, the algorithm converges in
linear time.

1.1 Structure and Contributions of this paper

Section 2 recapitulates the basic definitions of set density, defines the four
asymptotic notions of computability, and defines the corresponding notions of re-
ducibility. Section 3 defines minimal pairs for Turing, coarse and dense degrees,
and argues about the level of randomness needed to construct those degrees.
Section 4 shows Igusa’s result [9] that there are no minimal pairs for relative
generic computability, and Hirschfeldt’s result [5] that there are minimal pairs
for generic reducibility.

In Section 5 we present the main result of this paper, namely, Theorem 5.4. It
states that, in contrast with Theorems 3.8 and 3.14, there are very few minimal
pairs for generic reducibility.

Additionally, in Section 6 we show Theorem 6.3, which is a small step towards
solving Open Problem 6.1.

Finally, Section 7 catalogs the relevant open problems in the area.

2

1.2 Notation

We follow the convention from Computability Theory of identifying every
natural number e ∈ N with the source code of a Turing machine, and vice-
versa; for example, we can interpret the binary representation of e + 1 (except
the leading digit 1) as a text file containing the source code of a program in
any fixed programming language. This allows us to speak of the eth Turing
machine, and gives us an ordering of all Turing machines, which is useful for
diagonalization arguments.

The function computed by the eth Turing machine is denoted by Φe : N→ N.
In the interpretation above, if the text file corresponding to e does not represent
a valid program, we simply assume that Φe is the partial function which is
nowhere defined. We assume that all machines are oracle machines, letting
Φe = Φ∅e.

Although the value of Φe(n) is not always defined, we can still run the eth
Turing machine on n for a finite number of steps, say s; we denote this by
Φe(n)[s], so that if Φe(n)↓ then there exists some k for which Φe(n)[s]↑ if s < k
and Φe(n)[s]↓ = Φe(n) for all s ≥ k.

The indicator function of a set A is denoted by 1A (so that 1A(x) = 1 if
x ∈ A and 1A(x) = 0 otherwise).

We assume that the set N of natural numbers contains the number 0. How-
ever, in a few cases (e.g. the sets Rk and Jk below), we will construct partitions
of N \ {0} instead of of N, to simplify some calculations. This means that func-
tion definitions which are based on these partitions will leave the value of f(0)
undefined. In all cases we can arbitrarily set f(0) = 0, so we omit this step of
the construction.

Given two sets A,B ∈ N, we define their join A⊕B by

A⊕B = {2n | n ∈ A} ∪ {2n+ 1 | n ∈ B}.

We identify a subset A of N with an infinite string in 2ω. Therefore, we say
that a finite string σ is a prefix of A, denoted σ ≺ A, if the first |σ| bits of A,
interpreted as a string, agrees with σ. The basic open set JσK is defined by

JσK = {X ∈ 2ω | σ ≺ X}.

For a subset A ⊆ N of the natural numbers, we define A � k = {n ∈ A |
n < k}, which is the set A “truncated” to the first k natural numbers. We
can naturally identify A � k with a binary string of length k, so in many places
where A � k is used as an argument to a computable function, the argument
effectively is the corresponding string.

2 Background

This section recapitulates the basic definitions and proves some useful the-
orems.

3

2.1 Tools from Measure Theory

The following two theorems from measure theory will be used in several
places in this paper.

Theorem 2.1 (Lebesgue Density Theorem). Let A ⊆ 2ω be a measurable
class, and define D(A) by

D(A) = {X ∈ 2ω | lim
n→∞

2nµ(JX � nK ∩ A) = 1}.

Then D(A) is measurable and µ(A4D(A)) = 0.

The sets X ∈ D(A) are said to have density 1 at A.

Proof [4, Theorem 1.2.3]. Observe first that D(A) ∩D(A) = ∅, so D(A) \ A ⊆
A \D(A); therefore, it suffices showing that µ(A \D(A)) = 0.

For 0 < α < 1 define the set Bα by

Bα = {X ∈ A | lim
n→∞

2nµ(JX � nK ∩ A) < α}.

Then A \D(A) =
⋃
α Bα, where the union is over rational α < 1. Therefore, it

suffices to show that µ(Bα) = 0 for all α < 1.
Suppose by contradiction that µ(Bα) > 0. Because µ is a regular measure,

there exists an open set V ⊃ Bα such that µ(V) < µ(Bα)/α. Let U ⊆ V be the
union of all JσK for which µ(JσK∩A) < 2−|σ|α, and let σ0, σ1, . . . be a sequence
of strings where the intervals JσiK are pairwise disjoint and U =

⋃
i JσiK.

On one hand, if X ∈ Bα, then µ(JX � nK ∩ A) < α2−n for some n, so
JX � nK ⊆ U whence X ∈ U . This shows that Bα ⊆ U .

On the other hand,

µ(U ∩ Bα) =
∑
i

µ(JσiK ∩ Bα)

≤
∑
i

µ(JσiK ∩ A)

<
∑
i

2−|σi|α

= αµ(U)

≤ αµ(V) < µ(Bα).

Therefore, U cannot possibly contain Bα, a contradiction. �

A corollary of this theorem is that if µ(A) > 0, for any α < 1 there exists
some σ such that µ(A ∩ JσK) > α2−|σ|. That is, the relative density of A in
σ can be made arbitrarily close to 1. This is the core of the “majority vote”
argument, which will be used in Section 3.

A tailset is a class A ⊆ 2ω such that if σX ∈ A then τX ∈ A for all τ with
|τ | = |σ|; that is, we may flip any finite number of bits of X and still stay inside
A. We have the following theorem.

4

Theorem 2.2 (Kolmogorov’s 0-1 law). If A is a tailset, then either µ(A) =
0 or µ(A) = 1.

Proof. Suppose that µ(A) > 0, and let α < 1 be given. Then by the above
corollary to the Lebesgue Density Theorem, there exists some string σ such that
µ(A∩JσK) > α2−|σ|. But because A is a tailset, we have µ(A∩JσK) = µ(A∩JτK)
for each τ with |τ | = |σ|. This means that µ(A) > α. Since α was arbitrary,
this means µ(A) = 1. �

2.2 Notions of Randomness

In this paper we will deal with three notions of randomness. The most
prominent one is Martin-Löf randomness, which we define below.

Definition 2.3. Given a set B, a Martin-Löf test relative to B is a sequence
{Un}n∈N of B-uniformly Σ0,B

1 sets1 such that µ(Un) ≤ 2−n for all n. We say
that a set A passes a Martin-Löf test {Un}n∈N if A /∈ Un for some n, and we
say that A is 1-random relative to B if A passes every Martin-Löf tests relative
to B.

Sets which are 1-random relative to ∅ are simply called “1-random”, or
“Martin-Löf random”.

Intuitively, a Martin-Löf test {Un}n∈N corresponds to a procedure for picking
out regularities in sets. If B ∈ Un, it means that Un picked out some regularity
in a prefix of B. If B ∈

⋂
n Un, it means that the test can find regularities in

arbitrarily long prefixes of B, so B ought not to be called random.
The definition is fairly flexible. For example, we can replace Un with Vn =⋂

k≤n Uk to get another test with
⋂
n Un =

⋂
n Vn, but with the additional

hypothesis that Vn ⊇ Vn+1. We could require only that µ(Un) ≤ f(n) for
some computable function f with limn→∞ f(n) = 0; indeed, for each n, let
Vn =

⋂
k≤m Uk where m is the least integer such that f(m) ≤ 2−n. Then

{Vn}n∈N is a Martin-Löf test and
⋂
Vn =

⋂
Un.

Another possible modification is requiring the sequence {Un}n∈N to be uni-

formly Σ0,B
1 , instead of B-uniformly Σ0,B

1 . That is, the definition above requires
that there exists a B-computable sequence e1, e2, . . . of indices such that

Un = {X | ∃kΦBen(X � k) = 1}.

Because the Turing functional Φen has access to B as an oracle, we may assume
that the sequence e1, e2, . . . is computable, rather than B-computable.

One specific class of regularities corresponds to the intuition that we should
not be able to predict whether a certain bit of a sequence will be 0 or 1. We
can formalize this intuition as follows.

1That is, there is a single B-computable sequence of indices e1, e2, . . . such that Un = {X |
∃kΦB

en
(X � k) = 1}.

5

Definition 2.4. A selection function is a function F : N→ N which is strictly
increasing. A set A is Church-stochastic if, for every computable selection func-
tion f , we have

lim
n→∞

|{k < n | f(k) ∈ A}|
n

=
1

2
,

where |C| denotes the cardinality of the set C.

That is, no matter how we pick the bits f(0), f(1), . . . to be analyzed, the
probability of A(f(i)) being 1 tends to 1

2 . We have that 1-randomness is enough
to guarantee Church-stochasticity.

Proposition 2.5. Let A be 1-random. Then A is Church-stochastic.

Proof. Suppose that f is a selection function for which

lim inf
n→∞

|{k < n | f(k) ∈ A}|
n

<
1

2
− ε

for some ε > 0. (If the lim sup was larger than 1
2 + ε, then the argument would

be analogous.)
Define the set Vn by

Vn =

{
X

∣∣∣∣ |{k < n | f(k) ∈ X}|
n

<
1

2
− ε
}
.

Note that A ∈ Vn for infinitely many n.
By the Chernoff bound [1, Theorem A.1.1],

µ(Vn) ≤ e−2ε2n,

so if we set Un =
⋃
m>n Vn we have

µ(Un) ≤ e−2ε2n

1− e−2ε2
.

Since the Vn are uniformly Σ0
1 classes, so are the Un. By the above bound,

the sequence {Un}n∈N is a Martin-Löf test. By construction, we have A ∈ Vn
for infinitely many n, which means that A ∈ Un for all n. This contradicts the
hypothesis that A is 1-random. �

The converse of the above proposition is false. One striking example is
provided by Ville’s Theorem, which implies that there is a Church-stochastic
set A such that |{k < n | k ∈ A}| ≤ n/2 for all n (see e.g. [4, Theorem 6.5.1] for a
proof). On the other hand, for several of our applications, Church-stochasticity
will be enough.

We define the notion of n-randomness by replacing Σ0
1 classes with Σ0

n

classes.

6

Definition 2.6. A set A is n-random relative to B if, for every B-uniformly
sequence {Un}n∈N of Σ0,B

n classes such that µ(Un) ≤ 2−n, we have A /∈
⋂
n Un.

Sets which are n-random relative to ∅ are simply called “n-random”.

Recall that the sequence {Un}n∈N is B-uniformly Σ0,B
n if there is a B-

computable sequence of indices e1, e2, . . . such that

Un = {X | ∃k1∀k2∃k3 . . . QknΦBen(X � k1, . . . , X � kn) = 1},

where Q is the quantifier ∃ if n is odd and ∀ if n is even. Similar to the 1-
random case, we can require the sequence to be computable (as opposed to
B-computable). Due to the quantifiers, we may also allow the sequence to be
B(n)-computable.

For a set A, it is true that A is Σ0,B
n+1 if and only if A is Σ0,B(n)

1 , but this is
not the case for classes in 2ω. Therefore, the Martin-Löf tests for n-randomness
and the Martin-Löf tests for 1-randomness relative to ∅(n−1) are not the same.
Surprisingly, these tests still yield the same notions of randomness. Following [4,
Section 6.8], we will show this using two lemmas.

Lemma 2.7. Let n be fixed, and denote by µe the measure of the Σ0,B
n class

indexed by e. Then the set

{(e, q) | q ∈ Q ∧ µe > q}

is a B(n−1)-c.e. set. Thus, from an index of a Σ0,B
n class S, we can B(n)-compute

the measure µ(S).

Proof. Induction on n. For n = 1, given e and q, if V is the Σ0,B
1 class indexed

by e, then V =
⋃
k JσkK for some sequence σ0, σ1, . . . of strings which can be

uniformly B-computed from e. We may assume that the strings are mutually
incomparable (no string is a prefix of another string), so that

µ(V) =
∑
k

2−|σk|.

Then µ(V) > q if and only if some finite portion of the sum above is greater
than q, which is a B-c.e. property.

For n > 1, if V is the Σ0,B
n class indexed by e, we can decompose V =

⋃
k Vk

where each Vk is a Π0,B
n−1 class and Vk ⊂ Vk+1. Then given k and q, we can

B(n−1)-compute whether µ(Vk) > q or not. Then µ(V) > q if and only if
µ(Vk) > q for some k, which is a B(n−1)-c.e. property. �

Lemma 2.8. The following is true for every n ≥ 1 and every set B.2

1. From an index of a Σ0,B
n class S and q ∈ Q, we can B-compute an index

of a Σ0,B(n−1)

1 class U such that U ⊇ S and µ(U) < µ(S) + q.

2This theorem is similar to [4, Theorem 6.8.3], but we simplify the proof a bit by making
the claims in parts 3 and 4 a bit weaker.

7

2. From an index of a Π0,B
n class P and q ∈ Q, we can B-compute an index

of a Π0,B(n−1)

1 class V such that V ⊆ S and µ(V) > µ(P)− q.

3. From an index of a Σ0,B
n class S and q ∈ Q, we can B(n)-compute an index

of a Π0,B
n−1 class V such that V ⊆ S and µ(U) > µ(S)− q.

4. From an index of a Π0,B
n class P and q ∈ Q, we can B(n)-compute an

index of a Σ0,B
n−1 class U such that U ⊇ S and µ(V) < µ(P) + q.

Proof. Note that 2 follows from 1 and that 4 follows from 3 by taking comple-
ments. We will prove 4 directly and 1 by induction.

Given a Σ0,B
n class S, let S0 ⊆ S1 ⊆ · · · be uniformly Π0,B

n−1 classes such that
S =

⋃
k Sk.

For 3, by the lemma above, the set B(n−1) can compute the values of µ(Sk),
so B(n) can compute some K for which µ(SK) > µ(Sk)− q for all k > K. Then

µ(SK) > µ(S)− q and SK is a Π0,B
n−1 class contained in S.

For 1, if n = 1 we may let U = S, and if n > 1, use part 4 and induction
to B(n−1)-compute a sequence of indices of Σ0,B

n−2 classes V0, V1, . . . such that
Vk ⊇ Sk and µ(Vk) < µ(Sk) + q2−k−2 for all k. Now, for each k, use part 1

to compute an index for a Σ0,B(n−2)

1 class Uk such that Uk ⊇ Vk and µ(Uk) <

µ(Vk) + q2−k−2. Finally, let U =
⋃
k Uk. Then U is a Σ0,B(n−1)

1 class (because

it is a union of a sequence Σ0,B(n−2)

1 classes, whose sequence of indices were
B(n−1)-computed from an index for S), U ⊇ S, and

µ(U − S) = µ

(⋃
k

Uk −
⋃
k

Sk

)

≤ µ

(⋃
k

(Uk − Sk)

)
≤
∑
k

µ(Uk − Sk)

≤
∑
k

µ(Uk − Vk) + µ(Vk − Sk)

≤
∑
k

q2−k−2 + q2−k−2 = q. �

We can now prove the main result.

Theorem 2.9. A set is n-random relative to B if and only if it is 1-random
relative to B(n−1).

Proof. Suppose that A is not n-random relative to B, and let U1, U2, . . . be
a test for which A fails. That is, U1, U2, . . . is a B-uniform sequence of Σ0,B

n

classes for which µ(Uk) < 2−k, and A ∈
⋂
k Uk.

8

By Lemma 2.8, we can B-compute indices for Σ0,B(n−1)

1 classes V1, V2, . . .
with Vk ⊃ Uk and µ(Vk) < µ(Uk) + 2−k for all k. Then µ(Vk+1) < 2−k, and
A ∈

⋂
k Vk+1, which shows that A is not 1-random relative to B(n−1).

Conversely, suppose that A is not 1-random relative to B(n−1), and let

U1, U2, . . . be a B(n−1)-uniformly Σ0,B(n−1)

1 classes with µ(Uk) < 2−k and A /∈⋂
k Uk. Each Uk is also a Σ0,B

n class, and B can uniformly transform an index
of Uk into an index of a Σ0,B

n class Vk with Vk = Uk. Then because A /∈
⋂
Vk,

we have that A is not n-random relative to B. �

There is a third notion of randomness which we will use in the paper, which
arises by replacing the decreasing sequence of Σ0,B

n classes with a single Π0,B
n

class of measure zero.

Definition 2.10. A set A is weakly n-random (or Kurtz n-random) relative to
B if A is contained in every Σ0,B

n class of measure 1, or, equivalently, if A is not
contained in any Π0,B

n class of measure 0.

If U1, U2, . . . is a sequence of Σ0,B
n classes, then

⋂
k Uk is a Π0,B

n+1 class, so
every weakly (n+1)-random set is n-random. Similarly, if V is a Π0,B

n class with
measure zero, by Lemma 2.8 item 4 there exists a sequence of B(n)-uniformly
Σ0,B
n−1 classes U1, U2, . . . (and thus a sequence of B(n)-uniformly Σ0,B

n classes)
with µ(U1) < 2−n, so every n-random set is also weakly n-random.

We note that being weakly n-random is not the same as being weakly 1-
random relative to ∅(n−1); see [4, p. 286] for a proof. But we can get a similar
result if we allow for an extra quantifier.

Theorem 2.11. Let n ≥ 2. Then A is weakly n-random relative to B if and
only if A is weakly 2-random relative to B(n−2).

Proof. If A is not weakly 2-random relative to B(n−2), then A is contained in

some Σ0,B(n−2)

2 class U of measure 1. Because U is also a Σ0,B
n class, this means

that A is not weakly n-random relative to B.
Conversely, let A /∈ U where U is a Σ0,B

n class of measure 1. Write U =⋃
k Uk, where the Uk are uniformly Π0,B

n−1 classes, and use Theorem 2.8 item 2

to B-uniformly get Π0,B(n−2)

1 classes Vk,j such that Vk,j ⊆ Uk and µ(Vk,j) >

µ(Uk) − 2−j . Then V =
⋃
k,j is a Σ0,B(n−2)

2 class of measure 1, and A /∈ V , so

A is not 2-random relative to B(n−2). �

2.3 Density of Sets

Definition 2.12. For A ⊆ N, we define

ρn(A) =
|A � n|
n

.

The upper density and lower density of A, denoted by ρ(A) and ρ(A), respec-
tively, are the limits

ρ(A) = lim sup
n→∞

ρn(A) and ρ(A) = lim inf
n→∞

ρn(A)

9

If these two limits coincide, this common number is the density of A, denoted
by ρ(A). We say that A is dense if ρ(A) = 1 and sparse if ρ(A) = 0.

For example, ρ(N) = 1, the density of the set of even numbers is 1
2 , the

density of the set of primes is 0, and, for the set

{n | there exists a Hadamard matrix of order n}

it is still an open problem whether it has positive density or not [3].
Of course, ρ(A) does not necessarily exist. If α, β are any two real numbers

with 0 ≤ α ≤ β ≤ 1, we can construct a set A with ρ(A) = α and ρ(A) = β by
stages. Start defining A(0) = 0, so that at the beginning of stage s we already
defined A � s. Then alternate between defining A(s) = 1 until ρs(A) ≥ β, and
ρs(A) = 0 until ρs(A) ≤ α.

This notion of density is natural, and most of our theorems will be stated
using this definition. However, for proofs, it will be sometimes more convenient
to use the following variant.

Definition 2.13. Let Jk = [2k, 2k+1) ∩ N.3 If A ⊆ N, we define

dk(A) =
|A ∩ Jk|

2k
,

and, analogously to the definition of ρ, we define

d(A) = lim inf
k→∞

dk(A) and d(A) = lim sup
k→∞

dk(A)

and define d(A) to be the common limit if it exists.

The values of ρ and d may differ, but not by much.

Lemma 2.14 ([8]). For all sets A ⊆ N, we have

d(A)

2
≤ ρ(A) and

d(A)

2
≤ ρ(A) ≤ 2d(A).

Proof. For all k, we have

dk(A) =
|A ∩ Jk|

2k

≤ |A � (2k+1)|
2k

= 2ρ2k+1(A).

Since the numbers ρ2k+1(A) are a subsequence of the numbers ρk(A), we have
lim supk→∞ ρ2k+1(A) ≤ ρ(A), so taking lim sup on both sides of the inequality
above gives

d(A) ≤ 2ρ(A).

3The definition of Jk in [8] is slightly different, namely, Jk = [2k − 1, 2k+1 − 1) ∩ N.

10

For the other direction, let ε > 0 be given, and let N be large enough that
dj(A) < d(A) + ε for all j > N . For j ≤ N we can use the obvious bound
dj(A) < d(A) + ε+ 1, giving

ρ2k+1−1(A) =
|{0} ∩A|+ |J0 ∩A|+ · · ·+ |Jk ∩A|

2k+1

≤ 1 + |J0 ∩A|+ · · ·+ |Jk ∩A|
2k+1

=
1 + 20d0(A) + 21d1(A) + · · ·+ 2kdk(A)

2k+1

≤ 1 + 20(d(A) + ε+ 1) + · · ·+ 2N (d(A) + ε+ 1)

2k+1

+
2N+1(d(A) + ε) + · · ·+ 2k(d(A) + ε)

2k+1

=
2N+1

2k+1
+ d(A) + ε.

As N is fixed and ε was arbitrary, this gives

lim sup
k→∞

ρ2k+1(A) ≤ d(A). (1)

Now, if 2k ≤ n < 2k+1, then

ρn(A) =
|A � n|
n

=
2k+1

n
· |A � n|

2k+1

≤ 2 · |A � n|
2k+1

≤ 2 · |A � (2k+1)|
2k+1

= 2ρ2k+1(A).

Taking lim sup on both sides and combining with inequality 1, we get

ρ(A) ≤ 2d(A).

Let ε > 0 be given. Analogously to the argument that showed inequality 1,
we can let N be so that dj(A) > d(A)− ε for all j > N , giving

ρ2k+1(A) ≥ −2N+1

2k+1
+ d(A)− ε.

11

If 2k ≤ n < 2k+1, then

ρn(A) =
|A � n|
n

≥ |A � (2k)|
n

=
2k

n
ρ2k(A)

≥ 1

2
ρ2k(A),

which, combining both inequalities and taking lim inf, gives

2ρ(A) = 2 lim inf
n→∞

ρn(A) ≥ lim inf
k→∞

ρ2k(A) ≥ lim inf
k→∞

dk(A) = d(A). �

It is false that ρ(A) ≤ 2d(A). If there are infinitely many k such that
Jk ∩A = ∅, then d(A) = 0, but if the k are sufficiently spaced out and A(n) = 1
everywhere else, then we can make ρ(A) = 1

2 .
The most important application of this lemma is the following equivalence.

Corollary 2.15. Let A ⊆ N. The following are equivalent.

1. ρ(A) = 0

2. ρ(A) = 0

3. d(A) = 0

4. d(A) = 0

5. ρ(A) = 1

6. ρ(A) = 1

7. d(A) = 1

8. d(A) = 1

Proof. If d(A) = 0, then ρ(A) ≤ 2d(A) = 0. Conversely, if ρ(A) = 0, then
d(A) ≤ 2ρ(A) = 0, so 2 and 4 are equivalent.

The equivalence between 1 and 2, and between 3 and 4, is obvious.
Finally, the fact that dk(A) = 1 − dk(A) and ρn(A) = 1 − ρn(A) directly

shows that 1 and 5, 2 and 6, 3 and 7, and 4 and 8 are equivalent. �

2.4 Asymptotic Notions of Computability

In this section we will explore some relaxations of the notion of computabil-
ity. Traditionally, to consider that a Turing machine M solves a certain problem,
we demand for M(n) to be defined and the correct answer for all inputs n. We
will relax this restriction to require M(n) to be defined and correct only for
densely many n. The various definitions will vary on how M(n) is required to
behave for the other n.

12

2.4.1 Generic Computability

In this paper we will mostly be concerned with the case where M(n) may
not converge, but must be correct where defined.

Definition 2.16. A generic description of a function f is a partial function
g whose domain has density 1 and g(n) = f(n) wherever g is defined. If g is
partial computable, we say that f is generically computable. A set A ⊆ N is
generically computable if its characteristic function is generically computable.

We will frequently identify a set with its indicator function; for example, we
will say that “f is a generic description of A” when we mean that f is a generic
description of the indicator function of A.

Example 2.17. We claim that no 1-random set is generically computable. Let
g be any partial computable function with dense domain. In particular, the
domain of g is infinite. Let (a0, b0), (a1, b1), . . . be a computable enumeration
of the graph of g (so that g(ai) = bi for all i), and define

Vk = {A | A(ai) = bi for all i ≤ k}.

Each Vk is a Σ0
1 class of measure 2−k, and

⋂
k∈N Vk is the collection of all sets

A whose characteristic function agrees with g where g is defined. Thus, every
1-random set disagrees with g somewhere. Since g was arbitrary, no 1-random
set is generically computable. �

Example 2.18. For any set A ⊆ N, let B = {2n | n ∈ A}. The set B is
a “sparsification” of the set A; they are Turing-equivalent. Nevertheless, the
function f such that f(n) = 0 if n is not a power of 2, and f(n)↑ otherwise,
is (partial) computable and a generic description of B. Hence the set B will
always be generically computable, regardless of A. This shows that every Turing
degree contains a generically computable set. �

Example 2.19. Let A ⊆ N be a noncomputable set, and define B =
⋃
k∈A Jk,

where Jk is as in Definition 2.13. Suppose that B were generically computable,
and let f be a witness (a generic description of B which is partial computable).
By Proposition 2.15, for all sufficiently large k, the function f is defined for most
n ∈ Jk. So, to compute whether k ∈ A or not, just try to compute f(n) for all
n ∈ Jk, in an interleaved fashion; it must be defined for at least one n ∈ Jk, and
as soon as f(n) is calculated for this n, we know that this is the value of A(k).

That would make A computable, a contradiction. Hence every noncom-
putable set is Turing-equivalent to a set which is not generically computable.�

2.4.2 Coarse Computability

An alternative notion arises if we demand for M(n) to always be defined,
but allow the answer to be wrong sometimes.

13

Definition 2.20. A coarse description of a total function f is a total function
g such that the set {n | f(n) = g(n)} has density 1. If g is computable, we
say that f is coarsely computable. A set A ⊆ N is coarsely computable if its
characteristic function is coarsely computable.

Identifying sets with their characteristic functions, we will say that a set B is
a coarse description of a set A if 1B is a coarse description of 1A, or equivalently,
if the symmetric difference A4B has density 1.

Example 2.21. If A and B are as in Example 2.18, then the empty set is a
coarse description of B, so all sets are Turing-equivalent to a coarsely com-
putable set.

If A and B are in Example 2.19 and B is coarsely computable, let C be
computable such that B4C is sparse. Then for all sufficiently large k we have
dk(B4C) < 1

3 , so either dk(C) < 1
3 (in which case k /∈ A) or dk(C) > 2

3
(in which case k ∈ A). Hence C computes A. So every noncomputable set is
Turing-equivalent to a non-coarsely computable set. �

Example 2.22. We can construct a set which is coarsely computable, but not
generically computable, through diagonalization, as follows. Let Re be the set

Re = {n ∈ N : 2e | n ∧ 2e+1 - n}.

So R0 is the set of odd numbers, R1 is the set of even numbers not divisible by
four, R2 is the set of multiples of four which are not multiples of eight, and so
on. Note that ρ(Ri) = 2−e−1. We will construct a non-generically computable
c.e. set A such that |A ∩ Re| ≤ 1 for all e. So, for each e, all but finitely many
elements of A are contained in Re, so ρ(A) = 0, whence the computable set ∅ is
a coarse description of A.

To achieve this, for each e, simulate the eth Turing machine on every number
n ∈ Re, and wait for it to halt in any of those inputs. If it halts on n, set n ∈ A
if the machine rejected it, and leave n /∈ A otherwise, and stop simulating the
eth Turing machine (we are done with it). This finishes the construction.

Clearly A is c.e., and if the eth machine halts in some n ∈ Re, by construction
the function it is computing cannot be a generic description of A (as it is getting
the value of the nth input wrong). But if the machine never halts for any n ∈ Re,
then the density of its domain is at most 1 − 2−e−1, so it is also not a generic
description. Hence A is coarsely computable but not generically computable.�

Example 2.23. Conversely, we can construct a c.e. set A which is generically
computable, but not coarsely computable. Recall that the sets Jk = [2k, 2k+1)∩
N form a partition of N \ {0}. We will have a countable collection of strategies
Se, one for each Turing machine e. Se will try to prevent the eth Turing machine
from coarsely computing A.

We will construct a partial function f (which will be a generic description of
1A) by stages. Strategy Se starts acting on stage s, and “claims” the smallest
unclaimed Jk for itself. If n is one of the last 2k − 2k−e elements of Jk, we

14

define f(n) = 0. Otherwise, Se simulates the eth Turing machine on n for s
steps. If the Turing machine does not halt on all the remaining elements, Se
does nothing, and will try again on the next stage. Otherwise, define f(n) to
be the opposite value of what the Turing machine answered, and claim the next
smallest unclaimed Jk for the next stage. Finally, let A = f−1(1). This finishes
the construction.

If strategy Se claims only finitely many intervals Jk, it means that the eth
Turing machine fails to halt in some element of the last claimed interval. Hence
the eth Turing machine cannot coarsely compute A.

If strategy Se claims infinitely many intervals Jk, let B be the set computed
by the eth Turing machine. If n is one of the first 2k−e elements of Jk, by
construction we have A(n) = f(n) 6= B(n), so dk(A4B) ≤ 1−2−e. Since there
are infinitely many such k, the set B is not a coarse description of A.

This shows that A is not coarsely computable. To show that A is generically
computable, note that if Se claims infinitely many intervals Jk, then f(n)↓ =
A(n) for all n in each of these Jk; and if Se claims only finitely many intervals, it
may leave f(n) undefined for up to 2k−e elements in Jk if it is the last claimed
interval, but after that Se stops claiming intervals at all. Hence if D is the
domain of f , then dk(D) < 1 − 2−e for finitely many k. So D is dense, which
shows that f is a partial computable generic description of A. �

The following proposition will be useful in Section 3.2.

Proposition 2.24. If the set X is Church-stochastic, then X is not coarsely
computable.

Proof. Let A be any computable set. We will show that A is not a coarse
description of X.

Because ρ(A∪A) = 1, either ρ(A) > 0 or ρ(A) > 0; without loss of generality,
assume the former. Let f : N→ N be the increasing function which satisfies

A = {f(0), f(1), f(2), . . . }.

Then f is a computable selection function, and because X is Church-stochastic,

lim
n→∞

|{k < n | f(k) ∈ X}|
n

=
1

2
.

Let ε > 0 be given, and take N large enough that if n ≥ N then the limit
above is within ε of 1

2 . Further, take some n > f(N) for which ρn(A) > ρ(A)−ε,

15

let m be the largest integer for which f(m) < n, and note m ≥ N . Then

ρn(A \X) =
|{k < n | k ∈ A ∧ k /∈ X}|

n

=
|{j ≤ m | f(j) ∈ A ∧ f(j) /∈ X}|

n

=
|{j ≤ m | f(j) /∈ X}|

n

≥
(

1

2
− ε
)
m+ 1

n

=

(
1

2
− ε
)
|{k < n | k ∈ A}|

n

≥
(

1

2
− ε
)

(ρ(A)− ε).

Because ε > 0 was arbitrary, this means that ρ(A \X) ≥ ρ(A)/2. So A and
X disagree on a set with positive upper density, which means that A cannot be
a coarse description of X. �

2.4.3 Dense and Effectively Dense Computability

Generic computability arises when the Turing machine M is allowed to not
halt sometimes, and coarse computability arises when M is allowed to make
a few mistakes. If both of these relaxations are taken together, we get dense
computability.

Definition 2.25. A dense description of a function f is a function g such that
the set

{n | g(n)↓ ∧ g(n) = f(n)}

has density 1. If g is partial computable, we say that f is densely computable.
A set is densely computable if its characteristic function is densely computable.

Clearly all generically computable sets and all coarsely computable sets are
densely computable. It is interesting to note, however, that there are sets which
are neither generic nor coarsely computable, but which are densely computable.
In a sense, this whole is larger than the sum of its two parts.

Example 2.26. Let A be the set constructed in Example 2.23 and B be the
set constructed in Example 2.22. Then the join A⊕B of A and B is neither
generically nor coarsely computable, but it is densely computable. �

If we disallow both relaxations (we still demand the Turing machine to always
halt, and we forbid it from giving the wrong answer), we can still construct an
asymptotic notion of computability which is weaker than just being computable.
We allow the machine to return the special symbol �, which means that the
machine does not know the answer.

16

Definition 2.27. An effective dense description of a function f : N → N is a
total function g : N→ N ∪ {�} such that, for all n, we have either f(n) = g(n)
or f(n) = �, and the set

{n | g(n) 6= �}

has density 1. If g is computable, then f is effectively densely computable. A
set is effectively densely computable if its characteristic function is effectively
densely computable.

Clearly, all effectively densely computable sets are also generically com-
putable and coarsely computable, and a modification of Example 2.18 shows
that there are effectively densely computable sets which are not computable.

Example 2.28. We will modify Example 2.23 to construct a set which both
generically and coarsely computable, but not effectively densely computable.

Strategy Se will again simulate the eth Turing machine on the beginning of
its claimed intervals. Suppose Se claimed interval Jk, and that the eth Turing
machine computes the function fe. First we again define A(n) = 0 for all of
the last 2k − 2k−e elements n of Jk. Once the machine halts on all of the
2k−e starting elements of Jk, if fe(n) 6= � for any of those n, we can define
A(n) = 1 − fe(n) for the smallest one, A(n) = 0 for the rest, and Se can stop
claiming intervals. Otherwise, we have fe(n) = � for all of the 2k−e starting
elements of Jk; define A(n) = 0 for all n ∈ Jk and claim another interval. This
finishes the construction.

If strategy Se claims infinitely many intervals, it means that fe(n) = � in all
the beginning 2k−e elements of Jk for infinitely many k, so fe is not an effective
dense description of A. If strategy Se claims only finitely many intervals, it
means that fe is undefined in some of the claimed intervals, which thus mean
that the eth Turing machine does not effectively densely compute A. Therefore,
A is not effectively densely computable.

Finally, the same reasoning as in Example 2.23 shows that A is indeed gener-
ically computable; and A(n) = 1 for at most one n ∈ Jk, so ∅ is a coarse
description of A, which shows that A is also coarsely computable. �

The following proposition will be useful in Section 3.3.

Proposition 2.29. If the set X is Church-stochastic, then X is not densely
computable.

Proof. Let g : D ⊆ N → {0, 1} be a partial computable function with dense
domain. We will show that g is not a dense description of X.

Because ρ(D) = 1, at least one of the sets

{n | g(n)↓ = 1} and {n | g(n)↓ = 0}

has positive upper density. Assume it is the former without loss of generality.
Let q ∈ Q satisfy

q

2
≤ ρ({n | g(n)↓ = 1}) ≤ q.

17

Define the computable set B as follows.
Start with k = 0. On stage s, evaluate g(n) for n ∈ Jk, Jk+1, . . . and wait

until, for some i ≥ k, we have

|{n ∈ Ji | g(n)↓ = 1}| > q2i−2.

Because ρ({n | g(n)↓ = 1}) > q/2, by Lemma 2.14, we have d({n | g(n)↓ =
1}) > q/4, so for each fixed k there is some i ≥ k for which the condition above
is satisfied. Then define B on Ji to be the first q2i−2 elements of {n ∈ Ji |
g(n)↓ = 1}, and B(n) = 0 if n ∈ Jk ∪ Jk+1 ∪ · · · ∪ Ji−1. Set k = i and go to the
next stage.

Again by Lemma 2.14, this means that ρ(B) > q/8, so B has a positive
upper density. The argument now follows the proof of Theorem 2.24 to show
that B and X disagree in a set of positive upper density. Therefore g is not a
dense description of X. �

2.5 Enumeration Operators and Reducibilities

In order to talk about generic degrees, we have to define “generic reduction”
between two sets, but simply using Turing reductions will not work.

Generic descriptions are functions. To use functions as oracles, we will con-
sider their graphs; formally, we let 〈·, ·〉 : N × N → N be any fixed pairing
function (say, Cantor’s pairing function), and define

graph(f) = {〈x, f(x)〉 | x ∈ dom(f)}.

The problem of using graph(f) directly as an oracle for a Turing machine is
that the machine can query whether a certain number is in the domain of f or
not. For example, for any set A, we can define f(2k) = 0 if k ∈ A, leave f(2k)
undefined if k /∈ A, and set f(n) = 0 if n is not a power of 2. Then f is a generic
description of the empty set, but it is easy to see that graph(f) ≥T A. Hence
for every set A, there is a generic description of ∅ which computes it.

The issue is that the function directly queries whether a pair is in graph(f)
or not. To prevent this, we will use enumeration operators instead.

Definition 2.30. Let W ⊆ N∗ ×N be a set of pairs (F, k), where k ∈ N and F
is a finite subset of N. Then W is an enumeration operator if the set of codes
for the elements in W is a c.e. set. (We will identify W with the set of codes.)
For any set A, we define WA by

WA = {k | (F, k) ⊆W for some F ⊆ A},

and we say that WA is enumeration reducible to A.

The name comes from the idea of a program that can transform any enu-
meration of A into an enumeration of a set B. Since the elements of A may be
presented out of order, all the algorithm ever sees are finite subsets F ⊆ A. If

18

the algorithm decides to enumerate k into B, we place the pair (F, k) into W .
The result is that B = WA.

As a direct consequence of this definition, if A is a c.e. set, then any WA is
also c.e. for any enumeration operator W .

Proposition 2.31. For infinite sets, the set W may be taken to be computable;
that is, for every enumeration operator W there exists a computable enumeration
operator V such that WA = V A for all infinite sets A.

Proof. To decide whether (F, k) ∈ V or not, let M be a Turing machine which
recognizes W and simulate M on all pairs (F ′, k) with F ′ ⊆ F for |F | steps.
Place (F, k) ∈ V if M accepts any pair, and define (F, k) /∈ V otherwise. This
makes V computable.

For any k, if k ∈ V A, it means that (F, k) ∈ V for some F ⊆ A, which means
that (F ′, k) ∈ W for some F ′ ⊆ F . Hence (F ′, k) ∈ W for some F ′ ⊆ A, so
k ∈WA.

Conversely, if A is infinite and k ∈ WA, this means that (F, k) ∈ W for
some F ⊆ A. Suppose it takes s steps for M to accept (F, k). Let S ⊆ A be
any subset of A with s elements. Then, by construction, (F ∪ S, k) ∈ V , and
F ∪ S ⊆ A. Therefore, k ∈ V A. �

Proposition 2.32. The set W may be assumed to be monotonic; that is, for
every enumeration operator W there exists an enumeration operator V such that
WA = V A for all sets A, and if (F, k) ∈ V then (F ′, k) ∈ V for all F ′ ⊃ F .

Proof. Define
V = {(F, k) | ∃F ′ ⊆ F [(F ′, k) ∈W]}.

As V ⊇ W , we have WA ⊆ V A for all A. Furthermore, if k ∈ V A, then
(F, k) ∈ V for some F ⊆ A, so (F ′, k) ∈W for some F ′ ⊆ F , so (F ′, k) ∈W for
some F ′ ⊆ A, which means k ∈WA. Hence V A = WA. �

An observation which will be important below is that we may compose enu-
meration operators.

Proposition 2.33. For any enumeration operators V and W there exists an

enumeration operator U such that UA = VW
A

for all sets A.

Proof. Replacing V and W if needed, we may assume that they are monotonic.
Define U via

U =
{

(F, k)
∣∣∣ ∃F ′[(F ′, k) ∈ V ∧ ∀l ∈ F ′[(F, l) ∈W]

]}
U is an enumeration operator because all of the candidate F ′ must be finite.

Let k ∈ VW
A

. Then (F, k) ∈ W for some set F ⊆ WA. For each l ∈ F
we have l ∈ WA, so there exists some F ′l ⊆ A such that (F ′l , l) ∈ W . Define
F ′ =

⋃
l∈F F

′
l . Because W is monotonic, we also have (F ′, l) ∈W for all l ∈ F .

Then (F, k) ∈ U , by construction, so k ∈ UA.

19

Conversely, let k ∈ UA, so (F, k) ∈ U for some F ⊆ A. By definition of U ,
this means that (F ′, k) ∈ V for some F ′ such that (F, l) ∈ W for all l ∈ F ′.
Because F ⊆ A, this means that l ∈ WA for all l ∈ F ′, so F ′ ⊆ WA. Hence

k ∈ VWA

. �

2.5.1 Dense and Generic Reducibility

Definition 2.34. A set A is nonuniformly generically reducible to a set B,
denoted by A ≤ng B, if for every generic description f of A, there exists a
generic description g of B such that f is enumeration reducible to g.

Definition 2.35. A is uniformly generically reducible to B, denoted by A ≤ug

B, if there is a single enumeration operator W such that W g is a generic de-
scription of A for all generic descriptions g of B.

A direct consequence of Proposition 2.33 is that both ≤ng and ≤ug are
transitive, and therefore the definitions below make sense.

Definition 2.36. The uniform (resp. nonuniform) generic degree of a set A is
the collection of sets B such that A ≤ug B and B ≤ug A (resp. A ≤ng B and
B ≤ng A).

For example, the class of generically computable sets is the generic degree
of ∅. In this case, the uniform and the nonuniform generic degrees coincide, but
this is not the case in general.

Example 2.37. Let A be any set, and define the sets R(A) and R̃(A) by [2,
Section 5]

R(A) =
⋃
k∈A

Rk

and
R̃(A) =

⋃
k∈A

Jk.

Clearly, A ≥T R(A) and A ≥T R̃(A).
Because each Rk has positive density, if f is any generic description of R(A),

then f(n) is defined for some n ∈ Rk. Since generic descriptions must be correct
wherever defined, we can uniformly reconstruct A from any generic description
of R(A) by simply waiting for some n ∈ Rk to be in the domain of f . Because
A ≥T R̃(A), this means that we can compute R̃(A) from any generic description
of R(A), whence

R̃(A) ≤ug R(A).

If f is any generic description of R̃(A), then for all sufficiently large k, we
have that f(n) is defined for at least one n ∈ Jk. Hence we can nonuniformly
compute R(A) from f by “memorizing” the values of A(k) for the finitely many

20

non-sufficiently large k, and just waiting for f(n) to be defined for some n ∈ Jk
if k is sufficiently large. Thus

R(A) ≤ng R̃(A).

Finally, choose A to be a non-autoreducible set [12, Exercise 7.3.8] (that is,
there is no Turing reduction Φ such that A(k) = ΦA\{k}(k) for all k). We claim
that

R(A) 6≤ug R̃(A)

in this case. Indeed, suppose that there exists an enumeration operator W
which witnesses R(A) ≤ug R̃(A). For any k, define f(n) = A(j) if n ∈ Jj and
j 6= k, and let f(n) undefined otherwise. Because f is a generic description of
R̃(A), we must have W f (n)↓ = A(k) for some n ∈ Rk. As f can be uniformly
computed from A \ {k}, this shows that A(k) can be uniformly computed from
A \ {k}, which shows that A is autoreducible, a contradiction.

Hence the sets R(A) and R̃(A) are nonuniformly generically equivalent, but
not uniformly generically equivalent. �

We will use a similar definition for dense reducibility.

Definition 2.38. A set A is nonuniformly densely reducible to a set B, denoted
by A ≤nd B, if for every dense description f of A, there exists a dense description
g of B such that f is enumeration reducible to g. A is uniformly generically
reducible to B, denoted by A ≤ud B, if there is a single enumeration operator
W such that W g is a dense description of A for all dense descriptions g of B.

Again, Proposition 2.33 guarantees that the definition below makes sense.

Definition 2.39. The uniform (resp. nonuniform) dense degree of a set A is
the collection of sets B such that A ≤ud B and B ≤ud A (resp. A ≤nd B and
B ≤nd A).

The distinction between uniform and nonuniform is again necessary; see [2,
Corollary 5.8] for an example of a pair of sets which are nonuniformly densely
equivalent, but not uniformly densely equivalent.

2.5.2 Coarse and Effectively Dense Reducibilities

Coarse and effectively dense descriptions of sets must be defined everywhere,
so there is no need to use enumeration operators.

Definition 2.40. A set A is nonuniformly coarsely reducible to a set B, denoted
by A ≤nc B, if every coarse description of B computes a coarse description of
A. The set A is uniformly coarsely reducible to B, denoted by A ≤uc B, if there
is a single Turing functional Φ such that ΦC is a coarse description of A for all
coarse descriptions C of B.

21

The definition of uniform and nonuniform coarse degrees is analogous to the
previous definitions. See [7, Theorem 2.6] for an example of two nonuniformly
coarsely equivalent sets which are not uniformly coarsely equivalent.

The definition for effectively dense degrees is analogous.

Definition 2.41. A set A is nonuniformly effectively densely reducible to a set
B, denoted by A ≤ned B, if every effectively dense description of B computes
an effectively dense description of A. The set A is uniformly effectively densely
reducible to B, denoted by A ≤ued B, if there is a single Turing functional Φ
such that ΦC is an effectively dense description of A for all effectively dense
descriptions C of B.

The definition of uniform and nonuniform effectively degrees is analogous
to the previous definitions. See [2, Corollary 5.3] for a pair of sets which are
nonuniformly effectively densely equivalent, but which are not uniformly effec-
tively densely equivalent.

3 Minimal Pairs and Randomness

Informally speaking, if A and B are any two sets, we can ask whether they
have some common “computational power”. Clearly both A and B can compute
any computable set, but is there anything more? Perhaps surprisingly, there are
many pairs without any common computational power (besides the computable
sets), which we call “minimal pairs”.

We start with the Turing degrees.

3.1 Minimal Pairs in the Turing Degrees

Definition 3.1. The upper cone above a set A is the collection

{B | B ≥T A},

and the lower cone below A is the collection

{B | B ≤T A}.

The intersection of these two cones is the Turing degree of A.

For any two sets A and B, it is easy to see that their upper cones intersect;
in fact, the intersection of the upper cones above A and B is exactly the upper
cone above A⊕B.

Trivially, the lower cones also intersect, because all lower cones contain the
computable sets. And, in some cases, their intersection contain only the com-
putable sets.

Definition 3.2. A minimal pair for the Turing degrees is a pair of sets (A,B)
such that neither A nor B are computable, but if C ≤T A and C ≤T B, then
C is computable.

22

That is, the intersection of the lower cones below A and B is the class of
computable sets.

We will provide a proof of existence of minimal pairs based on the Lebesgue
Density Theorem, using a “majority vote” argument.

Lemma 3.3. If A is noncomputable, then the upper cone above A has measure
zero.

Proof. Let V be the upper cone above A, and assume it has positive measure.
For each e, define Ve = {B | ΦBe = A}; that is, the class Ve contains all the

oracles that e can use to compute A. Note that V is the union of all Ve, so if
µ(V) > 0 then µ(Ve) > 0 for some e.

By the Lebesgue Density Theorem, there is some σ ∈ 2<ω such that µ(Ve ∩
JσK) > 2

3µ(JσK), so we can do a majority vote inside JσK: given n, compute
Φτe (n)[|τ |] for each τ < σ, until either

• the measure of the τ such that Φτe (n)[|τ |]↓ = 0 surpasses 1
2µ(JσK), in which

case we know that A(n) = 0; or

• the measure of the τ such that Φτe (n)[|τ |]↓ = 1 surpasses 1
2µ(JσK), in which

case we know that A(n) = 1.

One of these two must happen, and when it does the majority vote is the correct
answer.

Therefore, if the measure of V is nonzero, then A is computable. �

Proposition 3.4. Each noncomputable set forms a minimal pair with measure-
1 many sets.

Proof. Let A be noncomputable. There are countably many noncomputable
sets D ≤T A, and for each of those sets, the upper cone VD = {C | C ≥T D}
has measure zero. We claim that if B is noncomputable and not in any of these
cones, then (A,B) forms a minimal pair for the Turing degrees.

Indeed, if C ≤T A,B, then clearly B ∈ VC ; by construction, this is only
possible if C is computable. So (A,B) is a minimal pair for the Turing degrees.

Since there are countably many D ≤T A, the family of valid values for B
has measure 1. �

Hence, a simple application of Fubini’s Theorem shows that the collection of
pairs (A,B) which form a minimal pair for the Turing degrees has measure 1.
Intuitively, this means that any two sets picked “at random” will be a minimal
pair for the Turing degrees. In fact, we can show that a fairly low degree of
randomness suffices.

Proposition 3.5. If A and B are relatively weakly 2-random, then A and B
form a minimal pair for the Turing degrees.

23

Proof [4, Corollary 8.12.4]. Let C be a noncomputable set such that C ≤T B,
and suppose for the sake of contradiction that C ≤T A. Let e satisfy ΦAe = C,
and define

S = {X | ∀n∃s[ΦXe (n)[s] = C(n)]}.

Then S is a Π0,B
2 class which is contained in the upper cone above C. By

Lemma 3.3, the class S has measure 0. Since A is weak 2-random relative to B,
this means that A /∈ S, a contradiction. �

3.2 Minimal Pairs in the Coarse Degrees

For coarse reducibility, we have a similar definition, though we have to pay
attention to uniformity.

Definition 3.6. Two sets A and B form a minimal pair for the uniform coarse
degrees if both are non-coarsely computable and if C is any set such that C ≤uc

A,B, then C is coarsely computable.
Being a minimal pair for the nonuniform coarse degrees is defined similarly.

Because the relation ≤uc has stricter requirements than ≤nc, if two sets form
a minimal pair for the nonuniform coarse degrees then they also form a minimal
pair for the uniform coarse degrees, so it suffices to show the former.

Lemma 3.7 ([7, Theorem 5.2]). If A is non-coarsely computable and X is
weakly 3-random relative to A, then X does not compute any coarse description
of A.

Proof. Suppose for the sake of contradiction that A ≤nc X, and let Φ be a
Turing functional such that ΦX is a coarse description of A. Define the class P
by

P = {Y | ΦY is a coarse description of A}.

For Y to be in P, it must be the case that ΦY is total (which is a Π0
2 property)

and that limk ρk(ΦY 4A) = 0, which we can express as

∀ε∃K∀s, k > K
[(
∀n < k(ΦY (n)[s]↓)

)
=⇒ ρk(ΦY [s]4A) < ε

]
,

which is a Π0,A
3 property. Hence P is a Π0,A

3 class.
Because X is weakly 3-random relative to A, it is not contained in any

Π0,A
3 class of measure 0; since X ∈ P, we must have µ(P) > 0. Using the

Lebesgue Density Theorem, there exists some σ such that µ(P ∩ JσK) > 5
62−|σ|.

By replacing ΦτY with ΦσY for all |τ | = |σ| (except if τ = X � |σ|), we may
assume that µ(P) > 4

5 ; that is, for more than 4
5 of all Y , the set ΦY is a coarse

description of A. (The exception of not replacing if τ = X � |σ| exists solely to
keep X ∈ P, and it is not really needed in the rest of the argument.)

Define the set D as follows. Recall that Jk = [2k, 2k+1) ∩ N. For each k,
find some integer sk and a finite set Sk of sk-sized strings such that Φσ(n)↓ for

24

all n ∈ Jk and all σ ∈ Sk, and |Sk| > 4
52nk . We know such set exists because

µ(P) > 4
5 . Then pick a set Rk ⊆ Sk such that |Rk| > 1

22nk which minimizes

max
σ,τ∈Rk

dk(Φσ4Φτ).

Finally, let D(n) = Φτ (n) for all n ∈ Jk, where τ is some fixed element of
Rk (say, the lexicographically least element). We claim that D is a coarse
description of A, which implies that A is coarsely computable.

Let ε > 0 be given, and define Bk by

Bk = {Y | ΦY (n)↓ for all n ∈ Jk and dk(ΦY 4A) < ε}.

Note that in the definition of Sk, all sk-sized prefixes of elements in Bk are “valid
choices”.

Suppose that µ(Bk) > 4
5 for some k. This means that at least 4

5 of all the
strings σ of length sk satisfy dk(Φσ4A) < ε, thus at least 3

52sk strings in Sk
satisfy dk(Φσ4A) < ε, which means that there is a set R ⊆ Sk with |R| > 3

52sk

for which
max
σ,τ∈R

dk(Φσ4Φτ) < 2ε.

Since Rk minimizes the value above, we know that dk(Φσ4Φτ) < 2ε for all
σ, τ ∈ Rk.

Since µ(Bk) > 4
5 , at least one σ ∈ Rk is a prefix of an element in Bk, so if

τ ∈ Rk is the string used to define D we have

dk(D4A) = dk(Φτ 4A)

≤ dk(Φτ 4Φσ) + dk(Φσ4A)

≤ 2ε+ ε = 3ε.

If Y ∈ P, by Corollary 2.15 we have Y ∈ Bk for all sufficiently large k. Hence
the union of the sets Ck =

⋂
j>k Bk contains all elements in P. This means that

µ(Ck) > 4
5 for all large enough k, which implies that µ(Bk) > 4

5 for all large
enough k.

Therefore, dk(D4A) < 3ε for all large enough k. Since ε was arbitrary, this
shows that D is a coarse description of A, contradicting the hypothesis that A
is not coarsely computable. �

Corollary 3.8. If A and B are relatively weakly 3-random, then they form a
minimal pair for relative coarse computability.

Proof. By Propositions 2.5 and 2.24, neither A nor B is coarsely computable,
so we have to show that if C is coarsely computable relative to A and B, then
C is coarsely computable.

If not, let Y be a coarse description of C which is computable in B. Then
A is weakly 3-random relative to Y , so by the lemma above we have Y is
not coarsely computable relative to A, which means that X is not coarsely
computable relative to A, a contradiction. �

25

3.3 Minimal Pairs in the Dense Degrees

For the dense degrees, the definitions are similar.

Definition 3.9. Two sets A and B form a minimal pair for the uniform dense
degrees if both are non-densely computable and if C is any set such that C ≤uc

A,B, then C is densely computable.
A minimal pair for the nonuniform dense degrees is defined similarly.

Because dense computability is more flexible than coarse computability,
showing a result similar to Theorem 3.8 will require more work. We start with
a lemma [2, Lemma 6.1].

Definition 3.10. If S = {Sn ⊆ 2ω}n∈N is a sequence of measurable subsets of
2ω and A ∈ 2ω, define S(A) = {n | A ∈ Sn}.

Lemma 3.11. Let a, b, q ∈ [0, 1] and S = {Sn}n∈N. Suppose that

ρ({n | µ(Sn) < q} > a

and
µ({A | ρ(S(A)) = 1}) > b.

Then (1− q)a+ b ≤ 1.

Proof. Fix r < 1 and define the class Xn by

Xn = {A | ∀k > n[ρk(S(A)) > r]}.

The union of all Xn contains the set {A | ρ(S(A)) = 1}, and Xn ⊆ Xn+1.
Therefore, there exists some N such that µ(Xn) > b for all n > N . Now fix
n > N to satisfy

ρn({k | µ(Sk) < q}) > a

(such n exist by hypothesis), and consider the equality

1

n

∑
j<n

∫
2ω
1Sjdµ =

1

n

∫
2ω

∑
j<n

1Sjdµ. (2)

This equality is true because integrals commute with finite sums. We will
provide an upper bound for the left side of the equality and a lower bound for
the right side of the equality which, together, will give us the result.

For the right side, we will compare it with ρn({n | µ(Sn) < q}); we have

1

n

∑
j<n

∫
2ω
1Sjdµ =

1

n

∑
j<n

µ(Sj).

Due to the choice of n, at least an of the Sj satisfy µ(Sj) < q. For the remaining
n− an of them, we can simply bound µ(Sj) by 1. This gives

1

n

∑
j<n

∫
2ω
1Sjdµ ≤

anq + (n− an)

n

= 1− (1− q)a.

26

For the left side, we can restrict the integration domain to get

1

n

∫
2ω

∑
j<n

1Sjdµ ≥
1

n

∫
Xn

∑
j<n

1Sjdµ.

Because n > N , if A ∈ Xn we have ρn(S(A)) > r, which expands to∑
j<n

1Sj (A) > rn.

Substituting into the integral gives

1

n

∫
2ω

∑
j<n

1Sjdµ ≥
1

n

∫
Xn
rndµ

= rµ(Xn) > rb.

Combining both inequalities gives rb < 1 − (1 − q)a, which rearranges to
(1− q)a+ rb < 1. Because r < 1 was arbitrary, we finish the proof. �

The lemma above will be used to prove the following theorem, which will
enable us to implement the “majority vote” argument for dense degrees.

Theorem 3.12. Let S = {Sn ⊆ 2ω}n∈N and q satisfy

µ({A | ρ(S(A)) = 1}) > q.

Then
ρ({n | µ(Sn) ≥ q}) = 1.

Proof. The result is trivial if q = 0, so assume q > 0. Define p by

p = ρ({n | µ(Sn) < q}),

and assume for the sake of contradiction that p > 0. Let ε > 0 be such that
1
pε ∈ N and

µ({A | ρ(S(A)) = 1} > q + ε.

We will construct a subsequence T of S such that setting a = 1−ε and b = q+ε
then a, b, q, T satisfy the hypothesis of the lemma above, which is a contradiction
because a(1− q) + b = 1 + qε in this case. Thus p = 0.

Define the set I = {n0 < n1 < · · · } to be the collection of all n for which
either n ≡ 0 (mod 1

pε) or µ(Sn) < q, and define

Tj = Snj .

Observe that ρ(I) ≥ pε, because I contains all multiples of 1
pε , and by

definition of p we have ρ(I) ≤ pε + p. Intuitively, T has a positive fraction of
all entries of S.

27

Let δ > 0 be given. There is some N such that ρn(I) < p(1 + ε) + δ for all
n > N . On the other hand, by definition of p, there are infinitely many n such
that

ρn({i | µ(Si) < q}) > p− δ.
If n > N satisfies this condition, then

ρk({n | µ(Tn) < q}) = ρk({j | µ(Snj) < q})

=
ρnk(I ∩ {n | µ(Sn) < q})

ρnk(I)

≥ ρnk({n | µ(Sn) < q})
ρnk(I)

>
p− δ

p(1 + ε) + δ
.

This means that

ρ({n | µ(Tn) < q}) ≥ p− δ
p(1 + ε+ δ

.

Since δ > 0 was arbitrary, this means that

ρ({n | µ(Tn) < q}) ≥ 1

1 + ε
> 1− ε.

Therefore, a, b and T satisfy the first condition of Lemma 3.11.
Now, since T is a subsequence of S, if ρ(S(A)) = 1 then

ρ(T (A)) = lim
k
ρk({j | A ∈ Snj})

= lim
k

nk
k
ρnk({i | a ∈ Si} ∩ I)

= lim
k

nk
k
ρnk(S(A) ∩ I)

= lim
k

ρnk(S(A) ∩ I)

ρnk(I)

= lim
k

ρnk(I)− ρnk(I ∩ S(A))

ρnk(I)

= 1− lim
k

ρnk(I ∩ S(A))

ρnk(I)

≥ 1− lim
k

ρnk(S(A))

ρnk(I)

= 1,

because the numerator goes to zero whereas the denominator stays (asymptot-
ically) between pε and p(1 + ε). This means that

µ({A | ρ(T (A)) = 1}) ≥ µ({A | ρ(S(A)) = 1}) > q + ε.

28

Hence b and T satisfy the second condition of Lemma 3.11. As noticed
before, this means that 1 + qε ≤ 1, a contradiction. �

Now we can show the analogue to Proposition 3.7 for dense reducibility.

Proposition 3.13 ([2, Theorem 6.4]). If A is non-densely computable and
X is weakly 4-random relative to A, then there are no X-computable dense
descriptions of A. (In particular, A 6≤nd X.)

Proof. Suppose not, and let Φ be a Turing functional for which ΦX is a dense
description of A. Define the class

F = {Y | ΦY is a dense description of A}.

Note that F is a Π0,A
4 class; indeed,

Y ∈ F ⇔ ∀k∃N∀n > N∃s
[∣∣{x < n | ΦY (x)[s]↓ = A(x)}

∣∣ > n(1− 2−k)
]

Since X ∈ F and X is weakly 4-random relative to A, it follows that µ(F) >
0. By replacing Φ if necessary, we may assume that µ(F) > 4

5 ; indeed, let σ

satisfy µ(F ∩ JσK) > 5
62−|σ| (which exists by the Lebesgue Density Theorem)

and if |τ | = |σ| replace ΦτZ with ΦσZ , except if τ = X � |σ| (this exception
guarantees X ∈ F).

As before, our goal is to show that A is densely computable, resulting in
a contradiction. We will use Theorem 3.12. For each n, define Sn = {Y |
ΦY (n)↓ = A(n)}, and S = {Sn}n∈N. Each Sn is a Σ0,A

1 class, and thus measur-
able. Furthermore, S(Y) = {n | ΦY (n)↓ = A(n)}, so, by definition, ρ(S(Y)) = 1
if and only if ΦY is a generic description of A. Hence

µ({Y | ρ(S(Y)) = 1}) > 4

5
.

Therefore, by Theorem 3.12,

ρ({n | µ(Sn) ≥ 4
5}) = 1.

We define the partial function g as follows. For g(n), find an i, an s, and a
set R of s-sized strings for which Φσ(n)↓ = i and |R| > 2s−1 (that is, more than
half of all possible s-sized strings σ agree that Φσ(n)↓ = i) and define g(n) = i.
Since such set exists for at most one i, this partial function is computable. If
µ(Sn) > 4

5 then the set R above exists and g(n) = A(n). Since this happens for
densely many n, it follows that g is a dense description of A. Thus A is densely
computable. �

Proposition 3.14. If X and Y are relatively weakly 4-random, then they form
a minimal pair for relative dense computability.

29

Proof. By Propositions 2.5 and 2.29, neither X nor Y are densely computable.
Let C be a set which is densely computable relative to both X and Y , and let
Φ be a Turing functional for which ΦY is a dense description of C.

By the Low Basis Theorem [12, Theorem 3.7.2], there exists a completion D
of ΦY which is low relative to Y . By Theorem 2.11, the setX is weakly 2-random
relative to Y ′′, so it is weakly 2-random relative to D′′, so it is weakly 4-random
relative to D. This means there are no X-computable dense descriptions of
D, which means there are no X-computable dense descriptions of C, which
contradicts the hypothesis that C is densely computable relative to C. �

4 Minimal Pairs for Generic Computability

As we’ve seen in the previous section, the Turing, coarse, and dense degrees
have measure-1 many minimal pairs. The situation for generic computability is
more complicated, and is the object of study of this and the next section.

4.1 There are no minimal pairs for relative generic com-
putability

A result from Igusa [9], which predates the results on coarse and dense de-
grees, states that, for the more restricted notion of relative generic computabil-
ity, there are actually no minimal pairs.

Theorem 4.1. If A and B are noncomputable sets, then there is a set C which
is generically computable relative to both A and B, but which is not generically
computable.

To obtain the set C, we will construct two total Turing functionals Φ and Ψ
such that, for almost all sets X and Y , the sets ΦX and ΨY are dense, but the
union ΦX ∪ΨY does not contain any dense c.e. subset.

Under these conditions, we can let C = ΦX ∪ΨY . The set X can generically
compute C by letting f(n) = 1 if ΦX(n) = 1 and leaving f(n) undefined oth-
erwise. Then f is an X-computable function with dense domain which agrees
with 1C wherever it is defined. The set Y similarly generically computes C.
And C is not generically computable, because if f agrees with 1X wherever it
is defined, then f−1(1) is a dense subset of X, which thus cannot be c.e.

Definition 4.2. A set X has a gap of size 2−e at Ji if the last 2i−e elements
of Ji are not in X; algebraically, if X ∩ [2i+1 − 2i−e, 2i+1) = ∅.

Lemma 4.3. Let X be a set such that all elements missing from it are due to
entire gaps being missing. Then X is dense if and only if for each e it only has
finitely many gaps of size e.

Proof. Under these constraints, the set X has a gap of size 2−e at Ji if and only
if di(X) ≤ 1− 2−e. The lemma then follows from Corollary 2.15. �

30

We first prove the following special case of 4.1.

Theorem 4.4. There exist total Turing functionals Φ and Ψ such that, if A
and B are not ∆0

2 sets, then ΦA ∪ΨB is dense but contains no dense c.e. set.

Proof. We will construct the total Turing functionals Φ and Ψ in stages. At
the beginning of stage s, we will have ΦX(n) and ΨY (n) defined for all n < 2s,
using only the first s bits of X and Y . (In other words, we will have defined
Φσ(n) for all n < 2s and all strings σ with |σ| = s, and similarly for Ψ.) For
definiteness, define ΦX(0) = ΨY (0) = 1 for all X,Y .

Strategy e starts acting on stage e. Its goal is to either diagonalize against
We being a subset of any ΦX ∪ ΨY , or, failing that, at least make sure We is
not a dense set. To do so, on stage s, enumerate We for s steps, and define Te,s
to be the 4-ary tree of all pairs 〈σ, τ〉 such that the first 2|σ| bits of We[s] are
contained in ΦX ∪ΨY . Formally,

Te,s =
{
〈σ, τ〉

∣∣ k := |σ| = |τ | ≤ s ∧We[s] � 2k ⊆ Φσ ∪Ψτ
}

Note that, since the first 2s bits of ΦX and ΨY were already defined, the
tree Te,s is finite and uniformly computable.

If Te,s has no members 〈σ, τ〉 with |σ| = |τ | = s, then Strategy e succeeded,
as We[s] ⊆ We and for any X,Y , the set ΦX ∪ ΨY is missing some element of
We[s].

Otherwise, let 〈σ, τ〉 be the leftmost pair of Te,s with |σ| = |τ | = s. Let σ̂
and τ̂ be the longest prefixes of σ and τ such that the pair 〈σ̂, τ̂〉 is unmarked,
mark it, and place a gap of size 2−e at Ps in both Φσ̂ and Ψτ̂ . That is, Strategy
e demands for both Φσ̂ and Ψτ̂ to have gaps of size 2−e at Ps.

(Intuitively, if Te is the union of all Te,s, we will “sacrifice” the leftmost path
of Te, in the sense that the diagonalization will fail here; but since we are placing
gaps of size 2−e, for We to be contained in ΦX ∪ΨY it must not be dense.)

We essentially let the strategies act independently. On stage s, only the first
s strategies acted, placing gaps at Ps for various values of X and Y . Define the
remaining values of ΦX(n) and ΨY (n) to be 1 (for n < 2s+1).

This defines ΦX(n) and ΨY (n) for all X and Y and all n < 2s+1, so the
construction is finished. We now prove correctness.

For each e, let Te be the union of all Te,s for all s. If, for some s, the tree
Te,s has no members of length s, then so will Te. Therefore, Te is finite, and
Strategy e stopped acting at stage s. This means that We is not contained in
ΦX ∪ΨY for any X,Y .

So suppose that Te is infinite. Note that, for a pair 〈σ, τ〉 with |σ| = |τ | < s,
if 〈σ, τ〉 /∈ Te,s, then 〈σ, τ〉 /∈ Te,t for any t > s. This implies that the tree Te is
computable. Let Xe, Ye be the two sets corresponding to the leftmost path in
Te; note that these sets are ∆0

2.
Since all prefixes 〈σ, τ〉 of (Xe, Ye) of length s are contained in Te,s, they

were chosen infinitely often by Strategy e (because infinitely often they were
the leftmost pair of Te,s), so all prefixes of Xe and Ye are marked. Therefore,

31

ΦXe ∪ΨYe has infinitely many gaps of size 2−e. But because We ⊆ ΦXe ∪ΨYe ,
by the definition of Te,s, the set We itself has infinitely many gaps of size 2−e.
Hence We is not dense. This means that, for all X and Y , the set ΦX ∪ ΨY

contains no dense c.e. subset.
Finally, we will show that if, for all e, we have X 6= Xe and Y 6= Ye, then

ΦX ∪ ΨY is dense. Let 〈σ, τ〉 be a prefix of (Xe, Ye) which is not a prefix of
(X,Y). At some stage, the pair 〈σ, τ〉 will be marked by Strategy e, and because
the pair (Xe, Ye) is the leftmost path of Te, at a further stage t, all marked pairs
will be extensions of 〈σ, τ〉. Then, for all s > t, Strategy e will never place a
gap of size 2−e at Ps in ΦX ∪ΨY .

Since A and B are not ∆0
2 and all Xe and Ye are, the set ΦX ∪ΨY is dense

(as it has only finitely many gaps of size 2−e), but it contains no dense c.e. set.�

In the proof above, we constructed two total Turing functionals Φ and Ψ
which almost always yield a dense set. The sets Xe and Ye are the only excep-
tions. The theorem works for any non-∆0

2 set because Xe and Ye themselves are
∆0

2.
The sets Xe and Ye are the leftmost path of a certain computable tree. To

prove the theorem for noncomputable ∆0
2 sets, we will choose different paths.

Proof of 4.1. The case where the noncomputable sets A and B are not ∆0
2 is

covered by Theorem 4.4, so assume A is ∆0
2 but B is not.

Modify the proof of the theorem above as follows. By the recursion theorem,
we may assume we have an index for the tree Te. Since Te is a computable
4-ary tree, by the cone-avoidant basis theorem [4, Theorem 2.19.10], there is
a ∆0

2 path Ze through Te which does not compute A, and it is possible to
uniformly compute a ∆0

2 index for Ze. Then, on stage s, Strategy e computes
Ze[s] (an approximation to Ze) and chooses 〈σ, τ〉 to be the longest prefix of
Ze[s] which is contained in Te,s, instead of taking the leftmost path. The rest
of the construction (marking prefixes of 〈σ, τ〉 and placing gaps) is the same.

By the same arguments as before, if X 6= Xe and Y 6= Ye, then ΦX ∪ΨY is
dense, and for all X and Y the set ΦX ∪ΨY contains no dense c.e. subset.

But here, if Te is infinite, we will have Ze = (Xe, Ye), so neither Xe nor
Ye compute A. Therefore, we have A 6= Xe for all e. Since B 6= Ye for all e,
because B is not ∆0

2, the set ΦA ∪ΨY will be dense.
Finally, if A and B are both ∆0

2, we can let Ze 6≥T A⊕B. The argument is
the same. �

4.2 There are minimal pairs for generic reducibility

We saw in the last section that the notion of relative generic computability
is “broken enough” that it has no minimal pairs. It turns out that, for generic
reducibility, we do have minimal pairs.

Theorem 4.5 ([5], see also [6]). There exists a minimal pair for nonuniform
generic reducibility. More explicitly, there exists two sets A0 and A1 which are

32

not generically computable, but if B is nonuniformly generically reducible to
both A0 and A1, then B is generically computable.

We fix a computable enumeration {We}e∈N of the enumeration operators.

Proof. We will construct four ∆0
2 objects: the sets A0 and A1, and the generic

descriptions f0 and f1 of A0 and A1, respectively. If We1 and We2 are two
enumeration operators, the functions f0 and f1 will try to diagonalize against
W f0
e0 and W f1

e1 being generic descriptions of the same set; or, failing that, making
sure that this common set is generically computable in the first place.

For an enumeration operator We, we denote by W fi
e [s] the set of all k such

that (F, k) is enumerated at the sth stage of computation of We, for some F
contained in the sth stage of fi.

The functions fi will be 1 wherever defined; this will simplify the argument.
First, we define fi(i) = 1 and leave fi(1− i) undefined for i = 0, 1.

Claim 4.6. Under these conditions, if there are indices e0, e1 such that W f0
e0 and

W f1
e1 are generic descriptions of the same set B, then there exists an index e

such that W f0
e and W f1

e are also generic descriptions of the set B.

This allows us to consider only one enumeration operator each time, simpli-
fying the notation.

Proof. Essentially, let W f behave like We0 if f(0) = 1, behave like We1 if
f(1) = 1, and not do anything otherwise.

Formally, let

W =
{

(F ∪ {(0, 1)}, k) | (0, 1) /∈ F ∧ (F, k) ∈We0

}
∪
{

(F ∪ {(1, 1)}, k) | (1, 1) /∈ F ∧ (F, k) ∈We1

}
.

(Recall that, for enumeration reductions, the sets W fi
ei must be graphs of char-

acteristic functions, so the elements x are pairs of numbers.) Then W f0 = W f0
e0

and W f1 = W f1
e1 . �

Continuing the proof, let Re be as in Example 2.22. To make sure that
A0 and A1 are not generically computable, we will satisfy the following set of
requirements:

Pe,i : if dom Φe ∩Re is infinite, then Φe(n) 6= Ai(n) for some n ∈ Re

and

Ne : ∀x∀s
[

if x ∈W f0
e [s] ∩W f1

e [s], then either x ∈W f0
e or x ∈W f1

e

]
The requirements Pe,i make sure that Ai is not generically computable; if

these requirements are satisfied, then either Φi(n) 6= Ai(n) for some n, so that
Φe is not a generic description of Ai, or dom Φe ∩Re is finite, so that Φe is not
a generic description of anything because dom Φe is not dense.

33

The requirements Ne are the fallback if we fail to diagonalize against W fi
e .

If W f0
e and W f1

e both describe the same set B, define h(x) = 1 if x ∈ W f0
e [s] ∩

W f1
e [s] for some s, and leave h undefined otherwise. The function h is partial

computable, and by requirement Ne, if h(x) = 1 then either x ∈ W f0
e or x ∈

W f1
e . So h = W f0

e ∪W f1
e , which shows that h itself is a generic description of

B; hence, B is generically computable.
In isolation, satisfying the requirement Pe,i is easy: we just have to compute

successive approximations Φe[s] to Φe, and if it converges for some n ∈ Re, we
mark fi(n) as undefined and define Ai(n) = 1 − Φe(n). (Recall that fi is 1
where it is defined.) As long as at least one such n is not restricted by higher
priority requirements, the requirement Pe,i will be satisfied.

The difficult part is not conflicting with the requirements Ne. Intuitively,
Ne says that, if at some stage s we realize that W f0

e (x)[s] and W f1
e (x)[s] agree

for some x, then we must commit to preserving this computation in at least one
of the two sides.

The fact that the functions fi are 1 wherever defined makes things easier.
In order to preserve the computation W fi

e (x)[s], let u be the use of this com-
putation; that is, x ∈ W fi

e [s] if and only if (F, x) ∈ We[s] for some F ⊆ fi; let
u = maxF . Then restrict the values of fi(n) for n ≤ u from changing. (Note
that we only need to preserve the computation in one of the sides.)

But this also allows us to “restore” computation states: if this computation is
violated at a further step t, we can restore the value W fi

e (x)[s] by simply making
F a subset of fi[t] again. There will never be a conflict of values because fi is 1
wherever defined. The only issue is that this might re-define the value of fi(n)
for some n, injuring some Pe,i.

So, in order to satisfy all requirements, we let the Pe,i issue restraints, rather
than the Ne. Specifically, each Pe,i will try to choose some n ∈ Re to serve as
a witness to Ai 6= Φe, and it will make fi(n) undefined in the process. If Pe,i
is allowed to make fi(n) undefined (that is, it does not violate any restraints),
it issues the restraint that no lower-priority requirement may further undefine

any f1−i(k) for k < s. This guarantees that all computations W
f1−i
e (k)[s] for

k < s will be preserved, even if the corresponding computations W fi
e (k)[s] are

not.
If Pe,i is injured by a higher-priority requirement, then we define fi(n) = 1

again, which restores the computations as outlined above.
Now, if Pe,i is impeded to act, then we must try to satisfy it by marking

fi(n) as undefined for some larger n. But this eventually will be the case, as if
u is the largest use ever preserved by any higher-priority requirement, then Pe,i
just needs to undefine some n > u.

Finally, neither A0 nor A1 is generically computable, and if B is nonuni-
formly generically reducible to both A0 and A1, then there are indices e0 and
e1 such that W f0

e0 and W f1
e1 are generic descriptions of B, so by the claim there

is a single index e such that W f0
e and W f1

e are generic descriptions of B, and
thus by the requirement Ne, the set B is generically computable. �

34

5 There are only a few minimal pairs for generic
reducibility

In the proof of Theorem 4.4, we constructed two total Turing functionals Φ
and Ψ, and two collection of ∆0

2 sets Xe and Ye such that, if X 6= Xe for all e
and Y 6= Ye for all e, then ΦX ∪ΨY is a dense set without dense c.e. subsets. In
this section we will be plugging in generic descriptions in Φ and Ψ, to provide
a measure-theoretic quantification of Hirschfeldt’s Theorem 4.5.

Given a partial function f : N→ {0, 1}, write X < f if f can be extended to
the characteristic function of X (that is, f(x) = 0 implies x /∈ X and f(x) = 1

implies x ∈ X). For any Turing functional Φ define WΦ by Wf
Φ(n) = 1 if

ΦX(n) = 1 for all X < f , and leave Wf
Φ(n) undefined otherwise. For example,

if f is the characteristic function of X, then Wf
Φ is just ΦX but with the zeros

replaced with “undefined”.
We want to use WΦ and WΨ as enumeration operators, where Φ and Ψ are

the Turing functionals defined in the proofs of Theorems 4.1 and 4.4.

Proposition 5.1. If Φ is a Turing functional, then WΦ is an enumeration
operator.

Proof. This follows by compactness. Intuitively, to compute Wf
Φ(n), we verify

all strings σ which agree with the partial function f (that is, if f(s)↓ and s < |σ|
then f(s) = σ(s)) whether Φσ(n) = 1. If ΦX(n) = 1 for all X < f , then for
some length t, all strings σ agreeing with f with length t will satisfy Φσ(n)↓ = 1,

so we enumerate Wf
Φ(n) = 1 at this moment. (If no such t exists, then for each

t there exists a string σ of length t agreeing with f for which ¬(Φσ(n)↓ = 1).
Hence by the Weak König’s Lemma [12, Theorem 8.3.1] there exists some X < f
for which ¬(ΦX(n)↓ = 1), so we are correct in not enumerating anything.)

Formally, to enumerate a pair (F, k) into WΦ, we first must have k = 1, and
the finite set F be the graph of a partial {0, 1}-valued function h. (Note that
h has finite domain.) Then compute Φσ(n)[|σ|] for all strings σ which agree
with h. If for some length t, all such σ of length t satisfy Φσ(n)[|σ|]↓ = 1 then
enumerate (F, k). This finishes the construction.

By construction, if Wf
Φ(n)↓ = 1, then (graphh, 1) ∈ Wf

Φ for some finite
graphh ⊆ graph f , so we have ΦX(n)↓ = 1 for all X < h, and hence ΦX(n)↓ = 1
for all X < f . Conversely, if ΦX(n)↓ = 1 for all X <, by compactness [12,
Theorem 8.3.1] there exists a t for which these computations of ΦX(n) use only
the first t bits of X, and thus the construction above enumerates (F, 1) intoWΦ

where F is the graph of f � t. �

In the proof of Theorem 4.4, in order to diagonalize against dense c.e. sets,
the sets Xe and Ye were “sacrificed” in the sense that ΦXe is not dense, but ΦX

is if X 6= Xe for all e. We have a similar result here.

Proposition 5.2. If f 6= Xe for all e (i.e. for all e there exists some n where

f(n) ↓6= Xe(n)), then Wf
Φ has density 1.

35

This implies that Wf
Φ is a generic description of all sets containing Wf

Φ.

Proof. Consider strategy e. If Te is finite, then this strategy places only finitely
many gaps, so assume that Te is infinite and let n satisfy f(n) 6= Xe(n).

At some stage t, the first n+1 bits of Xe will converge (thinking of (Xe,s, Ye,s)
as being the string pair marked by the eth strategy on stage s). Hence beyond
stage t, strategy e will only place gaps in ΦX for X 6< f . Therefore, assuming
by induction on e that, on stage t, all strategies e′ < e also stopped placing gaps
on ΦX for X 6< f , this means that for any s > t, the density of Φf in Ps is at
least 1− 2−e.

By induction, Wf
Φ has density 1. �

Call two sets A and X coarsely similar if the symmetric difference A4X has
density zero. If A and X are not coarsely similar, then no generic description
of A is also a generic description of X.

Proposition 5.3. Let A be a set which is not coarsely similar to any Xe and
B a set which is not coarsely similar to any Ye. Then (A,B) do not form a
minimal pair for the uniform generic degrees.

Proof. Let C = ΦA ∪ ΨB . The set C has density 1, and by the proof of The-
orem 4.4 it contains no density-1 c.e. subset. Thus, C is not generically com-
putable.

However, for any partial f 4 A with dense domain, we have Wf
Φ ⊆ C, and

since A is not coarsely similar to any Xe we know that f 6= Xe for all e. By the
previous proposition Wf

Φ is dense, being thus a generic description of C.
This means that C is generically reducible to A, and analogously C is gener-

ically reducible to B. �

Two sets which are not generically equivalent may still have a common
generic description; for example, if C is any density-1 non-generically com-
putable set then C and N can both be generically described by the function
which is 1 in C and undefined otherwise. Hence not being generically equiva-
lent does not imply not being coarsely similar, and thus the above result cannot
be used to show that in any minimal pair for the generic degrees at least one
side contains a ∆0

2 set, for example.
But using randomness we can get a measure-theoretic sense of how rare

minimal pairs are.

Theorem 5.4. If A and B are both 2-random, then (A,B) does not form a
minimal pair for the generic degrees.

This means that the collection of pairs (A,B) which form a minimal pair
for the generic degrees has measure zero. This contrasts with the situation for
Turing degrees (Theorem 3.4).

Proof. If A is 2-random, then it is 1-random relative to ∅′, so it is 1-random
relative to Xe. By the relativized form of Proposition 2.5, the set A is Church-
stochastic with respect to Xe. This means that A4Xe has positive upper

36

density, otherwise A would be coarsely computable relative to Xe, contradicting
Proposition 2.24. Similarly, B is not coarsely similar to any Ye.

Therefore, by Proposition 5.3, the pair (A,B) is not a minimal pair for the
generic degrees. �

6 Functions and Sets

A common theme in both computability and complexity theory is to only
talk about yes/no questions, rather than “function questions”. For example, the
Satisfiability Problem SAT in complexity theory asks whether a Boolean formula
has a satisfying assignment or not, whereas in real-world application we would
be more interested in finding such an assignment. The reasoning is that this
makes the theory more elegant and comes at no cost to generality. For example,
we can find a satisfying assignment to a formula with n variables in polynomial
time by performing O(n) queries to an oracle for SAT, so the set problem and
the function problem are in the same polynomial class of complexity.

Surprisingly, for the four asymptotic notions of computability studied in this
paper, it is still an open problem whether functions are equivalent to sets. In this
section we take a small step towards answering this question by showing that
a certain class of enumeration operators is unable to show that every uniform
degree contains a set.

Formally, we define coarse, dense, generic, and effective generic reducibilities
and degrees for functions in the same way we define for sets, mutatis mutandis.
The question can then be stated as follows.

Open Problem 6.1. For each of the eight reducibilities (the uniform and non-
uniform versions of dense reducibility, generic reducibility, coarse reducibility,
and effective dense reducibility), defined for functions, is it true that every degree
contains the indicator function of a set?

Every nonuniform degree is a union of uniform degrees, so if the answer to
this question is negative, it should be easier to prove so for uniform reducibility.
We may simplify the question further, and ask whether there is a single enu-
meration operator W such that, for all functions f , the set W f is the indicator
function of a set and f and W f have the same uniform generic degree. (In a
sense, this is a stronger uniformity condition.)

We will show that the the answer is negative for the following restricted class
of operators.

Definition 6.2. For the purposes of this section, define a simple encoding to
be a function E : N → 2N such that E(x) and E(y) are disjoint if x 6= y. For
any partial function f : N→ N, define Ef by

Ef =
⋃

n∈dom f

E(〈n, f(n)〉).

37

For example, if we let E(x) = {x}, then Ef is the graph of f . The func-

tions R and R̃ can also be thought of simple encodings; for example, if we set
E(〈n, 1〉) = Rn and E(x) = ∅ otherwise, then E1A = R(A) for all sets A.

We have the following.

Theorem 6.3. For each simple encoding E there exists a function f such that
f and the indicator function of Ef are not in the same nonuniform coarse,
generic, dense, or effectively dense degrees.

Therefore, simple encodings cannot transform a function into a set whilst
preserving its degree.

Proof. We will analyze 3 separate cases, according to how the densities of E(x)
behaves asymptotically.

Case 1: There are infinitely many n for which ρ(E(〈n, k〉)) > 0 for some k.
Let n0 < n1 < · · · be an infinite sequence of these numbers n, with cor-

responding witnesses ki. We may assume that the set N = {n0, n1, . . . } has
density 0, as we can replace N with a sparse subset. For each α : N → {0, 1}
define fα : N → N by setting fα(ni) = ki + α(i) for each ni and fα(m) = 0 if
m /∈ N . We will show that fα and Efα are not equivalent for some α.

If α 6= β, say α(i) 6= β(i), then Efα 4Efβ contains the set E(〈ni, ki〉), which
has positive upper density, and thus Efα4Efβ itself has positive upper density.
This means that, for each Turing machine e, the function ΦNe can be a dense
description of at most one of the sets Efα .

There are uncountably many such Efα , but only countably many N -com-
putable dense descriptions, so for at least some α the set Efα is not densely
computable relative to N . However, because N has density 0, the function fα
itself is effectively densely computable relative to N . This means that even rel-
ative to N , the nonuniform coarse, dense, effectively dense, and generic degrees
of the function fα do not contain the indicator function of the set Efα .

Case 2: There exists some ε > 0 such that, for infinitely many n, there
exists some k and j where ρj(E(〈n, k〉)) > ε.4

Again, let n0 < n1 < · · · be an infinite sequence of such n, with ki and ji
being the corresponding witnesses, and assume that N = {n0, n1, . . . } is sparse.
For α : N → {0, 1} define fα as before. Now, suppose that α and β differ at
infinitely many places; we claim that Efα4Efβ has positive upper density.

Indeed, the set Efα 4Efβ contains infinitely many sets E(〈ni, ki〉), each
satisfying ρji(E(〈ni, ki〉)) > ε for some integer ki. It is easy to see that if
ρji(E(〈ni, ki〉)) > 0 then the set E(〈ni, ki〉) must contain some element smaller
than ji. Since all E(〈ni, ki〉) are disjoint, this means that each ji may only be
repeated finitely many times (that is, for each j, the set {i | ji = j} is finite).
Hence there are infinitely many distinct ji such that ρjiE(〈ni, ki〉) > ε in any
infinite subcollection of the ji. In turn, this means that ρji(Efα4Efβ) > ε
for infinitely many distinct ji, which shows that the set Efα 4Efβ has positive
upper density.

4There is overlap between Case 1 and Case 2, but this is neither harmful nor relevant.

38

Since there are uncountably many α which differ in infinitely many places,
there are uncountably many Efα whose pairwise symmetric differences all have
positive upper density. Therefore, the same conclusion as in Case 1 applies.

Case 3: Neither Case 1 nor Case 2 applies.
Because we are not in Case 1, there exists some N such that ρ(E(〈n, k〉)) = 0

for all k and all n ≥ N .
If n ≥ N , define εn by

εn = sup
k,j∈N

ρj(E(〈n, k〉)).

Because we are not in Case 2, we have limn→∞ εn = 0.
Construct the sequences kN,i, kN+1,i, kN+2,i, . . . for i = 0, 1 as follows. First,

let kN,0 6= kN,1 be arbitrary. Assume we defined kN,i, kN+1,i, . . . , kn−1,i for
i = 0, 1, and define

An =
⋃

N≤`<n
i=0,1

E(〈`, k`,i〉).

Because An is a union of finitely many E(〈`, k〉) for ` ≥ N , all of which have
density 0, we have that ρ(An) = 0. Therefore, there is some positive Mn such
that ρj(An) < εn for all j > Mn. Choose kn,0 and kn,1 to be any two distinct
integers such that neither E(〈n, kn,0〉) nor E(〈n, kn,1〉) contains elements smaller
than Mn or N ; such kn,i exist because the E(〈n, k〉) are all disjoint. This implies
that, if j > Mn, then

ρj(An+1) = ρj(An) + ρj(E(〈n, kn,0〉)) + ρj(E(〈n, kn,1〉)) < 3εn.

Define A =
⋃
nAn. We may assume that the numbers Mn are increasing. If

Mn ≤ j < Mn+1, then
ρj(A) = ρj(An+1) ≤ 3εn.

This shows that ρ(A) = 0.
Now, finally, given α : N → N, define fα(n) = 0 if n < N and fα(n) =

kn,α(n−N) otherwise. For any two α, β, we have Efα4Efβ ⊆ A, so all of the
Efα are effectively densely computable relative to A. If α and β disagree on a
set with positive upper density, then fα and fβ cannot be A-densely computed
by the same Turing machine. Since there is an uncountable family of functions
α which pairwisely disagree on a set with positive upper density, there are
functions α such that fα is not A-densely computable, which in turn mean that
there are functions α whose the nonuniform coarse, dense, effectively dense, and
generic degrees do not contain the indicator function of the set Efα . �

7 Open Problems

As mention in Section 6, it is not known whether sets are equivalent to
functions. We restate this question here, for completeness.

39

Open Problem 6.1. For each of the eight reducibilities (the uniform and non-
uniform versions of dense reducibility, generic reducibility, coarse reducibility,
and effective dense reducibility), defined for functions, is it true that every degree
contains the indicator function of a set?

The statement of Theorem 5.4 raises the following question.

Open Problem 7.1. Theorem 5.4 requires the sets to be 2-random. Can this
condition be improved to 1-random?

In Igusa’s proof of Theorem 4.1, we could have replaced “undefined” with �
throughout, resulting in the theorem that there are no minimal pairs for relative
effectively dense computability. Similarly, the same modifications applied to
Theorem 5.4 yields the result that if A and B are 2-random then A and B do
not form a minimal pair for effectively dense reducibility. However, the existence
of minimal pairs is still open.

Open Problem 7.2. Do there exists minimal pairs for the effective dense de-
grees (both uniform and nonuniform)?

In Section 2.4, we provided examples of sets which are densely computable
but neither coarsely nor generically computable (Example 2.26), which are
coarsely computable but not densely computable (Example 2.22) and vice-versa
(Example 2.23), and which are coarsely and generically computable but not ef-
fectively densely computable (Example 2.28). These non-implications between
these asymptotic notions of computability entails non-implications in the as-
sociated reducibilities. For example, if A is the set from Example 2.26 then
A ≤ud ∅, but A 6≤nc ∅ and A 6≤ng ∅. However, the other directions are still
open.

Open Problem 7.3. Does A ≤ned B implies A ≤nc B or A ≤ng B? Does
A ≤nc B and A ≤ng B implies A ≤nd B? What about uniform reducibilities?

References

[1] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley Series in
Discrete Mathematics and Optimization. Wiley, 2016.

[2] Eric P. Astor, Denis R. Hirschfeldt, and Carl G. Jockusch. Dense com-
putability, upper cones, and minimal pairs. Computability, 8(2):155–177,
June 2019. doi:10.3233/COM-180231.

[3] Warwick de Launey and Daniel M. Gordon. On the density of the set of
known Hadamard orders. Cryptography and Communications, 2(2):233–
246, May 2010. doi:10.1007/s12095-010-0028-9.

[4] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and
Complexity. Springer New York, 2010. doi:10.1007/978-0-387-68441-3.

40

https://doi.org/10.3233/COM-180231
https://doi.org/10.1007/s12095-010-0028-9
https://doi.org/10.1007/978-0-387-68441-3

[5] Denis R. Hirschfeldt. A minimal pair in the generic degrees. The Journal
of Symbolic Logic, 85(1):531–537, 2020. doi:10.1017/jsl.2019.77.

[6] Denis R. Hirschfeldt. Minimal pairs in the generic degrees, 2020. URL:
https://www.youtube.com/watch?v=B0mLss1jbo8.

[7] Denis R. Hirschfeldt, Carl G. Jockusch, Rutger Kuyper, and Paul E.
Schupp. Coarse reducibility and algorithmic randomness. The Journal
of Symbolic Logic, 81(3):1028–1046, 2016. doi:10.1017/jsl.2015.70.

[8] Denis R. Hirschfeldt, Carl G. Jockusch, Timothy H. McNicholl, and Paul E.
Schupp. Asymptotic density and the coarse computability bound. Com-
putability, 5(1):13–27, February 2016. doi:10.3233/COM-150035.

[9] Gregory Igusa. Nonexistence of minimal pairs for generic computability.
The Journal of Symbolic Logic, 78(2):511–522, 2013. doi:10.2178/jsl.

7802090.

[10] Carl G. Jockusch and Paul E. Schupp. Asymptotic Density and the Theory
of Computability: A Partial Survey, pages 501–520. Springer International
Publishing, Cham, 2017. doi:10.1007/978-3-319-50062-1_30.

[11] Carl G. Jockusch Jr and Paul E. Schupp. Generic computability, Tur-
ing degrees, and asymptotic density. Journal of the London Mathematical
Society, 85(2):472–490, 2012. doi:10.1112/jlms/jdr051.

[12] Robert Irving Soare. Turing Computability: Theory and Applications. The-
ory and Applications of Computability. Springer-Verlag Berlin Heidelberg,
2016.

41

https://doi.org/10.1017/jsl.2019.77
https://www.youtube.com/watch?v=B0mLss1jbo8
https://doi.org/10.1017/jsl.2015.70
https://doi.org/10.3233/COM-150035
https://doi.org/10.2178/jsl.7802090
https://doi.org/10.2178/jsl.7802090
https://doi.org/10.1007/978-3-319-50062-1_30
https://doi.org/10.1112/jlms/jdr051

	Introduction
	Structure and Contributions of this paper
	Notation

	Background
	Tools from Measure Theory
	Notions of Randomness
	Density of Sets
	Asymptotic Notions of Computability
	Generic Computability
	Coarse Computability
	Dense and Effectively Dense Computability

	Enumeration Operators and Reducibilities
	Dense and Generic Reducibility
	Coarse and Effectively Dense Reducibilities

	Minimal Pairs and Randomness
	Minimal Pairs in the Turing Degrees
	Minimal Pairs in the Coarse Degrees
	Minimal Pairs in the Dense Degrees

	Minimal Pairs for Generic Computability
	There are no minimal pairs for relative generic computability
	There are minimal pairs for generic reducibility

	There are only a few minimal pairs for generic reducibility
	Functions and Sets
	Open Problems

