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ABSTRACT

In this dissertation, we investigate file collections in personal cloud storage and design semi-

automated tools to support file management in that setting. We do so in three main in-

vestigations. In the first, we examine research participants’ perceptions of file pairs in their

Google Drive accounts. In the second, we conduct two online user studies asking participants

to organize their Google Drive accounts in order to investigate real-time file management

and evaluate the tool we developed to assist file management, KondoCloud. In the last, we

proposed and evaluated a new format for summarizing groups of file management recom-

mendations. Throughout our investigations, we find that developing more complex support

for file management is generally feasible. We conclude by discussing the implications for

future designs of file management tools.
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CHAPTER 1

INTRODUCTION

The setting of personal cloud storage (e.g., Google Drive, Dropbox) is a fertile ground for

investigations into personal information management (PIM). File collections that were previ-

ously challenging to study are now more readily available. While some software is available to

study file collections on local storage at scale (Dinneen et al. [2016]), recruiting participants

can be challenging. As such, many investigations can only be carried out in special circum-

stances, such as with corporate access to file repositories (Agrawal et al. [2007]). In cloud

storage, though, participants are able to more easily share access to their file collections,

opening a range of possibilities for research.

This is especially fruitful because cloud storage further offers challenges both familiar

and novel. For example, difficulties in organizing files (Malone [1983]) and retrieving files

(Boardman and Sasse [2004], Whittaker et al. [2010], Bergman et al. [2012]) persist in the

cloud, but challenges such as managing shared files (Khan et al. [2018], Voida et al. [2013],

Massey et al. [2014a]) and deleting useless or privacy-sensitive files (Khan et al. [2021], Clark

et al. [2015]) are new. Techniques drawn from tools built for local storage (Liu et al. [2018],

Sinha and Basu [2012], Bao and Dietterich [2011]) can be tested in new environments, while

tools built for the cloud to help retrieve files (Tata et al. [2017], Xu et al. [2020]) or save

files to preferable locations (Bergman et al. [2019]) may offer new modes of interaction to

investigate. We compare against prior work further in Chapter 2.

This dissertation focuses on investigating file collections in personal cloud storage, and

designing semi-automated tools to support file management in that arena. While prior work

has investigated user perceptions of and behavior in cloud storage (Massey et al. [2014a],

Voida et al. [2013]), it has minimally explored the file collections themselves. Given that the

file collections in cloud storage may differ from those in local storage, understanding them

prior to developing tools for the cloud is necessary. Here, we focus in particular on participant
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perceptions of similarity between files in cloud storage, and how this may connect with user

desires to manage files in similar ways (Chapter 3). We examined this in the first of four

total user studies we conducted, the Investigation Study, where we recruited 50 participants

to report on their perceptions of file pairs in their Google Drive accounts. We found that

participants had many files they perceived as similar located in very different parts of their

file hierarchy. Further, they often wished to manage these files in similar ways.

With this understanding, we developed and evaluated a tool for personal cloud storage,

KondoCloud, that, like celebrity organizer Marie Kondo, helps to reduce messiness (Chap-

ter 4). It does so by offering recommendations of file movement and deletion actions that

users may wish to take in their file collection, based on actions they have taken on similar

files. Given that such file management actions are not so easily reversible, we avoid the fully-

automated method of taking these actions on a user’s behalf without asking first. This tool

improves on the state of the art as the first tool to fully support file management recommen-

dations beyond retrieval, allowing users to iteratively improve the underlying disorganization

in their file collection. We evaluated this tool in an online user study, finding that nearly half

of participants using the full KondoCloud interface accepted a non-trivial portion (> 10%)

of offered recommendations, and a few accepted nearly all of them (> 90%).

To improve on drawbacks identified in KondoCloud, we then proposed methods to suc-

cinctly summarize groups of file management recommendations (Chapter 5). Though prior

work has sought to improve explanations of single recommendations in this setting (Xu

et al. [2020], Gedikli et al. [2014]), it has not generalized this to multiple recommendations.

Because presenting groups of related recommendations individually can mask context and

burden users, developing summaries to collapse groups of recommendations into a single rec-

ommendation is a potential benefit for future systems. We evaluated the structure of these

summaries in a within-subjects online user study, and found that these summaries displayed

a number of beneficial properties when compared to baselines.

2



To conclude this dissertation, we discuss in Chapter 6 what these lessons mean for future

work, and how the state of the art might be further improved.
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CHAPTER 2

RELATED WORK

2.1 File Organization Behavior

Researchers first studied file organization in offices Lansdale [1988], Malone [1983], Kwasnik

[1989], later analyzing digital analogues Barreau [1995b], Barreau and Nardi [1995], Board-

man and Sasse [2004]. These studies developed several frameworks that describe how humans

categorize documents and files. Malone [1983] and Kwasnik [1989] asked eight and ten par-

ticipants, respectively, to describe the organization of their office spaces, and Barreau [1995b]

performed a similar study on seven managers’ digital file collections. Kwasnik and Barreau

used these studies to develop frameworks describing how humans classify documents and

files, and Bergman et al., in two separate studies (Bergman et al. [2003, 2008a]) investigated

whether such a framework (the “User-Subjective Approach”) could drive the development

of tools for managing file collections.

Beyond frameworks for categorization, researchers have previously investigated high-level

views of the actions people take when organizing information. Researchers have described

the “foraging”-like behavior that characterizes information acquisition (Pirolli [2007], Belkin

[1980], Kuhlthau [1991]), and the subsequent “keeping” (Jones et al. [2002]) and “curation”

behaviors (Whittaker [2011], Oh [2012]) involved in retaining files for later retrieval (Cock-

burn and McKenzie [2001], Aula et al. [2005], Alrashed et al. [2018]). Researchers have also

studied why later retrieval is difficult (Whittaker et al. [2010], Oh and Belkin [2014], Board-

man et al. [2003], Mackenzie et al. [2019]), and how the choice of operating system (Bergman

et al. [2012], Dinneen and Frissen [2020]) and organization of files (Bergman et al. [2010])

influence this. Several studies have also looked more directly at file interaction in personal

cloud storage. Jahanbakhsh et al. [2020] investigated users’ recognition and interest in files

based on how recently a file was last accessed, as well as the richness of prior interactions,

4



and Xu et al. [2020] also explored the potential for recommender systems in cloud storage

based on the type of interaction users previously had with the files. Our work contrasts with

these two by offering recommendations at the time that an organizational action is taken,

instead of at the start of a new organizational session.

2.2 Organization-Adjacent Tools

Researchers have prototyped a number of partial to fully automated tools to help users

handle disorganized files and emails. Some tools assisted with disorganization by attempting

to assist with non-navigation based file retrieval. These tools fall into two domains: those

that passively assist users, and those that required active intervention. In the former domain,

several tools have provided automatic shortcuts to files or emails of interest (Liu et al. [2018],

Bao et al. [2006], Bao and Dietterich [2011]) or highlighted content likely to be accessed

(Fitchett et al. [2014], Sen et al. [2021], Tran et al. [2016], Lee and Bederson [2003], Rhodes

and Starner). These tools were either based on simple heuristics, or activity monitoring

(Voida and Mynatt [2009]). The tools developed on this dissertation improve on these by

offering recommendations beyond file retrieval, and by using more file and metadata based

features. Other tools that passively assist users are interfaces that eschew typical folder-based

organization. Such examples are Lifestreams’ chronological display of information artifacts

(Freeman and Gelernter [1996]), Confluence’s time-based contextual retrieval (Gyllstrom

[2009]), and “concept maps” that organize information using a hierarchy of topics (Yang

et al. [2012]). In contrast to this passive assistance, systems like Haystack (Quan et al.

[2003]), Stuff I’ve Seen (Dumais et al. [2003]), and various Semantic Desktop tools (Schröder

et al. [2019], Chirita et al. [2006], Sauermann et al. [2006]) enhance an interface’s search

capability to improve re-finding. This requires an active effort on the part of the user: later

work has identified the potential drawback of such methods as requiring additional cognitive

overhead (Teevan et al. [2004], Bergman et al. [2008b, 2013c]).
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Other tools aided organization behaviors directly. In the domain of file management,

Bergman et al. [2009] developed GrayArea, which provides a “deletion-lite” option. In the

same context of cloud storage we investigate, Bergman et al. developed a tool that nudged

participants to save files in their cloud storage to a suggested folder (Bergman et al. [2019]),

similar to a tool in local storage investigated by Sinha and Basu [2012]. Researchers have also

built tools to aid in the organization of other types of collections. For example, Segal and

Kephart [1999]’s MailCat suggests appropriate folders for an email. Other tools group emails

by topic (Cselle et al. [2007]) or by additional features (Tang et al. [2008]). In the context of

collections of bookmarks, information about bookmarks’ social context can aid organization

and discovery (Abrams et al. [1998], Millen et al. [2007, 2006]). None of these tools, however,

offer either ongoing organizational support beyond the first “save” action, nor do they help

with extant disorganization. More similar to the work in this dissertation is FileWeaver, a

tool that automatically tracks and propagates dependencies between files (e.g., capturing the

relationship between a script and the files that it generated) in an enhanced file management

interface (Gori et al. [2020]). While this tool performs some semi-automated organization,

it focuses solely on files with dependencies, whereas the tools in this dissertation make more

general recommendations.

2.3 Alternatives to Folder-based Organizing

While occasional claims are made to the contrary (Mason and Seltzer [2019], Whitham

and Cruickshank [2017]), folder-based organization remains the most common method of

interacting with file collections. However, disadvantages, such as the lack of multiple cate-

gorization (Albadri et al. [2016], Sajedi et al. [2012]), have led to some alternative interface

types that this dissertation draws lessons from. For example, while information re-finding

could rely purely on search features, prior studies have found that users prefer standard

file-management interfaces for navigation and re-finding (Bergman et al. [2008b, 2013a]).
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Multiple researchers (Teevan et al. [2004], Bergman et al. [2008b, 2013c]) conducted studies

with semi-structured interviews, longitudinal measurement, and in-lab studies that identi-

fied a few reasons why navigation is preferred over search. They found that search has a

higher cognitive burden, and forming a search query requires a user to recall some context

for the file without any aid. Teevan et al. [2004] found that users navigate through file hi-

erarchies using additional context gained at each step of navigation. We do not investigate

search-related behavior, but this knowledge of users’ navigation through file hierarchies in-

forms our investigation of file hierarchy structure. Related to search, Civan et al. [2008] and

Bergman et al. [2013b] found that relying on file tags for information retrieval posed similar

difficulties to search because tagging leaves files “placeless”. The tools in this dissertation

correspondingly offer users spatial context about files whenever relevant.

2.4 Scale & Structure of File Hierarchies

There are many prior investigations of file collections’ scale and structure (Dinneen and

Julien [2019], Oh [2017]). Researchers recruited anywhere from a handful (3) to many thou-

sands (∼ 60, 000) participants from universities, single companies, and the general population

(Henderson and Srinivasan [2009], Hardof-Jaffe et al. [2009], Agrawal et al. [2007], Zhang

and Hu [2014], Dinneen et al. [2019]). The studied file collections, though, were almost all

from local storage. Hardof-Jaffe et al. [2009], however, studied online storage of 2,081 under-

graduate students at Tel-Aviv university. Our descriptions of file collection scale differ from

this because the samples in each of our studies are drawn from crowdworkers on commercial

cloud storage, which is potentially a population more representative of users we wish to

support with our tools. Many works also taxonomize the structure of file hierarchies. We

compare between prior works and our own in Table 2.1. Like with models of file categoriza-

tion, the overlap is not perfect. Some taxonomies, such as the one from Oh [2017], focus on

participant behavior, while others, such as Hardof-Jaffe et al. [2009]’s focus on the structure
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Ours Malone [1983] Boardman and Sasse [2004] Hardof-Jaffe et al. [2009] Henderson and Srinivasan [2009] Vitale et al. [2018] Oh [2017]

Flat Pilers Piling / One-Folder Filing Pilers Hoarding Fuzzy
Extensive Filers / Occasional Filers Big Folders Filing Filers Flexible

Deep Filers Total Filers Small Folders Filing Structurers Minimalist Rigid

Table 2.1: A comparison of file hierarchy scale / structure taxonomies

of the file hierarchy itself. Our own taxonomy, introduced in Section 3.4, concentrates on

the latter, and aligns well with prior work.

2.5 Interfaces for Information Management

This dissertation also draws lessons from work in adaptive interfaces, given this sub-field’s

relevance to our design of KondoCloud (Chapter 4). Greenberg and Witten first identified

the potential for interfaces that rearrange in response to user activity (Greenberg and Witten

[1985]). Sears and Shneiderman [1994] expanded on this approach by limiting the reordering

to only occur above a “split” in the menu. KondoCloud consists of a non-adaptive com-

ponent that resembles standard file browsers, augmented by recommendations that change

in response to user activity. Gajos et al. [2006] studied this broad kind of “split interface”

approach in a 26-participant lab study. Their participants were more satisfied with the split

interface than alternatives, which the authors attributed to the interface’s spatial stability,

the property that menu items have a base location where they can always be located. Kon-

doCloud shares this trait. Other user studies identified predictability, accuracy, and feature

awareness as important traits in user satisfaction with adaptive interfaces (Gajos et al. [2008],

Findlater and McGrenere [2010]). KondoCloud abides by these principles.

2.6 Set Summarization

Similar to how we summarize sets of recommendations in Chapter 5, researchers have sum-

marized sets of items in numerous ways. Some techniques summarize with a representative

subset of the items, such as centroid approaches (Likas et al. [2003]), top-k (Chaudhuri and
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Gravano [1999]), regret minimization (Kessler Faulkner et al. [2015]), KL-divergence (Yan

et al. [2005]), maximum entropy (Wang and Parthasarathy [2006]), or Bayesian Information

Criterion (Mampaey et al. [2011]). We avoid such techniques, given their low verifiability,

one of the key criteria upon which we develop our own set summaries, defined in Chapter 5.

Other techniques extract feature information to generate a plaintext summary, as in text

summarization (Yao et al. [2017]), or image captioning (Hossain et al. [2019]). These sum-

maries, however, are also unlikely to be verifiable, and are generated via a training set of

existing summaries, which are not available for our domain. Alternatively, researchers have

used application-specific visualizations to represent the item space (Joglekar et al. [2017],

Chen and Hung [2009]). These visualizations, however, require global consistency across

different summaries, while we do not. This allows for more succinct summaries that are

more efficient to synthesize. Similar work that has visually represented local summaries has

not been generalized to the setting of multiple recommendations (Ribeiro et al. [2016]). We

borrow parts of these prior works by incorporating a hover interaction into our visual sum-

maries (Decision Tree and Rules-Tree, Chapter 5) that shows what files are covered by a

predicate of the summary.

More closely related to our techniques are summaries using tables of characteristics (Wen

et al. [2018], El Gebaly et al. [2014]). Our rules-based summaries extend these by also

generating predicates over set-typed data. Similar to summary tables, associative rules for

frequent itemsets (Agrawal et al. [1993], Borgelt [2012]), and their related techniques for

classification (Dong et al. [1999], Li et al. [2001]) seek to generate and describe relationships

over related items. These techniques, like the visual explanations described above, require

global consistency.

It is less common for set summarization to have been applied to the domain of recom-

mender systems. The closest analogues are in conversational recommender systems, where

some researchers summarize how the set of unexplored items differs from the set of explored
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items (Chen and Pu [2007]). Researchers have augmented this to describe categories of un-

explored items based on extracted review sentiment (Chen and Wang [2017]). Other work,

while it does not investigate summaries, has focused on related sets of recommendations,

which it dubs ”slate” recommendations (Mehrotra et al. [2019], Swaminathan et al. [2017]).

The summaries we develop in Chapter 5 can therefore be interpreted as seeking methods to

summarize these slates.

2.7 AI Explanations

The recommendations summaries we develop in Chapter 5 generalize explanations in AI

systems (Guidotti et al. [2018b], Tjoa and Guan [2020], Danilevsky et al. [2020], Adadi and

Berrada [2018], Narayanan et al. [2018], Kim et al. [2016], Lipton [2018]). Explanations

have been shown to improve users’ understanding (Sinha and Swearingen [2002]) and trust

(Dzindolet et al. [2003]) in a system and help teach users when a system can be relied

upon to make accurate judgments (Lapuschkin et al. [2019], Ross et al. [2017]). Many

explanation types are based on more ”interpretable” models, such as sparse linear classifiers

(Ribeiro et al. [2016]), rule sets (Wang et al. [2017], Wang and Rudin [2015]), trees (Lou

et al. [2012]), or programs (Singh et al. [2016]). Our proposed summaries bear a strong

resemblance to rule set explanations. We adapt these to the setting of file recommendation

and make two improvements: we do not require pre-mining predicates, and we present

our explanations in plaintext (Chang et al. [2016]). The predicates in our summaries also

resemble short programs (e.g., a Python function, as in Singh et al. [2016]). Given that the

target users of our summaries are non-technical, though, we avoid programming syntax. We

compare directly against decision-tree-based explanations (Lou et al. [2012]) in our online

study, as these are a proxy for many ”intrepretable” models. As noted by Lipton [2018], the

interpretability of such models may be overstated–we discuss this in Section (5.2). While

other works have augmented interpretable models in ways that compare closely to our own
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work (Guidotti et al. [2018a]), we differ from these in our generation of set-based predicates

(also described in Section 5.2).

Researchers have also studied explanations specifically in recommender systems (Tintarev

and Masthoff [2015], Zhang et al. [2020]), KondoCloud being one example of such systems.

Beyond verifiability, known also as ”scrutability” (Tintarev and Masthoff [2012], Czarkowski

and Kay [2002]) or ”simulatibility” (Lipton [2018]), prior work has proposed other evaluation

metrics for explanations in recommender systems. Some are based on users’ perceptions of

explanations, such as transparency (Sinha and Swearingen [2002]), or their improvement

in users’ overall satisfaction with a system (Tanaka-Ishii and Frank [2000]). Others are

task-based, such as an explanation’s ability to justify a recommendation (Vig et al. [2009]),

to help users hone in on their preferences (Bilgic and Mooney [2005]), to enhance users’

understanding of available items (Felfernig and Gula [2006]), to persuade them (Cramer et al.

[2008], Herlocker [2000]), or to increase their decision-making speed (McCarthy et al. [2004]).

Of these, the ability to help users hone in on preferences, and enhance understanding of

available items, are most relevant to the evaluation of our recommendation group summaries

in Chapter 5.
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CHAPTER 3

FILE SIMILARITY IN CLOUD STORAGE

3.1 Overview

Users spend a significant amount of time viewing, curating, and organizing collections of

digital files (Whitham and Cruickshank [2017], Gao [2011], Whittaker [2011]). Building

on the success of recommender systems in other contexts (Covington et al. [2016], Bennett

et al. [2007], Smith and Linden [2017], Zheng et al. [2018]), researchers have developed a

number of recommender systems to help users identify files they wish to retrieve (Tata et al.

[2017], Chen et al. [2020], Jahanbakhsh et al. [2020], Fitchett et al. [2014], Liu et al. [2018]).

Prior user-centered research has found that abstract notions of file similarity underpin how

users view file organization and retrieval (Malone [1983], Barreau [1995b], Bergman et al.

[2003], Boardman and Sasse [2004]). It is no surprise, then, that these recommender systems

implicitly seem to rely on file similarity to make recommendations for file retrieval. For

example, in Google Drive, if a user edits a document, the Quick Access tool (Tata et al.

[2017], Chen et al. [2020]) may suggest other files that were last modified at similar times.

However, these recent systems take a relatively narrow view of what it means for files

to be similar. For instance, while most systems concretize similarity in terms of access

patterns, we hypothesize that similarity of metadata and content features (e.g., filenames,

objects recognized in images) might provide important signals to recommender systems.

Furthermore, previous work focused almost exclusively on file retrieval, leaving open the

question of whether a system that observes a user deleting or moving a file should also

recommend that they delete or move (to the same place) similar files. We use the term

co-management to describe this broader pattern of managing similar files in similar ways.

In this chapter, we answer a series of complementary questions about conceptualizing

co-management and file similarity more broadly than in prior work by conducting a two-
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part, online user study of 50 Google Drive and Dropbox users and their cloud accounts

(the Investigation Study). The first part surveyed participants about how they used and

organized their cloud accounts. After receiving participant consent, we also used the Google

Drive and Dropbox APIs to analyze participants’ accounts, collect metadata, and compute

the similarity of pairs of files in the account in terms of eleven metadata and content features.

Once this automatic processing had concluded, the participant returned for the second part

of the study, answering survey questions about how they perceived the similarity between

18 pairs of files from their account, as well as whether they wanted to co-manage those files

(i.e., find, move, or delete them together).

As our first research question, we wondered to what degree seemingly curated file reposi-

tories in consumer cloud storage stand to benefit from recommender systems. In Section 3.5,

we examine the structure of participants’ cloud accounts, focusing on where similar files are

located. Echoing prior work (Malone [1983], Hardof-Jaffe et al. [2009], Henderson and Srini-

vasan [2009], Vitale et al. [2018], Oh [2017]), we found that some participants piled most of

their files into a small number of folders (termed a piler hierarchy), while others organized

their files into many folders with long chains of subfolders (termed a filer hierarchy). Our

first key contribution came from analyzing the relative locations of pairs of files perceived by

participants to be similar in these hierarchies. Intuition might have suggested that similar

files would be located in the same directory, or perhaps in an adjacent directory. However,

we found this not to be the case. Even in superficially organized filer hierarchies, pairs of

files participants perceived as similar were located far away in the directory structure. We

observed a similar result when looking at files’ automatically extractable metadata and con-

tent features. As such, even the types of users whom prior work characterized as organized

filers stand to benefit from automated recommendations about files that are inconvenient to

find or that have been forgotten.

Our second research question was whether participants actually wanted to co-manage
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files they perceived as similar. In Section 3.6, we present correlations in our survey results,

showing that participants did indeed desire to co-manage the majority of files they perceived

as similar, whereas they wanted to co-manage only a small fraction of files they did not

perceive as similar. Whereas existing tools (Bao et al. [2006], Fitchett et al. [2014], Tata

et al. [2017], Fitchett and Cockburn [2012], Liu et al. [2018]) already leverage this result

for finding and retrieving files, we show similar results for co-moving and co-deleting similar

files, highlighting the need for broader co-management recommendations than are currently

provided.

To lay the foundation for transitioning these insights to tools, our third research question

investigated what metadata and content features are predictive both of whether humans

perceive files as similar and whether they want to co-manage them. Existing tools focus on

temporal information, such as files’ last modification date or last access time, as a proxy for

similarity (Bao et al. [2006], Fitchett et al. [2014], Tata et al. [2017], Fitchett and Cockburn

[2012], Liu et al. [2018]). While, as detailed in Section 3.7, our regression models did find tem-

poral information to be predictive of both perceived similarity and desired co-management,

we also identified metadata features (e.g., the similarity of filenames) and content features

(e.g., the similarity of words used in a document or of objects recognized in images) as

predictive. We conclude the chapter in Section 3.8 by discussing how these insights are

incorporated into the tools and techniques described in Chapters 4 and 5.

3.2 Framework and Definitions

Here, we define our notions of perceived similarity, data similarity, and co-management in

the context of prior work. Toward building richer tools for information management, we

empirically evaluate and quantify relationships among these concepts in Sections 3.6–3.7.
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Ours Kwasnik [1992], Barreau [1995b] Bergman et al. [2003] Boardman and Sasse [2004]

Topic Document Attributes Subjective Classification Principle Topic
Creation Context Situation Attributes / Document Attributes / Time Subjective Context Principle

Derivation Subjective Context Principle
Purpose Disposition / Situation Attributes Subjective Context Principle

Order / Scheme
Document Attributes Document Class

Value Subjective Importance Principle

Table 3.1: Comparison of our framework for perceived similarity (left) with notions of simi-
larity discussed in prior work.

3.2.1 Perceived Similarity

We define perceived similarity as a user’s subjective perception about how files may be

similar or dissimilar. For example, users may perceive two documents to be similar if they

were written by the same author or describe the same project. Prior work describes how

many people use this idea to describe the organization of their files (Kwasnik [1989], Barreau

[1995b], Bergman et al. [2003], Boardman and Sasse [2004]) and organize them for later

retrieval (Jones et al. [2005], Whittaker [2011]).

To evaluate whether users wish to manage similar files similarly, we focus on four di-

mensions of perceived file similarity synthesized from prior work (Kwasnik [1989], Barreau

[1995b], Bergman et al. [2003], Boardman and Sasse [2004]). Table 3.1 summarizes differences

between our framework and prior work. Our framework includes:

• Topic: Two files are similar if they are about the same subject. Kwasnik [1992]’s and

Barreau [1995b]’s frameworks described this concept as part of “Document Attributes,”

which included other items like “Author” and “Physical Form” (e.g., a spreadsheet

printout). Topic also falls under Bergman et al. [2003]’s “Subjective Classification

Principle” (information with the same subject should be categorized together). Ex-

ample: a photo of a dog and a document about dog grooming.

• Purpose: Two files are similar if they will likely be used for similar tasks or pur-

poses. Purpose is a subset of “Situation Attributes” in Kwasnik [1992]’s and Barreau

[1995b]’s frameworks, but also includes aspects of “Disposition,” a user’s intentions
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about whether to keep or discard the file. Bergman et al. [2003]’s “Subjective Context

Principle” also encompasses Purpose, as Purpose is part of the context when a file is

saved. Example: a receipt and a W-2 form both saved for tax calculations.

• Derivation: Two files are similar if they are different versions of the same item,

or if one “created” the other. Derivation is included under Bergman et al. [2003]’s

“Subjective Context Principle” given that a version of an item contains the same

implicit context. Example: a paper outline and the final version of that paper.

• Creation context: Two files are similar if they were created at the same time, by

the same person, or in the same place. Kwasnik [1992]’s and Barreau [1995b]’s frame-

works separate this across several categories as sub-attributes of “Source” (“Situation

Attributes”), “Author” (“Document Attributes”), and “Time.” Example: a poem

authored at a writer’s retreat and another person’s poem written at the same retreat.

For three reasons, our framework does not include the attributes “Order” / “Scheme”

(e.g., grouping, arrangement), “Document Attributes” (e.g., color, size), or “Value” (e.g.,

important, needs improvement) defined in other frameworks (Kwasnik [1991], Bergman et al.

[2003], Boardman and Sasse [2004]). First, in an empirical study, these aspects were some

of the least common ways that interviewees described their file collections (Kwasnik [1991]).

Second, “Document Attributes” and “Document Class” can more naturally be considered

data similarity (defined later in this section), rather than perceived similarity. Third, “Or-

der” and “Scheme” describe the organizational structure of a file collection, not perceived

similarity. We use this synthesis of past work to guide our investigation of the relationship be-

tween similarity and co-management. Expanding or critically reevaluating past frameworks

is not our focus. Prior work has investigated the reliability of these framework components,

finding them to correspond to how users describe similarity (Kwasnik [1991]).
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Feature Files Description

Time
Last Modified All Logarithm of difference, in seconds, between the two files’ last modified dates

Metadata
Filename All Jaccard similarity of the list of bigrams (two-letter chunks) in the filenames
File Size All Logarithm of difference, in bytes, between the file size
Tree Distance All The number of steps to reach one file from the other when traversing the file hierarchy (represented as a tree)
Shared Users All Jaccard similarity of the lists of unique user IDs with whom the files have been shared

Contents
File Contents All Jaccard similarity of chunks of the raw file contents using MinHash
Text Contents Text Cosine similarity between documents’ Word2Vec (Mikolov et al. [2013]) vector embeddings
Text Topic Text Cosine similarity of documents’ Term Frequency Inverse Document Frequency (TF-IDF) vectors (Wu et al. [2008])
Table Schema Spreadsheets Jaccard similarity of the column names of spreadsheets, such as .xlsx, .csv, and .tsv files
Image Contents Images Jaccard similarity between unique objects recognized in images by object-detection algorithms (Google [2019])
Image Color Images Absolute difference between the average RGB values of each image

Table 3.2: The data similarity features we examine in the user studies described in this
dissertation, the files to which they apply, and how we computed them. We cluster these
features in three groups: time (the focus of the most closely related work from Fitchett et al.
[2014], Liu et al. [2018] and Tata et al. [2017]), file metadata, and file contents.

3.2.2 Data Similarity

We define data similarity as comparisons of features that can be algorithmically extracted

from files without human intervention. These features include time (e.g., last modified

time), metadata (e.g., filename and size), and content features (e.g., text topics and objects

identified in images). Table 3.2 lists all data similarity features we considered within these

three categories. We hypothesized that data similarity could, at scale, help identify files

perceived as similar.

Prior work has postulated that data similarity can be used to identify similar items

(Quan et al. [2003], Oppermann et al. [2020], Canuto et al. [2019]), yet did not fully test

these claims. Prior implementations (Bao et al. [2006], Fitchett et al. [2014], Tata et al.

[2017], Fitchett and Cockburn [2012], Liu et al. [2018]) have focused almost exclusively on

time features, such as file-access patterns or recently accessed files. That said, tools like

Haystack (Quan et al. [2003]) do use text features for retrieval, yet they do so in the context

of a user-defined query, rather than by comparing files. The seminal Remembrance Agent

(Rhodes and Starner), which recommends other files that might be relevant, is most similar

to how we envision the use of data similarity. However, the Remembrance Agent only uses

17



text features. In short, we explore more diverse and comprehensive features than prior work.

3.2.3 Co-management

We refer to the pattern of managing similar files similarly as co-management. Supporting

a user’s ability to co-manage files has the potential to passively improve a user’s file orga-

nization over time, similar to tools that identify the best folders for a user to save a new

file or email (Bergman et al. [2019], Sinha and Basu [2012], Segal and Kephart [1999]). We

consider the following actions:

• Find: If a user accesses a file, they may also want to access another similar file.

• Move: If a user moves a file to another folder, they may also want to move another

similar file to the same folder.

• Delete: If a user deletes a file, they may also want to delete another similar file.

We focused on Find, Move, and Delete actions because they are commonly studied and

used in practice. The Find action relates to prior work that used recent file or folder ac-

cesses to provide shortcuts to similar files or folders (Bao et al. [2006], Fitchett et al. [2014],

Tata et al. [2017], Fitchett and Cockburn [2012], Liu et al. [2018]). We did not investigate

actions that are less common or less foundational for information management, such as re-

naming, creating symlinks, or copying files (Bergman et al. [2013b], Oh [2012], Dinneen and

Julien [2019]). Future work could expand our co-management framework to evaluate those

strategies.

3.3 Investigation Study Methodology

To answer our research questions, we conducted a two-part online user study (the Inves-

tigation Study). In Part 1, we asked participants about file management abstractly and
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performed an automated scan of their cloud account. In Part 2, we elicited participants’

perceptions of the similarity between, and desire to co-manage, 18 pairs of files from their

account. Section 7.1 contains our full survey instrument, and Section 7.2 contains our full

regression tables.

3.3.1 Recruitment and Part 1 Survey

We recruited participants on Prolific [2019], a recommended alternative (Peer et al. [2017])

to the Amazon Mechanical Turk crowdsourcing marketplace. We required they be age 18+,

live in the USA, and have completed 100+ tasks with 95% approval. We also required

participants to have a Google Drive or Dropbox account that was at least three months old

and had at least 100 files, including one shared file. In the short Part 1 survey that followed,

we asked general questions about participants’ demographics and organization of their cloud

account. This portion took 15 minutes on average. Compensation was $2.50.

3.3.2 File Processing

Once the participant authorized access to their cloud account, we used the Google Drive or

Dropbox API to analyze their account, collect file metadata, and compute data similarity

features. We extracted text from documents, as well as column headers from data tables.

Using the Google Vision API (Google [2019]), we also computed a color histogram, listed

recognized objects, and extracted available text from images. To reduce computational

costs, we only collected data similarity features pairwise on a stratified sample of 1000 files

whose distribution of file types matched the underlying account’s. For confidentiality, we

hashed all human-readable information with a participant-specific salt that we discarded

after processing.

Once processing was complete, we selected 18 pairs of files to show participants in Part

2. For each of the following criteria, we randomly chose pairs from all files which satisfied
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the criterion.

• 2 pairs had similar filenames (based on their bigrams)

• 2 pairs’ filenames had a small Levenshtein edit distance

• 2 pairs had a similar set of shared users

• 2 pairs had a similar text topic (based on TF-IDF, from Wu et al. [2008])

• 2 pairs had a similar table schema

• 2 pairs had similar image contents (in Google Vision, from Google [2019])

• 1 pair was in the same directory (tree distance 0)

• 1 pair was located at tree distance 1

• 4 pairs were selected randomly

We added additional random pairs whenever an insufficient number of files matched any

criterion above. Thresholds were set via pilot testing. Due to a coding error, the tree distance

of some file pairs was calculated incorrectly during sampling, inadvertently excluding a small

number of file pairs that otherwise might have been selected based on being in the same

directory or at tree distance 1. This error was corrected prior to our data analysis and would

only have impacted sampling for a few files matching a corner case.

3.3.3 Part 2

Once we finished processing a participant’s files, we invited them to Part 2, a survey centered

on these 18 pairs of files from their own account. For each file pair, in randomized order,

we first asked the participant to describe both files in free text. We then asked them to

describe in free text how they believed the files were similar or dissimilar. Next, we asked
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them to rate their agreement with a series of statements on five-point Likert scales (“strongly

agree” to “strongly disagree,” plus a “don’t know” option). This series included statements

about our four classes of perceived similarity (e.g., “I consider these two files to be similar

in Topic”). It also included statements about our three types of co-management (e.g., “If

I were searching for information, and I found one of these files to be relevant, I would also

want to see the other file”). Part 2 took approximately one hour to complete. Compensation

was $10.00.

3.3.4 Analysis Approach

We analyzed three types of data: (i) general metadata for all files in each participant’s ac-

count; (ii) data similarity features computed pairwise for a representative sample of 1,000 files

in each participant’s account; and (iii) detailed survey responses from participants about 900

file pairs (50 participants × 18 pairs each). We report illustrative quotes from participants,

but do not formally analyze them qualitatively. We used the 900 labeled file pairs to build

mixed-effects ordinal logistic regression models with the four types of perceived similarity

and three types of co-management as our dependent variables. Because the data was not

independent, we included a random effect for each participant. The data similarity features

were our independent variables. When a given data similarity feature was not applicable

(e.g., the Image Contents feature does not apply when comparing a spreadsheet and an im-

age), or in the rare cases when our extractor encountered an error (e.g., reading a malformed

file), we filled missing values as 0 or 1 for similarity and distance features, respectively.

3.3.5 Limitations

We report on a convenience sample of crowdworkers that is not representative of any broader

population. Despite efforts to communicate how our data collection respected the privacy of

participants’ accounts, privacy-conscious crowdworkers were unlikely to participate, further
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biasing our sample. Because we asked the same questions for each file pair, participants may

have been prone to fatigue and inattention (Lavrakas [2008]). We mitigated this concern by

iteratively shortening both multiple-choice and free-response sections through extensive pilot

testing, as well as restricting the study to 18 file pairs. We chose to investigate personal file

collections in cloud accounts because of the uniform and comprehensive APIs that Google

Drive and Dropbox provide. Past work has noted that cloud accounts represent only part

of a user’s fragmented file collection (Capra and Perez-Quinones [2006]), so our results may

not generalize to other types of file collections. Notably, the types of files present, the

organizational structure, and the usage context may all differ in local storage. Lastly, asking

participants sequentially about perceived similarity and desired co-management may have

biased them to identify similarity or co-management when they would not have done so

otherwise. Future work should build on the lessons learned to investigate perceived similarity

and co-management in a more naturalistic setting.

3.4 Participants and Their Accounts

Here, we describe our participants and their cloud accounts.

3.4.1 Participant Demographics

In total, 50 participants completed the Investigation Study protocol. Among participants,

54.0% were female, 40.0% were male, and 6.0% were non-binary. The most common age

range was 25–34 years old (48.0%) and the second most common was 18–24 years old (30.0%).

Among participants, 26.0% had held a job or taken a course in computer science. For the

study, 92.0% of participants used Google Drive, while 8.0% used Dropbox. Most participants

(98.0%) reported using their service’s web app to access their account. 60.0% reported using a

mobile app, and 30.0% reported having automatic sync enabled. Participants reported being

daily (34.0%), weekly (50.0%), or monthly users (14.0%) of their account; one participant
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Min Q1 Median Q3 Max

Age of oldest file (days) 148 2,405 3,001 3,570 4,546
Total size (GB) < 1 2 5 11 151
Total # files 123 298 541 1,445 17,081

(# images) 0 33 168 732 15,123
(# documents) 4 44 140 298 2,345
(# spreadsheets) 0 5 16 34 207
(# presentations) 0 0 3 10 152
(# web files) 0 0 0 2 2,453
(# media files) 0 6 41 129 5,532
(# other files) 0 7 25 87 10,060

Total # folders 3 9 27 95 3,185
Unique file extensions 5 12 15 24 75

Table 3.3: Characteristics of participants’ cloud accounts.

chose not to respond. On average, participants estimated that their account contained 74.6%

personal data and 25.4% professional data.

3.4.2 Participants’ Cloud Accounts

Table 3.3 reports general characteristics of participant accounts. Our 50 participants col-

lectively stored 119,388 files in their accounts. The median account was 8 years old and

contained 5 gigabytes of data. Across accounts, we observed 341 unique file extensions. The

most common file type was images (72,125 files), mostly .jpg (46,019) and .png (22,422) files.

Second was a catch-all “other” category (14,729). The most common “other” file extension

was flat (3,664), which is for database files, with .json (580) and .zip (402) as next most

common. Documents (13,405) and media files (12,334) followed. Following trends observed

in prior work on file collections (Dinneen et al. [2019]), many characteristics were lognor-

mally distributed, causing a large gap between the 75th percentile (Q3) and the maximum

value. We therefore report an adjusted mean (eµ, in Dinneen et al. [2019]) where appropri-

ate. Due to sampling differences, we leave a comparison against the scale and structure of

file collections in local storage to future work.

Participants were split on whether they considered their account well-organized: 36.0%
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Filer Piler

eµ # files 1,146 311
eµ # folders 75 6
Mean files per folder 25 69
Mean depth 3.07 1.01
Mean breadth 9.13 2.37
eµ # unique file extensions 26.00 11.00
eµ # unique folders per extension 8.44 1.32
eµ # unique extensions per folder 1.86 4.13

Table 3.4: Comparison of account characteristics by hierarchy type. eµ is the adjusted mean
of the distribution. Depth is the number of clicks needed to reach a file from the root.
Breadth is the number of subfolders in a folder.

reported that their account is well-organized, 40.0% disagreed, and 24.0% were neutral.

Many well-organized participants justified their self-perception with their usage of folders

(“I name the folder of the topic what the photos or files fall under.”). They also reported

strategies like organizing files by date. In contrast, some disorganized participants chose not

to use folders (“With text search and picture view I find it irrelevant”), or reported difficulties

doing so (“I have folders I use to split up files, but I threw everything up there. . . and I have

to go back and reorganize it”).

We examined the scale and structure of participants’ accounts, as well as participants’

free-text responses concerning organization, and found that participants’ accounts naturally

split into two groups matching those found in prior work (Malone [1983], Boardman and

Sasse [2004], Hardof-Jaffe et al. [2009], Henderson and Srinivasan [2009], Vitale et al. [2018],

Oh [2017]). Participants had 50 folders on average, with a standard deviation of 531.9, while

the median participant had 27 folders. Combining k-means clustering on the number of

folders per participant with free-text responses yielded a cluster threshold of 10. We thus

term accounts containing 10 or fewer folders pilers and accounts with over 10 folders filers.

Among participants, 28.0% were pilers, while 72.0% were filers. Figure 3.1 visualizes the

typical folder hierarchy for both classes. Each node in the tree represents a folder, colored

proportional to the percentage of accounts that contained such a folder. We pruned all nodes
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(a) Piler hierarchies. (b) Filer hierarchies.

Figure 3.1: The typical folder structure of piler and filer hierarchies. These trees merge par-
ticipants’ file structures, coloring nodes by the percentage of participants with that hierarchy
type who had a node at that location. Nodes appearing for < 20% of participants with that
hierarchy were pruned.

that appeared in under 20% of accounts. As shown in Figure 3.1, piler hierarchies typically

contained the root directory and one or two sub-folders. In contrast, most filer hierarchies

contained many sub-folders and a few deeper branches. Table 3.4 further quantifies differ-

ences between piler and filer hierarchies. We investigate how these differences in hierarchy

relate to similarity and co-management in Sections 3.5–3.6.

3.5 Account Organization

In this section, we present participant’s overall responses about the perceived similarity and

desired co-management of file pairs. We also investigate how pairs of files that participants

perceived as similar, pairs of files that appeared similar in terms of data similarity features,

and pairs of files that participants wanted to co-manage were distributed in the file hierarchy.

If files were organized tightly by similarity, files that are similar would be located in the

same folder, and files that are not similar would be located in different folders. We observed,

however, that files that were similar in both participant perception and data characteristics,

as well as files that participants wanted to co-manage, were distributed throughout the file
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Figure 3.2: Participants’ agreement that file pairs exhibited the four types of perceived
similarity (top) or that the files should be co-managed in each of the three ways (bottom).

hierarchy. This result highlights the need for recommender systems to help users co-manage

files in cloud accounts.

3.5.1 Analysis of Responses Overall

Figure 3.2a displays the distribution of participants’ responses for the perceived similarity of

the 900 file pairs they labeled. Each response was on a five-point Likert scale. Participants

perceived file pairs as similar (responded “strongly agree” or “agree”) in at least one of the

four dimensions 46.9% of the time. Among our similarity dimensions, participants most of-

ten perceived pairs as similar in purpose (36.9% of pairs). Note that our stratified sampling

approach was purposely biased to identify more similar file pairs. Among only the 417 file

pairs selected randomly, participants perceived 39.0% as similar in at least one dimension,
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Figure 3.3: The percentage of files participants perceived as similar (left) or desired to
co-manage (right) either in piler (P) hierarchies or broken out by tree distance (numbers)
in filer hierarchies. Both “strongly agree” and “agree” responses indicate similarity or co-
management here. So that the percentages are meaningful, we only consider file pairs selected
either randomly or based on tree distance, not those selected based on having similar features.

Figure 3.4: Box plots depicting how each class of data similarity is distributed for all file
pairs in participants’ accounts. The box plot labeled P shows the distribution for all pairs
in piler accounts. The remaining box plots represent the distribution in filer accounts at the
tree distance specified by the label (e.g., “0” represents the distribution for file pairs in the
same directory).

and 29.7% as similar in purpose. This proportion is likely closer to the underlying distri-

bution. We also note that perceived similarity differs significantly by dimension, ranging

between 13.8% for derivation to 36.9% for purpose.

Figure 3.2b displays the distribution of participants’ ratings about their desire to co-

manage the 900 file pairs. The trends in perceived similarity hold here as well. Participants

infrequently wanted to co-manage files, and the rates at which they did varied by the type

of co-management. For randomly selected file pairs, participants desired to find, move, or

delete files together for 19.7%, 26.6%, and 15.8% of file pairs, respectively, less than in our

stratified sample.
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3.5.2 Perceived Similarity in the File Hierarchy

Surprisingly, files that participants perceived as similar were often found in very different

parts of the file hierarchy. Many of our analyses are based on tree distance, or the minimum

number of transitions (to parent or child folders) to get from one folder to the other. Files

in the same folder have tree distance 0, while files in adjacent folders have tree distance 1.

Figure 3.3a shows the distribution of file pairs perceived as similar with respect to tree

distance in both piler and filer hierarchies. In filer hierarchies, 46.6% of file pairs that

participants perceived as similar in at least one dimension had tree distance > 2, and 19.5%

had tree distance ≥ 5. Participants frequently described files located far apart in the file

hierarchy as very similar. For instance, for a file pair with tree distance 13, a participant

wrote, “These files are very similar. They are both songs that I like, by artists I like. They

are a similar genre.” For all four types of perceived similarity, at least 92.5% of pairs at

tree distance 2 were in “sibling” folders (i.e., the files’ parent folders share the same parent).

This organization pattern was described in prior work by Dinneen et al. [2019] and Teevan

et al. [2004] as a technique users employ to gradually filter into more fine-grained categories.

Because our stratified sampling targeted file pairs more likely to be similar than a random

file pair, Figure 3.3 likely overestimates file similarity. We therefore examined the subset of

file pairs that were sampled either randomly or only based on tree distance, finding similar

trends. Of the file pairs sampled in this way that were perceived as similar in at least one

dimension, 39.7% had Tree Distance > 2, while 19.8% had Tree Distance ≥ 5. In sum, we

found that similar files are often not located in the same folder, and they are sometimes

located quite far in the file hierarchy.

3.5.3 Co-management in the File Hierarchy

Figure 3.3b shows similar trends in participants’ desire to co-manage files at different tree

distances. Of file pairs that participants wanted to co-manage (find, move, or delete to-
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gether), 40.0%, 37.7%, and 36.6%, respectively, had tree distance > 2. Of these files, 17.1%,

10.6%, and 14.9%, respectively, had tree distance ≥ 5. A participant described the similarity

between files they wanted to move together (despite a tree distance of 7) as, “They are both

trainings but we need to keep them by month for our grant.” We also examined only the file

pairs that were selected randomly, finding similar trends.

3.5.4 Data Similarity in the File Hierarchy

Finally, we explored the relationship between data similarity features and tree distance.

We analyzed 11,653,450 pairs of data similarity features for all file types, with an additional

4,519,675 pairs for image similarity features, 4,262,444 for text similarity features, and 39,333

for table similarity. To our knowledge, this is the first large-scale analysis of data similarity

in cloud storage. Figure 3.4 shows the relationship between data similarity and tree distance.

We make two key observations. First, many more file pairs are dissimilar than are similar.

Second, tree distance does not appear to correlate strongly with data similarity features.

Intuitively, if users categorize files within a file hierarchy with similar files close to each other

in the hierarchy, then one would expect to see median similarity decrease with tree distance.

This does not occur here.

Taken together, these analyses emphasize that files that participants perceive as similar,

files that participants wish to co-manage, and files that look similar in terms of algorith-

mically extractable features are all often located far apart in the file hierarchy. Potential

explanations for the phenomenon itself include the following: the existence of distinct, but

overlapping file hierarchies (Jones et al. [2005], Boardman et al. [2003]); the desire of users

to categorize a file in multiple ways, but choosing one by necessity of the interface (Bergman

et al. [2013a]); and the existence of partially categorized files (Oh [2012]). We leave further

investigation of root explanations to future work. Regardless, the dispersed locations of

similar files will inhibit future retrieval without improved tools.
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Figure 3.5: How participants’ desire to co-manage files correlated with their perceptions of
files as similar in one of our four dimensions of perceived similarity. We binned “strongly
agree” and “agree” responses as similar / to be co-managed.
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Figure 3.6: This figure is the same as Figure 3.5, but considers only “strongly agree” re-
sponses for similarity/co-management.

3.6 Similarity Implies Co-Management

We found that a file pair’s perceived similarity strongly correlated with whether a participant

wished to co-manage it. Specifically, participants wished to co-manage similar file pairs at a

much higher rate than dissimilar pairs. Because participants expressed perceptions of simi-

larity and desire to co-manage on 5-point Likert scales, we tried binarizing their preference

in two ways: based on both strong and mild preferences (“strongly agree” and “agree” re-

sponses indicated similarity/co-management, Figure 3.5) or only on strong preferences (only

“strongly agree” responses, Figure 3.6). Comparing the figures, the correlation between sim-

ilarity and co-management held regardless of preference strength. For example, among file

pairs perceived as similar in creation context (strong and mild), participants wanted to co-

move 74.7% of them, whereas they only wanted to co-move 18.4% of dissimilar file pairs. For

strong preferences only, participants desired to co-move 64.6% of similar pairs, versus 11.1%

of dissimilar pairs. The relationship between similarity and co-management was statistically

30



Perceived Similarity Co-management
Topic Purpose Derivation Creation Find Move Delete

Data Similarity
Last Modified 20.769*** 11.422*** 3.207** 17.075*** 12.034*** 12.618*** 7.623***
Filename 3.978** 12.699*** 18.094*** 12.805*** 10.885*** 13.744*** 4.286***
File Size 0.985 1.718 1.829 1.507 1.379 1.656 2.231*
Tree Distance 0.471 0.588 0.863 1.496 0.409 0.500 1.090
Shared Users 2.428** 2.874*** 2.857** 3.124*** 6.833*** 7.218*** 5.604***
File Contents 2.855** 3.473*** 4.172*** 3.703*** 2.536** 2.027* 2.197**
Text Topic 3.072*** 2.592** 2.315* 2.260* 1.707 2.588** 1.526
Table Schema 3.965 13.076* 1.845 2.393 2.905 1.951 3.993
Image Contents 36.777*** 29.018*** 8.938*** 8.757*** 13.085*** 10.106*** 2.767
Filer Hierarchy 0.884 1.255 1.078 2.036 1.385 0.704 0.789

Random Effects
σ of random effect 1.095 0.680 1.519 1.140 1.409 1.251 1.416

Table 3.5: Our regression models showing odds ratios for data similarity features (*** p <
.001; ** p < .01; * p < .05).

significant regardless of similarity or co-management type (Spearman’s rank correlation test,

all p < 0.001). In the remainder of this dissertation, we binarize based on both strong and

mild preferences unless stated otherwise.

However, correlation between similarity and co-management was not perfect; participants

also wished to co-manage some dissimilar file pairs. Among pairs that participants wished to

co-find, 23.6%, 60.3%, 15.3%, and 36.2% were dissimilar in topic, derivation, purpose, and

creation context, respectively. Some were similar in another dimension (“Same student, but

the content is much different”), but many were explicitly dissimilar (“They are dissimilar

because File 1 is for dissertation and File 2 is for my job”).

Overall, this evidence suggests that co-management tools based on perceived similarity

and informed by data similarity might be able to identify files participants wish to co-manage

and would not naturally discover.
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3.7 Modeling Based on Data Similarity

While the previous section highlighted the connection between perceived similarity and co-

management, this insight is difficult to act on because perceived similarity is a “human”

value. Thus, we built regression models to correlate algorithmically extractable features

(data similarity) with perceived similarity and desired co-management. We found several

features to be highly predictive.

Table 3.5 gives the odds ratios for our logistic regressions. These coefficients can be

interpreted as the multiplicative increase in the probability that the response variable will be

one level higher (e.g., “agree” to “strongly agree”) for an increase of 1 in the data similarity

value. All of our data similarity values are normalized to a [0, 1] scale, and all distance

metrics are turned into similarity metrics by subtracting their distance from the maximum

value of 1. Therefore, the odds ratio is the multiplicative increase if a value has full similarity

in that dimension, versus none.

Some features, such as similarities in last modified times, are known to be predictive

(Bao et al. [2006], Fitchett et al. [2014], Tata et al. [2017], Fitchett and Cockburn [2012],

Liu et al. [2018]). Others, such as image contents and filename, have rarely been used.

Shared users, file contents, and text topic features were also statistically significant, but

with smaller effect sizes. That tree distance was not a significant predictor matches evidence

from prior sections. We also found no significant effect for whether a hierarchy was a piler or

filer, suggesting that the importance of data similarity features may hold across both types

of hierarchies. The size of the random effects indicates that individual variations between

participants accounted for approximately half a point change in the mean Likert-scale rating

of file pairs. This result suggests that user-specific features (e.g., personality / mood, from

Massey et al. [2014b] and Whittaker and Massey [2020]) may affect perceived similarity.

Many factors that were predictive of perceived similarity were also predictive of co-

management. One exception was the image contents feature, which was not predictive of
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co-deletion, though this may be an artifact of our sample size. Future tools should leverage

these features’ predictiveness in supporting co-management.

3.8 Summary

We investigated whether similarity can support co-management via an online study of 50

Google Drive and Dropbox users (the Investigation Study). We found that similar files were

distributed across the file hierarchy, and that a user’s perception of similarity between two

files correlated with their desire to co-manage those files. We explored through regression

analysis the ability of data similarity to predict perceived similarity and co-management.

Last Modified, Image Contents, Filename, Shared Users, and Text Topic features were sig-

nificant.

We extract four design principles from this work that inform the design of KondoCloud

(Chapter 4):

• Recommendations must work beyond retrieval. The demonstrated links between simi-

larity and co-movement / co-deletion suggest that tools supporting such behaviors can

offer utility to end-users. KondoCloud supports these actions.

• Recommendations must work across the hierarchy. Participants wanted to co-manage

files located both close and far in the file hierarchy. Previous tools, such as Fitchett

et al. [2014]’s enhanced finder interface, only highlighted file or folder icons in the

current folder. Our results show that this leaves significant functionality untouched;

users might overlook files in other folders. KondoCloud, therefore, uses adaptive split-

screen interface enhancements like in Liu et al. [2018] to offer recommendations on files

in folders besides the one currently being viewed.

• Recommendations must work for both Piler and Filer hierarchies. As in the previ-

ous point, highlighting icons would likely be inappropriate in a piler hierarchy. There
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are likely to be many files in a single folder, and highlighted icons would not be suf-

ficiently visible or provide context. On the other hand, in filer hierarchies, files are

likely to be further apart, and it would be important to provide context on where

co-managed files live (e.g., showing a visualization of the file hierarchy). Tools imple-

menting co-management must support both types of contextual feedback. We did not

find a significant impact of hierarchy type on the rate at which recommended actions

were taken in KondoCloud, suggesting that the results potentially hold independent of

hierarchy type.

• Recommendations must use features beyond access patterns. Access patterns are a

highly informative feature. In fact, many prior studies and tools restrict the scope of

recommendations to recently accessed files (Bergman et al. [2012, 2010], Tata et al.

[2017]). However, users have difficulty retrieving older or infrequently accessed files

(Whittaker et al. [2010]), which are of interest to users (Jahanbakhsh et al. [2020]).

Access patterns are unlikely to be an informative feature for these files. We use richer

content-based features for the classifiers in KondoCloud in order to address this draw-

back of prior tools. The effect size of these features is lower than access pattern

features (Table 4.2), and summaries using these features are less commonly generated

(Figure 5.2). We nonetheless find these to be of greater importance than assigned

previously.
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CHAPTER 4

KONDOCLOUD

4.1 Overview

Numerous existing tools (Liu et al. [2018], Tata et al. [2017], Dumais et al. [2003], Fitchett

et al. [2014]) help users retrieve files of interest from within disorganized personal file col-

lections, including cloud repositories. However, these tools do not attempt to address the

underlying disorganization. Researchers have developed prototype interfaces and tools that

take alternate approaches beyond the standard file-and-folder paradigm (Voida and Mynatt

[2009], Gyllstrom [2009], Marsden and Cairns [2004], Dourish et al. [2000], Dourish [2003]),

but these tools have seen limited adoption, potentially due to users’ strong preference for

navigating to files through a folder hierarchy (Bergman et al. [2008b], Jones et al. [2005]).

The few tools working over folder hierarchies that do try to help users organize their data, in

contexts ranging from cloud repositories to emails (Bergman et al. [2019], Segal and Kephart

[1999], Sinha and Basu [2012]), only attempt to aid in the organization of data that has not

yet been added to the repository. They do not aim to help users organize data that has

already accumulated there. Given this limited support from existing tools, it is unsurprising

that users organize infrequently (Boardman and Sasse [2004]).

To help users organize their personal cloud repositories, we designed KondoCloud, a file-

browser interface that, like its namesake (celebrity organizer Marie Kondo), reduces clutter.

It does so by providing machine-learning-based recommendations of files the user might want

to move, delete, or retrieve. These recommendations leverage the idea of co-management,

as introduced in Chapter 3. This idea is concretized in Figure 4.1: if, for example, a user

moves a given file to a folder, KondoCloud may suggest moving other, similar files to that

same folder.

To inform KondoCloud’s design, we first conducted an online user study, the Observa-
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tion Study, in which we asked 69 crowdworkers to spend 30 minutes organizing their Google

Drive repositories in a standard file-browsing interface while we logged their actions. To our

knowledge, this is the first empirical examination of users’ real-time organizational strate-

gies in cloud repositories. We identified several high-level strategies, including moving files

to newly created folders, extensively deleting files, and re-categorizing misplaced files into

existing folders. To concretize the notion of file similarity that underpins KondoCloud’s

recommendations, participants labeled the similarity between pairs of files, also indicating

whether they wanted to manage the files in similar ways. In addition, we collected pairwise

data similarity features (from Table 3.2 in Chapter 3) for the file pairs. From this labeled

data, we trained logistic regression classifiers to predict pairs of files that should be man-

aged similarly. Each classifier achieved an F1 score of at least 0.72, which is appropriate for

human-in-the-loop recommendations.

Using this classifier and our new knowledge of organizational strategies, we designed

and built KondoCloud, our file-browsing user interface with embedded recommendations.

Figure 4.7 in Section 4.4 presents the KondoCloud user interface. As previously mentioned,

KondoCloud uses our classifier to make recommendations for files the user might want to

move, delete, or retrieve based on having performed the same action on a similar file in the

past.

We evaluated KondoCloud and the recommendations it makes in a between-subjects on-

line user study, the Evaluation Study. We randomly assigned 59 participants to use the

KondoCloud interface either with or without the recommendations generated by our clas-

sifier while organizing their own Google Drive repository. Nearly half of participants who

saw recommendations accepted some of the recommendations, and a few accepted almost

all of them. KondoCloud’s recommendations helped participants delete related files that

were spread across different directories. Further, many recommendations captured actions

the user hoped to take. In a follow-up survey, participants strongly agreed (on a Likert
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A) Files in cloud-drives are 
prone to disorganization.

B) To address this, a user might move a file into 
a folder to better reflect its purpose.

C) KondoCloud makes recomendations based 
on the user’s demonstrated preferences. 

Figure 4.1: KondoCloud is a file-browsing interface that helps users organize cloud reposi-
tories (e.g., Google Drive) by providing ML-based recommendations for files they may want
to move, delete, or retrieve based on past actions on similar files.

Part 1 Part 2

Organizational Task

Qualifying subjects 
invited back

Offline pre-processing

SurveyRecruitment Survey

Figure 4.2: Both the Observation Study and Evaluation Study were conducted in two phases
to enable offline processing.

scale) with the statement that they would have performed the recommended action any-

way (without the recommendation) for two-thirds of the recommendations they accepted.

Furthermore, participants who were not shown recommendations independently performed

nearly one-third of the actions that would have been recommended. Notably, participants

found 15% of the recommendations they accepted surprising, indicating they would not have

performed those actions without the recommendation. For nearly three-quarters of accepted

recommendations, participants felt the recommendations made organizing more efficient.

Our results also suggest future directions for clustering and prioritizing recommendations.

4.2 Observation Study and Evaluation Study Methodology

In this chapter, we conduct two online user studies, the Observation Study and the Eval-

uation Study. The studies followed similar protocols (see Figure 4.2), so we describe them
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together, highlighting key differences. Both studies centered on Google Drive users’ own

personal cloud repositories, which we accessed using the Google Drive API. We chose to

study organization in personal cloud repositories, as opposed to in any other personal file

collection, because cloud repositories tend to be smaller and easier to analyze automatically

than local storage Capra and Perez-Quinones [2006], the robust Google Drive API enables

more privacy-preserving data collection than building our own infrastructure from scratch,

and the organization of local storage can be confounded due to operating-system-specific

factors Dinneen and Frissen [2020].

We conducted each study in two parts. In Part 1, we recruited participants, had them

complete a survey on their usage of their cloud repository, and asked them to grant our

code permission to access their Google Drive repository via an OAuth flow. For these and

subsequent studies described in this dissertation, in contrast to Chapter 3, we did not collect

data for participants on Dropbox. This was because of the small number of participants who

used Dropbox in the Investigation Study. Our code subsequently began extracting ten types

of file metadata and content features (see Table 3.2 in Chapter 3) for pairs of files in their

repository. In Part 2, we invited back eligible participants and asked them to organize their

Google Drive repository (see below) and complete a survey that asked about specific actions

they did or did not take. The protocols for the Observation Study and the Evaluation Study

were the same except for the interface provided for the organizational task in Part 2, as well

as the specific survey questions asked in Part 2. The participant pools for the two studies

did not overlap.

4.2.1 Recruitment and Part 1

We recruited participants on the Prolific crowdsourcing marketplace (Prolific [2019]). We

required participants be age 18+, live in the USA or UK, and have completed 10+ tasks

on Prolific with 95% approval. We also required that participants have a Google Drive
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repository that was at least three months old and contained at least 100 files.

Once participants had consented to the research, we directed them to grant our code

access to their Google Drive repository using the OAuth2 protocol. We used the Google

Drive API to analyze their repository, collecting file metadata (e.g., file name, file size), file

contents, and Google Drive activity history. In order to protect participant privacy, we did

not store the raw file contents. We did, however, extract TF-IDF keywords from files, objects

recognized in images using a standard ResNet50 model He et al. [2016], and the names of

columns in spreadsheets. We further computed the 10 metadata and content similarity

features described in Table 3.2 pairwise between files. Because pairwise comparisons are a

quadratic process, for repositories containing more than 1,000 files, we randomly sampled

1,000 files. We additionally collected metadata about participants’ past file-management

activities in Google Drive’s activity log, including what types of actions were applied, the

timestamps for those actions, and the IDs of files and folders involved. The purpose was

to identify pairs of files that had been managed similarly in the past, which was one factor

we used to select file pairs for Part 2. In contrast to Chapter 3, we did not hash file data

after processing. This was because doing so would make the data unusable in Part 2, as

participants would not be able to see assigned folder and filenames.

In the short Part 1 Survey that followed, we asked general questions about participants’

demographics and their use of Google Drive, including their organizational strategies and

whether they considered their repository well-organized. Part 1 took 15 minutes on average.

Compensation was $2.50.

4.2.2 Part 2

If participants met the eligibility criteria regarding the age and contents of their Google Drive

repository, which could only be verified after Part 1, they were invited back for Part 2. We

asked them to spend 30 minutes organizing their Google Drive repository using an interface
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we provided. We clarified that this interface was a simulated version of their repository, and

we emphasized that none of the actions they took would affect their actual Google Drive

repository. We further specified that organization could consist of moving files, deleting files,

creating folders, and renaming files.

The interface participants used to organize their repository varied across studies and

conditions. In the Observation Study, we provided a file browser based on the open-source

library Elfinder (Studio 42 [2019]). We chose this interface because it captures many elements

(menus, visual design) typical of widely used file browsers. We forked elFinder’s code,

integrating it with the Google Drive API. For the Evaluation Study, we wanted to design

an interface that could integrate recommendations more naturally than the basic elFinder

interface. Therefore, we created our own file-browser interface. This interface is shown

in Figure 4.7 in Section 4.4. While all participants used this interface, we assigned them

uniformly at random to see either a With Recommendations or No Recommendations variant

to let us gauge the impact of recommendations. By random chance, substantially more than

half of participants were assigned to the With Recommendations condition. Before beginning

the organization task, participants completed a short tutorial highlighting the location of

interface components. We required participants to spend 30 minutes organizing.

Participants in both studies then completed a task to characterize the actions they had

taken. We showed participants a list of the actions they had performed and asked them to

cluster actions into high-level tasks. Participants labeled clusters with free-text descriptions

(e.g., “organizing my vacation pictures”).

Finally, participants answered survey questions that differed between studies, as well

as between conditions in the Evaluation Study. In the Observation Study and in the No

Recommendations condition of the Evaluation Study, we primarily aimed to collect data to

train and improve our classifier. Thus, participants answered questions about specific pairs

of files they had organized in similar ways, or that they had not organized in similar ways

40



even though our classifier predicted they might do so. If participants moved two files to the

same folder, we considered these files to have been managed similarly via move actions. If

two files were both deleted, we considered them to have been managed similarly via delete

actions. In the Observation Study, our predictions used a rudimentary classifier trained on

the data collected from the Investigation Study. In Evaluation Study, we used the classifier

as described in Section 4.4. We asked about 14 file pairs as follows, using random pairs of

files whenever not enough pairs in the participant’s history matched a given criterion:

• 6 file pairs managed similarly, or predicted to be managed similarly, via move actions

in our study’s organizational task (2 true positives, 1 true negative, 2 false positives, 1

false negative)

• 4 file pairs managed similarly, or predicted to be managed similarly, via delete actions

in our study’s organizational task (1 true positive, 1 true negative, 1 false positive, and

1 false negative)

• 4 file pairs managed similarly via move actions in a participant’s Google Drive activity

history (1 true positive, 1 true negative, 1 false positive, 1 false negative)

For participants in the With Recommendations condition of the Evaluation Study, we

instead asked participants about the recommendations they were shown. We were interested

in participants’ reactions to KondoCloud’s recommendations, specifically based on what was

being recommended (moving or deleting a file) and whether or not the file that spawned

the recommendation and the (similar) file for which an action was being recommended were

in the same directory. Thus, we asked about up to 15 recommendations shown during the

study, selected as follows:

• 4 accepted move recommendations (2 from different folders, 2 from the same folders)

• 2 accepted delete recommendations (1 from different folders, 1 from the same folder)
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• 6 rejected move recommendations (3 from different folders, 3 from the same folders)

• 3 rejected delete recommendations (1 from different folders, 2 from the same folders)

In the Evaluation Study, we also asked participants in both conditions additional ques-

tions about KondoCloud’s interface, including administering the System Usability Scale

(Usability.gov [2021]). Compensation for Part 2 of the Observation Study was $10.00. Com-

pensation for Part 2 of the Evaluation Study was instead $15.00 due to the additional time

required.

4.2.3 Limitations

Like most user studies, our study is limited by a few factors. Crowdworkers, as a convenience

sample, do not represent a broader population. In particular, despite our efforts to protect

participant privacy, privacy-conscious crowdworkers were probably less likely to volunteer,

potentially biasing the distribution of actions performed. Additionally, our task of having

participants organize their Google Drive repository for 30 minutes does not necessarily rep-

resent participants’ typical behaviors, but rather an idealized scenario. Results about the

effectiveness of KondoCloud on such a task therefore may not fully generalize to practice.

Participants’ self-reported perceptions also may not indicate behavior that would manifest

outside of this particular task. Further, our focus on file organization in cloud storage likely

does not generalize to other settings, such as local file storage. The typical types of files and

typical use cases likely differ between cloud storage and local storage, and some of the fea-

tures we used (e.g., file sharing settings) are relatively unique to cloud storage (Voida et al.

[2013]). Despite our best efforts to provide an interface with minimal confounds, some of our

results may be due to idiosyncrasies of the interface (e.g., different right-click menu options)

that do not generalize. Finally, although we made a best effort to communicate to partici-

pants that no files (including shared ones) would be modified in the course of the study, this
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may have caused participants to deviate from their typical file management behavior, either

performing more or fewer actions of certain types.

4.3 Observation Study

Our goal for the Observation Study was to characterize strategies for organizing cloud repos-

itories, thereby informing KondoCloud’s design. To our knowledge, this is the first study

to examine, quantitatively and empirically, users’ approaches and strategies when retrospec-

tively organizing the data accumulated in their own Google Drive repository. In contrast,

prior studies have examined snapshots of user file collections (outside the cloud context) over

time (Czerwinski et al. [2004], Dinneen et al. [2019], Boardman and Sasse [2004]) or asked

users to describe, abstractly and qualitatively, how they organize (Oh and Belkin [2014], Oh

[2017], Barreau [1995a], Malone [1983]). However, repositories typically do not become more

organized over time, and qualitative studies of organization may miss real-time strategies.

4.3.1 Demographics and Cloud Storage Usage

We had 69 participants, 35 women and 34 men. Participants’ ages skewed young: 29 were

18-24 years old, 27 were 25-34, and 12 were 35- 64, with 1 who declined to answer. Due

to our eligibility criteria, all participants used Google Drive. In addition, 38 used Microsoft

OneDrive, 33 used Dropbox, 26 used iCloud, 7 used Sharepoint, and 2 used Box. Participants

reported accessing their Google Drive weekly (27), monthly (20), daily (18), or yearly (2);

2 preferred not to answer. Participants interacted, non-exclusively, with Google Drive via

the website interface (60), the mobile app (41), and directly synchronizing folders on their

computer (22).

Table 4.1 quantifies key characteristics of participants’ repositories. Participants had

a median of 417 files, a mean of 1,518 files, and a maximum of 12,799 files. Seeing a

small number of “power users” with a particularly large number of files is consistent both
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Min Q1 Median Q3 Max

# Files 104 228 417 1,448 12,799
(# images) 1 27 114 711 12,030
(# text) 1 13 54 304 7,123
(# media files) 1 8 41 159 1,601
(# spreadsheets) 1 2 3 10 70
(# presentations) 1 1 2 17 1,060
(# other files) 5 47 103 239 2,919

# Folders 2 12 43 100 949
# Avg Files Per Folder 2 8 12 39 134

Table 4.1: Characteristics of participants’ Google Drive repositories prior to organization.

with prior work on local file systems (Dinneen et al. [2019]) as well as our findings from

the Investigation Study (Chapter 3). Images were the most common file type, with “jpg”

(37,349) and “png” (9,768) as the most common file extensions. Text files were the next

most common, particularly “pdf” (7,195) and “txt” (7,150) extensions. The “other” category

contained a large number of files that either had no extension (1,718) or had a particular

user’s idiosyncratic file extension (e.g., one participant had 1,473 files for the video game

Minecraft). Before organizing, participants had a median of 43 folders, a mean of 118

folders, and a maximum of 949 folders. These observed variations in repository structure

were consistent with prior work (Malone [1983], Boardman and Sasse [2004], Hardof-Jaffe

et al. [2009], Henderson and Srinivasan [2009], Vitale et al. [2018], Oh [2017]) and our own

results in Chapter 3. Via K-means clustering, we found that 47 participants (68.1%) seemed

to follow the piler approach, while 22 (31.9%) seemed to follow the filer approach. The

cluster centroid for the former was 15.5 folders (with maximum folder depth of 2.7), while

the cluster centroid for the latter was 181.3 folders (with maximum folder depth of 8.2).

Participants reported following a variety of organizational strategies in their typical

Google Drive usage. Among participants, 28 (40.6%) reported organizing their repository

piecemeal when performing other activities, 15 (21.7%) reported organizing their repository

across multiple sessions dedicated solely to organizing, and 8 (11.6%) reported organizing
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Figure 4.3: Participants’ file-management actions while organizing their Google Drive reposi-
tory in the Observation Study. The x-axis is ordered by the total number of file-management
actions the participant took, which is also shown in the bar graph (top). The stacked-bar
graph (bottom) shows the distribution of different types of actions.

their whole repository in a single sitting dedicated to organizing. In contrast, 16 (23.1%)

reported that they did not organize their repository at all. The remaining 2 participants

described organizing files by placing them in the appropriate folders when first saving them,

rather than retrospectively.

4.3.2 Strategies in Organizing Repositories

During the organizational task, participants took a total 5,005 file-management actions,

including moving, deleting, and renaming files and folders, as well as creating new folders.

Of the 5,005 actions, 3,314 (66.2%) were moves, 832 (16.6%) were deletions, 654 (13.1%)

were folder creations, and 205 (4.1%) were renames.

Participants varied in the number and types of actions they took, as well as in their

organizational strategies. Some participants performed far more actions than others; one

participant performed only 12 actions, while another performed 240 actions. The mean

number of actions per participant was 72.5, with a standard deviation of 45.7. Figure 4.3

graphs the number and types of actions different participants took, ordering left-to-right by

the number of actions taken. It also distinguishes between sub-categories of action types,

such as the distinction between moving a file to an existing folder, versus one created during
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the study. If a participant acted upon multiple files at once (e.g., highlighting five files and

then hitting delete), these are reported separately in this figure. We revisit bulk actions later

in this section.

As highlighted in Figure 4.3, participants took very different approaches from each other

in the actions they took while organizing their Google Drive repository. The most common

organizational strategy was moving files into newly created folders. Notably, 40 participants

(58.0%) used this as their dominant strategy. Next most common was a tie between moving

files into existing folders and deleting files; each was the dominant strategy for 9 participants

(13.0%). The remaining participants used a mix of actions. Most dramatically, one partici-

pant only moved files and folders in their 30 minutes of organizing, whereas two others only

deleted files and folders. The relative prevalence of different actions was not correlated with

the overall number of actions performed.

Participants almost entirely moved files and folders in ways that increased the depth and

complexity of their file hierarchies. Figure 4.4 shows changes in the depth (number of parent

directories) of files moved during organization. Of the 7,995 files that were moved directly

(i.e., excluding files moved as part of moving a folder), 7,797 (97.5%) ended in a directory

deeper in the file hierarchy. 5,924 (74.1%) were moved one level deeper. Notably, 4,895

files (61.2%) began in the root directory and were moved one level deeper. On average, file

and folder move actions placed items at a file hierarchy depth 1.3 greater (i.e., one folder

deeper). Since files in the root directory may represent uncategorized files, a large number

of file moves seemed to take uncategorized files and place them in an appropriate folder.

Participants could move or delete a single file at a time, or they could highlight multiple

files. This distinction had design implications for the degree to which KondoCloud might

consider recommending groups of files to move or delete, as opposed to individual files.

Participants performed 2,519 move actions (76.0%) on individual files or folders, and 795

(24.0%) on multiple files or folders. Move actions on multiple files or folders moved a mean
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Figure 4.4: Files were typically moved deeper into the file hierarchy regardless of file type.

of 9.4 files or folders at once, with a standard deviation of 16.9 and a maximum of 243. This

figure includes moves of the same file or folder multiple times (e.g., a participant could move

a file from the root to the “vacation pictures” folder, and then to the “Sardinia” subfolder).

Participants performed 728 delete actions (87.5%) on single files or folders, and 104 (12.5%)

on multiple files or folders. Delete actions on multiple files or folders deleted a mean of 9.1

files or folders at once, with a standard deviation of 12.5 and a maximum of 70.

4.3.3 File Organization Habits

While participants employed different organization strategies, the specific ways in which they

carried out this organization were less variable. Two observations impact design directions:

(i) the degree to which participants grouped particular types of actions together, and (ii)

the lack of any consistent ordering to groupings of task types. Figure 4.5 shows the relative

frequency of pairs of file actions. Three patterns are evident. Participants often grouped

folder navigation (“open”) actions together, participants often grouped file or folder move

actions together, and participants often followed the creation of a new folder by moving at

least one file or folder into it. The grouping of move actions resembles Bao and Dietterich

[2011]’s idea of task-based context, in which users perform several actions geared toward

the same contextual task before switching to another task. This observation suggests that

file-management tools should consider task context. KondoCloud’s straightforward recom-
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Figure 4.5: Probability of actions following others. Participants often followed moving or
opening files with other moves. They also often followed folder creation with moves.

mendations for individual file actions did not capture the observation that file creation events

were typically followed by moving files or folders into that newly created folder. We also do

not address this in the remainder of the dissertation– this is potentially an open opportunity

for future work.

Finally, while we hypothesized that some types of actions (e.g., folder creation actions)

might be far more common at certain points during the organization process, we did not find

this to be the case. Figure 4.6 shows the number of file actions performed during different

temporal segments of the organization task. The mean number of move and delete actions
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time steps.

during any normalized time block did not differ substantially. This finding suggested a

balanced approach for generating recommendations with tools like KondoCloud. That is,

the likelihood of recommending particular types of actions should likely not change over

time. Tools could perhaps use a particular user’s avoidance of certain types of actions early

in an organization session to learn to de-prioritize such recommendations.
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Figure 4.7: The KondoCloud interface augments a traditional file browser with context-
dependent, ML-based recommendations.

4.4 The Design of KondoCloud

In this section, we describe and justify the design of KondoCloud, an enhanced file-browser

interface that recommends files the user may want to move or delete based on the user having

previously taken those actions on similar files. Existing tools offer recommendations for file

retrieval or help prevent future disorganization (Liu et al. [2018], Tata et al. [2017], Dumais

et al. [2003], Fitchett et al. [2014], Bergman et al. [2019], Segal and Kephart [1999], Sinha

and Basu [2012]), but KondoCloud is the first to offer recommendations that retrospectively

address existing disorganization in cloud repositories.
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4.4.1 Interface Design

The basis for the KondoCloud interface is a standard file browser, shown on the right side of

Figure 4.7. Starting from an open source file-browser interface, elFinder (Studio 42 [2019]),

we removed unnecessary functionality (e.g., FTP support) and added features offered by

common cloud storage browsers (e.g., Google Drive), such as the ability to search by date

ranges. We also substantially updated the interface styling to match modern web applica-

tions. Using a familiar, non-adaptive, visual basis for the interface was an important design

choice because prior work has shown participants have difficulty navigating when files are left

“placeless” (Civan et al. [2008], Benn et al. [2015]). This file browser component was the only

part of the interface shown to participants in the Evaluation Study’s No Recommendations

condition.

The second component of the KondoCloud interface is our key novel contribution, the

recommendation pane, shown on the left side of Figure 4.7. This component consists of four

sub-panes, three of which are always visible, and the last of which can be expanded in an

accordion fashion. The first three sections are containers for file move, delete, and retrieval

recommendations, respectively. Each recommendation is displayed on a card that contains

relevant context for the recommendation. For example, file move recommendations display

the file name, where it is currently located, and where the file would be moved to. Clicking on

the relevant file or folder names on the recommendation card navigates participants to those

files or folders in the main file browser component. We included this ability because prior

work suggests that users are unwilling to modify a file location without being able to visualize

the spatial movement of the file (Benn et al. [2015]). Hovering over a recommendation card

explains the recommendation by showing the file action that triggered the recommendation,

as in prior work (Xu et al. [2020]). This format is the same as the List of Files summaries

that we refer to in Chapter 5. Participants can explicitly accept or reject a recommendation

by clicking the respective buttons on the card. All recommendations of a given type can

51



be accepted or rejected by clicking the button at the top of the recommendation pane.

The fourth sub-pane shows the Accepted Recommendations Log and provides shortcuts to

reverse accepted recommendations. Following the standard “split” interface model (Sears

and Shneiderman [1994], Gajos et al. [2006], Liu et al. [2018]), all functionality offered in the

recommendations pane can be performed manually in the standard file browser. We chose

this design because previous studies found that moving affordances, instead of copying them

into an adaptive component, negatively impacted user satisfaction (Gajos et al. [2006]).

We analyze in the Evaluation Study the degree to which participants directly accepted

recommendations, versus performing the recommended actions manually in the file browser.

4.4.2 Recommendations

KondoCloud generates recommendations as follows. Each time the user moves, deletes, or

previews a file, we use our machine-learning classifier (see Section 4.4.3) to identify sim-

ilar files. While this initial version of our classifier models only file similarity in making

recommendations, future versions could model additional context. Recommendations offer

shortcuts to several functions, enhancing a user’s capability without removing agency (Heer

[2019]). We hypothesized that providing a shortcut to perform the action would enhance file

organization in a number of ways (see Section 4.5). More precisely, we choose whether to

show a recommendation using a probability threshold as shown in Algorithms 1–2:

These algorithms capture how KondoCloud’s recommendations integrate several princi-

ples synthesized from our Observation Study. First, the frequency at which recommendations

are offered changes in response to how likely a participant is to accept a recommendation of

that type. In Section 4.3, we discussed the variance in participants’ organizational strategies,

particularly in the relative frequencies of the types of actions taken. While we set the same

default for every participant based on our classifier training (described below), we updated

the decision threshold for our classifier over time for each participant. The default values for
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Algorithm 1 AdjustThresholds

1: Take arguments initial change, decay factor
2: Initialize participant’s move threshold and delete threshold to default
3: Initialize move number of updates, delete number of updates ← 1
4: while participant organizes do
5: Participant interacts with recommendations
6: move change value ← CalculateV alueChange(
7: initial change, decay factor,move number of updates)
8: delete change value ← CalculateV alueChange(
9: initial change, decay factor, delete number of updates)

10: if participant rejects recommendation then
11: if recommendation type is move then
12: move number of updates += 1
13: move threshold += move change value
14: else if recommendation type is delete then
15: delete number of updates += 1
16: delete threshold += delete change value
17: end if
18: else if participant accepts recommendation then
19: if recommendation type is move then
20: move number of updates += 1
21: move threshold -= move change value
22: else if recommendation type is delete then
23: delete number of updates += 1
24: delete threshold -= delete change value
25: end if
26: end if
27: end while

the variables initial change and decay factor in Algorithm 1 were 0.025 and 0.025, respec-

tively. Because we only displayed recommendations that exceeded the current probability

threshold for each action type, accepting recommendations lowered the decision threshold for

that action type, typically increasing the number of recommendations of that type shown.

In contrast, rejecting recommendations or letting them expire raised the threshold for that

action type, typically decreasing the number of recommendations shown. We chose for this

threshold to decay over time, but not disappear. As discussed in Section 4.3 and Figure 4.6,

numerous actions of a particular type could be performed at any point during the study.

Correspondingly, even if a user does not accept recommendations of a particular type early

on, this does not mean they will not do so later. Algorithm 1 thus ensures that the decision

threshold can change substantially even well into the organization process.
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Algorithm 2 CalculateValueChange

1: procedure CalculateValueChange(initial change, decay factor, number of updates)
2: Initialize update, ← initial change
3: for i ∈ {1..number of updates} do
4: update ← power(update, 1 + decay factor)
5: end for
6: return update
7: end procedure

In keeping with principles identified in prior work, recommendations are easily dismissed

or corrected (Amershi et al. [2019]). Further, recommendations are “consistent”: only one

action is recommended for a file at a time. They are also “polite”: after a recommendation is

accepted or dismissed, no other action will be recommended for that file for a period of time

(Whitworth [2005]). Recommendations are also removed if they are “invalidated,” either

by a different action being performed on the recommended file or the recommended action

becoming impossible (e.g., the file was deleted).

We also designed KondoCloud so that recommendations expire more quickly when file-

management actions of a different type are performed. As seen in Figure 4.5, if an action

of a particular type is performed, it is more likely to follow or precede another action of

the same type than of another type. All recommendations expire after a set number of

actions to reduce cognitive load and stay within a user’s context (Bao and Dietterich [2011]).

However, per Figure 4.5, performing an action of a different type indicates that a user’s task

context may have changed. Thus, while recommendations expire after any 10 actions (set via

pilot testing), actions of a different type count as 2 actions toward expiration. This allows

recommendations that are less likely to be accepted to be dismissed more quickly.

4.4.3 Classifier

KondoCloud’s recommendations are driven by a set of Logistic Regression classifiers we

trained to predict whether two files should be managed similarly. To our knowledge, this is

the first classifier for predicting a broad set of file-management actions, such as files to move
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and to delete. We trained this classifier based on the 777 file pairs that participants labeled

in Part 2 of the Observation Study. In particular, those participants rated their agreement

that “these files should be managed in similar ways” for up to 14 pairs of files. As discussed in

Section 4.2.2, we intentionally oversampled file pairs that were likely to be managed similarly

based on our preliminary notions of file similarity to have more balanced class distribution

in training our classifier. We took “strongly agree” and “agree” labels as our positive class,

and all other responses as the negative class, creating a binary classification problem. We

also examined using only “strongly agree” responses as the positive class, finding it missed

cases of interest and suffered from a class imbalance.

We used the ten metadata and content features from Table 3.2 (Chapter 3) as pre-

dictive features. Because pairs of files that are both images or both text have additional

content features, our overall classifier uses the applicable model among three parallel op-

tions (for text-text pairs, image-image pairs, and all other mixed pairs). Considering speed,

interpretability, deployment performance, and our small amount of training data by ML

standards, we chose logistic regression models. We examined alternative models, including

Support Vector Machines, Random Forests, XGBoost, and some ensemble methods. The

small improvements we observed in precision were not justified by trade-offs in speed, inter-

pretability, or performance. We used a standard 80-20 train-test split.

Even with our limited amount of training data, our classifier achieved accuracy appro-

priate for human-in-the-loop recommendations, as shown in our precision-recall curve (Fig-

ure 4.8). We achieved F1 scores of at least 0.72 on all three models. While 0.5 is a typical

decision threshold, KondoCloud uses the higher starting decision threshold of 0.65 because

we focused on providing a smaller number of high-likelihood recommendations, as opposed

to many recommendations of potentially lower quality. Spurring this decision, prior work

found that a participant’s initial sense of an adaptive interface’s accuracy influenced later

trust in that interface (Gajos et al. [2006], Lee and See [2004]).
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Figure 4.8: Precision-recall curve for the overall classifier.

4.5 Evaluation Study

We evaluated KondoCloud in our between-subjects Evaluation Study. Our key goals were

to identify the accuracy and impact of similarity-based file recommendations, as well as to

identify ways for future work to improve KondoCloud.

4.5.1 Participants

A total of 59 participants completed the Evaluation Study, 36 in the With Recommendations

condition and 23 in the No Recommendations condition. The demographics of the participant

population were similar to the Observation Study, with a more even balance among the age

of participants. During the study, participants performed a total of 4,644 separate file-

management actions, with 3,684 (79.3%) move actions, and 960 (20.7%) deletion actions.
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Feature Mixed pairs Text pairs Image pairs

Last Modified 2.884 1.320 2.108
Filename 1.872 0.873 0.557
File Size 0.380 0.955 0.806
Tree Distance 2.163 1.031 1.777
Shared Users 0.668 0.579 0.520
File Contents 1.411 0.102 ∼0.000

Text Contents – 0.319 –
Text Topic – 0.131 –

Image Contents – – 1.008
Image Color – – 1.044

Table 4.2: Coefficients (β) of the three Logistic Regression classifiers we created. Our overall
classifier (Figure 4.8) chooses the appropriate model based on the types (text, image, or
other) of the two files being compared.
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Figure 4.9: The number of recommendations generated for each participant based on their
organizational actions (top), as well as the outcome of those recommendations (bottom).
We cluster participants on the fraction of recommendations accepted.

Participants again varied in their organizational strategies and actions.
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4.5.2 Outcome of Recommendations

KondoCloud’s recommendations formed a core component of many participants’ organiza-

tional workflows. Figure 4.9 shows the number of recommendations offered to each partici-

pant and how they interacted with these recommendations. Participants saw 1,856 recom-

mendations: 1,561 (84.1%) move recommendations and 295 (15.9%) deletion recommenda-

tions. Participants accepted 473 (25.5%) of these, consisting of 348 move recommendations

(22.2% acceptance rate) and 125 delete recommendations (42.4% acceptance rate). In ad-

dition, participants manually completed 199 (10.7%) of the recommended actions using the

standard file-browser interface while the recommendation was still active. Combining actions

taken as a result of formally accepting a recommendation and actions taken manually while

that action was also being recommended, 36.2% of recommended actions across participants

were completed.

We informally placed the 36 participants in the With Recommendations condition into

clusters based on the percentage of recommendations they accepted: participants who ac-

cepted ≥ 55% of recommendations (6 participants, 16.7%), 35-55% (6, 16.7%), 10 − 35%

(5, 13.9%), 0-10% (8, 22.2%) and those who accepted none (11, 30.6%). As seen in the top

portion of Figure 4.9, the number of recommendations generated per participant varied sub-

stantially (average of 51.6, standard deviation of 66.1). Because of this, a small number of

participants accounted for a large proportion of accepted recommendations. Participants in

the ≥ 55% cluster, for example, collectively accepted 282 recommendations, which accounted

for 59.6% of total recommendations accepted by all participants. In addition, accepted rec-

ommendations made up a significant fraction of the total file-management actions performed

by some participants: 14.1% of all move actions and 29.0% of all deletion actions were the

result of accepted recommendations.

Recommendations were primarily classified as untaken due to fading away without inter-

action (i.e., after 10 actions of the same type or 5 of a different type). Of the 1,383 untaken
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Figure 4.10: Participants’ responses to questions about a sample of 61 recommendations they
accepted (left, top), 306 recommendations they did not accept (left, bottom), and whether
they remembered seeing specific recommendations (right).

recommendations in the With Recommendations condition, 884 (63.9%) faded away, 208

(15.0%) were explicitly dismissed by participants, 199 (14.4%) were completed manually,

and 96 (7.0%) were removed due to being invalidated by a participant action. For instance,

a move recommendation is invalidated when the destination folder is deleted.

The 25 participants in the No Recommendations condition were not shown recommen-

dations. Nonetheless, for analysis purposes we generated the recommendations they would

have been shown had they been in the With Recommendations condition. Participants would

have been offered 1,722 recommendations, specifically 1,599 (92.8%) move recommendations

and 123 (7.1%) delete recommendations. Though the participants were not shown these

recommendations, participants manually performed 32.0% of the move actions and 37.4% of

the delete actions that would have been recommended. We did not observe a statistically

significant difference between the With Recommendations and No Recommendations condi-

tions in the number of actions performed. Note, however, that our study had a small sample

size. Furthermore, the distribution of the number of actions per participant was non-normal,

requiring non-parametric tests with lower statistical power.

4.5.3 KondoCloud Usage

Participants in the With Recommendations condition reported several benefits from using

recommendations. First, most participants stated that accepting KondoCloud’s recommen-

dations improved the efficiency of their organization process. We sampled 61 accepted rec-

59
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Figure 4.11: Distribution of tree distance between recommended file pairs and the outcome
of the recommendation, shown as a heatmap with a boxplot encoded as the borders of the
boxes.

ommendations and asked participants to respond to a statement that the recommendation

improved the efficiency of organizing their account (Figure 4.10). In 46 (75.4%) of these

cases, participants chose “strongly agree” or “agree.” Participants also stated that they

expected they would have performed the action regardless of the recommendation for 50

(82.0%) sampled recommendations. Some recommendations, however, suggested an action

that the participant might not have otherwise taken. In particular, participants responded

that the recommendation they accepted was surprising in 11 (18.0%) cases we asked about.

Recent work has noted how surprising recommendations can increase a user’s satisfaction

with a recommender system (Niu and Al-Doulat [2021]). Participants who indicated that a

recommendation was surprising offered explanations such as, “How did your system know

it was a useless file? Amazed me” and “The two files are not related to each other (to my

knowledge) so I was surprised that it made the suggestion.” Among recommendations that

participants did not accept, many were still potentially desirable. As seen in Figure 4.10,

when asked whether a recommendation they did not take was sensible, participants either

chose “strongly agree” or “agree” for 170 of the 306 (55.6%) sampled (untaken) recommen-

dations. For 124 of these 170 recommendations (72.9%), participants either indicated that

they did not see the recommendation or were not sure whether they had seen it.

We also found that accepting delete recommendations helped participants delete similar

files in different folders. We examine this phenomenon in Figure 4.11, which displays the tree

distance between similar file pairs for which recommendations were generated. For example,

a participant may move an image from the root to the “Vacation Pictures” subfolder, which
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generates a recommendation to move another image to that same subfolder. The number of

actions needed to navigate from the original image location to the similar file it generated

a recommendation for is the x-axis in Figure 4.11. This measure is a proxy for how likely

a participant might be to perform the recommendation manually. If the files are in the

same directory (tree distance 0), a participant might have already seen the recommended

file and already plan to perform the recommended action. If the tree distance is large, how-

ever, a participant might not know about the file or otherwise overlook it even though they

might wish to manage it similarly to other files. We find that for delete recommendations

in the With Recommendations condition, 26.4% of accepted deletion recommendations were

for pairs of files in different directories, compared with only 3.8% of recommended deletions

performed manually. This represents a significant difference between accepting delete recom-

mendations and performing similar actions manually (Mann-Whitney U test, p < 0.001). In

the No Recommendations condition, no deletion actions that would have been recommended

were manually completed on files in different directories. This suggests that recommenda-

tions may have helped participants identify files they wished to delete in different directories.

For users of cloud storage who may forget about privacy-sensitive files (Khan et al. [2018]),

this form of support could prove useful.

Although KondoCloud generated many move recommendations for similar files at large

tree distances, the recommendations that were accepted were typically at much smaller tree

distances, as shown in Figure 4.11. This finding is not surprising because most moves are

from the root to a subfolder one level below (see Figure 4.4). Such recommendations, where

both files are originally in the root directory, would have a tree distance of 0. Indeed, 279

(80.1%) accepted move recommendations moved a file from the root directory to a direct

subfolder, and 265 were recommendations that acted on files in the same directory as the

originally moved file.

Figure 4.12 shows that 33.3% of participants reported finding recommendations useful,
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Figure 4.12: Responses to questions about the general organization task (top) and recom-
mendations (bottom).

52.8% reported understanding them, and 44.4% reported finding them relevant. Interest-

ingly, we did not find evidence that these responses correlated with either the number or

proportion of recommendations the participant accepted. Participants who did not find rec-

ommendations useful reported several reasons why. Some participants simply stated that

they would have performed the actions regardless (“Because I would have done it either

way”), some did not see them (“Didn’t even notice them most of the time”), others pre-

ferred to organize manually (“I personally prefer organising files myself rather than trusting

suggestions”), and yet others noted that some recommendations could be blocked by oth-

ers appearing at the same time (“some were useful while some were not and the ones that

were not blocked the ones that may have been useful”). Participants across both conditions

generally reported being motivated to organize (61.0%), found organizing easy (62.7%), and

were roughly evenly split on whether the task took a lot of mental energy (47.5% said it

did not). We did not observe a significant difference in the distribution of answers across

conditions. Lastly, participants evaluated KondoCloud’s usability via the System Usability

Scale (SUS). The mean score among participants was 69.9, which is approximately equiva-

lent to the average score in previously evaluated systems (Bangor et al. [2009]). We did not

observe significant differences in SUS scores across conditions or relative to the proportion

of recommendations a participant accepted.
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4.6 Summary

To help users organize their personal cloud repositories, we designed, implemented, and

evaluated KondoCloud, a file browser enhanced with ML-based recommendations for mov-

ing and deleting files. We conducted two online user studies. In the Observation Study,

we observed a variety of organizational approaches, including moving related files to newly

created sub-folders, deleting files extensively, and moving misplaced files into existing fold-

ers. We also collected data to train a first-of-its-kind classifier that predicts which pairs of

files should be managed similarly. In the Evaluation Study, nearly half of participants ac-

cepted a non-trivial fraction of KondoCloud’s recommendations. A few accepted nearly all.

Participants felt recommendations made organizing more efficient, and recommendations for

deletion helped participants delete related files located in different directories.

The work described in this chapter is a strong step towards demonstrating feasibility of

more complex file management recommendations. However, there were a number of potential

improvements identified. The first of these, and the focus of Chapter 5, is that KondoCloud

gives recommendations individually, yet many related recommendations may appear in large

groups. Participants can scroll to view all of them, but this takes effort. Of the actions on

834 files, 66 (7.9%) produced groups of ten or more recommendations, and one particular

action generated 230 distinct recommendations. For these sets of related recommendations,

participants typically accepted either most or none of them. Presenting these related rec-

ommendations as a group, allowing the user to accept all or reject all, would not only save

users time, it would likely improve their understanding of what recommendations are be-

ing offered to them. When asked if they wanted recommendations to be shown in groups,

58.3% of participants in the With Recommendations condition responded “strongly agree”

or “agree,” stating that it would be faster or easier. Consequently, we describe in Chapter 5

a proposed method for summarizing groups of related file management recommendations.

A second improvement would be modifying our pre-processing approach to improve scala-
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bility would improve KondoCloud’s ability to handle large repositories. Because the current

pre-processing requires comparing every pair of files, analyzing large file systems is pro-

hibitively expensive. Computing similarity only between a sample of files, as we did, may

render some desirable recommendations undiscoverable. Instead, pairwise comparisons could

instead be computed at runtime for only the (presumably small) set of files that are moved or

deleted and would thus spawn potential recommendations. More advanced techniques could

also be applied. Applying locality-sensitive hashing (Gionis et al. [1999]), learned hashing

methods (Wang et al. [2015]), or quantization methods (Gray [1984], Jegou et al. [2010], Ge

et al. [2013]) could perhaps obviate pairwise comparisons, yet add only mild overhead per

recommendation.

Third, modifying our classifier to model task context could improve recommendations.

Including information like a file’s destination might avoid recommending unlikely actions,

such as moving a file to a parent folder, as opposed to the more common approach of moving

it to a sub-folder. Offering a more diverse set of recommendations to elicit user preferences

could also be beneficial (Liu et al. [2010], McCamish et al. [2018], Slivkins [2011]). While

our approach of dynamically adjusting the classification threshold based on the user’s prior

actions personalizes recommendations to some degree, further experimentation is needed.

Finally, enabling richer interaction with recommendations could improve usability. For

example, Amershi et al. [2014] found that users often wish to give intelligent systems specific

feedback, like explaining why an item is labeled incorrectly. Allowing users to identify which

file features indicate their personal preference of why files should (or should not be) managed

similarly could allow much more targeted and interpretable recommendations (Dasgupta and

Sabato [2020]). Further, incorporating early user feedback via more intrusive notifications,

such as negotiated-style interruptions (Robertson et al. [2004]) at the start of organizing

could enable KondoCloud to personalize recommendations quickly.
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CHAPTER 5

FILE RECOMMENDATION SUMMARIZATION

5.1 Overview

The work in this chapter centers on a potential feature to be used in file management

recommender systems such as KondoCloud, or systems in prior work (Tata et al. [2017], Xu

et al. [2020]). As identified in Section 4.6, particularly in the context of file management

recommendations beyond retrieval, large groups of related recommendations may spawn

concurrently. When these are presented individually, there is the potential to burden users–

typical explanations for recommendations, such as those used in KondoCloud and prior work

are insufficient (e.g., “. . . because you edited resume2022.docx on 2022-04-07 ”, Jahanbakhsh

et al. [2020], Xu et al. [2020], Tintarev and Masthoff [2015], Narayanan et al. [2018], Kim

et al. [2016]).

In this chapter, we thus investigate whether related ML-driven recommendations for man-

aging highly similar files in cloud storage can be aggregated effectively. This goal produces

challenges related to both the underlying algorithm and the user experience. First, recom-

mendations must be clustered into groups that a user would perceive as actually related,

and the algorithm for doing so must be efficient. While future work that builds on this will

need to address this in their own manner, we accomplish this step by taking as groups the

recommendations generated from a single precipitating action. Second, the system must pro-

duce and display a succinct summary of the files included that enables the user to determine

accurately which files are being recommended, a task we, and prior work (Narayanan et al.

[2018]), term verification.

Intuitively, files with similar characteristics (e.g., filenames, file extensions, contents,

location) that are being recommended for similar reasons are likely candidates for aggregation

into a single recommendation that applies to multiple files at once. To this end, we first
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propose an algorithm (Section 5.2) for summarizing related files based on these shared file

characteristics. The algorithm takes as input a group of recommendations, similar to

those generated by KondoCloud for a single precipitating action. As output, the algorithm

produces a set of the characteristics shared by all files in the group. While a naive approach

would have computational complexity exponential in the space of file characteristics, we

develop a greedy approximation algorithm that takes roughly one second on commodity

hardware.

The second challenge is to create a representation that helps the user understand which

files are included in the group. The most basic approach would be to simply list the files

and their most relevant metadata in a table in the user interface. However, this approach

is unlikely to scale meaningfully to groups of recommendations that contain many files, and

it also does not give any indication about what types of files are excluded from the group.

As a result, we develop user-facing summaries that leverage our algorithm’s output: the

shared characteristics of all files in the group (e.g., all documents whose filenames start with

‘group-work’ and that were modified within a particular date range). We design a text-based

summary, termed Rules-Text and shown in Figure 5.1c, and a visual tree-based summary,

termed Rules-Tree and shown in Figure 5.1d.

To evaluate our summaries, we conduct a within-subjects online user study, the Explana-

tion Study (Sections 5.3–5.4). We show participants groups of recommendations about their

own Google Drive repositories and solicit their perceptions of the associated summaries. We

compare the aforementioned Rules-Text and Rules-Tree summaries we developed with two

baselines: simply showing a table listing the files in the group, accompanied by the standard

explanation text used in KondoCloud and prior work as described above, termed List of

Files and shown in Figure 5.1a, and a decision tree, termed Decision Tree and shown in

Figure 5.1b. We chose the latter since decision trees are often considered among the most

interpretable ML classifiers (Lou et al. [2012]).
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(a) Table listing all files in a group.

Last modified date similarity > 0.935

None

False

File size similarity > 0.371

True

None

False

# of files: 48

True

(b) Decision Tree summary

(c) Rules-Text summary

The file(s) were last modified between
2022-03-10, 09:08 and 2022-03-10, 12:33.

The folder(s) [’diversity committee’]
appear in the filepath.

True

None

False

# of files: 49

True

None

False

(d) Rules-Tree summary

Figure 5.1: To communicate to users which files are contained in a group of recommendations,
the most naive approach was to simply list the files (upper left). Our summaries augmented
this list with either a decision tree (upper right) as a baseline or the the rule-based summaries
we propose in either text-based (lower left) or tree-based (lower right) presentations.

We find that participants perceive our rule-based summaries as less confusing, more help-

ful, and more verifiable than the two baselines regardless of the number of recommendations

in the group. In particular, compared to List of Files summaries, we find that Rules-Text

summaries are 2.7× more likely to have a higher participant rating of helpfulness or verifia-

bility. Further, compared to List of Files summaries, Rules-Text summaries are 2.0× more

likely to have a higher rating of confidence in accepting recommendations without examin-

ing the individual files. Contrary to our expectation that participants would prefer visual

displays of information, participants rate our text-based summaries slightly better than our

tree-based summaries.
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5.2 Summarization Algorithm

Here, we describe the motivation for generating summaries, our target format for summaries,

and the associated algorithm we created for clustering and summarizing recommendations.

5.2.1 Motivation and Existing Summaries

Summarizing a group of recommendations is necessary to communicate to the user which

files are included, and which are excluded from the group. While summaries are useful for

file retrieval (viewing a file), they are even more important for destructive and permanent

actions like deleting or moving files. This observation is notable since recent research has

increasingly focused on tools to help users delete and move files to improve personal informa-

tion management (Dropbox [2022], Khan et al. [2021], Bergman et al. [2019]). Furthermore,

even if multiple recommendations for file retrieval were summarized, the user would likely

still view those files individually and sequentially, in contrast to bulk file deletion or bulk file

movement.

If multiple recommendations are grouped and summarized in a way that the user trusts

to convey which files are included, the user can accept them together, improving efficiency

and increasing the user’s confidence that related files have not been inadvertently excluded

from the recommendation. Our summaries thus aim to empower users to quickly determine

which files are covered by a summary, a task we, and prior work (Narayanan et al. [2018]),

call verification.

We evaluate four summary types: List of Files , Decision Tree, Rules-Text , and Rules-

Tree. The former two are intended as baselines, whereas the latter two are novel contri-

butions. Summaries for file recommendation in current systems generally follow the form,

“You {performed action} to {file name} in {time period}” (Chapter 4, Xu et al. [2020]).

We mirrored this phrasing in our List of Files baseline, and we also accompanied it (and

all other summaries) with a table listing the files in the group, as shown in Figure 5.1a.
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We expected these explanations to fall short when recommending that the same action be

applied to multiple files. The user might wonder how the files listed in the table relate to

each other, or whether other files with similar characteristics were mistakenly left out.

Our second baseline is based on an observation from efforts in interpretable ML. Decision

tree classifiers are typically considered among the most intelligible types of ML models (Lou

et al. [2012]). In particular, our Decision Tree baseline displays a visual tree-based represen-

tation of a decision tree classifier that is used to select files for the group of recommendations

based on their similarity to a file spawning the recommendations (e.g., deleting Northern-

Lights 98.jpg might spawn recommendations to delete other, related files). As shown in

Figure 5.1b, the visualization of the decision tree references the kinds of information used by

the classifier (e.g., a normalized quantification of the similarity of file names). Despite the

inherent interpretability of a decision tree, we expected that the model parameters would

prove somewhat unintelligible to non-experts. For a linear model on a bag-of-words fea-

turization, for example, each word is assigned a β coefficient to best match the decision

boundary of the original recommendations. Understanding whether a file would be recom-

mended or not would therefore require a complicated calculation for a non-technical user.

This is exacerbated when inputs are more heavily featurized, such as in an embedding space

(Lipton [2018]). Non-parametric methods such as K-nearest-neighbors are no better, since

the distance metric will have the same difficulties as uninterpretable model parameters.

5.2.2 Structure of Rule-based Summaries

Table 5.1 details the format of the rule-based summaries we developed: Rules-Text and Rules-

Tree. These summaries consist of the intersection of multiple predicates on the characteristics

of the files in the group (Table 5.2) presented in ways we designed to be interpretable to

non-technical users. Intuitively, these predicates represent characteristics of the files included

in as group of recommendations. These predicates take two forms depending on the data
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Summaries P ::= (r | s) ∧ ... ∧ (r | s)

Range Predicate r ::= n1 ≤ x ≤ n2
Set Predicate s ::= (c1 ∈ x) ∧ ... ∧ (cn ∈ x) | s ∨ s

Table 5.1: The structure of our proposed summaries.

type of the characteristic. For numeric characteristics, such as the file size or last modified

date, the predicate covers a range of values (e.g., “files between 3 and 5 megabytes”). For

set-based characteristic (all others, such as the set of objects recognized in an image), the

predicate evaluates to true if, for at least one of the subsets of items in the predicate, the file’s

relevant feature set contains all of the given items. For example, if a predicate on filename

tokens takes the conjunction of the sets “[‘course’, ‘2019’] OR [‘course’, ‘2020’]”, then any

file with filename tokens containing either subset will be covered by the predicate. To limit

the computational cost and ensure simplicity of summaries, we allow no more than a single

“OR” conjunction for a particular feature predicate. We also do not allow “OR” clauses

between predicates / different features (e.g., “The folder(s) [‘work’] appear in the file path

OR the filename(s) start with ‘budget ’ ”). Given that we showed the notion of similarity

strongly informs desires about richer file management actions in Chapter 3, and given that

the displayed predicates can easily explain multiple recommendations at once, they seem to

address the expected drawbacks of the baselines above.

Because we were also interested in how the summary was presented to users, we developed

and tested two visual presentations for rule-based summaries. The Rules-Text summary

shows a plaintext representation, as in Table 5.1, with minor embellishments (e.g., bolding)

for readability. The Rules-Tree summary inserts predicates into the same tree structure used

in our Decision Tree baseline.
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Attribute Predicate Type Example

Filename Prefix Set The filename(s) start with ’bronze-age’
Filename Tokens Set The filename(s) contain sub-part(s) [’group’, ’work’]

File Extension Set The file(s) have the extension ’png’
File Path Set The folder(s) [’useful’] appear in the filepath

Shared Users Set The file(s) are shared with [’example@gmail.com’]
Recognized Objects Set The system thought it saw the object(s) [’website’, ’letter’] in the image(s)

File Text Tokens Set The file data contains the word(s) [’earnings’, ’call’]
File Size Range The file(s) have size from 2.0 Kb to 1.0 Mb

Last Modified Date Range The file(s) were last modified between 4/7/2019 14:40 and 4/8/2019 14:45

Table 5.2: The file characteristics used in summaries, their predicate types, and examples of
their text representations.

5.2.3 Synthesis Algorithm

Synthesizing summaries in the form of Table 5.1 over multiple recommendations faces several

challenges. First, the synthesized summary is highly unlikely to be able to exactly match

the group of recommendations output by the original recommender system. This is only a

minor concern in prior work, as researchers either tune the neighborhood around a single

example to be summarized such that summaries are rarely untruthful (Ribeiro et al. [2016])

or assume a particular model form for the recommender system (Sharma and Cosley [2013],

Zhang et al. [2014], McInerney et al. [2018]). We instead modify the set of recommendations

included in a group to exactly match those covered by the summary. We feel that doing so is

a potentially beneficial form of regularization on the recommender system output. However,

it is still desirable to match the original set of recommendations in a group as closely as

possible. To do this, we select among explanation candidates using the Fβ score, where the

positive labels are the original recommendations. We set weights on recall versus precision

via pilot testing. Second, finding a globally optimal candidate for set-based predicates may

require enumerating an exponential number of candidates in the worst case. To address

this, our synthesis algorithm greedily adds tokens to the potential set predicate. This takes

time O(nk), where n is the number of possible tokens to explain over, and k is the number

of tokens in the optimal predicate. We find that k is usually small (< 5) in practice. In

addition, we limit the number of tokens examined per file to 1,000 for our experiments.
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Future work may examine the practicality of this limit. Third, to integrate seamlessly with

the underlying recommender system, summaries must be generated in close to real time.

Thus, we compute an approximation by greedily selecting the best predicate to add to the

current set.

With these challenges in mind, we synthesize summaries using Algorithm 3, which takes

Algorithm 4 as a subroutine. Informally, Algorithm 3 looks at each attribute, and uses a sub-

routine to identify the best predicate for that attribute given the current set of items covered

by the explanation. Whichever one yields the most improvement in the Fβ score is added to

the explanation. The algorithm halts when adding a predicate on another attribute would

negatively impact the score. The set of files covered by a candidate explanation is identi-

fied via pre-built sorted range or reverse-index data structures that enable efficient lookup.

The best candidate for set-based explanations is approximated with Algorithm 4, while the

best candidate for attributes that take range-based predicates is found by enumerating all

choices. Building the data structures and enumerating solution candidates are viable in

practice because the universe of constants for range predicates and tokens to be added to set

predicates is restricted to values drawn from the original group of recommendations. Intu-

itively, choosing a value in a range predicate that was not drawn from a recommended item

cannot improve more than one drawn from a recommended item and can only negatively

impact precision. A similar principle holds for tokens in sets that do not apply to any files

in the group. While we find that the given synthesis algorithms are efficient in practice, we

do not explore the optimality gap due to approximation, nor do we explore the potential for

more efficient implementations.

5.3 Explanation Study Methodology

To study the effects of different summary types, we conducted a two-part, within-subjects

online user study (the Explanation Study) with 44 participants. In Part 1, we scanned
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Algorithm 3 Full Approximation algorithm

procedure FullApprox(Files in Recommendations, Other Files)
RunningBase← Files in Recommendations
RunningOut← Other files
Summary ← []
while Haven’t used all attributes do

Scores← []
for Attribute in unused attributes do

Predicate, Score← BestPredicate(Attribute)
Scores← Scores+ [Score]

end for
if Best score ≥ 0 then

Summary ← Summary + [Predicate]
RunningBase← RunningBase∩ (Files in Recommendations covered by pred-

icate)
RunningOut← RunningOut∩ (Other Files covered by predicate)

else
break;

end if
end while
return Summary

end procedure

Algorithm 4 SetGreedy

procedure SetGreedy(Attribute, RunningBase, RunningOut)
Predicate← []
Scores← []
while Some set elements remain unused do

for set element for Attribute do
Scores← Scores+ [ChangeInSummaryScore()]

end for
if Best Score > 0 then

Predicate← Predicate+ [Best set element]
else

break;
end if

end while
return Predicate

end procedure
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the participants’ Google Drive accounts, pre-computed groups of recommendations, and

generated summaries of each of the four studied types (List of Files , Decision Tree, Rules-

Text , Rules-Tree) for every group. We used stratified sampling to select up to 14 group

/ summary pairs. We presented these to participants in Part 2, asking them to evaluate

attributes like the helpfulness and verifiability of each summary.

5.3.1 Part 1

We recruited crowdworkers from the USA and UK through Prolific [2019].We required that

participants had completed 10+ submissions with a 95%+ approval rating and had Google

Drive accounts that were 3+ months old and contained 100+ files. Once we recruited

participants and they had consented to the research, they granted our web application access

through OAuth 2 to scan their Google Drive files’ data and metadata. Participants were

then directed to a survey on their demographics and usage of cloud storage. Part 1 took

approximately 15 minutes. Compensation was $5.00.

We pre-computed file recommendations using the method from Chapter 4. As before, we

limited computation to all pairs of at most 1,000 files. We generated groups of recommen-

dations by iterating over all files, sequentially designating each as the “base file.” All files

classified as similar to the base file were recommended as a group. To limit overlap, we did

not generate a group for the base file if that file appeared in a previous group.

For each group, we then generated a summary of each type identified in Section 5.2 (List of

Files , Decision Tree, Rules-Text , Rules-Tree). We excluded the base file from this summary

as it was used to generate the “scenarios” described below. As described in Section 5.2, we

modified the set of files in a group to exactly match those covered by the summary. The List

of Files summaries require no generation, the Rules-Text and Rules-Tree summaries were

generated with Algorithm 3 and the Decision Tree summaries were generated by training

decision trees (Gini impurity, max depth of 2 set in pilot testing) that took the original group
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of recommendations as positive labels, and files not recommended as negative labels.

Once summaries were generated, we used stratified sampling to choose group / summary

pairs to present in Part 2. We selected up to 14 groups as follows:

• 4 groups, based on summary complexity (2 “complex”, 2 “simple”)

• 4 groups, based on “discriminativeness” (2 “discriminative”, 2 “non-discriminative”)

• 6 groups, based on size (2 “small”, ≤ 25th percentile of group size for participant, 2

“medium”, 25th–75th percentile, and 2 “large”, > 75th percentile)

We labeled Rules-Text or Rules-Tree summaries as complex if they required at least one

‘AND’ or ‘OR’ keyword, and Decision Tree summaries as complex if the resultant tree had

depth > 1. List of Files summaries were not complex. We identified groups as discrimi-

native based on what percentage of the files in a folder were recommended, among folders

that contained recommended files. Intuitively, recommendations that suggest performing an

action on all files in a folder (recommendations that are not “discriminative” of files in a

folder) are less helpful for users, given that such files can easily be identified by the user

themselves. In contrast, selecting a specific subset of files from a folder may require more

effort from a user, and such recommendations are therefore more helpful. If there were fewer

group and summary pairs that met the complex and discriminative criteria than desired,

additional summaries were sampled from the small, medium, and large groupings.

5.3.2 Part 2

We invited back eligible participants after we had finished the processing of Part 1. When

participants returned, they were presented with instructions that explained we would show

them up to 14 hypothetical “scenarios” (the Scenario), based on a group / summary pair,

each of which read, “Suppose that you shared, moved, or deleted {base file}”. We presented

the group of recommendations (Recommended Files) in a table with relevant metadata
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that linked to the file data in Google Drive (Figure 5.1a), along with the summary (the

Explanation). For List of Files summaries, we presented only the text, “Because you

shared, moved, or deleted {base file} ({file path of base file})”. Other summary types were

displayed as in Figure 5.1. The visual summary types, Decision Tree and Rules-Tree, also

had a hover interaction on leaf nodes that displayed the names of the files allocated to

that node. We then asked participants a set of 8 questions (shown in Table 5.3) about the

scenario, group, and summary. After completion, participants were redirected to the link

for compensation. Part 2 took approximately 1 hour to complete, and compensation was

$15.00.

5.3.3 Limitations

Our study required that participants accept permissions allowing our web application to

view and download their file data—privacy-conscious participants may have been unwilling

to participate. In addition, our study presents hypothetical scenarios. While this allows

us to directly study groups of file recommendations, participants’ survey responses may be

biased either towards accepting recommendations, because there was no cost to agreeing, or

against accepting them, because of the uncertainty introduced by lack of context. Further,

although it was necessary from a computational standpoint, limiting our all-pairs similarity

to 1000 files may bias our results. The absence of recommendations that would have been

included, had the files been sampled for similarity, may negatively bias participants’ survey

responses for summary types based on pre-computed similarity (List of Files , Decision Tree).

Our study was also conducted on crowdworkers. Prior work has shown that crowdworkers

are not representative of any broader population, and that many skew younger and more

technically-savvy.
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5.4 Results

We describe our participants and their survey responses, then build a set of regression models

to identify the effect of summary type on qualities such as understandability, helpfulness,

and verifiability.

5.4.1 Participants

We recruited 44 participants for the Explanation Study. 29 (67.4%) participants were female,

11 (25.6%) were male, and 3 (7.0%) were non-binary. Most participants were 25–34 years old

(16, 36.4%), with a similar number (15, 34.1%) 18–24 years old, and the remaining, 35–64

years old. Most (35, 79.5%) had no computer science background. Participants interacted

with their Google Drive account in various ways. Participants used Google Drive through

the website (37) or the mobile app (30) nearly equally, though a few synced folders directly

from their local storage (12). Most participants interacted with their account weekly (17,

40.4%), though monthly (13, 31.0%) and daily (11, 26.2%) usage was also common. Par-

ticipants generally disagreed that their accounts were well-organized (15, 34.1% “disagree”,

and 13, 29.5%, “strongly disagree”). Participants also generally agreed that their files were

“uncategorized” (15, 34.1%, “agree” and 13, 29.5%, “strongly agree”).

The distribution of participants’ cloud storage files was similar to those from the Investi-

gation Study, the Observation Study, and the Evaluation Study. We processed 97,546 files

from participants. The median participant had 1,310.5 files in their account, and the mean

participant had 2,217 files, with a standard deviation of 3,622.5. The smallest account had

117 files, and the largest, 16,137 files. Most files were images (43,889), with a large number

of media (14,791) and text files (14,199 across participants). Most images were “jpg” files

(35,085), most media files were “mp3” (4,164) or “heic” files (4,049), and most text files were

“pdf” files (9,790). There was also a long tail of 23,172 files with uncategorized extensions.

These included “no extension” (5,131), Autodesk files (“flc”, 1,893) and paintbrush bitmap
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files (“pcx”, 651).

5.4.2 Survey Responses

Participants saw 563 scenarios. Summary types appeared in roughly equal numbers of scenar-

ios: 131 (23.3%) List of Files scenarios, 153 (27.2%) Decision Tree scenarios, 132 (23.4%)

Rules-Text scenarios, and 147 (26.1%) Rules-Tree scenarios. The sampling reasons were

roughly evenly distributed as well. The most common choice was summaries over small file

groups (90, 16.0%), and the least common choice was non-discriminative summaries (64,

11.4%). The size of the recommendation groups followed roughly a power-law distribution:

the mean sampled group contained 40.2 recommendations, while the median sampled group

contained 7 recommendations. The largest group sampled was 1,179 recommendations. On

average, groups identified by Rules-Text and Rules-Tree summaries were larger: groups had

median size 9 for both, compared against median sizes of 6 for List of Files and Decision

Tree summaries, respectively. However, per the discussed limitation in Section 5.3.3, this is

likely to be biased. Differences between summary types carried over to the scores: Decision

Tree summaries had an average Fβ score of 93.0, while Rules-Text and Rules-Tree summaries

had a score of 68.9. This is a notable difference, but there are several considerations. First,

again due to the limitation in Section 5.3.3, scores for Decision Tree summaries are biased

upward, as they are fitting a smaller set of files. Second, scores only indicate a summary’s

ability to match the original classifier recommendations. This is independent of participants’

perceptions of the recommendations and summaries, which is the focus of our analysis.

The file characteristics (Table 5.2) chosen to summarize over were roughly consistent

across summary types, as seen in Figure 5.2. We display only Decision Tree and Rules-Text

summaries, because List of Files summaries do not explain over characteristics, and Rules-

Tree summaries are generated in the same way as Rules-Text summaries. Their distributions

are essentially identical. By far, summaries most commonly used filenames and last modified
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Figure 5.2: Number of times each characteristic appeared in a summary for Decision Tree, or
a Rules-Text/ Rules-Tree. “N/A” represents Decision Tree features not available for rules.

dates. File path and file size characteristics were occasionally present in both summary types,

and the remainder of characteristics were rarely included in summaries. Some characteristics

were not present for a particular summary type. Because the original classifier does not

have features for File Extension, for example, this could not be selected by the Decision

Tree summary. Similarly, Rules-Text summaries did not have predicates for file content,

topic, and image color features. In each of these cases, the relevant characteristics were not

commonly summarized over, and therefore were not a key differentiating factor between the

summary types.

We display the proportion of Likert-scale responses for each question from Table 5.3 in

Figure 5.3. We note the difference between two types of questions asked: “Group-Based”
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Q1 The Recommended Files are related to each other
Q2 I could accurately describe to someone else what the Explanation is saying
Q3 The Explanation is confusing
Q4 I’d find a style of of explanation similar to this Explanation helpful when files are

recommended to me
Q5 If I saw a table of all the files in my Google Drive, I could pick out which ones the

Explanation covered
Q6 Based on the Explanation given, I believe the system sees the Recommended

Files as related for the same reasons I do
Q7 I would perform the same action as in the Scenario on the Recommended Files
Q8 After seeing the Explanation, I would feel more confident performing the same

action as in the Scenario on the Recommended Files without examining every
file individually

Table 5.3: Questions shown to participants for each scenario in Part 2. We referred to groups
of recommendations as “Recommended Files”, the summary as the “Explanation”, and
the file action producing the recommendations as the “Scenario”

questions, such as Q1 and Q7, could be answered without reference to a summary. The

only impact that a summary had for these questions was that it would change the group of

recommendations generated. We use “Group-Based” questions both to analyze our recom-

mendations compared to the Investigation Study, the Observation Study, and the Evaluation

Study, and to control for mostly-summary-independent aspects in our regressions (Table 5.4).

We find that answers to the “Group-Based” questions were roughly in line with expecta-

tion from prior work. In Q1, participants generally found the files that were recommended
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Figure 5.3: Proportion of Likert scale responses to each question, separated by summary
type. “Group-Based” questions are those that are answered without reference to a summary,
while ”Summary-Based” questions referred explicitly to a summary.

80



to be related (> 50.0% “agree” or “strongly agree” responses). Given that this population is

sampled from items that a classifier identified as likely to be related, this is roughly within ex-

pectation (cf. Chapter 3). While there were not significant variations between summary type

for Q1, we note that the proportion of “strongly agree” or “agree” responses for Rules-Text

and Rules-Tree summaries were equal to or slightly greater than the other summaries. Given

that the only difference between summary types for this question was the set of recommen-

dations, this supports the idea that the regularization induced by our proposed summaries is,

at least, not harmful. Future work may investigate this in greater detail. In Q7, participants

indicated they would accept the group of recommendations (“strongly agree” + “agree”) for

between 1/3 and 1/2 of scenarios across summary type. This is comparable with, though

slightly higher than, the individual acceptance rates we observed in the Evaluation Study

(Chapter 4). It is possible that the presence of summaries increased participants’ willing-

ness to accept recommendations, but it is also possible that the hypothetical nature of the

scenarios was the reason behind these higher acceptance numbers. Future work examining

these summaries in full interfaces will be useful for answering this.

Participants generally found our summaries (Rules-Text in particular) more understand-

able, less confusing, more helpful, and more verifiable than List of Files or Decision Tree

summaries. The responses to Q2 suggest that participants overall could describe each sum-

mary type (proportion of “agree” and “strongly agree” responses were > 50% across sum-

mary types). Pilot testing suggested that the concrete task in Q2 was a reasonable proxy for

“understandability”. Visual inspection indicates that the Rules-Text and Rules-Tree sum-

maries have a higher proportion of “strongly agree” or “agree” responses than List of Files

or Decision Tree summaries for this question: participants answered “strongly agree” or

“agree” in 86.4% of scenarios for Rules-Text summaries, and in 74.0% of scenarios for Rules-

Tree summaries. Roughly similar proportions of responses are seen in Q3, with the response

flipped due to the opposite sentiment of the question. We examine whether these differences
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were significant when controlling for the relatedness of the files and participant-specific effects

in Section 5.4.3. For Q4, participants seemed to find Decision Tree summaries less helpful,

only responding “strongly agree” or “agree” in 28.8% of scenarios. This is surprising, given

that Decision Tree summaries are widely used in literature, and the List of Files baseline

is very simple. This potentially suggests that Decision Tree summaries present informa-

tion that distracts users. Future work may wish to examine what aspects of Decision Tree

summaries are unhelpful and in what situations. Participants indicated that List of Files

summaries were helpful in 40.5% of scenarios, Rules-Text in 56.8% and Rules-Tree in 47.3%.

The slightly lower rate of positive responses for Rules-Tree summaries compared to Rules-

Text summaries, combined with the similarity in presentation between Decision Tree and

Rules-Tree summaries offers some further evidence that participants considered the decision

tree format as a whole less helpful, versus the specific information given in the decision tree

nodes. The proportion of positive responses to Q5 for Rules-Text and Rules-Tree summaries

compared to other summary types offers some evidence that such summary types were more

verifiable. Participants responded “strongly agree” or “agree” for 68.2% of Rules-Text sum-

maries, for 63.7% of Rules-Tree summaries, for 49.6% of List of Files summaries, and for

45.1% of Decision Tree summaries. Interestingly, despite the minimal information in List of

Files summaries, participants appeared to believe they could still identify which files were

covered by the summary.

Additionally, we find that participants indicated stronger confidence in a greater propor-

tion of scenarios for Rules-Text or Rules-Tree summaries compared to others. Participants

responded “strongly agree” or “agree” for 46.2% and 47.9% for Rules-Text and Rules-Tree

summaries, respectively. In contrast, participants only responded such for 25.5% of scenarios

with Decision Tree summaries and 35.9% of scenarios with List of Files summaries. In this

case, despite the slightly lower support for Rules-Tree summaries indicated in questions such

as the helpfulness of the style, Rules-Tree summaries were the type that participants found
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Describe (Q2) Confusing (Q3) Helpful (Q4) Verify (Q5) Related Reason (Q6) Confident (Q8)

Fixed Effects
Related (Q1) 1.761*** 0.641*** 1.673*** 2.101*** 3.049*** —
Take Recommend (Q7) —— —— —— —— —— 7.592***
Decision Tree 0.553* 2.729*** 0.571* 0.945 0.842 0.774
Rules-Text 2.729*** 0.353*** 2.718*** 2.791*** 1.032 1.987**
Rules-Tree 1.637* 0.630* 1.412 1.893** 1.013 1.567

Random Effects
Participant effect 1.169 1.110 1.618 1.318 1.586 1.370

Table 5.4: Cumulative link logit mixed effects regressions on the Likert responses for
Summary-Based questions. Coefficients are odds ratios, interpreted as the multiplicative
increase in the odds of a higher response. p-values were calculated based on the Satterth-
waite method. Asterisks indicate level of statistical significance. (*** = p < 0.001, **
= p < 0.01, * = p < 0.05).

improved their confidence in the most scenarios. The answers to this question go hand-in-

hand with the answers to Q5, as both are aimed at determining whether the summaries

helped participants make better / more informed decisions with groups of recommendations.

We analyze whether this trend held when controlling for other factors below.

5.4.3 Regression Model

To disentangle correlated factors in the responses in Figure 5.3, we built a set of cumulative

linked logit mixed effects regression models (Table 5.4). We chose this model format because

Likert responses are ordinal and responses by the same participant are correlated.

We take the Likert rating of the “Summary-Based” questions as our response variables.

For the models of Q2–Q6, the fixed effects are the presence of each summary type compared

against the List of Files type, as well as the Likert response to Q1. This last factor is be-

cause participants will likely rate summaries more negatively if participants believe the files

recommended are less related to each other. For Confident (Q8), the Likert response from

Q1 is changed for Q7, indicating whether a participant would accept the group of recommen-

dations in the first place. If a participant is unlikely to accept a group of recommendations,

the summary quality is irrelevant to their confidence in accepting the recommendations. We

exclude from these models the size of the group of recommendations, and the reason a group
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was sampled, as these were not found to be statistically significant factors in any model

where they were included. This potentially indicates that our results apply to recommen-

dation groups of a range of sizes and with a variety of properties. Table 5.4 displays odds

ratios, which are interpreted as the multiplicative increase in the odds that a higher Likert

response is given for the dependent variable when a summary type is present or when the

Likert response for a covariate is one point higher. For example, as seen in the first column

of Table 5.4, a participant’s response was roughly 2.7x more likely to be a higher Likert

rating if a Rules-Text summary was provided as compared to a List of Files .

The only summary type that is statistically significant across all but one model is Rules-

Text . Further, in each model, the effect direction is as expected: the odds ratio is > 1

(a multiplicative increase) for all questions where higher agreement indicates positive at-

tributes, and < 1 for Confusing (Q3), where lower confusion is preferred. The effect size

is also notable: the presence of a Rules-Text summary has a 2.7× odds improvement for

models Q2–Q5, and a 2.0× improvement for Confident (Q8). The effect size, combined

with the high statistical significance of the Rules-Text summary variable, suggests that such

summaries may carry a number of benefits: they may be more understandable, helpful, and

confidence-inducing while being less confusing. While Rules-Tree summaries also showed

some benefit compared to List of Files summaries, the effect size and statistical significance

were lower. The Decision Tree variable in the regression models, when significant, was rated

lower than baseline List of Files summaries: they were less often able to be described (Q2,

0.5×) or to be helpful (Q4, 0.5×) and were more often confusing (Q3, 2.7×). Given that

Rules-Text and Rules-Tree summaries differed only in that Rules-Tree presented informa-

tion like Decision Tree summaries did, this suggests that the Decision Tree format may

require additional improvements to be competitive with other approaches along the same

metrics. We leave the specifics of these needed improvements to future work. Interestingly,

the sole model where no summary type had a statistically significant effect was Related
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Reason (Q6). One interpretation is that, though summaries could be effective at helping

participants verify inputs, they may have differed from the participants’ mental model of

the identified files. Future work may wish to examine this effect when summaries are incor-

porated into full tools. We additionally find that the participant-specific effect for a model

was, on average, about a point to a point-and-a-half difference in Likert response. This

suggests that even independent of the relatedness of recommendations or the summary type

presented, participants still responded to scenarios very differently. This suggests that future

work on sets of related recommendations may find significant benefit in personalization of

recommendations (McInerney et al. [2018]).

5.5 Summary

In this chapter, we proposed and evaluated a new way of summarizing groups of files being

surfaced by an ML-driven recommender system in the context of managing files in cloud stor-

age. We also presented an efficient approximation algorithm to synthesize these summaries.

We conducted a 44-participant, within-subjects online user study in which we compared our

newly proposed summaries (Rules-Text and Rules-Tree) against baselines (List of Files and

Decision Tree). Compared to our baselines, participants were more likely to rate Rules-Text

summaries as more verifiable and as increasing their confidence when managing a groups of

recommendations without examining the files individually.

The work of this chapter contributed toward a resolution to one of KondoCloud’s draw-

backs identified in Chapter 4. Future work will need to investigate affordances that should

be used to support summaries in interfaces. Placing such summaries in KondoCloud, for ex-

ample, would require generating recommendation cards that can include all of the relevant

context that was available in our user study.

Future work may also consider generalizing the summarization problem. We implicitly

assume that groups of recommendations should be summarized as single units. Potentially,
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however, algorithms could be developed to identify an appropriate partition of recommen-

dation groups such that they can be most effectively summarized using multiple distinct

summaries. Alternatively, interfaces could empower users to generate this partition and

further predicates for themselves. In work like SmallStar (Kurlander et al. [1993]) and

Wrangler (Kandel et al. [2011]), users are able to iteratively specify short programs within a

given framework. Similar interactions could be made available to users using the structure of

Rules-Text summaries, offering new modes of interaction in file recommendation settings.
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CHAPTER 6

DISCUSSION

The work in this dissertation offers many lesson to future work in these areas. The overall

lesson is that of feasibility: the data and techniques are available to offer support for file

management actions beyond retrieval. Although we only explored one particular instantia-

tion, in which recommendaions were offered after actions were taken on similar files, similar

instantiations are likely possible. Related work, for example, (Khan et al. [2021]) has shown

promise in a prior identification of files that could have richer actions applied to them. While

a direct translation of their techniques is non-trivial (e.g., what features should be collected

in order to identify which files are likely to be moved?), future work may take inspiration

from the core ideas. For example, similar to Fitchett et al. [2014], interfaces could highlight

groups of files likely to be moved to the same location. While the core idea is the same, the

affordance is different, and may offer unanticipated benefits.

These ideas could be augmented by enriching the space of file actions available. For

example, Bergman et al. [2009] developed a tool that offered users a “deletion-lite” option

that separated files deemed to be of lower importance. Similarly, if users are reluctant to

take recommendations of difficult-to-reverse actions such as file deletion, offering recommen-

dations of such a deletion-lite action, which can easily be reversed, might improve rates of

acceptance. Alternatively, files identified by a system as unlikely to be accessed in the near

future could be recommended to be placed in a compressed format. This would save storage

space, while still allowing for retrieval after decompression. Many similar ideas are available,

and could easily adopt the same format of file recommendations as used in KondoCloud.

In order to fully translate the techniques here to practical systems, many improvements

can be made. As identified in Section 4.6, the limitations of KondoCloud in improving

scalability, modeling task context, and enabling richer interaction remain open. Additionally,

though the work of Chapter 5 followed on the identified drawback of KondoCloud from
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Section 4.6, we did not incorporate it fully into the KondoCloud interface. Exploring how

summarization can be incorporated into an interface will be another interesting direction

for future work. Fully realizing these will be important in improving the state of art for file

management in personal cloud storage.
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CHAPTER 7

ADDITIONAL ARTIFACTS

7.1 Additional Artifacts A: Investigation Study Survey

Instrument

7.1.1 Part 1

As part of this study, our computer code collects some data from your Google Drive or

Dropbox account. As shown in the image below, it collects some file metadata as well as

encrypted text from documents or images and objects recognized in images. It does not save

any of the files. Researchers will never have access to the human-readable versions of any

file content.

To access these files, we ask you to log in through the secure OAuth service. This

provides our code with a one-time access token to use for this study. We do not save any

usernames, passwords, or personally identifiable information through this process. If you are

interested, you can read more about how Google allows third parties to access your account,

and how you can manage this access here: https://support.google.com/accounts/bin/

answer.py?hl=en&answer=143031. You may find equivalent information for Dropbox here:

https://www.dropbox.com/help/security/third-party-apps.

If these terms are acceptable, please indicate so below. Otherwise, you will be asked to

release the submission.

1. I agree to provide access to my Google Drive or Dropbox account under the terms

specified above.

• Yes

• No
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Demographics

1. Are you the only person with access to this account, or do you share the username and

password to this account with others?

• I am the only person with access

• Other users have acces

• Not sure

2. To the best of your knowledge, how many users (including yourself) have access to this

account?

3. For what purpose(s) do you use this account?

4. What percentage of the data in this account would you characterize to be primarily

for personal use?

5. What percentage of the data in this account would you characterize to be primarily

for professional use? (i.e., related to your job or career)

6. How do you interact with your [Cloud Service] account? Please mark all that apply.
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• I use the website

• I use the app

• I sync it with folders on my computer

7. How often do you open the website or app for your [Cloud Service] account?

• Daily

• Weekly

• Monthly

• Yearly or less

• I don’t know

8. Please rate your agreement with the following statement: “My [Cloud Service] account

is well-organized”

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

9. Please describe your strategies for organizing your [Cloud Service] account in 5 or fewer

sentences.

10. Do you use folders to organize your account?

• Yes
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• No

• I don’t know

11. (If ’Yes’ to previous question) How?

12. (If ’No’ to previous question) Why not?

13. Please describe a specific experience in which you were not able to find a file you were

looking for in your [Cloud Service] account. If you have not had such an experience,

please state so.

14. Please list any other cloud storage services (e.g. Sharepoint, Box, iCloud) that you use

personally or professionally.

15. With what gender do you identify?

• Male

• Female

• Non-binary / other

• I prefer not to answer

16. Are you majoring in, hold a degree in, or have held a job in any of the following fields:

computer science; computer engineering; information technology; or a related field?

• Yes

• No

• I don’t know

17. What is your age range?

• 18-24 years old
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• 25-34 years old

• 35-44 years old

• 45-54 years old

• 55-64 years old

• 65 years or older

• Prefer not to answer

18. What is your occupation? (optional)

7.1.2 Part 2

Instructions

Our research goal is to design systems to help people manage their cloud storage accounts.

We will present to you 18 pairs of files from your [Cloud Service] account, and ask you to

rate their similarity based on the following categories. You will be able to return to these

instructions at any point during the survey.

The Data Itself

• Topic–two files are similar if they talk about the same subject matter

– Example: a photo of a dog and a document about dog grooming techniques

Origin

• Purpose–two files are similar if they will likely be used for similar tasks or goals

– Example: a photo of a dog and a document about dog grooming techniques

• Derivation–two files are similar if they are different versions of the same item, or if

one “created” the other
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– Example: a rough draft of a proposal document, and a final version of the same

document

– Example: a music score, and a recording of you playing the music from that score

• Creation Context–two files are similar if they were created at the same time or in

the same place

– Example: a short story you wrote at a writer’s retreat, and another person’s poem

written at the same retreat
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Content

(This section is repeated 18 times, each with a different file pair)

You are on pair [Current File Pair] out of 18 file pairs.

Please answer the following questions in reference to the following two files:

File 1: [File Name A] ([Preview Link])

File 2: [File Name B] ([Preview Link])

Note that you must preview the files at the provided links to continue in the survey.

To review the tutorial: [Link to Tutorial]

1. Please give a short description of File 1

2. Please give a short description of File 2

3. Please describe in general how these files are similar or dissimilar.

4. I consider these two files to be similar in Topic.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

5. I consider these two files to be similar in Derivation.

• Strongly agree
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• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

6. I consider these two files to be similar in Purpose.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

7. I consider these two files to be similar in Creation Context.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

8. It is okay if all copies of File 1 are deleted.

• Strongly agree
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• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

9. It is okay if all copies of File 2 are deleted.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

10. I would be upset if the contents of File 1 were to be released publicly.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

11. I would be upset if the contents of File 2 were to be released publicly.

• Strongly agree
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• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

(Page break)

Please answer the following questions in reference to the following two files:

File 1: [File Name A] ([Preview Link])

File 2: [File Name B] ([Preview Link])

To review the tutorial: [Link to Tutorial]

12. If I were searching for information, and I found one of these files to be relevant, I would

also want to see the other file.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

13. If I were organizing my [Cloud Service] account, and I wanted to move one of these

files to a new location, I would also want to move the other file to that same location.
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• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

14. If I were organizing my [Cloud Service] account, and I wanted to delete one of these

files, I would also want to delete the other file.

• Strongly agree

• Agree

• Neutral

• Disagree

• Strongly disagree

• I don’t know

15. Which of the below was/were MOST informative in your answers to the previous 3

questions? (Please mark all that apply.)

• The similarity of the files’ Topic

• The similarity of the files’ Derivation

• The similarity of the files’ Purpose

• The similarity of the files’ Creation Context

• I don’t know
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7.2 Additional Artifacts B: Chapter 3 Full Mixed Effects Ordinal

Regression Models

7.2.1 Topic

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 3.033 0.382 20.769 7.947 0.000 ***
Filename 1.381 0.470 3.978 2.936 0.003 **
File Size −0.015 0.351 0.985 −0.042 0.967

Tree Distance −0.754 0.746 0.471 −1.010 0.313
Shared Users 0.887 0.307 2.428 2.891 0.004 **
File Contents 1.049 0.326 2.855 3.221 0.001 **

Text Topic 1.122 0.327 3.072 3.432 0.001 ***
Table Schema 1.377 1.144 3.965 1.204 0.229

Image Contents 3.605 0.683 36.777 5.280 0.000 ***
Deep Hierarchy −0.123 0.392 0.884 −0.315 0.753

7.2.2 Purpose

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 2.436 0.364 11.422 6.686 0.000 ***
Filename 2.542 0.452 12.699 5.625 0.000 ***
File Size 0.541 0.317 1.718 1.706 0.088

Tree Distance −0.531 0.689 0.588 −0.771 0.441
Shared Users 1.056 0.294 2.874 3.595 0.000 ***
File Contents 1.245 0.320 3.473 3.894 0.000 ***

Text Topic 0.952 0.307 2.592 3.103 0.002 **
Table Schema 2.571 1.094 13.076 2.350 0.019 *

Image Contents 3.368 0.659 29.018 5.110 0.000 ***
Deep Hierarchy 0.227 0.277 1.255 0.819 0.413
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7.2.3 Derivation

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 1.165 0.410 3.207 2.842 0.004 **
Filename 2.896 0.501 18.094 5.775 0.000 ***
File Size 0.604 0.401 1.829 1.506 0.132

Tree Distance −0.147 0.849 0.863 −0.173 0.863
Shared Users 1.050 0.322 2.857 3.262 0.001 **
File Contents 1.428 0.339 4.172 4.212 0.000 ***

Text Topic 0.840 0.329 2.315 2.553 0.011 *
Table Schema 0.612 1.410 1.845 0.434 0.664

Image Contents 2.190 0.654 8.938 3.349 0.001 ***
Deep Hierarchy 0.075 0.527 1.078 0.142 0.887

7.2.4 Creation

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 2.838 0.396 17.075 7.173 0.000 ***
Filename 2.550 0.477 12.805 5.342 0.000 ***
File Size 0.410 0.373 1.507 1.097 0.272

Tree Distance 0.403 0.754 1.496 0.534 0.593
Shared Users 1.139 0.333 3.124 3.424 0.001 ***
File Contents 1.309 0.343 3.703 3.817 0.000 ***

Text Topic 0.815 0.318 2.260 2.563 0.010 *
Table Schema 0.873 1.279 2.393 0.682 0.495

Image Contents 2.170 0.657 8.757 3.300 0.001 ***
Deep Hierarchy 0.711 0.416 2.036 1.709 0.087
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7.2.5 Find

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 2.488 0.369 12.034 6.736 0.000 ***
Filename 2.387 0.461 10.885 5.175 0.000 ***
File Size 0.321 0.366 1.379 0.878 0.380

Tree Distance −0.893 0.746 0.409 −1.196 0.232
Shared Users 1.922 0.319 6.833 6.033 0.000 ***
File Contents 0.931 0.314 2.536 2.961 0.003 **

Text Topic 0.535 0.316 1.707 1.693 0.091
Table Schema 1.066 1.189 2.905 0.897 0.370

Image Contents 2.571 0.639 13.085 4.026 0.000 ***
Deep Hierarchy 0.326 0.483 1.385 0.675 0.500

7.2.6 Move

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 2.535 0.367 12.618 6.908 0.000 ***
Filename 2.621 0.467 13.744 5.609 0.000 ***
File Size 0.505 0.353 1.656 1.430 0.153

Tree Distance −0.693 0.768 0.500 −0.903 0.367
Shared Users 1.977 0.322 7.218 6.137 0.000 ***
File Contents 0.707 0.304 2.027 2.322 0.020 *

Text Topic 0.951 0.330 2.588 2.886 0.004 **
Table Schema 0.668 1.168 1.951 0.572 0.567

Image Contents 2.313 0.664 10.106 3.483 0.000 ***
Deep Hierarchy −0.351 0.435 0.704 −0.806 0.420
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7.2.7 Delete

Estimate Std Err. Odds Ratio z-value p-value

Last Modified 2.031 0.359 7.623 5.660 0.000 ***
Filename 1.455 0.441 4.286 3.302 0.001 ***
File Size 0.802 0.340 2.231 2.361 0.018 *

Tree Distance 0.086 0.735 1.090 0.117 0.907
Shared Users 1.723 0.308 5.604 5.599 0.000 ***
File Contents 0.787 0.301 2.197 2.618 0.009 **

Text Topic 0.423 0.305 1.526 1.384 0.166
Table Schema 1.385 1.100 3.993 1.258 0.208

Image Contents 1.018 0.596 2.767 1.706 0.088
Deep Hierarchy −0.237 0.483 0.789 −0.491 0.623
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