
THE UNIVERSITY OF CHICAGO

AUTOMATIC CURRICULUM GENERATION FOR LEARNING ADAPTATION IN

NETWORKING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCE

IN CANDIDACY FOR THE DEGREE OF

MASTER

DEPARTMENT OF COMPUTER SCIENCE

BY

ZHENGXU XIA

CHICAGO, ILLINOIS

MARCH 22, 2022



Copyright c© 2022 by Zhengxu Xia

All Rights Reserved



CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 CURRICULUM LEARNING FOR NETWORKING . . . . . . . . . . . . . . . . 11

4 DESIGN AND IMPLEMENTATION OF GENET . . . . . . . . . . . . . . . . . 15
4.1 Curriculum generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Training framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Asymptotic performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Comparison with rule-based baselines . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Understanding Genet’s design choices . . . . . . . . . . . . . . . . . . . . . 32

6 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 APPENDIX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1 Details of RL implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.2 Trace generator logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Sequencing training trace adding example . . . . . . . . . . . . . . . . . . . 39
7.4 Testbed setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Details on reward definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.6 Baseline implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.7 BO search behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

iii



LIST OF FIGURES

1.1 Genet creates training curricula by iteratively finding rewarding environments
where the current RL policy has high gap-to-baseline. . . . . . . . . . . . . . . . 4

2.1 Challenge of RL training over a wider range of environments from small (RL1),
medium (RL2), to large (RL3). . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Generalization issues of RL-based schemes using CC as an example. . . . . . . . 8

3.1 A simple example where adding trace set Y to training has a different effect than
adding Z. Adding Y to training improves performance on Y only marginally but
hurts both X and Z, whereas adding Z improves the performance on both Y and
Z without negative impact on X. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Contrasting (a) an inherently hard (possibly unsolvable) environment with (b)
an improvable environment. The difference is that the rule-based policy’s reward
is higher than the RL policy in (b), whereas their rewards are similar in (a). . . 13

4.1 Compared to the current model’s performance (left), its gap-to-baseline (right)
in an environment is more indicative of the potential training improvement on
the environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Overview of Genet’s training process. . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Components and interfaces needed to integrate Genet with an existing RL train-

ing code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Comparing performance of Genet-trained RL policies for CC, ABR, and LB,
with baselines in unseen synthetic environments drawn from the training distri-
bution, which sets all environment parameters at their full ranges. . . . . . . . . 25

5.2 Test of ABR policies along individual environment parameters. . . . . . . . . . 26

5.3 Test of LB policies along individual environment parameters. . . . . . . . . . . . 27
5.4 Asymptotic performance of Genet-trained CC policies (a) and ABR policies (b)

and baselines, when the real network traces are randomly split to training set and
test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Generalization test: Training of various methods is done entirely in synthetic
environments, but the testing is over various real network trace sets. . . . . . . . 28

5.6 Genet can outperform the rule-based baselines used in its training. . . . . . . 29

5.7 Fraction of real traces where Genet trained policies (and traditional RL) are
better than the rule-based baseline. . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.8 Testing ABR and CC policies in real-world environments. . . . . . . . . . . . . 30
5.9 RL-based ABR and CC vs. rule-based baselines. . . . . . . . . . . . . . . . . . . 31
5.10 Genet’s training ramps up faster than better than alternative curriculum learn-

ing strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.11 Genet outperforms Robustifying Gilad et al. [2019] which improves RL perfor-

mance by generating adversarial bandwidth traces, and variants of Genet which
uses the Robustifying’s criteria in BO-based environment selection. . . . . . . . 33

iv



5.12 BO-based search is more efficient at finding environments with high gap-to-
baseline than random exploration in the environment configuration space. . . . . 34

7.1 Real-world network paths used to test ABR and CC policies. . . . . . . . . . . . 41
7.2 Exploration by Genet’s Bayesian Optimization in a 2-D configuration space. . 44

v



LIST OF TABLES

1.1 RL use cases in networked systems. Default reward parameters: α = −10 (re-
buffer in seconds), β = 1 (bitrate in Mbps), γ = −1 (bitrate change in Mbps),
a = 120 (throughput in Kbps), b = 1000 (latency in seconds), c = 2000. Details
in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1 Network traces used in ABR and CC tests. . . . . . . . . . . . . . . . . . . . . . 23

7.1 Parameters in ABR simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator
is described in §7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.2 Parameters in CC simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator
is described in §7.2. The range of RL1 is defined as 1/9 of the range of RL3 and
the range of RL2 is defined as 1/3 of RL3. The CC parameters shown here for
RL1 and RL2 are example sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7.3 Parameters in LB simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator
is described in §7.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



ACKNOWLEDGMENTS

vii



ABSTRACT

As deep reinforcement learning (RL) showcases its strengths in networking and systems, its

pitfalls also come to the public’s attention—when trained to handle a wide range of net-

work workloads and previously unseen deployment environments, RL policies often manifest

suboptimal performance and poor generalizability.

To tackle these problems, we present Genet, a new training framework for learning better

RL-based network adaptation algorithms. Genet is built on the concept of curriculum

learning, which has proved effective against similar issues in other domains where RL is

extensively employed. At a high level, curriculum learning gradually presents more difficult

environments to the training, rather than choosing them randomly, so that the current RL

model can make meaningful progress in training. However, applying curriculum learning in

networking is challenging because it remains unknown how to measure the “difficulty” of a

network environment.

Instead of relying on handcrafted heuristics to determine the environment’s difficulty

level, our insight is to utilize traditional rule-based (non-RL) baselines: If the current RL

model performs significantly worse in a network environment than the baselines, then the

model’s potential to improve when further trained in this environment is substantial. There-

fore, Genet automatically searches for the environments where the current model falls

significantly behind a traditional baseline scheme and iteratively promotes these environ-

ments as the training progresses. Through evaluating Genet on three use cases—adaptive

video streaming, congestion control, and load balancing, we show that Genet produces RL

policies which outperform both regularly trained RL policies and traditional baselines in

each context, not only under synthetic workloads but also in real environments.

viii



CHAPTER 1

INTRODUCTION

Many recent techniques based on deep reinforcement learning (RL) are now among the state-

of-the-arts for various networking and systems adaptation problems, including congestion

control (CC) Jay et al. [2019], adaptive-bitrate streaming (ABR) Mao et al. [2017], load

balancing (LB) Mao et al. [2019a], wireless resource scheduling Chinchali et al. [2018], and

cloud scheduling Mao et al. [2019c]. For a given distribution of training network environments

(e.g., network connections with certain bandwidth pattern, delay, and queue length), RL

trains a policy to optimize performance over these environments.

However, these RL-based techniques face two challenges that can ultimately impede their

wide use in practice:

• Training in a wide range of environments: When the training distribution spans

a wide variety of network environments (e.g., a large range of possible bandwidth), an

RL policy may perform poorly even if tested in the environments drawn from the same

distribution as training.

• Generalization: RL policies trained on one distribution of synthetic or trace-driven

environments may have poor performance and even erroneous behavior when tested in

a new distribution of environments.

Our analysis in §2 will reveal that, across three RL use cases in networking, these challenges

can cause well-trained RL policies to perform much worse than traditional rule-based schemes

in a range of settings.

These problems are not unique to networking. In other domains (e.g., robotics, gaming)

where RL is widely used, there have been many efforts to address these issues, by enhancing

offline RL training or re-training a deployed RL policy online. Since updating a deployed
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model is not always possible or easy (e.g., loading a new kernel module for congestion control

or integrating an ABR logic into a video player), we focus on improving RL training offline.

A well-studied paradigm that underpins many recent techniques to improve RL training

is curriculum learning Narvekar et al. [2020]. Unlike traditional RL training which samples

training environments in a random order, curriculum learning generates a training curriculum

that gradually increases the difficulty level of training environments, resembling how humans

are guided to comprehend more complex concepts. Curriculum learning has been shown to

improve generalization Mehta et al. [2020], Akkaya et al. [2019], Dennis et al. [2020] as well

as asymptotic performance Weinshall et al. [2018], Justesen et al. [2018], namely the final

performance of a model after training runs to convergence. Following an easy-to-difficult

routine allows the RL model to make steady progress and reach good performance.

In this work, we present Genet, the first training framework that systematically intro-

duces curriculum learning to RL-based networking algorithms. Genet automatically gener-

ates training curricula for network adaptation policies. The challenge of curriculum learning

in networking is how to sequence network environments in an order that prioritizes highly

rewarding environments where the current RL policy’s reward can be considerably improved.

Unfortunately, as we show in §3, several seemingly natural heuristics to identify rewarding

environments suffer from limitations.

• First, they use innate properties of each environment (e.g., shorter network or workload

traces Mao et al. [2019c] and smoother network conditions Gilad et al. [2019] are

supposedly easier), but these innate properties fail to indicate whether the current RL

model can be improved in an environment.

• Second, they use handcrafted heuristics which may not capture all aspects of an en-

vironment that affect RL training (e.g., bandwidth smoothness does not capture the

impact of router queue length on congestion control, or buffer length on adaptive video

streaming). Each new application (e.g., load balancing) also requires a new heuristic.
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Use case Observed state (policy input)
Action (policy
output)

Reward (performance)

Adaptive Bitrate
(ABR) Streaming

future chunk size, history
throughput, current buffer length

bitrate selected for
the next video chunk

∑
i(α·Rebufi+β ·Bitratei

+ γ · BitrateChangei)/n

Congestion Control
(CC)

RTT inflation, sending/receiving
rate, avg RTT in a time window,
min RTT

change of sending
rate in the next time
window

∑
i(a · Throughputi

+ b · Latencyi + c ·
LossRatei)/n

Load Balancing
(LB)

past throughput, current request
size, number of queued requests
per server

server selection for
the current request

−
∑
i Delayi/n

Table 1.1: RL use cases in networked systems. Default reward parameters: α = −10 (rebuffer
in seconds), β = 1 (bitrate in Mbps), γ = −1 (bitrate change in Mbps), a = 120 (throughput
in Kbps), b = 1000 (latency in seconds), c = 2000. Details in .

The idea behind Genet is simple: An environment is considered rewarding if the current

RL model has a large gap-to-baseline, i.e., how much the RL policy’s performance falls

behind a traditional rule-based baseline (e.g., Cubic or BBR for congestion control, MPC or

BBA for adaptive bitrate streaming) in the environment. We show in §4.1 that the gap-to-

baseline of an environment is highly indicative of an RL model’s potential improvement in

the environment. Intuitively, since the baseline already shows how to perform better in the

environment, the RL model may learn to “imitate” the baseline’s known rules while training

in the same environment, bringing it on par with—if not better than—the baseline. On the

flip side, if an environment has a small or even negative gap-to-baseline, chances are that

the environment is intrinsically hard (a possible reason why the rule-based baseline performs

badly), or the current RL policy already performs well and thus training on it is unlikely to

improve performance by a large margin.

Inspired by the insight, Genet generates RL training curricula by iteratively identifying

rewarding environments where the current RL model has a large gap-to-baseline and then

adding them to RL training (Figure 1.1). For each RL use case, Genet parameterizes

the network environment space, allowing us to search for rewarding environments in both
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Genet

Space of network 
environments

RL policy
Rule-based 

baseline

Traditional 
RL training

Current RL policy

Rewarding 
environments

Figure 1.1: Genet creates training curricula by iteratively finding rewarding environments
where the current RL policy has high gap-to-baseline.

synthetically instantiated environments and trace-driven environments. Genet also uses

Bayesian Optimization to facilitate the search in a large space. Genet is generic, since it does

not use handcrafted heuristics to measure the difficulty of a network environment; instead,

it uses rule-based algorithms, which are abundant in the literature of many networking

and system problems, to generate training curricula. Moreover, by focusing training on

places where RL falls behind rule-based baselines, Genet directly minimizes the chance

of performance regressions relative to the baselines. This is important, because system

operators are more willing to deploy an RL policy if it outperforms the incumbent rule-

based algorithm in production without noticeable performance regressions.1

We have implemented Genet as a separate module with a unifying abstraction that

interacts with the existing codebases of RL training to iteratively select rewarding environ-

ments and promote them in the course of training. We have integrated Genet with three

existing deep RL codebases in the networking area—adaptive video streaming (ABR) pen,

congestion control (CC) aur, and load balancing (LB) par.

It stands to reason that Genet is not without limitations. For instance, Genet-trained

RL policies might not outperform all rule-based baselines (§5.5 shows that when using a

naive baseline to guide Genet, the resulting RL policy could still be inferior to stronger

baselines). Genet-trained RL policies may also achieve undesirable performance in envi-

1. An example of this mindset is that a new algorithm must compete with the incumbent algorithm in
A/B testing before being rolled out to production.
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ronments beyond the training ranges (e.g., if we train a congestion-control algorithm on

links with bandwidth between 0 and 100 Mbps, Genet will not optimize for the bandwidth

of 1 Gbps). Moreover, Genet does not guarantee adversarial robustness which sometimes

conflicts with the goal of generalization Raghunathan et al. [2019].

Using a combination of trace-driven simulation and real-world tests across three use cases

(ABR, CC, LB), we show that Genet improves asymptotic performance by 8–25% for ABR,

14–24% for CC, 15% for LB, compared with traditional RL training methods. We also show

that Genet-trained RL policies generalize well to new distributions of network or workload

characteristics (different distributions of bandwidth, delay, queue length, etc.).
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CHAPTER 2

MOTIVATION

Deep reinforcement learning (RL) trains a deep neural net (DNN) as the decision-making

logic (policy) and is well-suited to many sequential decision-making problems in network-

ing Mao et al. [2019a], Haj-Ali et al. [2019].1 We use three use cases (summarized in Ta-

ble 1.1) to make our discussion concrete:

• An adaptive bitrate (ABR) algorithm adapts the chunk-level video bitrate to the

dynamics of throughput and playback buffer (input state) over the course of a video

session. ABR policies, including RL-based ones (Pensieve Mao et al. [2017]), choose the

next chunk’s bitrate (output decision) at the chunk boundary to maximize session-wide

average bitrate, while minimizing rebuffering and bitrate fluctuation.

• A congestion control (CC) algorithm at the transport layer adapts the sending

rate based on the sender’s observations of the network conditions on a path (input

state). An example of RL-based CC policy (Aurora Jay et al. [2019]) makes sending

rate decisions at the beginning of each interval (of length proportional to RTT), to

maximize the reward (a combination of throughput, latency, and packet loss rate).

• A load balancing (LB) algorithm in a key-replicated distributed database reroutes

each request to one of the servers (whose real-time resource utilization is unknown),

based on the request arrival intervals, resource demand of past requests, and the num-

ber of outstanding requests currently assigned to each server.

We choose these use cases because they have open-source implementations (Pensieve pen

for ABR, Aurora aur for CC, and Park par for LB). Our goal is to improve existing RL

1. There are rule-based alternatives to DNN-based policies, but they are not as expressive and flexible as
DNNs, which limits their performance. Oboe Akhtar et al. [2018], for instance, sets optimal hyperparameters
for RobustMPC based on the mean and variance of network bandwidth and as shown in §5.4, is a very
competitive baseline, but it performs worse than the best RL strategy.
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training in networking. Revising the RL algorithm per se (input, output, or DNN model) is

beyond our scope.

Network environments: We generate simulated training environments with a range of

parameters, following prior work Mao et al. [2017], Jay et al. [2019], Mao et al. [2019a]. An

environment can be synthetically generated using a list of parameters as configuration, e.g., in

the context of ABR, a configuration encompasses bandwidth range, frequency of bandwidth

change, chunk length, etc. Meanwhile, when recorded bandwidth traces are available (for

CC and ABR experiments), we can also create trace-driven environments where the recorded

bandwidth is replayed. Note that bandwidth is only one dimension of an environment

and must be complemented with other synthetic parameters in order to create a simulated

environment. (Our environment generator and a full list of parameters are documented in

§7.2.) In recent papers, both trace-driven (e.g., Mao et al. [2017], Gilad et al. [2019]) and

synthetic environments (e.g., Jay et al. [2019], Mao et al. [2019a]) are used to train RL-

based network algorithms. We will explain in §4.2 how our technique applies to both types

of environments.

Traditional RL training: Given a user-specified distribution of (trace-driven or synthetic)

training environments, the traditional RL training method works in iterations. Each iteration

randomly samples a subset of environments from the provided distribution and then updates

the DNN-based RL policy (via forward and backward passes).For instance, Aurora Jay et al.

[2019] uses a batch size of 7200 steps (i.e., 30–50 30-second network environments) and applies

the PPO1 algorithm to update the policy network by simulating the network environments

in each batch.

Several previous efforts have demonstrated the promise of the traditional RL training—

given a distribution of target environments, an RL policy can be trained to perform well on

these environments (e.g., Mao et al. [2017], Jay et al. [2019]). Unfortunately, this approach

falls short on two fronts.
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Figure 2.2: Generalization issues of RL-based schemes using CC as an example.

Challenge 1: Training over wide environment distributions. When the train-

ing distribution of network environments has a wide spread (e.g., a large range of possible

bandwidth values), RL training tends to result in poor asymptotic performance (model per-

formance after reaching convergence) even when the test environments are drawn from the

same distribution as training.

In Figure 2.1, for each use case, we choose three target distributions (with increasing

parameter ranges), labeled RL1/RL2/RL3 ranges of synthetic environment parameters in

Table 7.1, 7.2, and 7.3. Figure 2.1(a) compares the asymptotic performance of three RL

policies (with different random seeds) with rule-based baselines, MPC Yin et al. [2015] for

ABR, BBR Cardwell et al. [2016] for CC, and least-load-first (LLF) policy for LB, in test

environments randomly sampled from the same ranges. It shows that RL’s performance ad-

vantage over the baselines diminishes rapidly when the range of target environments expands.
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Even though RL-based policies still outperform the baselines on average, Figure 2.1(b) re-

veals a more striking reality—their performance falls behind the baselines in a substantial

fraction of test environments.

An intuitive explanation is that in each RL training iteration, only a batch of randomly

sampled environments (typically 20–50) is used to update the model, and when the entire

training set spans a wide range of environments, the batches between two iterations may

have dramatically different distributions which potentially push the RL model to different

directions. This causes the training to converge slowly and makes it difficult to obtain a

good policy Narvekar et al. [2020].

Challenge 2: Low generalizability. Another practical challenge arises when the training

process does not have access to the target environment distribution. This calls for models

with good generalization, i.e., the RL policies trained on one distribution also perform well

on a different environment distribution during testing. Unfortunately, existing RL training

methods often fall short of this ideal. Figure 2.2 evaluates the generalizability of RL-based

CC schemes in two ways.

• First, we train an RL-based CC algorithm on the same range of synthetic environments

as specified in its original paper Jay et al. [2019]. We first validate the model by

confirming its performance against a rule-based baseline BBR, in environments that

are independently generated from the same range as training (Figure 2.2(a); left).

Nevertheless, when tested on real-world recorded network traces under the category of

“Cellular” and “Ethernet” from Pantheon Yan et al. [2018] (Table 5.1), the RL-based

policy yields much worse performance than the rule-based baseline.

• Second, we train the RL-based CC algorithm on the “Cellular” trace set and test it

on the “Ethernet” trace set (Figure 2.2(b); left), or vice versa (Figure 2.2(b); right).

Similarly, its performance degrades significantly when tested on a different trace set.

The observations in Figure 2.2 are not unique to CC. Prior work Gilad et al. [2019] also

9



shows a lack of generalization of RL-based ABR algorithms.

Summary: In short, we observe two challenges faced by the traditional RL training mech-

anism:

• The asymptotic performance of the learned policies can be suboptimal, especially when

they are trained over a wide range of environments.

• The trained RL policies may generalize poorly to unseen network environments.
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CHAPTER 3

CURRICULUM LEARNING FOR NETWORKING

Given these observations regarding the limitations of RL training in networking, a natural

question to ask is how to improve RL training such that the learned adaptation policies

achieve good asymptotic performance across a broad range of target network environments.1

Curriculum learning: We cast the training of RL-based network adaptation to the well-

studied framework of curriculum learning. Unlike the traditional RL training which samples

training environments from a fixed distribution in each iteration, curriculum learning grad-

ually increases the difficulty of training environments, so that it always focuses on training

environments that are easier to improve, i.e., most rewarding environments.2 Prior work

has demonstrated the benefits of curriculum learning in other applications of RL, including

faster convergence, higher asymptotic performance, and better generalization.

However, the challenge of employing curriculum learning lies in determining which en-

vironments are rewarding. Apparently the answer to this question varies with applications,

but three general approaches exist: (1) training the current model on a set of environments

individually to determine in which environment the training progresses faster; (2) using

heuristics to quantify the easiness of achieving model improvement an environment; and (3)

jointly training another model (typically DNN) to select rewarding environments. Among

them, the first option is prohibitively expensive and thus not widely used, whereas the third

introduces extra complexity of training a second DNN. Therefore, we take a pragmatic stance

and explore the second approach, while leaving the other two for future work.

1. An alternative is to retrain the deployed RL policy whenever it meets a new domain (e.g., a new
network connection with unseen characteristics), but this does not apply when the RL policy cannot be
updated frequently. Besides, it is also challenging to precisely detect model drift in the network conditions
that necessitate retraining the RL policy.

2. In deep learning literature, finding the optimal training environments (hypothesized in the seminal
paper Bengio et al. [2009] as “not too hard or too easy”) in the general setting still remains an open
question.
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Why sequencing training environments is difficult: To motivate our design choices,

we first introduce three strawman approaches, each with different strengths and weaknesses.

A common strategy in curriculum learning for RL is to measure environment difficulty and

gradually introduce more difficult environments to training.

Strawman 1: inherent properties. The first idea is to quantify the difficulty level of

an environment using some of its inherent properties. In congestion control, for instance,

network traces with higher bandwidth variance are intuitively more difficult. This approach,

however, only distinguishes environments that differ in the hand-picked properties and may

not suffice under complex environments (e.g., adding bandwidth traces with similar variance

to training can have different effects).

Strawman 2: performance of rule-based baselines. Alternatively, one can use the test

performance of a traditional algorithm to indicate the difficulty of an environment. Lower

performance may suggest a more difficult environment Weinshall et al. [2018]. While this

method can distinguish any two environments, it does not hint how to improve the current

RL model during training.

Strawman 3: performance of the current RL model. To fix the second strawman solution,

one can use the performance of the current RL policy, instead of a traditional algorithm. If

the current RL model performs poorly in an environment, it can potentially improve a lot

when trained in this environment (or similar ones). However, this approach may fail since

some environments are inherently hard for a model to improve on. In CC, examples of such

environments include links with frequently varying bandwidth.

Example: Figure 3.1 shows a concrete real example in ABR, where “Strawman 3” fails.

(In §5.5, we empirically test these three curriculum-learning strategies.) We generate three

sets of bandwidth traces X, Y , and Z using three configurations (details in §7.3). We first

train an RL-based ABR policy on trace set X until it performs well in place (on X) but

poorly on Y and Z. Since the performance of the current RL model is lower on Y than

12
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Figure 3.1: A simple example where adding trace set Y to training has a different effect than
adding Z. Adding Y to training improves performance on Y only marginally but hurts both
X and Z, whereas adding Z improves the performance on both Y and Z without negative
impact on X.

(a) Trace in Y (hard) (b) Trace in Z (improvable)

Figure 3.2: Contrasting (a) an inherently hard (possibly unsolvable) environment with (b)
an improvable environment. The difference is that the rule-based policy’s reward is higher
than the RL policy in (b), whereas their rewards are similar in (a).

on Z, Strawman 3 opts for adding Y to the training in the next step. However, Figure 3.1

shows that training further on Y worsens the model performance on X and Z, although the
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in-place performance (on Y ) is indeed improved. In fact, adding Z to training is better at

this point—the performance on Z is improved without negative impact than that on X or

Y .

To take a closer look, we plot two example traces from Y and Z in Figure 3.2: The trace

from Y fluctuates with a smaller magnitude but more frequently, whereas the trace from Z

fluctuates with a greater magnitude but much less frequently. However, such observations

cannot generalize to an arbitrary pair of environments or a different application.
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CHAPTER 4

DESIGN AND IMPLEMENTATION OF GENET

4.1 Curriculum generation

To identify rewarding environments, the idea of Genet is to find environments with a large

gap-to-baseline, i.e., the RL policy is worse than a given rule-based baseline by a large margin.

At a high level, adding such training environments to training has three practical benefits.

First, when a rule-based baseline performs much better than the RL policy in an en-

vironment, it means that the RL model may learn to “imitate” the baseline’s known rules

while training in the environment, bringing it on par with—if not better than—the baseline1.

Therefore, a large gap-to-baseline indicates a plausible room for the current RL model to

improve. Figure 4.1 empirically confirms this with one example ABR policy and CC pol-

icy (both are intermediate models during Genet-based training). For example, among 73

randomly chosen synthetic environment configurations in CC, a configuration with larger

gap-to-baseline is likely to yield more improvement when adding its environments to the RL

training. Moreover, this correlation is stronger than using the current model’s performance

(“Strawman 3” in §3) to decide which environments are rewarding.

Second, although not all rule-based algorithms are easily interpretable or completely

fail-proof, many of them have traditionally been used in networked systems long before the

RL-based approaches, and are considered more trustworthy than black-box RL algorithms.

Therefore, operators tend to scrutinize any performance disadvantages of the RL policy

compared with the rule-based baselines currently deployed in the system. By promoting

environments with large gap-to-baseline, Genet directly reduces the possibility that the RL

policy causes performance regressions.

1. This may not be true when the behavior of the rule-based algorithm cannot be approximated by RL’s
policy DNN, and we will discuss this issue in §4.2
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In short, gap-to-baseline builds on the insight that rule-based baselines are complemen-

tary to RL policies—they are less susceptible to any discrepancies between training and test

environments, whereas the performance of an RL policy is potentially sensitive to the en-

vironments seen during training. In §5.5, we will discuss the impact of different choices of

rule-based baselines and why gap-to-baseline is a better way of using the rule-based baseline

than alternatives.

It is worth noting that the rewarding environments (those with large gap-to-baseline) do

not have particular meanings outside the context of a given pair of RL model and a baseline.

For instance, when an RL-based CC model has greater gap-to-baseline in some network

environments, it only means that it is easier to improve the RL model by training it in the

these environments; it does not indicate if these environments are easy or challenging to any

traditional CC algorithm.

4.2 Training framework

Figure 4.2 depicts Genet’s high-level iterative workflow to realize curriculum learning. Each

iteration consists of three steps (which will be detailed shortly):

1. First, we update the current RL model for a fixed number of epochs over the current

training environment distribution;

2. Second, we select the environments where the current RL model has a large gap-to-

baseline; and

3. Third, we promote these selected environments in the training environments distribu-

tion used by the RL training process in the next iteration.

Training environment distribution: We define a distribution of training environments

as a probability distribution over the space of configurations each being a vector of 5–7
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Figure 4.1: Compared to the current model’s performance (left), its gap-to-baseline (right) in
an environment is more indicative of the potential training improvement on the environment.

parameters (summarized in Table 7.1, 7.2, 7.3) used to generate network environments. An

example configuration is: [BW: 2–3Mbps, BW changing frequency: 0–20s, Buffer length: 5–

10s]. Genet sets the initial training environment distribution to be a uniform distribution

along each parameter, and automatically updates the distribution used in each iteration,

effectively generating a training curriculum.

When recorded traces are available, Genet can augment the training with trace-driven

environments as follows. Here we use bandwidth traces as an example. The first step

is to categorize each bandwidth trace along with the bandwidth-related parameters (i.e.,

bandwidth range and variance in our case). Each time a configuration is selected by RL
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Figure 4.2: Overview of Genet’s training process.

training to create new environments, with a probability of α (10% by default), Genet

samples a bandwidth trace whose bandwidth-related parameters fall into the range of the

selected configuration.

In §5.2, we will show that adding trace-driven environments to training improves perfor-

mance of RL policies, especially when tested in unseen real traces from the same distribution.

That said, even if we do not use trace-driven environments in RL training, our trained RL

policies still outperform the traditional method of training RL over real traces or over syn-

thetic traces.

Key components: Each iteration of Genet starts with training the current model for a

fixed number of epochs (defaults to 10). Here, Genet reuses the traditional training method

in prior work (i.e., uniform sampling of training environments per epoch), which makes it

possible to incrementally apply Genet to existing codebases (see our implementation in

§4.3). Recent work on domain randomization Sadeghi and Levine [2016], Tobin et al. [2017a],

Peng et al. [2018] also shows that a similar training process can benefit the generalization of

RL policies Sadeghi and Levine [2016], Tobin et al. [2017a], Peng et al. [2018]. The details

of the training process are described in Algorithm 1.

After a certain number of epochs, the current RL model and a pre-determined rule-

based baseline are given to a sequencing module to search for the environments where the
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current RL model has a large gap-to-baseline. Ideally, we want to test the current RL

model on all possible environments and identify the ones with the largest gap-to-baseline,

but this is prohibitively expensive. Instead, we use Bayesian Optimization Frazier [2018]

(BO) as follows. We view the expected gap-to-baseline over the environments created by

configuration p as a function of p: Gap(p) = R(πrule, p) − R(πrlθ , p), where R(π, p) is the

average reward of a policy π (either the rule-based baseline πrule or the RL model πrlθ ) over 10

environments randomly generated by configuration p. BO then searches in the environment

space for the configuration that maximizes Gap(p).

Once a new configuration is selected, the environments generated by this configuration

are then added to the training distribution as follows. When the RL training process samples

a new training environment, it will choose the new configuration with w probability (30% by

default) or uniformly sample a configuration from the old distribution with 1−w probability

(70% by default), and then create an environment based on the selected configuration. Next,

training is resumed over the new environment distribution.

It is important to notice that the BO-based search does not carry its states when searching

rewarding environments for a new RL model. Instead, Genet restarts the BO search every

time the RL model is updated. The reason is that the rewarding environments can change

once the RL model changes.

Design rationale: The process described above embeds several design decisions that make

it efficient.

How to choose rule-based baselines? For Genet to be effective, the baselines should not

fail in simple environments; otherwise Genet would ignore them given that the RL policy

could easily beat the baselines. For instance, when using Cubic as the baseline in training

RL-based CC policies, we observe that the RL policy is rarely worse than Cubic along the

dimension of random loss rate, because Cubic’s performance is susceptible to random packet

losses. That said, we find that the choice of baselines does not have a significant impact
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on the effectiveness of Genet, although better choice tends to yield more improvement (as

shown in §5.5).2

Why is BO-based exploration effective? Admittedly, it can be challenging for BO to

search for the rewarding environments in a high-dimensional space. In practice, however,

we observe that BO is highly efficient at identifying a good configuration within a relatively

small number of steps (15 by default). We empirically validate it in §5.5.

Impact of forgetting? It is important that we train models over the full range of envi-

ronments. Genet does begin the training over the whole space of environment in the first

iteration, but each subsequent iteration introduces a new configuration, thus diluting the

percentage of random environments in training. This might lead to the classic problem of

forgetting—the trained model may forget how to handle environments seen before. While we

do not address this problem directly, we have found that Genet is affected by this issue only

mildly. The reason is that Genet stops the training after changing the training distribution

for 9 times, and by then the original environment distribution still accounts for about 10%.3

4.3 Implementation

Genet is fully implemented in Python and Bash, and has been integrated with three existing

RL training code. Next, we describe the interface and implementation of Genet, as well as

optimizations for eliminating Genet’s performance bottlenecks.

API: Genet interacts with an existing RL training code with two APIs (Figure 4.3):

Train signals the RL to continue the training using the given distribution of environment

configurations and returns a snapshot of model after a specified number of training epochs;

2. One possible refinement in this regard is to use an “ensemble” of rule-based heuristics, and let the
training scheduler focus on environments where the RL policy falls short of any one of a set of rule-based
heuristics.

3. When we impose a minimum fraction of “exploration” (i.e., uniformly randomly pick an environ-
ment from the original training distribution) in the training (which is a typical strategy to prevent forget-
ting Zaremba and Sutskever [2014]), Genet’s performance actually becomes worse.
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Figure 4.3: Components and interfaces needed to integrate Genet with an existing RL
training code.

Test calculates the average reward of a given algorithm (RL model or a baseline) over a

specified number of environments drawn from the given distribution of configurations.

Integration with RL training: We have integrated Genet with Pensieve ABR pen,

Aurora CC aur, and Park LB par, which use different RL algorithms (e.g., A3C, PPO) and

network simulators (e.g., packet level, chunk level). We implement the two APIs above using

functionalities provided in the existing codebase.

Rule-based baselines: Genet takes advantage of the fact that many RL training code-

bases (including our three use cases) have already implemented at least one rule-based base-

line (e.g., MPC in ABR, Cubic in CC) that runs in their simulators. In addition, we also

implemented a few baselines by ourselves, including the shortest-job-first in LB, and BBR in

CC. The implementation is generally straightforward, but sometimes the simulator (though

sufficient for the RL policy) lacks crucial features for a faithful implementation of the rule-

based logic. Fortunately, Genet-based RL training merely uses the baseline to select train-

ing environments, so the consequence of having a suboptimal baseline is not considerable.
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CHAPTER 5

EVALUATION

The key takeaways of our evaluation are:

• Across three RL use cases in networking, Genet improves the performance of RL

algorithms when tested in new environments drawn from the training distributions

that include wide ranges of environments (§5.2).

• Genet improves the generalization of RL performance, allowing models trained over

synthetic environments to perform well even in various trace-driven environments as

well as on real-world network connections (§5.3).

• Genet-trained RL policies have a much higher chance to outperform various rule-

based baselines specified during Genet-based RL training (§5.4).

• Finally, the design choices of Genet, such as its curriculum learning strategy, BO-

based search, are shown to be effective compared to seemingly natural alternatives

(§5.5).

Given the success of curriculum learning in other RL domains, these improvements are not

particularly surprising, but by showing them for the first time in facilitating RL training in

networking, we hope to inspire more follow-up research in this direction.

5.1 Setup

We train Genet for three RL use cases in networking, using their original simulators: conges-

tion control (CC) aur, adaptive-bitrate streaming (ABR) pen, and load balancing (LB) par.

As discussed in §4.1, we train and test RL policies over two types of environments.

Synthetic environments: We generate synthetic environments using the parameters de-

scribed in detail in §7.2 and Table 7.1,7.2,7.3. We choose these environment parameters to
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Name
Use
case

Training
# traces, total length (s)

Testing
# traces, total length (s)

FCC ABR 85, 105.8k 290, 89.9k
Norway ABR 115, 30.5k 310, 96.1k
Ethernet CC 64, 1.92k 112, 3.35k
Cellular CC 136, 4.08k 121, 3.64k

Table 5.1: Network traces used in ABR and CC tests.

cover a range of factors that affect RL performance. For instance, in CC tests, our environ-

ment parameters specify bandwidth (e.g., the range, variance, and how often it changes),

delay, and queue length, etc.

Trace-driven environments: We also use real traces for CC and ABR (summarized in

Table 5.1) to create trace-driven environments (in both training and testing), where the

bandwidth timeseries are set by the real traces but the remaining environment parameters

(e.g., queue length or target video buffer length) are set as in the synthetic environments.

We test ABR policies by streaming a pre-recorded video over 290 traces from FCC broad-

band measurements Commission (labeled “FCC”) and 310 cellular traces Riiser et al. [2013]

(labeled “Norway”). We test CC policies on 121 cellular traces (labeled “Cellular”) and 112

ethernet traces (labeled “Ethernet”) collected by the Pantheon platform Yan et al. [2018].

All used real traces are released in https://github.com/GenetProject/Genet.

Baselines: We compare Genet-trained RL policies with several baselines.

First, traditional RL trains RL policies by uniformly sampling environments from the

target distribution per epoch. We train three types of RL policies (RL1, RL2, RL3) over

fixed-width uniform distribution of synthetic environments, specified in Table 7.1, 7.2 7.3.

From RL1 to RL3, the sizes of their training environment ranges are in ascending order.

We also train RL policies over trace-driven environments, i.e., randomly picking band-

width traces from one of the recorded sets. This is the same as prior work, except that we

also vary non-bandwidth related parameters (e.g., queue length, buffer length, video length,

etc) to increase its robustness. In addition, we test an early attempt to improve RL Gilad
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et al. [2019] which generates new training bandwidth traces that maximize the gap between

the RL policy and optimal adaptation with an unsmoothness penalty (§5.5).

Second, traditional rule-based algorithms include BBA Huang et al. [2014] and RobustMPC Yin

et al. [2015] for ABR, PCC-Vivace Dong et al. [2018], BBR Cardwell et al. [2016] and CU-

BIC for CC, and least-load-first (LLF) for LB.1 They can be viewed as a reference point of

traditional non-ML solutions.

5.2 Asymptotic performance

We first compare Genet-trained RL policies and traditional RL-trained policies, in terms

of their asymptotic performance (i.e., test performance over new test environments drawn

independently from the training distribution). In other words, we train RL policies over

environments from the target distribution and test them in new environments from the same

distribution.

Synthetic environments: We first test Genet-trained CC, ABR, and LB policies under

their perspective RL3 synthetic ranges (where all parameters are set to its full range) as

the target distribution. As shown in Figure 2.1, in these training ranges, traditional RL

training yields little performance improvement over the rule-based baselines. Figure 5.1

compares Genet-trained CC, ABR, and LB policies with their respective baselines over 200

new synthetic environments randomly drawn with the target distribution.

Across three use cases, we can see that consistently Genet improves over traditional RL-

trained policies by 8–25% for ABR, 14–24% for CC, 15% for LB, compared with traditional

RL training methods. We notice that there is no clear ranking among the three traditional

RL-trained policies. This is because RL1 helps training to converge better but only sees a

small slice of the target distribution, whereas RL3 sees the whole distribution but cannot

1. By default, we use RobustMPC as MPC and PCC Vivace-latency as Vivace, since they appear to
perform better than their perspective variants.
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Figure 5.1: Comparing performance of Genet-trained RL policies for CC, ABR, and LB,
with baselines in unseen synthetic environments drawn from the training distribution, which
sets all environment parameters at their full ranges.

train a good model. In contrast, Genet outperforms them, as curriculum learning allows it

to learn more efficiently from the large target distribution.

To show the performance more thoroughly, Figure 5.2 picks ABR as an example and

shows the performance across different values along six environment parameters. We vary one

parameter at a time while fixing other parameters at the same default values (see Table 7.1,

7.2, 7.3). We see that Genet-trained RL policies enjoy consistent performance advantages

(in reward) over the RL policies trained by traditional RL-trained models. This suggests

that the improvement of Genet shown in Figure 5.1 is not a result of improving rewards

in some environments at the cost of degrading rewards in others; instead, Genet improves

rewards in most cases.

We also run CC emulation on a Dell Inspiron 5521 machine with a Mahimahi-emulated

link with controlled bandwidth, delay, and queue length. We run LB emulation on a local

Cassandra testbed with three machines hosted in the Chameleon cluster cloud server fed with

key-value requests at Poisson arrival intervals. Figure 5.3 shows in synthetic environments,

the Genet-trained LB policy outperforms its baselines by 15%.

Trace-driven environments: Next, we set the target environment distributions of ABR

and CC to be the environments generated from multiple real-world trace sets (FCC and

Norway for ABR, Ethernet and Cellular for CC). We partition each trace set as listed in
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Figure 5.2: Test of ABR policies along individual environment parameters.

Table 5.1. Genet trains ABR and CC policies by combining the trace-driven environments

and the synthetic environments (described in §4.2). For a thorough comparison, both Genet

and the traditional RL training have access to the training portion of the real traces as well as

the synthetic environments. We vary the ratio of real traces and synthetic environments and

feed them to the traditional RL training method, e.g., if the ratio of real traces is 20%, then

the traditional RL training randomly draws a trace-driven environment with 20% probability

and synthetic environments with 80% probability. That is, we test different ways for the tra-

ditional RL training to combine the training traces and synthetic environments. Figure 5.4

tests Genet-trained ABR and CC policies with their respective traditional RL-trained base-
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Figure 5.4: Asymptotic performance of Genet-trained CC policies (a) and ABR policies
(b) and baselines, when the real network traces are randomly split to training set and test
set.

lines over new environments generated from the traces in the testing set. Figure 5.4 shows

that Genet-trained policies outperform traditional RL training by 17-18%, regardless of the

ratio of real traces, including when training the model entirely on real traces.

5.3 Generalization

Next, we take the RL policies of ABR and CC trained (by Genet and other baselines)

entirely over synthetic environments (the RL3 synthetic environment range) and test their

generalization in trace-driven environments generated by the ABR (and CC) testing traces

in Table 5.1.
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Figure 5.5: Generalization test: Training of various methods is done entirely in synthetic
environments, but the testing is over various real network trace sets.

Figure 5.5 shows that they perform better than traditional RL baselines trained over

the same synthetic environment distribution. Though Figure 5.5 uses the same testing

environments as Figure 5.4 and has a similar relative ranking between Genet and traditional

RL training, the implications are different: Figure 5.4 shows that when the real traces are

not accessible in training, Genet can produce models with better generalization in real-

trace-driven environments than the baselines, whereas Figure 5.5 shows their performance

when the training real traces are actively used in training of Genet and the baselines.
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Figure 5.6: Genet can outperform the rule-based baselines used in its training.
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Figure 5.7: Fraction of real traces where Genet trained policies (and traditional RL) are
better than the rule-based baseline.

5.4 Comparison with rule-based baselines

Impact of the choice of rule-based baselines: Figure 5.6 shows the performance of

Genet-trained policies when using different rule-based baselines. We choose MPC and BBA

as baselines in the ABR experiments and BBR and Cubic as baselines in CC experiments,

respectively. We observe that in all cases, Genet-trained policies outperform their respective

rule-based baselines.

What if Genet uses naive rule-based baselines? As explained in §4.2, the rule-based

baseline should have a reasonable (though not necessarily optimal) performance; otherwise,

it would be unable to indicate when the RL policy can be improved. To empirically verify
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(a) ABR (b) CC

Figure 5.8: Testing ABR and CC policies in real-world environments.

it, we use two unreasonable baselines: choosing the highest bitrate when rebuffer in ABR,

and choosing the highest loaded server in LB. In both cases, the BO-based search fails to

find useful training environments, because the RL policy very quickly outperforms the naive

baseline everywhere. That said, the negative impact of using a naive baseline is restricted

to the selection of training environments, rather than the RL training itself (a benefit of

decoupling baseline-driven environment selection and RL training), so in the worst case,

Genet would be roughly as good as traditional RL training.

How likely Genet outperforms rule-based baselines:

One of Genet’s benefits is to increase how often the RL policy is better than the rule-based

baseline used in Genet. In Figure 5.7, we create various versions of Genet-trained RL

policies by setting the rule-based baselines to be Cubic and BBR (for CC), and MPC and

BBA (for ABR). Compared to RL1, RL2, RL3 (unaware of rule-based baselines), Genet-

trained policies remarkably increase the fraction of real-world traces (emulated) where the

RL policy outperforms the baseline used to train them. This suggests that operators can

specify a rule-based baseline, and Genet will train an RL policy that outperforms it with

high probability.

Breakdown of performance: Figure 5.9 takes one Genet-trained ABR policy (with

MPC as the rule-based baseline) and one Genet-trained CC policy (with BBR as the rule-

based baseline) and compares their performance with a range of rule-based baselines along

individual performance metrics. We see that the Genet-trained ABR and CC policies stay
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Figure 5.9: RL-based ABR and CC vs. rule-based baselines.

on the frontier and outperform other baselines.

Real-world tests: We also test the Genet-trained ABR and CC policies in five real wide-

area network paths (without emulated delay/loss), between four nodes reserved from onl,

one laptop at home, and two cloud servers (§7.4), allowing us to observe their interactions

with real network traffic. For statistical confidence, we run the Genet-trained policies and

their baselines back-to-back, each with at least five times, and show their performance in

Figure 5.8. In all but two cases, Genet outperforms the baselines. On Path-2, Genet-

trained ABR has little improvement, because the bandwidth is always much higher than

the highest bitrate, and the baselines will simply use the highest bitrate, leaving no room

for improvement. On Path-3, Genet-trained CC has negative improvement, because the

network has a deeper queue than used in training, so RL cannot handle it well. This is an

example where Genet can fail when tested out of the range of training environments. These
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Figure 5.10: Genet’s training ramps up faster than better than alternative curriculum
learning strategies.

results do not prove the policies generalize to all environments; instead, they show Genet’s

performance in a range of network settings.

5.5 Understanding Genet’s design choices

Alternative curriculum-learning schemes: Figure 5.10 compares Genet’s training

curve with that of traditional RL training and three alternatives of selecting training envi-

ronments described in §3. CL1 uses hand-picked heuristics (gradually increasing the band-

width fluctuation frequency in the training environments), CL2 uses the performance of a

rule-based baseline (gradually adding environments where BBR for CC and MPC for ABR

performs badly), and CL3 adds traces where the current RL model performs badly (whereas

Genet picks the traces where the current RL model is much worse than a rule-based base-

line). Compared to these baselines, In Figure 5.10, we show that Genet’s training curves

have faster ramp-ups, suggesting that with the same number of training epochs, Genet can

arrive at a much better policy, which corroborates the reasoning in §3.
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Figure 5.11: Genet outperforms Robustifying Gilad et al. [2019] which improves RL perfor-
mance by generating adversarial bandwidth traces, and variants of Genet which uses the
Robustifying’s criteria in BO-based environment selection.

In addition, “Robustifying” Gilad et al. [2019]2 (which learns an adversarial bandwidth

generator) also tries to improve ABR logic by adding more challenging environments to

training. For a more direct comparison with Genet, we implement a variant of Genet

where BO picks configurations that maximize the gap between RL and the optimal reward

(penalized by bandwidth unsmoothness with different weights of p). Figure 5.11 compares

the resulting RL policies with Genet-trained RL policy and MPC as a baseline on the

synthetic traces in Figure 5.2. We see that they perform worse than Genet-trained ones

and that by changing the BO’s environment selection criteria, Genet becomes less effective.

Genet outperforms Robustifying, because the unsmoothness metric used in Gilad et al.

[2019] may not completely capture the inherent difficulty of bandwidth traces (Figure 3.2

shows a concrete example).

BO-based search efficiency: Genet uses BO to explore the multi-dimensional environ-

2. In lack of a public implementation, we follow the description in Gilad et al. [2019] (e.g., unsmoothness
weight) and apply it to Pensieve (with the only difference being that for fair comparisons with other base-
lines, we apply it on Pensieve trained on our synthetic training environments). We have verified that our
implementation of Robustifying achieves similar improvements in the setting of original paper. More details
are in Appendix 7.6.

33



0 50 100
# of samples explored

0

2

4

G
ap

 to
 b

as
el

in
e

 o
f

th
e 

ch
os

en
 c

on
fig

BO-based
exploration

Random
exploration

(a) ABR

0 50 100
# of samples explored

−100

0

100

200

G
ap

 to
 b

as
el

in
e

 o
f

th
e 

ch
os

en
 c

on
fig

BO-based
exploration

Random
exploration

(b) CC

Figure 5.12: BO-based search is more efficient at finding environments with high gap-to-
baseline than random exploration in the environment configuration space.

ment space environment to find the environment configuration with a high gap-to-baseline.

While BO may not identify the single optimal point in arbitrarily complex relationships

between environment parameters and gap-to-baseline, we found it to be a highly pragmatic

solution, within a small number of steps (by default, 15), it can identify a configuration

that is almost as good as the randomly searching for many more points. To show it, we

randomly choose an intermediate RL models during the Genet training of ABR and CC.

Figure 5.12 shows the gap-to-baseline of the configuration selected by BO for each model

within 15 search steps, and it compares the values with the maximum gap-to-baseline of 100

randomly selected points (which represents a much more expensive alternative).
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CHAPTER 6

RELATED WORK

Improving RL for networking: Some of our findings regarding the lack of generalization

corroborate those in previous work Winstein and Balakrishnan [2013], Mao et al. [2017], Jay

et al. [2019], Gilad et al. [2019], Rotman et al. [2020b], Dethise et al. [2019]. To improve

RL for networking use cases, prior work has attempted to apply and customize techniques

from the ML literature. For instance, Gilad et al. [2019] applies adversarial learning by

generating relatively smooth bandwidth traces that maximize the RL regret w.r.t. optimal

outcomes, Eliyahu et al. [2021], Kazak et al. [2019] show that the generalization of RL

can be improved by incorporating training environments where a given RL policy violates

pre-defined safety conditions, Schaarschmidt et al. [2019], Schaarschmidt [2020] incorporate

randomization in the evaluation of RL-based systems, and Fugu Yan et al. [2020] achieves

a similar goal through learning a transmission time predictor in situ. Other proposals seek

to safely deploy a given RL policy in new environments Mao et al. [2019b], Rotman et al.

[2020b], Shi et al. [2021]. In many ways, Genet follows this line of work, but it is different

in that it systematically introduces curriculum learning, which has underpinned many recent

enhancements of RL and demonstrates its benefits across multiple applications.

Curriculum learning for RL: There is a substantial literature on improving deep RL with

curricula (Narvekar et al. [2020], Hacohen and Weinshall [2019], Portelas et al. [2020] give

more comprehensive surveys on this subject). Each component of curriculum learning has

been extensively studied, including how to generate tasks (environments) with potentially

various difficulties Silva and Costa [2018], Schmidhuber [2013], how to sequence tasks Ren

et al. [2018], Sukhbaatar et al. [2017], and how to add a new task to training (transfer

learning). In this work, we focus on sequencing tasks to facilitate RL training. It is noticed

that, for general tasks that do not have a clear definition of difficulty (like networking tasks),

optimal task sequencing is still an open question. Some approaches, such as self-paced
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learning Kumar et al. [2010] advocates the use of easier training examples first, while the

other approaches prefer to use harder examples first Chang et al. [2017]. Recent work tries to

bridge the gap by suggesting that an ideal next training task should be difficult with respect

to the current model’s hypothesis, while it is also beneficial to prefer easier points with

respect to the target hypothesis Hacohen and Weinshall [2019]. In other words, we should

prefer an easy environment that the current RL model cannot handle well, which confirms

the intuition elaborated in Bengio’s seminal paper Bengio et al. [2009], which hypothesizes

that “it would be beneficial to make learning focus on ‘interesting’ examples that are neither

too hard or too easy.” Genet is an instantiation of this idea in the context of networking

adaptation, and the way to identify the rewarding (or “interesting”) environments is by using

the domain-specific rule-based schemes to identify where the current RL policy has a large

room for improvement.

Automatic generation of curricula also benefits generalization, particularly when used

together with domain randomization Peng et al. [2018]. Several schemes boost RL’s training

efficiency by iteratively creating a curriculum of challenging training environments (e.g., Den-

nis et al. [2020], Mehta et al. [2020]) where the RL performance is much worse than the

optimal outcome (i.e., maximal regret). When the optimal policy is unavailable, they learn

a competitive baseline Dennis et al. [2020] to approximate the optimal policy or a met-

ric Mehta et al. [2020] to approximate the regret. Genet falls in this category, but proposes

a domain-specific way of identifying rewarding environments using rule-based algorithms.

Some proposals in safe policy improvement (SPI) for RL also use rule-based schemes Ghavamzadeh

et al. [2016], Laroche et al. [2019], though for different purposes than Genet. While Genet

uses the performance of rule-based schemes to identify where the RL policy can be maxi-

mally improved, SPI uses the decisions of rule-based algorithms to avoid violation of failures

during training.
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CHAPTER 7

APPENDIX

7.1 Details of RL implementation

The input of RL algorithm consists of a space of configurations, an initial policy parameters

and predefined total number of epochs to train. The space of configurations is constructed by

ranges of environment configurations. Each range is marked by the configuration’s min and

max values. Within a training epoch, each dimension of the space of configurations is uni-

formly sampled to create K configurations. For each configuration, N random environments

are created. Thus, rollouts are collected by running the policy on total K*N environments

to update the policy. When the policy is updated for the predefined number of epochs, the

RL algorithm stops training and outputs a trained policy.

Algorithm 1 Traditional Reinforecment Learning (RL)

Input: Ω: space of configurations, θ: initial policy parameters, Nepochs: # of epochs
Output: θ: returned policy parameters
1: for i from 1 to Nepochs do
2: Φrand ← ∅
3: for 1 to K do . K: # configs per epoch
4: pi ∼ Random(Ω) . Uniformly sampled config in Ω
5: for 1 to N do . N : # random envs per config
6: E ← S(pi) . Create a simulated env by pi
7: rollout φ ∼ πθ(·;E) . Rollout policy πθ on E
8: Φrand ← Φrand ∪ φ
9: end for

10: end for
11: with Φrand update:
12: θ ← θ + ν 5θ J(πθ) . Gradient update with rate ν
13: end for
14: return θ
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Algorithm 2 Genet training framework

Input: Ω: uniform configuration distribution (equal probability on each configuration), πrule: rule-
based policy.

Output: θ: final RL policy parameters
1: function Genet(Ω, πrule)
2: θ ← Random initial policy parameters
3: Ωcur ← Ω . Ωcur will be updated and used for training
4: for from 1 to Niter do . # of exploration iterations
5: BO.initialize(Ω) . Initialize with full config space Ω
6: for from 1 to NboTrials do . # of trial configs by BO
7: p← BO.getNextChoice()
8: adv ← CalcBaselineGap(p, πrlθ , π

rule)
9: BO.update(p, adv)

10: end for
11: pnew ←BO.getDecision()
12: . Weight new config pnew by w and old configs by 1− w
13: Ωcur ← (1− w) · Ωcur + w · {pnew}
14: θ ←UniformDomainRand(Ωcur, θ,Nepochs)
15: end for
16: return θ
17: end function
18: function CalcBaselineGap(p, πrlθ , π

rule)
19: Initialize: samples← ∅
20: for 1 to NTests do . # of reward comparisons
21: E ← S(p) . Create a simulated env by pi
22: rollout φrl ∼ πrlθ (·;E) . Rollout RL πrl

23: rollout φrule ∼ πrule(·;E) . Rollout rule-based πrule

24: add Reward(φrule)−Reward(φrl) to samples
25: end for
26: return mean(samples)
27: end function

7.2 Trace generator logic

ABR: For the simulation in ABR, the link bandwidth trace has the format of [timestamp

(s), throughput (Mbps)]. Our synthetic trace generator includes 4 parameters: minimum

BW (Mbps), maximum BW (Mbps), BW changing interval (s), and trace duration (s). Each

timestamp represents one second with a uniform [-0.5, 0.5] noise. Each throughput follows a

uniform distribution between [min BW, max BW]. The BW changing interval controls how

often does throughput change over time, with uniform [1, 3] noise. Trace duration represents
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the total time length of the current trace.

CC: The trace generator in the CC simulation takes 6 inputs: maximum BW(Mbps), BW

changing interval (s), link one-way latency (ms), queue size (Packets), link random loss rate,

delay noise (ms), and duration (s). It outputs a series of timestamps with 0.1s step length

and dynamic bandwidth series. Each bandwidth value is drew from a uniform distribution

of range [1, max BW] Mbps. The BW changing interval allows bandwidth to change every

certain seconds. The link one-way latency is used to simulate packet RTT. The queue size

simulates a single queue in a sender-receiver network. Link random loss rate determines the

chance of random packet loss in the network. Delay noise determines how large a Gaussian

noise is added to a packet. The trace duration is determined by the duration input.

LB: We use the similar workload traces generator as the Park par project, where jobs arrive

according to a Poisson process, and the job sizes follow a Pareto distribution with parameters

[shape, scale]. In the simulation, all servers process jobs from their queues at identical rates.

7.3 Sequencing training trace adding example

Trace sets in Figure 3.1 was generated by three configurations. For trace set X, we used

BW range: 0-4Mbps, BW changing frequency: 4-10s. For trace set Y, we used BW range:

0-1Mbps, BW changing frequency: 0-2s. For trace set Z, we used BW range: 0-3Mbps, BW

changing frequency: 2-15s. As a motivation example, each trace set contains 20 traces to

show the testing reward trend.

7.4 Testbed setup

ABR: To test our model on a client-side system, we first leverage the testbed from Pensieve

pen, which modifies dash.js (version 2.4) [2] to support MPC, BBA, and RL-based ABR
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algorithms. We use the “Envivio- Dash3” video which format follows the Pensieve settings.

In this emulation setup, the client video player is a Google Chrome browser (version 85)

and the video server (Apache version 2.4.7) run on the same machine as the client. We use

Mahimahi Netravali et al. [2015] to emulate the network conditions from our pre-recorded

FCC Mao, cellular Riiser et al. [2013], Puffer Yan et al. [2020] network traces, along with

an 80 ms RTT, between the client and server. All above experiments are performed on

UChicago servers.

To compare with Fugu, we then modify the interface to connect Genet trained model

with Puffer’s system Yan et al. [2020]. This experiment was performed on Azure Virtual

Machines.

CC: We build up CC testbed on Pantheon Yan et al. [2018] platform. Pantheon uses

network emulator Mahimahi Netravali et al. [2015] and a network tunnel which records packet

status inside the network link. We run local customized network emulation in Mahimahi by

providing a bandwidth trace and network configurations. We run remote network experiment

by delopying pantheon platform on the nodes shown in Figure 7.1. Among all the CC

algorithms tested, BBR Cardwell et al. [2016] and TCP Cubic Ha et al. [2008] are provided by

Linux kernel and are called via iperf3. PCC-Aurora Jay et al. [2019] and PCC-Vivace Dong

et al. [2018] are implemented on top of UDP. We train our models in python and Tensorflow

framework and port the models into the Aurora C++ code.

LB: We implement the testbed within Cassandra (distributed database), and use different

scheduling (Genet trained, LLF) policies to select the replica. We modify Cassandra’s

internal read-request routing mechanism (originally every Cassandra node is both a client

and server), this means that one of Cassandra nodes is a client and three others are servers.

We generate each key size as 100B and value size as 1KB, which served as the dataset. In

the Cassandra testbed, each request job size follows the same Pareto distribution as in the

simulator, which is replicated to three replicas (three Emulab nodes), so each replica has a
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Figure 7.1: Real-world network paths used to test ABR and CC policies.

copy of each key. Each experiment involves 10000 operations of the workload and is repeated

10 times. All experiments were performed on Chameleon servers cloud server.

Real network testbed: We also test the Genet-trained ABR and CC policies in real

wide-area network paths (depicted in Figure 7.1), including four nodes reserved from onl,

one laptop at home, and two cloud servers.

7.5 Details on reward definition

ABR: The reward function of ABR is a linear combination of bitrate, rebuffering time,

and bitrate change. The bitrate is observed in Kbps, and the rebuffering time is second, and

bitrate change is the bitrate change between bitrate of current video chunk and that of the

previous video chunk. Therefore, a reward value can be computed for a video chunk. The

total reward of a video is the sum of the rewards of all video chunks.

CC: The reward function of CC is a linear combination of the throughput (packets per

second), average latency (s), and packet loss (percentage) over a network connection. In

training, a reward value is computed using the above metrics observed within a monitor
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ABR Parameter RL1 RL2 RL3 Default Original

Max playback buffer (s) [5, 10] [5, 105] [5, 500] 60 60
Total video length (s) [40, 45] [40, 240] [40, 800] 200 196
Video chunk length (s) [1, 6] [1, 11] [1, 100] 4 4
Min link RTT (ms) [20, 30] [20, 220] [20, 1000] 80 80
Bandwidth change frequency (s) [0, 2] [0, 20] [0, 100] 5
Max link bandwidth (Mbps) [0, 5] [0, 20] [0, 100] 5
Min link bandwidth (Mbps) [0, 0.7×max] [0, 0.4×max] [0, 0.1×max] 0.1

Table 7.1: Parameters in ABR simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §7.2.

CC Parameter RL1 RL2 RL3 Default Original

Maximum Link bandwidth (Mbps) [0.5, 7] [0.4, 14] [0.1, 100] 3.16 [1.2, 6]
Minimum link RTT (ms) [205, 250] [156, 288] [10, 400] 100 [100, 500]
Bandwidth change interval (s) [11, 13] [8, 3] [0, 30] 7.5
Random loss rate [0.01, 0.014] [0.007, 0.02] [0, 0.05] 0 [0, 0.05]
Queue (Packets) [2, 6] [2, 11] [2, 200] 10 [2, 2981]

Table 7.2: Parameters in CC simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §7.2. The range of RL1 is defined as 1/9 of the range of RL3 and the range of RL2 is
defined as 1/3 of RL3. The CC parameters shown here for RL1 and RL2 are example sets.

interval. The total reward is the sum of the rewards of all monitor intervals in a connection.

LB: The reward function of LB is the average runtime delay of a job set, which is measured

by milliseconds. For each server, we observe its total work waiting time in the queue and

the remaining work currently being processed. After the incoming job being assigned, the

server would summarize and update the delay of all active jobs.

7.6 Baseline implementation

According to the paperGilad et al. [2019], we train an additional RL model for Robustify to

improve the main RL-policy model by generating adversarial network traces inside ABR. The

state of the adversary model contains the bitrate chosen by the protocol for the previous
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LB Parameter RL1 RL2 RL3 Default Original

Service rate [0.1, 2] [0.1, 10] [0.1, 100] 1.5 [2, 4]

Job size (byte) [1, 100] [1, 104] [1, 106] 104 [100, 1000]
Job interval (ms) [0.1, 10] [0.1, 100] [0.1, 1000] 100 100

Number of jobs [1, 100] [1, 104] [1, 106] 1000 1000
Queue shuffled frequency (episodes) [1, 10] [1, 100] [1, 1000] 100
Queue shuffled probability [0.1, 0.2] [0.1, 0.5] [0.1, 1] 0.5

Table 7.3: Parameters in LB simulation. Colored rows show the configurations (and their
ranges) used in the simulator in the original paper. The synthetic trace generator is described
in §7.2.

chunk, the client buffer occupancy, the possible sizes of the next chunk, the number of

remaining chunks, and the throughput and download time for the last downloaded video

chunk. The action is to generate the next bandwidth in the networking trace, in order to

optimize the gap between the ABR optimal policy, RL-policy, and the unsmoothness, which

is the absolute difference between the last two chosen bandwidths. Here, the penalty of

unsmoothness is set as 1, same as the paper.

We use PPO as the training algorithm, and train the Robustify adversary model with a

RL model until they both converge. Afterward, we add the traces Robustify model generated

into the RL training process to retrain the RL. The PPO parameter settings follow the

original paper.

As an alternative implementation, we also use the reward defined in Robustify as the

training signal for BO to search and update environments. For the unsmoothness penalty

here, we empirically tried three numbers: 0.1, 0.5, 1. From our results, penalty=0.5 works

better than others.

7.7 BO search behavior

Figure 7.2 projects an example trajectory of configurations chosen by BO on a 2-D config-

uration space (“max link bandwidth” and “bandwidth change interval” in Table 7.1). It
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Figure 7.2: Exploration by Genet’s Bayesian Optimization in a 2-D configuration space.

starts with an easy configuration (a large maximum bandwidth value and low bandwidth

change frequency). After that, BO gradually lowers the bandwidth value while increasing

the bandwidth change frequency, effectively raising the difficulty of the chosen configuration

each time. In other words, Genet automatically chooses a sequence of environments with

“emergent complexity,” a desirable behavior of RL training Dennis et al. [2020].
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Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Au-
tomatic curriculum learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664,
2020.

50



Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C Duchi, and Percy Liang. Ad-
versarial training can hurt generalization. arXiv preprint arXiv:1906.06032, 2019.

Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chunlin Chen. Self-paced prioritized curriculum
learning with coverage penalty in deep reinforcement learning. IEEE transactions on
neural networks and learning systems, 29(6):2216–2226, 2018.

Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and P̊al Halvorsen. Commute path band-
width traces from 3g networks: analysis and applications. In Proceedings of the 4th ACM
Multimedia Systems Conference, pages 114–118, 2013.

David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P Lillicrap, and Greg Wayne.
Experience replay for continual learning. arXiv preprint arXiv:1811.11682, 2018.

Noga H Rotman, Michael Schapira, and Aviv Tamar. Online safety assurance for learning-
augmented systems. In Proceedings of the 19th ACM Workshop on Hot Topics in Networks,
pages 88–95, 2020a.

Noga H Rotman, Michael Schapira, and Aviv Tamar. Online safety assurance for deep
reinforcement learning. arXiv preprint arXiv:2010.03625, 2020b.

Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a single real
image. arXiv preprint arXiv:1611.04201, 2016.

Michael Schaarschmidt. End-to-end deep reinforcement learning in computer systems. Tech-
nical report, University of Cambridge, Computer Laboratory, 2020.

Michael Schaarschmidt, Kai Fricke, and Eiko Yoneki. Wield: Systematic reinforcement
learning with progressive randomization. arXiv preprint arXiv:1909.06844, 2019.

Jürgen Schmidhuber. Powerplay: Training an increasingly general problem solver by contin-
ually searching for the simplest still unsolvable problem. Frontiers in psychology, 4:313,
2013.

Claude E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27(3):379–423, 1948.

Junyang Shi, Mo Sha, and Xi Peng. Adapting wireless mesh network configuration from sim-
ulation to reality via deep learning based domain adaptation. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21), 2021.

Felipe Leno Da Silva and Anna Helena Reali Costa. Object-oriented curriculum genera-
tion for reinforcement learning. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, pages 1026–1034, 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and
Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv
preprint arXiv:1703.05407, 2017.

51



Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting tail latency in
cloud data stores via adaptive replica selection. In 12th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 15), pages 513–527, 2015.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017a.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real
world. In 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS), pages 23–30. IEEE, 2017b.

Jonathan Tremblay, Aayush Prakash, David Acuna, Mark Brophy, Varun Jampani, Cem
Anil, Thang To, Eric Cameracci, Shaad Boochoon, and Stan Birchfield. Training deep
networks with synthetic data: Bridging the reality gap by domain randomization. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
pages 969–977, 2018.

Joanne Truong, Sonia Chernova, and Dhruv Batra. Bi-directional domain adaptation for
sim2real transfer of embodied navigation agents. IEEE Robotics and Automation Letters,
6(2):2634–2641, 2021.

Cameron Voloshin, Hoang M Le, Nan Jiang, and Yisong Yue. Empirical study of off-policy
policy evaluation for reinforcement learning. arXiv preprint arXiv:1911.06854, 2019.

Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang. Machine learning for
networking: Workflow, advances and opportunities. Ieee Network, 32(2):92–99, 2017.

Yiding Wang, Weiyan Wang, Junxue Zhang, Junchen Jiang, and Kai Chen. Bridging the
edge-cloud barrier for real-time advanced vision analytics. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19), 2019.

Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learning:
Theory and experiments with deep networks. In International Conference on Machine
Learning, pages 5238–5246. PMLR, 2018.

Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-generated congestion
control. ACM SIGCOMM Computer Communication Review, 43(4):123–134, 2013.

Francis Y. Yan, Jestin Ma, Greg D. Hill, Deepti Raghavan, Riad S. Wahby, Philip Levis, and
Keith Winstein. Pantheon: the training ground for Internet congestion-control research. In
2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, Boston,
MA, July 2018. USENIX Association. ISBN 978-1-939133-01-4. URL https://www.

usenix.org/conference/atc18/presentation/yan-francis.

52

https://www.usenix.org/conference/atc18/presentation/yan-francis
https://www.usenix.org/conference/atc18/presentation/yan-francis


Francis Y. Yan, Hudson Ayers, Chenzhi Zhu, Sadjad Fouladi, James Hong, Keyi Zhang,
Philip Levis, and Keith Winstein. Learning in situ: a randomized experiment in video
streaming. In 17th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 20), pages 495–511, Santa Clara, CA, February 2020. USENIX Associ-
ation. ISBN 978-1-939133-13-7. URL https://www.usenix.org/conference/nsdi20/

presentation/yan.

Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic approach
for dynamic adaptive video streaming over http. In Proceedings of the 2015 ACM Confer-
ence on Special Interest Group on Data Communication, pages 325–338, 2015.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. arXiv preprint arXiv:1410.4615,
2014.

Hang Zhu, Varun Gupta, Satyajeet Singh Ahuja, Yuandong Tian, Ying Zhang, and Xin
Jin. Network planning with deep reinforcement learning. In Proceedings of the 2021 ACM
SIGCOMM 2021 Conference, pages 258–271, 2021.

Zhuangdi Zhu, Kaixiang Lin, and Jiayu Zhou. Transfer learning in deep reinforcement
learning: A survey. arXiv preprint arXiv:2009.07888, 2020.

53

https://www.usenix.org/conference/nsdi20/presentation/yan
https://www.usenix.org/conference/nsdi20/presentation/yan

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Motivation
	Curriculum learning for networking
	Design and implementation of Genet
	Curriculum generation
	Training framework
	Implementation

	Evaluation
	Setup
	Asymptotic performance
	Generalization
	Comparison with rule-based baselines
	Understanding Genet's design choices

	Related Work
	Appendix
	Details of RL implementation
	Trace generator logic
	Sequencing training trace adding example
	Testbed setup
	Details on reward definition
	Baseline implementation
	BO search behavior

	References

