
THE UNIVERSITY OF CHICAGO

FEATURE TRANSFORMATIONS TO ENHANCE REPRESENTATION LEARNING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

RIDA ASSAF

CHICAGO, ILLINOIS

GRADUATION DATE



Copyright © 2022 by Rida Assaf

All Rights Reserved



Dedication Text



”The cure for boredom is curiosity. There is no cure for curiosity.” - Dorothy Parker



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 IDENTIFYING GENOMIC ISLANDS IN BACTERIAL GENOMES . . . . . . . 6
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Validation Following Previously Accepted Methods . . . . . . . . . . 12
2.2.2 Validation Using Novel Metrics . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Qualitative Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Feature Encoding Using Images . . . . . . . . . . . . . . . . . . . . . 21
2.3.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 OPERONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Gene-Pair Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Operon Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Cross Validating Visual and Operon Features . . . . . . . . . . . . . 35

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Feature Encoding via Visual Representation . . . . . . . . . . . . . . 38
3.3.3 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



4 FEATURE TRANSFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.0.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.0.2 Feature Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.0.3 Feature Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 SYNTHETIC EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 The Hanoi Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 The Rectangle experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 The Bit Vector Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3.1 Conjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Disjunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 REAL WORLD EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1 TabNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3 Sarcos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4 DeepInsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.5 REFINED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Mnist1D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Data and Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Higgs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 Sarcos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.4 DeepInsight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.5 Refined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 SUMMARY AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . 82

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vi



LIST OF FIGURES

2.1 Different mechanisms of bacterial evolution: genome reduction by deletion events,
gene acquisition by horizontal gene transfer, mutations and rearrangements. . . 7

2.2 Different types of genomic islands, as characterized by the genes they carry and
the functions they promote. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 A visualization example of how different types of genomic islands (transposon,
pathogenicity island, bacteriophage, plasmid) may change a commensal E. coli
into a pathogenic one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 ROC curve for our genomic island binary classifier. The ROC curve plots the
true positive rate as a function of the false positive rate. The greater the area
under the curve is (the closer it is to the ideal top left corner point), the better. 17

2.5 Examples of regions uniquely predicted by Shutter Island . . . . . . . . . . . . . 18
2.6 Most common gene annotations found in the unique predictions made by Shutter

Island and Alien Hunter, with the percentage of unique predictions they reside in. 19
2.7 Snapshot of the Compare Region Viewer service provided by PATRIC (https://www.patricbrc.org).

The image shows a genomic region of the query genome (first row) aligned against
a set of other genomes, anchored at the focus gene (represented as a red arrow).
The service starts with finding other genes that are of the same family as the
focus gene, and then aligns their flanking regions accordingly. . . . . . . . . . . 22

2.8 Examples of images generated using the compare region viewer. Each arrow
represents a gene color coded to match its functionality. The first row is the
genome neighborhood of the focus gene (red), and the subsequent rows represent
anchored regions from similar genomes sorted by their phylogenetic distances to
the query genome. Genes that would be labeled as not part of a genomic islands
are referred to as continents in this figure. . . . . . . . . . . . . . . . . . . . . . 24

3.1 A visualization of an operon in a bacterial genome. An operon is a group of genes
that share the same promoter and terminator, and thus are transcribed together. 29

3.2 The Receiving Operating Characteristic (ROC) curve (a) and Precision-Recall
curve (b) corresponding to Operon Hunter evaluated over the entire testing
dataset. The Area Under the Curve (AUC) for both is 0.97. . . . . . . . . . . . 34

3.3 HeatMaps generated using the Grad-Cam method and overlayed over input im-
ages, highlighting the network’s areas of attention that had most influence over
the network’s decision. Each sub-figure shows the network’s correctly predicted
label, with what we believe to be the most prominent feature leading to the
network’s decision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.4 Example of an image generated by our offline version of the Compare Region
Viewer service to be fed as input to the neural network. Each arrow represents
a single gene. Each row captures the area of interest in a genome. The query
genome is the top row. The rest of the rows are genomes selected by evolutionary
distance. The query gene pair are colored blue and red. Genes share the same
color if they belong to the same family and that family. The query gene pair
are centered in the middle, occupying 2/3 of the image’s width. The rest of
the flanking region is represented correspondingly to the left/right of the center
region. The alpha channel of the image is the STRING score of the query gene
pair. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Schematic of our approach: (1) If the feature vector represents known entities and
relationships that can be clustered using domain knowledge, the features are fed to
a modular MLP in their clustered form. (2) If no domain-knowledge clusters are
known, the feature vector is re-ordered based on the feature correlation matrix.
(3) If correlation based clusters emerge (groups of clusters that show strong inter-
group correlation values and weak outer-group correlation values), those features
clusters are presented to a modular MLP. (4) If no correlation clusters emerge,
the re-ordered feature vector is used as input to a one-dimensional convolutional
neural network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Sketches illustrating the difference between (a) a baseline Multi-Layer Perceptron
(MLP), and (b) a modular MLP used by our method. The modular MLP differs
in the input layer, that is made up of multiple input layers accepting different
feature groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 An example of images generated for The Hanoi Experiment. Each example is a
sequence of numbers originally sorted in ascending order. The task is to classify
the number of distinct pairs (between 0 and 3 pairs) that were swapped after gen-
erating the sequence. Visually, the sequence is represented as a stack of rectangles
where each number is represented by the width of its corresponding rectangle. . 55

5.2 Heatmaps generated by the GradCam approach, overlayed over input images used
in The Hanoi Experiment. The GradCam approach highlights the regions in the
image that are most influencing the model’s decision. . . . . . . . . . . . . . . . 59

5.3 A modified visualization of the examples in The Hanoi Experiment. The problem
remains the same: predicting the number of distinct pairs swapped in an ordered
sequence of numbers represented visually as a vertical stack of rectangles, but
the rectangles are now no longer aligned at the center of the image. Instead,
the rectangles are left and right justified one at a time (even-indexed rectangles
are aligned with the left margin of the image, odd-indexed rectangles are aligned
with the right margin of the image). . . . . . . . . . . . . . . . . . . . . . . . . 60

viii



5.4 An example of images generated for The Rectangle Experiment. The task is to
classify whether a point lies inside or outside the rectangle described by four other
points. Two representations are used, figure (a) shows a transformed representa-
tion where the entities (rectangle corners) are connected with lines, highlighting
the relationships between them similar to how a human would, figure (b) shows
a baseline visual representation of the raw data with only the 5 points and no
connecting lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Generating the MNIST1D dataset: Digits are represented as one-dimensional
patterns that are then padded, translated, and transformed and subject to other
processes. In our experiments, we use a shuffled version of this dataset which
randomly shuffles the resulting feature vectors. . . . . . . . . . . . . . . . . . . 78

ix



LIST OF TABLES

2.1 The number of islands and their total base pair count predicted by each tool over
the testing genomes dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 True positive rate (Sensitivity) and the percentage of Phispy False Positives, as
defined in the Phispy study, for predictions made by each tool over the entire
testing dataset, comprised of 34 genomes. . . . . . . . . . . . . . . . . . . . . . 14

2.3 Cross-tool comparison of GI results: The percentage of GIs predicted over the
testing dataset Target, that overlap with predictions made by other tools (Pre-
dictor). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Quality of overlapping predictions: The percentage of GIs predicted over the
testing dataset by the Target tool, that overlap with predictions made by other
tools (Predictor), that include GI features — The percentage of predictions made
by the Target tool but not the Predictor, that include GI features. . . . . . . . . 15

2.5 The total number and base-pair count of unique predictions made by each tool
over the testing genomes dataset, and the percentage of those predictions showing
GI features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Sensitivity, precision, and specificity. Sensitivity (true positive rate) is the per-
centage of operonic gene pairs that were detected by the different tools, precision
is the percentage of operonic gene pairs predicted by the different tools which are
actually true positives, and specificity (true negative rate) is the percentage of
non-operonic gene pairs that were detected by the different tools. For sensitivity
and specificity, results are first shown per genome, and then as an aggregate over
the entire testing dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Accuracy, MCC (Mathews Correlation Coefficient), and F1-score achieved by the
different tools over the entire testing dataset. . . . . . . . . . . . . . . . . . . . . 34

3.3 Comparison of the results between OperonHunter, ProOpDB, and Door when
considering full operon predictions. Exact Operon Matches are the percentage of
operons predicted where the endpoints exactly match those of the experimentally
verified operons. The percentages are reported over 254 full operons that consist
of more than one gene and are reported in RegulonDB/DBTBS and ODB. . . . 35

3.4 Breakdown of the training dataset: The genome names and the corresponding
number of gene pairs used. Operon pairs were harvested from the Known Operons
section of the Operon Database (ODB). . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Breakdown of the testing dataset: The genome names and the corresponding
number of gene pairs used. Operon pairs were scoured from RegulonDB (for E.
coli) and DBTBS (for B. subtilis) and matched with the Known Operons section
of the Operon Database (ODB). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x



5.1 Summary of the results observed in The Hanoi Experiment: Testing accuracy
of tabular and visual learners (baseline and pre-trained) on different forms of
representations of the information. The baseline visual representation transforms
every number in the sequence to a rectangle, but does not align the rectangles in
any meaningful way. The transformed visual representation aligns the rectangles
at the center of the image, facilitating the learning of relationships between them.
The baseline tabular representation is the 10 numbers representing the sequence.
The transformed tabular representation appends the relationship (smaller/larger)
between every pair of numbers to the baseline tabular representation. . . . . . . 61

5.2 Summary of the results observed in The Rectangle Experiment: Testing accu-
racy of tabular and visual learners on different forms of representations of the
information. The baseline visual representation transforms every coordinate to a
single point (filled circle), but does not connect the four corners of the rectangle.
The transformed visual representation include the rectangle lines. The baseline
tabular representation is the 10 numbers corresponding to the (x,y) coordinates
of the 5 points. The transformed tabular representation separates the numbers
into two groups: one with the x-coordinates of the points and another with the
y-coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Summary of the results observed in The Hanoi Experiment (Conjunction): the
testing accuracy and number of parameters of the different evaluated tabular
learners. The baseline tabular learners accept the entire 15 bit vector using a
single input layer. The modular tabular learner partitions the input vector into
five groups: one for every 3 bits constituting a sub-function, and passes each
group through a separate input layer. . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4 Summary of the results observed in The Hanoi Experiment (Disjunction): the
testing accuracy and number of parameters of the different evaluated tabular
learners. The baseline tabular learners accept the entire 15 bit vector using a
single input layer. The modular tabular learner partitions the input vector into
five groups: one for every 3 bits constituting a sub-function, and passes each
group through a separate input layer. . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Poker Hands representation in the training set: the percentage of examples in the
training set representing the corresponding poker hand. These percentages are
an approximate representation of the actual possible distributions of poker hands
in a 52-card deck. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Testing accuracy achieved by different models evaluated using the Poker dataset. 72
6.3 Testing accuracy along with the number of parameters corresponding to the dif-

ferent models evaluated using the Higgs Boson dataset. . . . . . . . . . . . . . . 73
6.4 Testing accuracy along with the number of parameters corresponding to the dif-

ferent models evaluated using the Sarcos dataset. . . . . . . . . . . . . . . . . . 73
6.5 Testing accuracy achieved by the different models evaluated using two datasets

(Relathe and Madelon) reported in the DeepInsight study, as compared to a
baseline one-dimensional convolutional neural network and our approach which
re-ordered the input feature vector (re-ordered 1D CNN). . . . . . . . . . . . . 75

xi



6.6 Normalized root-mean-square error (NRMSE) and Pearson correlation coefficient
(PCC) achieved by different models evaluated on the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) dataset and reported in the Refined study, compared to
our approach (Modular MLP). The training percentage resembles the percentage
of the data each model was trained on. Note that with the exception of our Mod-
ular MLP, all models were evaluated on a 10% split from the dataset, whereas
the results reported for our Modular MLP are the cross-validation score while
training on the reported percentage and evaluating our model on the rest of the
data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.7 Testing accuracy achieved by different models on the MNIST-1D dataset. . . . . 77
6.8 Testing accuracy achieved by different models on the shuffled version of the

MNIST-1D dataset, including our approach (CNN re-ordered) which uses the
same CNN model but with a re-ordered input feature vector. . . . . . . . . . . . 78

xii



ACKNOWLEDGMENTS

To be written.

xiii



ABSTRACT

Machine learning (ML) has crowned itself as a breakthrough in a number of domains, such

as computer vision and natural language processing, achieving and sometimes exceeding

human level performance on certain tasks especially in supervised learning. A major factor

driving these success stories is the effort undertaken in designing different artificial neural net-

work architectures that are particularly equipped to handle specialized tasks. For example,

convolutional neural networks (CNNs) were designed to leverage spatial locality and other

properties assumed in images, whereas recurrent neural networks and attention mechanisms

are used with sequential or time-series data. While the majority of datasets available may

not exhibit a special structure and is presented in plain tabular form, the most commonly

used neural network on tabular datasets is the multi-layer perceptron (MLP).

Similar to how choosing the right learner architecture may be seen as part of the training

process that is essential for a good performance, we believe that some effort on the data

presentation side could further improve the learning outcome. The underlying idea when

using artificial neural networks is that representation learning happens automatically using

raw data, unlike classical ML techniques that are still widely applied on tabular datasets,

and that are often accompanied by feature selection and transformation strategies. We pro-

pose that certain feature transformations could enhance the representation learning process

and the subsequent machine learning outcome achieved by artificial neural networks. The

key principles behind these transformations are highlighting the entities and relationships

described by the data. These transformations can be a direct application of our domain

knowledge, for example by manually designing visual representations of the features to be

used by a two-dimensional CNN. Another approach is to partition the input feature vector

such that each partition represents an entity or a relationship, to be used by a modular

MLP (an MLP with multiple input layers). We provide empirical evidence suggesting that

such transformations yield better results than baseline MLPs, and require less time, data,

and parameters. In cases where domain knowledge is lacking or no clear feature groups are

xiv



known, the transformation process works by generating a permutation of the feature vector

where related features are neighbors, to be used with a one-dimensional CNN to capture the

implicit feature groups.

We propose a method to automate the transformation process, and evaluate it empiri-

cally using synthetic and real-world datasets. The synthetic datasets are designed in a way

that allows different levels of representation of the underlying entities and relationships in

the data, providing additional insight into the learning process. The real-world datasets

are derived from experiments reported by other approaches that propose automatic feature

transformation techniques to enhance deep learning performance. Our results show a clear

advantage over these approaches, not only in the learning outcome but also in the simplicity

of method.

xv



CHAPTER 1

INTRODUCTION

1.1 Motivation

To a human, the world is made up of entities perceived through the senses and symbolized

through internal mental processes. These entities are defined using the features and at-

tributes that describe them, and the relationships between them. Much of learning involves

discovering these features and relationships. The input and output to such processes make

up information.

To a machine, that information can be presented in different forms. One of these forms is

referred to as tabular, that is a textual representation comprised of categorical and numeri-

cal values. Another form of representation is visual, which is comprised of images including

shapes that are familiar to the human vision system.

In [1], Goyal A. and Bengio Y. present inductive biases as ”training data in disguise”,

helping machine learning models exploit our a priori knowledge of the problem by having

architectures that make use of the properties associated with these biases. For example, con-

volutional neural networks capture group equivariance and spatial locality, recurrent neural

networks exploit equivariance over time and capture sequential dependency, graph neural

networks exploit equivariance over entities and relationships, and deep architectures learn

complicated functions via the composition of simpler ones. These neural networks achieve

state of the art performance in their respective domains, because they leverage prior knowl-

edge over the corresponding domain data. We believe that similar to how prior knowledge

guided our decisions in designing these learner architectures, similar consideration regarding

how the data is represented to the learner could also improve the learning performance.

Much work has been done on feature engineering and feature selection. The outcome of

feature selection methods is a subset of the features presumed to be strong predictors, that

1



are then used as input to the learner. Supervised feature selection methods include the target

variable in the process of determining the strong predictors, contrary to unsupervised feature

selection methods. One class of feature selection methods is known as wrapper methods,

that work by evaluating multiple machine learning models using different combinations of

features, and selects the combination that maximizes the learning performance. Another

class known as the filter feature selection methods statistically evaluates the relationship

between input features and the target variable and chooses a subset of the features that

score highest [2]. In these approaches, the features that do not make it to the final cut

are discarded from the downstream learning process. While some models are intrinsically

resistant to non-informative features (e.g. ensemble tree based methods), classical feature

selection techniques are historically used with classical machine learning algorithms. When it

comes to deep learning, the idea is that the model would automatically learn the appropriate

representation without the need for feature selection and pre-processing. We show that

feature selection and feature transformation techniques may facilitate the representation

learning process done by neural networks.

Generally, the approaches presented in this work attempt to find groups of features

that serve as strong predictors, without discarding any features. Some approaches work by

mapping tabular features into the visual space using distance metrics that result in related

features being represented as neighboring pixels, resulting in different groups of features

being picked up by kernels in a convolutional neural networks. The pre-processing steps

used to measure the feature relationships and apply the subsequent mappings are done on

a global level. Other approaches apply more local methods e.g. by applying the feature

selection per learning instance.

We propose new feature transformation strategies that aim to highlight the entities and

relationships represented in the input feature vector. One way to do that is by leveraging

human domain knowledge and representing the underlying information visually through

images with distinct shapes and colors similar to what a human expert would use to make

2



judgements on similar tasks. We hypothesize that a primary difference in visual learning

is that objects are presented separately (provided appropriate kernel sizes) to the learner.

Whereas tabularly, the learner may first need to learn what each entity is formed of (which

subsets of features) and then what the relationships between those entities are. Such a

representation may further make use of the pre-trained neural networks that are powering

the advances in computer vision applications and are already adept at handling low-level

visual features.

We demonstrate the effectiveness of direct visual representation of tabular features on

two problems from the bioinformatics domain, by representing genomic data visually in a

way that highlights genes and relationships between them. In these problems, an additional

benefit of our approach comes from representing certain features that are not easily repre-

sented tabularly (gene conservation, which lends itself to nice spatial representation) more

naturally across the two-dimensional space made possible by using images.

In cases where the information involves entities and relationships clearly represented by

different feature groups, our approach tweaks the machine learning model’s architecture

while maintaining a tabular feature representation. Namely, we resort to a modular learning

approach, where the input feature vector is partitioned into groups that are fed independently

through multiple input layers to a multi-layer perceptron. The idea of partitioning the feature

vector stems from our conjecture that not all features will be informative for every output

prediction, and that non-informative features may act as noise. We hypothesize that in some

cases, a learner that does not exploit feature groups may perform poorly compared to one

that does, or may need more time or parameters to compensate. In cases where knowledge

based feature groups are lacking, we use the feature correlation matrix to infer potential

feature groups. If feature groups are not easily defined, our approach still re-orders the

features based on their correlation matrix, and uses a one-dimensional convolutional neural

network as a learner.

We evaluate our approach empirically using synthetic datasets that allow for different rep-

3



resentations of entities and the relationships between them. We also compare out approach

to existing ones using real-world datasets. We demonstrate that our approach performs bet-

ter than the other methods and shows an advantage in terms of the number of parameters

and training time required on some of the machine learning tasks.

1.2 Contributions

Our first contribution is showing that feature transformations highlighting the entities in-

volved and the relationships between them facilitates the process of representation learning

and yields a better learning outcome. Our second contribution is a state of the art method

for identifying genomic islands in bacterial genomes. Our third contribution is a state of the

art method for detecting operons in bacterial genomes. These methods are applications of

our proposed feature transformation strategies. Our fourth contribution is providing empir-

ical evidence using synthetic and real world datasets, and drawing insight into the learning

process by comparing the tabular and the visual modes of learning. We do that by train-

ing different learners on the same information represented differently, with varying level of

highlighting for the entity boundaries and relationships. Our fifth contribution is critiquing

methods attempting to automate feature engineering and transformation, and a proposed

method towards the same end. Our critique shows that the results reported by many efforts

being published in the literature could be outperformed by simple machine learning models.

1.3 Dissertation Organization

Even with the constantly increasing sequenced genomic data, having meaningful and labeled

data is still a challenge, which makes supervised learning applications on some bioinformatics

problems more infeasible. There are numerous problems that suffer from limited datasets

in bioinformatics. In chapters 2 and 3, we transform two of these problems in to computer

vision tasks, by representing the data visually in a way that captures the most prominent

4



features according to human experts, and highlights the relevant entities and relationships.

The results we achieve are better than those reported by state of the art methods. The

two problems we present are identifying genomic islands, and operons, in bacterial genomes.

These are two well-known genome annotation problems, known for being experimentally

costly and to suffer from the lack of extensive verified datasets.In chapter 4, we present an

approach to transform data in a way that highlights the entities and relationships while

maintaining a tabular data representation, and propose a method to automate this feature

transformation process. In chapter 5, we use synthetic datasets to empirically evaluate our

proposed method and examine the learning process of visual and tabular machine learners.

In chapter 6, we compare our approach to others that propose automatic feature selection

and transformation techniques, using real-world datasets. Finally in chapter 7, we present a

summary of our work and outline some future directions.

5



CHAPTER 2

IDENTIFYING GENOMIC ISLANDS IN BACTERIAL

GENOMES

In this chapter, we demonstrate that the problem of predicting genomic islands, which suffers

from extremely limited ground-truth datasets, can benefit greatly from visual representation

and transfer learning. By using visual representations of genomic fragments, our method

(Shutter Island) leverages deep neural networks previously trained on computer vision tasks.

Shutter Island demonstrated superiority in capturing the union of the predictions made by

other tools, in addition to making novel predictions that exhibit GI features.

2.1 Introduction

2.1.1 Background

There are a number of ways through which bacteria may evolve, including deletion events,

horizontal gene transfer, and single-point mutations (Figure 2.1).

Horizontal gene transfer is the main source of adaptability for bacteria, through which

genes are obtained from different sources including bacteria, archaea, viruses, and eukaryotes.

This process promotes the rapid spread of genetic information across lineages, typically in

the form of clusters of genes referred to as genomic islands (GIs). Different types of GIs exist,

and are often classified by the content of their cargo genes or their means of integration and

mobility (Figure 2.2).

Interest in genomic islands resurfaced in the 1990s, when some Escherichia coli strains

were found to have exclusive virulence genes that were not found in other strains [3, 4]. These

genes were thought to have been acquired horizontally and were referred to as pathogenicity

islands (PAIs). Further investigations showed that other types of islands carrying other types

of genes exist, giving rise to more names such as ”secretion islands,” ”resistance islands,”

6



Figure 2.1: Different mechanisms of bacterial evolution: genome reduction by deletion events,
gene acquisition by horizontal gene transfer, mutations and rearrangements.

7



and ”metabolic islands,” since the genes carried by these islands could promote not only

virulence but also symbiosis or catabolic pathways [5, 6, 7].

Aside from functionality, different names are also assigned to islands on the basis of

their mobility. Some GIs are mobile and can thus move themselves to new hosts, such as

conjugative transposons, integrative and conjugative elements (ICEs), and prophages (Figure

2.3), whereas other GIs lose their mobility [8, 9]. Prophages are viruses that infect bacteria

and then remain inside the cell and replicate with the genome [10]. They are also referred

to as bacteriophages, and constitute the majority of viruses, outnumbering bacteria by a

factor of ten to one [11, 12]. A genomic island (GI) then is a cluster of genes that is typically

between 10 kb and 200 kb in length and has been transferred horizontally [13].

Figure 2.2: Different types of genomic islands, as characterized by the genes they carry and
the functions they promote.

Horizontal gene transfer (HGT) may contribute to anywhere between 1.6% and 32.6% of

a bacterial genome [14]. This percentage implies that a major factor in the variability across

bacterial species and clades can be attributed to GIs [15]. Thus, GIs impose an additional

challenge to our ability to reconstruct the evolutionary tree of life. The identification of GIs

is also important for the advancement of medicine, by helping develop new vaccines and

antibiotics [16] or cancer therapies [17]. For example, knowing that PAIs can carry many

8



Figure 2.3: A visualization example of how different types of genomic islands (transpo-
son, pathogenicity island, bacteriophage, plasmid) may change a commensal E. coli into a
pathogenic one.

pathogenicity genes and virulence genes [18, 19, 20], researchers found that potential vaccine

candidates resided within them [21].

We propose that the problem of predicting genomic islands computationally is an excel-

lent candidate for transfer learning on visual representations, which alleviates the problem

of the extreme limitation of available ground-truth datasets and enables the use of powerful

deep learning technologies. We present a method (Shutter Island) that uses deep neural

networks, previously trained on computer vision tasks, for the detection of genomic islands.

Using a manually verified reference dataset, Shutter Island proved to be superior to the

existing tools in generalizing over the union of their predicted results. Moreover, Shutter

Island makes novel predictions that show GI features.

9



2.1.2 Related Work

Methods proposed for the prediction of GIs fall under two categories: those that rely on

sequence composition analysis and those that rely on comparative genomics. We present an

overview of some of these methods next.

Islander works by first identifying tRNA genes and their fragments as endpoints to

candidate regions, then disqualifying candidates through a set of filters such as sequence

length and the absence of an integrase gene [5]. IslandPick identifies GIs by comparing the

query genome with a set of related genomes selected by an evolutionary distance function [22].

It uses Blast and Mauve for the genome alignment. The outcome heavily depends on the

choice of reference genomes selected. Phaster uses BLAST against a phage-specific sequence

database (the NCBI phage database and the database developed by Srividhya et al. [23]),

followed by DBSCAN [24] to cluster the hits into prophage regions. IslandPath-DIMOB

considers a genomic fragment to be an island if it contains at least one mobility gene, in

addition to 8 or more consecutive open reading frames with dinucleotide bias [25]. SIGI-

HMM uses the Viterbi algorithm to analyze each gene’s most probable codon usage states,

comparing it against codon tables representing microbial donors or highly expressed genes,

and classifying it as native or non-native accordingly [26]. PAI-IDA uses the sequence

composition features, namely, GC content, codon usage, and dinucleotide frequency, to detect

GIs [27]. Alien Hunter uses k-mers of variable length to perform its analysis, assigning

more weight to longer k-mers [28]. Phispy uses random forests to classify windows based

on features that include transcription strand directionality, customized AT and GC skew,

protein length, and abundance of phage words [10]. Phage Finder classifies 10 kb windows

with more than 3 bacteriophage-related proteins as GIs [29]. IslandViewer is an ensemble

method that combines the results of three other tools—SIGI-HMM, IslandPath-DIMOB,

and IslandPick—into one web resource [30].

10



2.1.3 Challenges

No single tool is able to detect all GIs in all bacterial genomes. Methods that narrow their

search to GIs that integrate under certain conditions, such as into tRNAs, miss out on the

other GIs. Similarly, not all GI regions exhibit atypical nucleotide content [31]. Evolutionary

events such as gene loss and genomic rearrangement [7] present more challenges. For example,

the presence of highly expressed genes or having closely related island host and donor might

lead to false negatives [16]. Tools that use windows face difficulty in adjusting their size: small

sizes lead to large statistical fluctuation, whereas larger sizes result in low resolution [32].

For comparative genomics methods, the outcomes depend strongly on the choice of

genomes used in the alignment process. Very distant genomes may lead to false positives,

and very close genomes may lead to false negatives. In general, the number of reported

GIs may differ across tools, because one large GI is often reported as a few smaller ones

or vice versa, making it harder to detect end points and boundaries accurately. The lack

of experimentally verified ground-truth data-sets spanning the different types of GIs makes

point-to-point comparison across the tools extremely challenging. Moreover, different tools

follow different custom-defined metrics to judge their results, typically by using a threshold

representing the minimum values of features (e.g., number of phage words) present in a re-

gion to be considered a GI, which adds to the complications of validating GI predictions and

comparing tools’ performances.

2.2 Results

No reliable GI dataset exists that can validate the predictions of computational methods [28].

Although several databases exist, they usually cover only specific types of GIs (e.g. Islander,

PAIDB, ICEberg), which would flag as false positives any extra predictions made by those

tools. Moreover, as Nelson et al. state, ”The reliability of the databases has not been verified

by any convincing biological evidence” [8]. We validate the quality of the predictions made

11



by our method first by using metrics reported in previous studies, then by introducing novel

metrics and presenting some qualitative assessments of the predictions.

In Table 2.1, we present the total number of GI predictions made by each tool over the

entire testing dataset, which consists of 34 genomes and is described in more detail in the

Methods section.

Table 2.1: The number of islands and their total base pair count predicted by each tool over
the testing genomes dataset.

Tool Number of Islands Number of Base Pairs
ShutterIsland 649 10,700,492
AlienHunter 1919 19,561,593
IslandViewer 701 10,571,974

IslandPath-Dimob 339 6,871,312
Phaster 109 4,334,225
Phispy 96 3,979,173

PhageFinder 85 3,656,950
IslandPick 362 3,020,733
SIGI-HMM 359 2,543,145
Islander 50 2,019,610

We can see from Table 2.1 that Alien Hunter calls the most GIs, with almost double

the amount called by Shutter Island and IslandViewer if measured by base pair count, and

even more if measured by island count. However, it is worth mentioning that one island

predicted by one tool could be predicted as several islands by another, partly due to the

different length filters the tools apply. The number of predictions made by Shutter Island

is close to that made by IslandViewer, which is an ensemble method combining four other

tools’ predictions.

2.2.1 Validation Following Previously Accepted Methods

In this section, we present a comparison of the tools’ performance following definitions ac-

cepted by the scientific community and accepted as part of an earlier study introducing

Phispy [10]. To distinguish the results presented in this section, we use Phispy as a pre-fix

to the names of the metrics used. Namely, We refer to the metrics used as Phispy True

12



Positives (PTP), Phispy False Positives (PFP), and Phispy False Negatives (PFN). Note

that Phispy did not define true negatives. A true positive can be verified by the presence of

phage-related genes, and a false positive by their absence. But while a region that exhibits

GI features but is not predicted as a GI can be defined as a false negative, regions not show-

ing any GI features cannot be labeled as true negatives, due to our limited understanding of

GI features. Even the task of deciding the region size would not be trivial.

Table 2.2 was constructed with the following definitions:

• A Phispy True Positive is a region predicted as a GI and:

– Contains a phage-related gene, or

– With at least 50% of its genes having unknown functions.

• A Phispy False Positive is a region predicted as a GI but does not satisfy the above

conditions.

• A Phispy False Negative is a region with six consecutive phage-related genes that is

not predicted as a GI.

We followed a similar approach as the one used by Phaster to determine the presence of

phage-related genes, which is looking for certain keywords present in the genes’ annotations.

The set of relevant keywords can be found in the repository linked to at the end of the

manuscript. Throughout the remainder of the paper, we refer to genes with annotations

that contain such keywords as GI features.

Using the Phispy metrics defined earlier, we present the true positive rate (sensitivity)

and the percentage of false positive predictions in Table 2.

Note that While some tools report 0 Phispy False Positives, they also score significantly

lower on the true positive rate metric, the reason being that these tools make much fewer

predictions in general.

13



Table 2.2: True positive rate (Sensitivity) and the percentage of Phispy False Positives, as
defined in the Phispy study, for predictions made by each tool over the entire testing dataset,
comprised of 34 genomes.

Tool Sensitivity (%) False positives (%)
ShutterIsland 92.4 29
AlienHunter 91.8 50.7
IslandViewer 88.2 30

IslandPath-Dimob 80.9 2.7
Phaster 73.2 0
Phispy 68.6 0

PhageFinder 65.9 0
IslandPick 62.5 44.8
SIGI-HMM 66.4 30.6
Islander 31.8 0

2.2.2 Validation Using Novel Metrics

In this section, we present more general metrics to perform a more objective cross-tool

comparison. Since every tool predicts a subset of all GIs, we capture the coverage of each

tool across other tools’ predictions in Table 2.3. We omit the tools we were not able to run,

and use the default parameters for all the listed tools.

Table 2.3: Cross-tool comparison of GI results: The percentage of GIs predicted over the
testing dataset Target, that overlap with predictions made by other tools (Predictor).

PPPPPPPPPPredictor
Target

S
hu
tt
er
Is
la
n
d

Is
la
n
d
V
ie
w
er

P
h
is
py

P
h
ag
eF
in
d
er

Is
la
n
d
er

P
h
as
te
r

A
li
en

H
u
nt
er

Is
la
n
d
P
ic
k

D
im

ob

S
IG

I
ShutterIsland N/A 45.7% 97.8% 99.1% 67.4% 92.9% 27% 20.3% 54% 28.8%

IslandViewer 42.8% N/A 89.3% 89.2% N/A 82.1% 39.4% N/A N/A N/A

Phispy 29.1% 23.7% N/A 98.3% 52.8% 79.3% 9% 10.8% 29.1% 11.5%

PhageFinder 28.1% 23.6% 92.8% N/A 50.4% 79.8% 9% 10.1% 29/3% 12%

Islander 9.2% 21.2% 23.7% 25.7% N/A 22.2% 8.3% 15.5% 22.9% 17%

Phaster 26.4% 22.5% 82.4% 86% 44.5% N/A 10.4% 11.3% 27.5% 12.7%

AlienHunter 56.8% 78.9% 87.2% 86.5% 98% 87.2% N/A 67.1% 82.8% 92.6%

IslandPick 10.6% 43.3% 25.4% 28.7% 51.7% 29% 13.8% N/A 28.4% 31.2%

Dimob 34.9% 70.5% 86.1% 85.2% 87.8% 76.9% 25.7% 29.5% N/A 50.3%

SIGI 17.2% 47.7% 34.4% 31.6% 63.2% 27.8% 22.6% 30.9% 44.8% N/A

Table 2.3 shows that Alien Hunter’s predictions overlap the most with those made by

14



other tools, which is expected given that it has the highest base-pair coverage. Shutter Island

comes next and overlaps the most with three of the presented tools’ predictions. Note that

while Shutter Island was trained only on the intersection of the predictions made by Phispy

and IslandViewer, it generalizes and scores the highest overlap with predictions made by

Phage Finder and Phaster.

Since some tools make many more predictions than do others, we used the GI features

mentioned earlier to get a better idea about the quality of these overlapping predictions.

In Table 2.4, we present the percentage of overlapping predictions that show GI features,

followed by the percentage of non-overlapping predictions showing GI features. Tools that

use these features to perform their classifications were omitted. We can see that on average,

Shutter Island’s overlapping predictions include GI features the most. Shutter Island also

misses the least predictions made by other tools that show GI features. Finally, Shutter

Island has the most predictions showing GI features that are not being predicted by other

tools.

Table 2.4: Quality of overlapping predictions: The percentage of GIs predicted over the
testing dataset by the Target tool, that overlap with predictions made by other tools (Pre-
dictor), that include GI features — The percentage of predictions made by the Target tool
but not the Predictor, that include GI features.
PPPPPPPPPPredictor

Target
ShutterIsland IslandViewer AlienHunter IslandPick SIGI Average

ShutterIsland N/A 91% — 64% 87% — 47% 89% — 31% 87% — 36% 89% — 45%

IslandViewer 94% — 67% N/A 89% — 45% 80% — n/a 87% — n/a 88% — 56%

AlienHunter 74% — 70% 66% — 60% N/A 73% — 21% 71% — 42% 71% — 48%

IslandPick 69% — 76% 34% — 86% 49% — 53% N/A 54% — 44% 52% — 65%

SIGI 67% — 75% 45% — 77% 48% — 51% 50% — 35% N/A 53% — 60%

Table 2.5 shows each tool’s novel predictions that do not overlap with any of other tools’,

in addition to the percentage of those predictions with GI features. Alien Hunter’s unique

predictions almost outnumber every other tool’s total predictions, and average 8 kbp in

length. Shutter Island’s unique predictions have an average length of 14 kbp. Applying

the same length cutoff threshold (8 kbp) on Alien Hunter’s unique predictions reduces them

15



to 301 islands with a total of 3,880,000 bp, which is on par with those made by Shutter

Island’s. However, a larger percentage of unique predictions made by Shutter Island exhibit

GI features.

Table 2.5: The total number and base-pair count of unique predictions made by each tool over
the testing genomes dataset, and the percentage of those predictions showing GI features.

Tool Unique GIs Unique GIs Unique GIs
(Count) (Base pairs) (GI features)

ShutterIsland 280 3,647,377 65%
AlienHunter 1155 9,583,497 40%
Phaster 2 30,814 0%
Phispy 1 26,890 100%

Next, we show the receiver operating characteristic (ROC) curve of our classifier in Figure

2.4. The construction of a ROC curve requires a definition of true negative predictions. Since

our classifier performs its predictions on every gene in a genome, we consider the four genes

flanking each side of every query gene, and introduce the following definitions. A region is:

• A true positive, if predicted as a GI and:

– Includes a phage-related gene, or

– Overlaps with a prediction made by another tool.

• A false positive, if predicted as a GI but does not satisfy the above conditions.

• A true negative, if not predicted as a GI and does not include a phage-related gene.

• A false negative , if not predicted as a GI but includes a phage-related gene.

16



Figure 2.4: ROC curve for our genomic island binary classifier. The ROC curve plots the
true positive rate as a function of the false positive rate. The greater the area under the
curve is (the closer it is to the ideal top left corner point), the better.

2.2.3 Qualitative Assessment

To qualitatively assess the unique predictions made by Shutter Island, we present snapshots

of the cargo genes typically found in these predicted regions in Figure 2.5, which shows that

a significant number of the included genes carry GI related annotations. We also present the

most common gene annotations found in the unique predictions made by Shutter Island and

Alien Hunter in Figure 2.6. We focus on these tools since they are the ones with a significant

number of unique predictions to perform the analysis on. We notice that the most frequent

genes that are common to these predicted regions are either of unknown functionality or

are GI-related, which adds to our confidence in these predictions. Specifically, 90% of genes

uniquely predicted by Shutter Island are either of unknown function or labeled as a mobile

element protein, compared to 64% of genes with similar labels uniquely predicted by Alien

17



Figure 2.5: Examples of regions uniquely predicted by Shutter Island

18



Hunter.

77%

23%

6%6%
5%

5%
4%

4%
3%
3%
3%

hypothetical protein

Mobile element protein

putative membrane protein

putative lipoprotein

ABC transporter ATP-binding protein

Putative periplasmic protein

Transcriptional regulator

Transposase

Putative inner membrane protein

PilS cassette

putative integral membrane protein

(a) Shutter Island

55%

9%3%
3%

2%
1%1%

1%
1%
1%
1%
1%
1%
1%

hypothetical protein

Mobile element protein

putative membrane protein

Transposase

putative lipoprotein

Transcriptional regulator LysR family

DNA-directed RNA polymerase beta subunit

Transaldolase

Rhs-family protein

Methyl-accepting chemotaxis protein

Translation elongation factor G

DNA-directed RNA polymerase beta

SSU ribosomal protein S12p (S23e)

SSU ribosomal protein S7p (S5e)

(b) Alien Hunter

Figure 2.6: Most common gene annotations found in the unique predictions made by Shutter
Island and Alien Hunter, with the percentage of unique predictions they reside in.

19



2.3 Methods

2.3.1 Datasets

PATRIC (the Pathosystems Resource Integration Center) is a bacterial bioinformatics re-

source center that we are part of (https://www.patricbrc.org) [33]. It provides researchers

with the tools necessary to analyze their private data and to compare it with public data.

PATRIC recently surpassed the 200,000 publicly sequenced genomes mark, ensuring that

enough genomes are available for effective comparative genomics studies. For our train-

ing data, we used the set of reference+representative genomes found on PATRIC. For each

genome, our program produced an image for every non-overlapping 10 kbp window. A

balanced dataset was then curated from the total set of images created. Since this is a

supervised learning approach and our goal is to generalize over the tools’ predictions and

beyond, we used Phispy and IslandViewer’s predictions to label the images that belong to

candidate islands. IslandViewer captures the predictions of different methods, and Phispy

captures different GI features. To increase our confidence in the generated labels, we labeled

a genomic fragment as a GI only if it was predicted as a GI by both of these tools.

To make predictions over novel genomes, our method generates an image for every gene

in the genome. Each image is then classified as either part of a GI or not. This process

generates a label for every gene in the genome. A length filter of 8 kbp is then applied, so

that every group of genes labeled as part of a GI that spans more than 8 kbp is reported as

a single GI.

Since no reliable benchmark is available, we used the set of genomes mentioned in Phispy

to test our classifier. The set consists of 41 bacterial genomes, and the authors of Phispy

reported that the GIs in these genomes have been manually verified [10]. Some of the

tools used in the comparison have not been updated for a while, but most of the tools had

predictions made over the genomes in this testing set. We discarded the genomes for which

not all the tools reported predictions over, or that were part of the training set used to train

20



our classifier, and ended up with a total of 34 genomes, listed in the repository linked to at

the end of the manuscript.

2.3.2 Feature Encoding Using Images

We present some of the most prominent features of genomic islands, listed by decreasing

order of importance: [3, 34].

• One of the most important features of GIs is that they are sporadically distributed;

that is, they are found only in certain isolates from a given strain or species.

• Since GIs are transferred horizontally across lineages and since different bacterial lin-

eages have different sequence compositions, measures such as GC content or, more

generally, oligonucleotides of various lengths (usually 2–9 nucleotides) are used [28, 35,

36].Codon usage is a well-known metric, which is the special case of oligonucleotides

of length 3.

• Since the probability of having outlying measurements decreases as the size of the

region increases, tools usually use cut-off values for the minimum size of a region (or

gene cluster) to be identified as a GI.

• The presence of certain genes (e.g., integrases, transposases, phage genes) is associated

with GIs [18].

• In addition to the size of the cluster, evidence from mycobacterial phages [37] suggests

that the size of the genes themselves is shorter in GIs than in the rest of the bacterial

genome. Different theories suggest that this may confer mobility or packaging or

replication advantages [10].

• Some GIs integrate specifically into genomic sites such as tRNA genes, introducing

flanking direct repeats. Thus, the presence of such sites and repeats may be used as

evidence for the presence of GIs [38, 39, 40].

21



Other research suggests that the directionality of the transcriptional strand and the protein

length are key features in GI prediction [10]. The available tools focus on one or more of the

mentioned features.

PATRIC provides a compare region viewer service, that aligns a query gene against other

related genes, and presents the pileups along with their neighborhoods graphically, allowing

users to visualize the genomic areas of interest. An example output of this service is shown

in Figure 2.7.

Figure 2.7: Snapshot of the Compare Region Viewer service provided by PATRIC
(https://www.patricbrc.org). The image shows a genomic region of the query genome (first
row) aligned against a set of other genomes, anchored at the focus gene (represented as a
red arrow). The service starts with finding other genes that are of the same family as the
focus gene, and then aligns their flanking regions accordingly.

To ensure efficiency and consistency, we implemented an offline version of the visualization

part. To generate the images, first the Compare Region service is called via PATRIC’s

command line interface. The call accepts parameters such as the query gene, region size, the

set of genomes to be used for alignment, and the number of genomes to be displayed. We

chose a region size of 10,000 base pairs, to be aligned against 20 genomes, using the set of

representative and reference genomes found on PATRIC. The call to the Compare Region

service returns information that includes the location, family, direction, and size of every

22



gene in the region. This information is then transformed into the position, color, and size

of the arrow representing each gene in the image. These steps are explained further in the

repository linked to at the end of the manuscript. In a nutshell, Each gene is represented as

an arrow, scaled to capture its size and strand directionality. Colors represent functionality.

The red arrow is reserved for the query gene, which is placed in the middle of the first

row, and at which the alignment with the rest of the genomes is anchored. Some colors are

reserved for key genes: green for mobility genes, yellow for tRNA genes, and blue for phage

related genes. By using these color-coded arrows of various sizes, the images capture the

protein length, functionality, strand directionality, and the sporadic distribution of islands.

In the produced images, genomic islands appear as gaps in alignment as opposed to

conserved regions. Figure 2.8 shows sample visualizations of different genomic fragments

belonging to the two classes. Figures 2.8 (a) and 2.8 (b) are examples of a query genome

with a non-conserved neighborhood. The focus gene lacks alignments in general or is aligned

against genes with different neighborhoods than the query genome. In contrast, Figures 2.8

(c) and 2.8 (d) show more conserved regions, which are what we expect to see in the absence

of GIs (labelled as continents in the image).

2.3.3 Transfer Learning

This kind of visual representation makes it easier to leverage the powerful machine learning

(ML) technologies that have become the state of art in solving computer vision problems.

Deep learning is the process of training neural networks with many hidden layers. The depth

of these networks allows them to learn more complex patterns and higher-order relationships,

at the cost of being more computationally expensive and requiring more data to work ef-

fectively. So, while PATRIC provides a lot of genomic data, the challenge comes down to

building a meaningful training dataset. The databases available are still limited in size and

specific in content, which in turn limits the ability even for advanced and deep models to

learn and generalize well. To avoid over-fitting, we applied transfer learning [41], by using

23



Figure 2.8: Examples of images generated using the compare region viewer. Each arrow
represents a gene color coded to match its functionality. The first row is the genome neigh-
borhood of the focus gene (red), and the subsequent rows represent anchored regions from
similar genomes sorted by their phylogenetic distances to the query genome. Genes that
would be labeled as not part of a genomic islands are referred to as continents in this figure.

24



Google’s Inception V3 neural network architecture that has been previously trained on Im-

ageNet [42]. Inception V3 is a 48-layer-deep convolutional neural network. Training such a

deep network on a limited dataset such as the one available for GIs is unlikely to produce

good results. The idea behind transfer learning is that a model trained on ImageNet is better

than an untrained model initialized with random weights at visual recognition and feature

extraction. By removing the top layer of the pre-trained model and training a new one on

the GI dataset, the model can apply the knowledge learned using the much more extensive

dataset towards the new task.

2.4 Discussion

We presented a new method, called Shutter Island, which demonstrates the effectiveness of

training a convolutional neural network on visual representations of genomic fragments to

identify genomic islands. In addition to using powerful technologies, our approach may add

an extra advantage over whole-genome alignment methods because performing the alignment

over each gene may provide a higher local resolution and aid in resisting evolutionary effects

such as recombination and others that may have happened after the integration and that

usually affect GI detection efforts.

One challenge in assessing GI prediction is getting precise endpoints for predicted islands.

Since different tools report a different number of islands owing to the nature of the features

they use, where one island could be reported as many or vice versa, we considered a tool to

predict another’s islands if any of its predictions overlap with the other tool’s predictions.

We counted the percentage of base pair coverage of that other tool as represented by its

predicted endpoints. This allowed us to compare overlapping islands predicted by different

tools even if their coordinates did not match.

Note that when assessing the tools’ predictions, our definition of a true positive was

different from the definition proposed in the Phispy study: where they define a true positive

as a region with at least six phage related genes, we realize that the available datasets are

25



much larger than what was accessible at the time of their publication, and thus the number

six that was claimed to have been determined empirically may not be relevant anymore. We

argue that if a region is suspected to be a GI, the mere presence of a phage related gene

in that region adds to the confidence in its prediction as part of a GI. Moreover, we find

that the database used by the study to determine phage functionality may be outdated,

and we thus resort to certain keywords in the gene annotations generated by our system

PATRIC to determine functionality. This is similar to Phaster’s validation method, whereby

the presence of certain keywords (e.g, caspid) is used to verify predictions made by the tool.

To identify these keywords, we scoured the literature and identified certain gene annotations

that are related to GIs. Such annotations of gene identity are either directly curated by

humans or reflect human assessment through exemplar-based computational propagation.

We constructed a standard vocabulary of the GI-related keywords that were also in agreement

with the more extensive list of keywords used by Phaster for the same purpose.

Our initial inspiration for representing genome features as images came from observing

how human annotators work. These experts often examine the “compare region” view for a

long time before they decide on the gene identity. A critical piece of information they rely

on is how the focus gene compares with its homologs in related genomes. This information is

cumbersome to represent in tabular data because (1) explicit all-to-all comparison is compu-

tationally expensive; (2) the comparisons need to be done at both individual gene and cluster

levels including coordinates, length, and neighborhood similarities; and (3) human experts

integrate all these different levels of information with an intuition for fuzzy comparison,

something that is hard to replicate in tabular learning without additional parameterization

or augmentation. Representing genomic features as images mitigates all three issues. Images

offer a natural way to compare genes (horizontally) and clusters across genomes (vertically)

with 2D convolution. The fact that the compare region view sorts genomes by evolution-

ary distance allows the neural network to exploit locality and place more emphasis on close

genomes via incremental pooling. An additional benefit of working with images is to be able

26



to leverage the state-of-the-art deep learning models, many of which were first developed in

vision tasks and perfected over years of iterations. Google researchers have used spectro-

grams (instead of text) in direct speech translation [43] and DNA sequence pile-up graphs

(instead of alignment data) in genetic variant calling [44]. In both cases, the image-based

models outperformed their respective previous state-of-the-art method based on traditional

domain features. Further, the low-level visual feature patterns learned in pre-trained image

models have been demonstrated to transfer to distant learning tasks on non-image data in

several preliminary studies ranging from environmental sound classification to cancer gene

expression typing [45]. In the next chapter, we present another application of representing

genomic data as images.

27



CHAPTER 3

OPERONS

In this chapter we demonstrate another application of direct visual representation of ge-

nomic data to predict operons in bacterial genomes. Contiguous genes in prokaryotes are

often arranged into operons. Detecting operons plays a critical role in inferring gene func-

tionality and regulatory networks. Human experts annotate operons by visually inspecting

gene neighborhoods across pileups of related genomes. These visual representations cap-

ture the inter-genic distance, strand direction, gene size, functional relatedness, and gene

neighborhood conservation, which are the most prominent operon features mentioned in the

literature. By studying these features, an expert can then decide whether a genomic region

is part of an operon. We use similar visual representations of genomic fragments to make

operon predictions. Using transfer learning and data augmentation techniques facilitates

leveraging the powerful neural networks trained on image datasets by re-training them on a

more limited dataset of extensively validated operons. Our method outperforms the previ-

ously reported state-of-the-art tools, especially when it comes to predicting full operons and

their boundaries accurately. An additional advantage of this approach is that it makes it pos-

sible to visually identify the features influencing the network’s decisions to be subsequently

cross-checked by human experts.

3.1 Introduction

3.1.1 Background

Genes in prokaryotic genomes assemble in clusters, forming transcription units called oper-

ons (Figure 3.1). These genes share a common promoter and terminator[46], and are usu-

ally metabolically or functionally related. Predicting operons helps understand high level

organization of genes and regulatory networks[47, 48, 49, 50, 51, 52, 53], annotate gene

28



Figure 3.1: A visualization of an operon in a bacterial genome. An operon is a group of
genes that share the same promoter and terminator, and thus are transcribed together.

functions[54], develop drug candidates[55], and inhibit antibiotic resistance[56]. While oper-

ons are prevalent in bacterial genomes, their detection is challenged by a multitude of factors

that contribute to their organization.

Human experts annotate operons by visually inspecting stretches of genes in a compar-

ative genomics browser (see an example in Figure 2.7). Such visual representations enable

synthesis of two sources of information. First, gene-level features such as size, strand di-

rection, function label, and inter-genic distance can be checked for consistency by scanning

contiguous regions within the same genome. Second, close relatives of the query genome

can be retrieved, aligned, and anchored against the focus gene, which allows human ex-

perts to see whether there is evolutionary evidence of regional conservation. This second

dimension of criteria is critical to the operon call, but is often difficult to quantify, requiring

human judgment on selecting phylogenetic distance and weighing the similarity of genomic

neighborhoods.

Several tools have been proposed to detect operons computationally, yet they mostly focus

on gene-level features. Even when phylogenetic information is added, it’s preprocessed and

presented in a tabular form, preventing flexible learning. We are inspired by how human

29



experts work and the recent advance in deep learning to explore a novel approach based

on visual learning. We hypothesize that, when presented with all evidence in a similarly

visual representation of genomic images that humans rely on, neural networks can learn

to capture the complex operon determinants within and across genomes. To this end, we

present a method, named Operon Hunter, that predicts operons from visual representations

of genomic fragments. Our method uses a pre-trained network via transfer learning to

leverage the power of deep neural networks trained on image datasets. The network is re-

trained on a limited dataset of extensively validated and experimentally verified operons.

We compare our method with the state-of-the-art operon predictors. Our results show that

Operon Hunter outperforms them in identifying full operons as well as delineating operon

boundaries. Furthermore, our visual approach generates insights into regions of importance

that can be cross-checked by human experts.

3.1.2 Related Work

Different methods focus on different operon features to make their predictions. Some methods

use Hidden Markov Models (HMMs) to find shared promoters and terminators[57, 58, 59].

Other methods rely on gene conservation information[60], while others leverage functional

relatedness between the genes [47, 61]. The most prominent features used in operon pre-

diction are transcription direction and inter-genic distances, as reported in the literature[47,

49, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72]. Gene conservation is another important

feature, since adjacent genes that are co-transcribed are likely to be conserved across mul-

tiple genomes[51, 73]. Different machine learning (ML) methods are used to predict oper-

ons, such as neural networks[63, 64], support vector machines [66], and decision tree-based

classifiers[65]. Other tools utilize Bayesian probabilities [67, 68, 69], genetic algorithms[70],

and graph-theoretic techniques[68, 61].

We focus our attention on two machine learning based tools. The first tool[74] developed

by Zaidi and Zhang is reported to have the highest accuracy among operon prediction meth-

30



ods. It is based on an artificial neural network that uses inter-genic distance and protein

functional relationships[49]. To infer functional relatedness, this method uses the scores re-

ported in the STRING Database[75]. The STRING database captures functional relatedness

through scores generated using information about gene neighborhood, fusion, co-occurrence,

co-expression, protein-protein interactions, in addition to information extracted by automatic

literature mining. The predictions made by this method were compiled into what is called

the Prokaryotic Operon Database (ProOpDB)[50], and released later as a web service called

Operon Mapper[76]. For simplicity, we will refer to this method as ProOpDB, given that

it was our resource for the predictions over the model organisms we used for the cross-tool

comparison. The second tool is called the Database of Prokaryotic Operons (Door)[48] and

was ranked as the second best operon predictor after ProOpDB by the same study[74]. It was

also ranked as the best operon predictor among 14 tools by another independent study[77].

Door’s algorithm uses a combination of a non-linear (decision-tree based) classifier and a

linear (logistic function-based classifier) depending on the number of experimentally vali-

dated operons available for the genomes used in the training process. Among the features

Door uses to perform its predictions for adjacent gene pairs are: the distance between the

two genes, the presence of a specific DNA motif in the genomic region separating them, the

ratio of the genes’ lengths, the genes’ functional similarity (determined using Gene Ontology

(GO)), and the level of conservation of the genes’ neighborhood.

3.2 Results

Most operon prediction tools make their predictions on isolate gene-pairs. Contiguous

gene pairs predicted to be as part of an operon are then aggregated to form full operon

predictions[47]. We refer to gene pairs that are part of an operon as operonic, and gene pairs

where one is a boundary of an operon, or that include a verified operon consisting of a single

gene, to be non-operonic. Our validation dataset consists of two well-studied genomes with

experimentally validated operons: E. coli and B. subtilis. These genomes are extensively

31



used to verify the majority of the published tools’ results. We compare the performance

of the tools first when considering gene-pair predictions, and then considering full-operon

predictions. While Operon Hunter demonstrates an advantage in both, the advantage is

more pronounced when assessing the ability to predict full operons and their boundaries

accurately.

3.2.1 Gene-Pair Prediction

We report the sensitivity (true positive rate), precision, and specificity (true negative rate)

for the models’ performance over gene pair predictions in Table 3.1. These statistical mea-

sures were calculated according to the following definitions:

Sensitivity =
TP

TP + FN
(3.1)

Precision =
TP

TP + FP
(3.2)

Specificity =
TN

TN + FP
(3.3)

Where TP is the number of operonic pairs predicted correctly (true positives), FP is the

number of non-operonic pairs incorrectly predicted as operonic (false positives), FN is the

number of operonic pairs incorrectly predicted as non-operonic (false negatives), and TN is

the number of non-operonic pairs predicted correctly (true negatives).

ProOpDB scores the highest sensitivity but the lowest precision. The opposite is true

32



Table 3.1: Sensitivity, precision, and specificity. Sensitivity (true positive rate) is the per-
centage of operonic gene pairs that were detected by the different tools, precision is the
percentage of operonic gene pairs predicted by the different tools which are actually true
positives, and specificity (true negative rate) is the percentage of non-operonic gene pairs
that were detected by the different tools. For sensitivity and specificity, results are first
shown per genome, and then as an aggregate over the entire testing dataset.

Sensitivity
E. coli

361 pairs

Sensitivity
B. subtilis
369 pairs

Sensitivity
Aggregate
730 pairs

Precision
Aggregate
730 pairs

Specificity
E. coli

461 pairs

Specificity
B. subtilis
302 pairs

Specificity
Aggregate
763 pairs

Operon Hunter 88% 97% 92% 92% 95% 88% 92%
ProOpDB 93% 93% 93% 89% 90% 88% 89%

Door 81% 86% 84% 94% 94% 97% 95%

for Door, which achieves the lowest sensitivity but the highest precision. Operon Hunter’s

performance is more stable across the two metrics. To capture the predictive power of the

model on both classes in a single metric, we report the F1 score, accuracy, and the Mathews

Correlation Coefficient (MCC) in Table 3.2, calculated using the following definitions:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

MCC =
TPxTN − FPxFN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3.5)

F1 = 2 x
Sensitivity x Precision

Sensitivity + Precision
(3.6)

Operon Hunter scores the highest on all metrics measured, followed by ProOpDB then

Door. We also show the Receiver Operating Characteristic (ROC) curve and the Precision-

Recall curve with the corresponding Area Under the Curve (AUC) in Figure 3.2. Evaluated

33



Table 3.2: Accuracy, MCC (Mathews Correlation Coefficient), and F1-score achieved by the
different tools over the entire testing dataset.

Tool Operon Hunter ProOpDB Door
Accuracy 92% 91% 89%
MCC 0.84 0.82 0.79

F1-score 0.921 0.908 0.886

Figure 3.2: The Receiving Operating Characteristic (ROC) curve (a) and Precision-Recall
curve (b) corresponding to Operon Hunter evaluated over the entire testing dataset. The
Area Under the Curve (AUC) for both is 0.97.

on the entire testing dataset, Operon Hunter scores a ROC AUC and a Precision-Recall

AUC of 0.97.

3.2.2 Operon Prediction

Predicting full operons is a more challenging task that requires the accurate identification of

the operon endpoints. We reserve the definition of operons as clusters including at least two

genes. Matching earlier reports concerning different methods [74], the accuracies of all 3 tools

drop when validated on full operon predictions rather than separate predictions made for

every gene pair. We present the percentage of operons predicted fully by each of the tools in

Table 3.3. Full matches are operons reported in the literature that are accurately predicted

with the same gene boundaries as the published endpoints. We only consider operons that

consist of more than one gene, and were reported in ODB in addition to RegulonDB [78]

34



or DBTBS [79]. This amounted to 254 full operons. Predictions that only partially match

a verified operon are not shown. To make full operon predictions, the model starts by

generating a prediction for every consecutive gene pair in a genome. In a second pass, pairs

predicted as operonic are then merged into full operons. Operon Hunter accurately identifies

85% of the operons fully, which is the most across the 3 tools. Both ProOpDB and Door

show a drop in accuracy, to 62% and 61% respectively.

Table 3.3: Comparison of the results between OperonHunter, ProOpDB, and Door when
considering full operon predictions. Exact Operon Matches are the percentage of operons
predicted where the endpoints exactly match those of the experimentally verified operons.
The percentages are reported over 254 full operons that consist of more than one gene and
are reported in RegulonDB/DBTBS and ODB.

Operon Hunter ProOpDB Door
Exact Operon Matches 85% 62% 61%

3.2.3 Cross Validating Visual and Operon Features

An advantage of visual models is that they can generate insights into decision making by

highlighting regions of importance. Such interpretable representations reveal inner workings

of the model and can be checked by experts to see if they ground their intuition. To investi-

gate the model’s performance, we used the Grad-Cam[80] method to overlay heat-maps over

the input images, highlighting the areas of attention that most affect the network’s decisions.

Figure 3.3 shows some of the network’s confident predictions.

It appears that when predicting a gene pair as non-operonic, the model bases its decision

on the entirety of the input image, whereas it focuses on the immediate vicinity of the gene

pairs predicted as operonic. Upon closer inspection, we speculate that the following are the

most important features influencing the model’s decision:

• Figure 3.3 (a): The strand directionality of the gene pair.

• Figure 3.3 (b): The mis-alignment between the genomes.

35



Figure 3.3: HeatMaps generated using the Grad-Cam method and overlayed over input im-
ages, highlighting the network’s areas of attention that had most influence over the network’s
decision. Each sub-figure shows the network’s correctly predicted label, with what we believe
to be the most prominent feature leading to the network’s decision.36



• Figure 3.3 (c): The low alpha channel of the image, which is a representation of the

low STRING score between the query gene pair.

• Figure 3.3 (d): The non-conservation of the query gene pair neighborhood.

All these features were previously mentioned as among the most prominent in operon iden-

tification. Operonic gene pairs show more overall conformity across the input image, with

flanking regions being mostly aligned/conserved, and query gene pairs having little or no

inter-genic distance, and usually similar directions, as shown in Figure 3.3 (e). Even when

the neighborhood of the query gene pair is not conserved, as shown in Figure 3.3 (f), the

network seems to base its decision on the similar strand direction and lack of an inter-genic

distance between the gene pair. Thus, it seems that when predicting gene pairs as operonic,

the network focuses on the immediate vicinity of the pair, disregarding other areas of the

image. However, the network seems to pick up on anomalies around the gene pair, taking

the entirety of the image into consideration when predicting non-operonic images.

3.3 Methods

3.3.1 Datasets

We used the ”Known Operons” section of the Operon DataBase (ODB)[81] to construct the

training dataset. The Known Operons section contains a list of operons that are experi-

mentally verified, which we used to label the generated images. Out of the entire dataset,

the six genomes (Table 3.4) with the most number of labeled operons were selected. These

genomes have significantly more operons than the other genomes listed in this section of

the database. For each of the selected genomes, our program produces an image for ev-

ery consecutive pair of genes that are part of a validated operon. To generate the images,

each of these genomes is aligned with the set of reference+representative genomes found on

PATRIC. For every aligned gene, an image is generated to capture the surrounding 5 kilo

base pairs (Kbp) flanking region. The resulting dataset consisted of 4,306 images of operonic

37



gene pairs. To generate the dataset representing the non-operonic gene pairs, we used the

standard approach reported by ProOpDB[50] as follows: Genes that are at the boundaries

of known operons are labeleled along with the respective upstream or downstream gene that

is not part of that operon as a non-operonic gene pair. We skipped single-gene operons

from the training dataset. A balanced dataset was then curated from the total set of images

created.

Table 3.4: Breakdown of the training dataset: The genome names and the corresponding
number of gene pairs used. Operon pairs were harvested from the Known Operons section
of the Operon Database (ODB).

Genome name Operon pairs non-Operon pairs
Escherichia coli 1,443 1,322
Listeria monocytogenes 806 780
Legionella pneumophila 611 791
Corynebacterium glutamicum 525 396
Photobacterium profundum 447 544
Bacillus subtilis 474 457
Total 4,306 4,290

3.3.2 Feature Encoding via Visual Representation

Similar to the approach we mentioned in Chapter 2, We tweaked our offline implementation

of the Compare Region Viewer service offered by PATRIC to generate the images (an example

of which is shown in Figure 3.4).

While the general idea is similar, there are some notable differences in the generated

images. Each row of arrows in the generated image represents a region in a genome, with the

query genome being the top row. Each arrow represents a single gene, scaled to reflect its size

relative to its region, in addition to the gene’s strand directionality. The distances between

the genes are also scaled on each row relative to the gene’s region. Each image consists of

three regions (although they are not explicitly divided). The central region makes up two

thirds of the image, and represents the query gene pair. Genes that fall before the query

gene pair are represented to the left of the central region, and those that fall after the query

38



Figure 3.4: Example of an image generated by our offline version of the Compare Region
Viewer service to be fed as input to the neural network. Each arrow represents a single gene.
Each row captures the area of interest in a genome. The query genome is the top row. The
rest of the rows are genomes selected by evolutionary distance. The query gene pair are
colored blue and red. Genes share the same color if they belong to the same family and that
family. The query gene pair are centered in the middle, occupying 2/3 of the image’s width.
The rest of the flanking region is represented correspondingly to the left/right of the center
region. The alpha channel of the image is the STRING score of the query gene pair.

gene pair are represented to the right of the central region. Dividing the image implicitly

into three regions highlights the area of most interest by zooming in on the query gene pair,

while preserving the relevant conservation information of the flanking genomic fragments

on the sides. Colors represent gene functionality. The blue and red arrows are reserved to

represent the query gene pair and the rest of the genes that belong to the same families.

In general, genes share the same color if they belong to the same family, or are colored

black after a certain color distribution threshold. The families used in the coloring process

are PATRIC’s Global Pattyfams that are generated by mapping signature k-mers to protein

functionality, using non-redundant protein databases built per genus before being transferred

across genera[82]. Finally, the image’s alpha channel is set to be equal to the STRING score

of the query gene pair. If no score exists, the default alpha channel is set to a minimum of

39



0.1. The generated images capture most of the prominent features mentioned earlier, such

as gene conservation, functionality, strand direction, size, and inter-genic distance.

3.3.3 Transfer Learning

The relatively small size of the dataset combined with the depth of the network pose the risk

of over-fitting. We resort to transfer learning and data augmentation to avoid that. To train

and test our model, we used the FastAI[83] platform. The best performance was observed

using the ResNet18 model. All available models were previously trained on Imagenet. Thus,

a model that was previously trained on ImageNet is already good at feature extraction and

visual recognition. To make the model compatible with the new task, the top layer of the

network is retrained on the operon dataset, while the rest of the network is left intact.

As mentioned earlier, this is more powerful than starting with a deep network with random

weights. Another technique that is commonly used against over-fitting is data augmentation,

whereby the training dataset is enriched with new examples by applying certain transforms

on the existing images. These transforms include flips (horizontal and vertical), zooming

effects, warping, rotation, and lighting changes. Using FastAI’s toolkit, we augmented our

training dataset by allowing only one transform, the horizontal flip, to be applied. Given the

deliberate feature engineering processes taken to create the input images, we believe that

horizontal flips could safely be applied without altering the true nature of the images. This

would keep the key information intact and in place (e.g. by keeping the query genome as

the top row).

3.3.4 Model Validation

We resort to two extensively studied genomes with experimentally verified operons: E. coli

and B. subtilis. These genomes are the standard for verifying operon prediction results in

the literature. We limit our validation by using only the experimentally validated operons

found in these genomes. We compare the predictions made by Operon Hunter to those made

40



by ProOpDB and Door, the tools with state of the art accuracies as reported by independent

studies[48, 74, 50]. To build the testing dataset (Table 3.5), we used the operons published

in RegulonDB and DBTBS. RegulonDB is a database containing verified operons found in

E. coli, and DBTBS is a database that contains verified operons found in B. subtilis. We

cross check the operons found in these databases, with the ones published in the Known

Operons section of ODB. We selected the operons that are reported in both: The database

corresponding to its organism (RegulonDB for E. coli, DBTBS for B. subtilis), and ODB. The

resulting dataset consists of 730 operonic gene pairs. We used the same approach mentioned

earlier to construct a non-operonic dataset. Namely, the boundaries of the operons were

selected along with their neighboring genes as non-operonic pairs. To construct the non-

operonic datasets, it was enough for an operon to be published in any of the mentioned

databases to be considered, resulting in a slightly larger non-operon dataset. Using operons

that were experimentally verified and published in multiple independent databases adds

confidence to the assigned label.

Some tools train on the same organisms they report their predictions on. In our experi-

ments, we exclude the testing dataset from the training dataset, by following a leave-one-out

approach on the genome level. Thus, none of the genomes used in the training process be-

long to the same organism as the genome used for testing our method’s performance. For

example, when evaluating the model’s predictions on the E. coli dataset, it is trained on

all the images representing all the genomes except E. coli, and then tested on the images

representing the E. coli genome. This approach leads to an 87-13 train-test split for the E.

coli genome, and a 92-8 train-test split for the B. subtilis genome.

3.4 Discussion

We have presented a novel approach to operon prediction by training a deep learning model

on images of comparative genomic regions. This approach has achieved better results than

the currently available state-of-the-art operon prediction tools. In particular, it has demon-

41



Table 3.5: Breakdown of the testing dataset: The genome names and the corresponding num-
ber of gene pairs used. Operon pairs were scoured from RegulonDB (for E. coli) and DBTBS
(for B. subtilis) and matched with the Known Operons section of the Operon Database
(ODB).

Genome Operon pairs non-Operon pairs
Escherichia coli str. K-12 substr. MG1655 361 461
Bacillus subtilis subsp. subtilis str. 168 369 302
Total 730 763

strated a clear advantage in predicting accurate operon boundaries (i.e. predicting operons

fully).

An advantage of our model is in its effective synthesis of gene-level and phylogeny-level

evidences. Traditional models come with preprocessed features and may be rigid in picking

parameters on neighborhood size, genomic distance, or similarity metrics for comparing

regions across genomes. The PATRIC compare region viewer is perfected by human experts,

and strikes a balance in diversity and granularity in the way it brings representative genome

relatives to an annotator’s attention. Critically, these images give machine learning models a

two-dimensional view of all relevant information without limiting them to a pre-determined

way of encoding features. High-capacity neural network models are thus allowed a more

flexible space to learn and pick up interactive features.

We experienced technical difficulties when trying to retrieve the operon predictions made

by both tools we are comparing our performance against. Since the tools generate predictions

for gene pairs, the shortest possible operon should thus consist of at least two genes. However,

this conflicts with the reported predictions made by these tools, as they include operons

consisting of only a single gene. We considered single-gene predictions to be part of a

non-operonic gene pair. The tools report predictions for only a subset of the genes in a

given genome, which leaves many genes without an assigned label. We decided to label the

genes with missing predictions as non-operonic, since leaving them out of the performance

measures would drastically diminish the tools’ scores. This way, the metrics involving true

negatives reported for the tools are the highest they could attain, assuming they would

42



predict all the non-operonic gene pairs correctly. In a good faith attempt to replicate the

work done by ProOpDB, we fed a neural network with the same architecture mentioned in

their paper the same features (i.e, the inter-genic distance and STRING score for consecutive

pairs of genes). We used our training dataset, which we believe to be richer, considering that

they were training on only one organism (E. coli or B. subtilis). We fine tuned different

hyper parameters, like the learning rate and the number of epochs, and experimented with

different activation functions before settling on the one mentioned in their paper. Instead of

generating STRING-like scores for the genes that miss that feature, we followed our previous

approach of using a default value of 0.1. It is worth mentioning that the STRING database

has been updated since the time of their first publication, and the current version has score

assignments for most of the operonic gene pairs (> 99% of the pairs used in our training and

testing datasets). Following this approach, we achieved a slightly lower true positive rate,

with a slightly higher precision, leading to the same F1 score previously reported for their

tool, and a slightly higher specificity, that is still the lowest across the three tools we used

in our comparison.

We point out some of the challenges that undermine operon prediction in general. One

limitation that faces predictors that rely on features such as gene conservation or functional

assignment is the requirement to have such information about all the genes in a genome.

So while such predictors might perform well on gene pairs that include the necessary fea-

tures, their performance might drop considerably when making predictions over the entire

genome[47]. Moreover, even though most methods validate their results by comparing their

predictions over experimentally verified operons, the fact that the experimentally verified

datasets are only available for a small subset of the sequenced genomes and that the datasets

used vary between studies poses extra challenges making the comparison between the avail-

able tools non-straightforward. Brouwer et. al. tried to compare several methods using

a uniform dataset and noticed a significant gap between the measures achieved and those

reported in their original papers. The drop in performance was even higher when consid-

43



ering full operon predictions rather than separate gene pair predictions[74, 77]. Finally,

Some methods include the testing dataset as part of the training dataset, which leads to

a reported accuracy that is significantly higher than what would be otherwise, given that

the flow of information taking place in the training process would not be easily and readily

transferable to novel genomes used as a testing dataset[49]. Some methods report a decrease

in accuracy when the training and testing datasets belong to different organisms. In fact,

the accuracy reported by many of the available tools drop anywhere between 11 and 30%

when the training data and the operon predictions correspond to different organisms[49, 77].

This lack of generalization places severe limitations on the methods’ applicability, especially

when treating novel genomes. Even for known genomes, this poses the additional challenge

of requiring more ground-truth data for operons in other genomes that belong to the same

organism. For example, as mentioned earlier, Door switches between a linear model and a

more complex decision-tree based model depending on the availability of the experimentally

verified operons in the organism of the query genome that can be used for training the model.

Our approach alleviates these challenges and generalizes successfully across organisms. As

Table 3.4 shows, the genomes constituting our training dataset span different genera, but

the performance of Operon Hunter when predicting operons in both E. coli and B. subtilis

does not vary significantly. This is due to the fact that in the compare region viewer service

that we use to construct the images, while the genomes aligned with the query genome are

chosen based on evolutionary distance, they are eventually represented as images using a

more generic method, that captures all underlying relevant operon features.

Much like feature engineering methods, casting tabular data to images encodes informa-

tion in a way more amenable to learning without explicitly adding information. It can also

be easily integrated with other data modalities in the latent vector representation to pre-

vent information loss. We hypothesize this emerging trend of representing data with images

will continue until model tuning and large-scale pre-training in scientific domains start to

catch up with those in computer vision. Applications of this method are especially useful

44



when the features are not easily quantifiable, as is the case in any application involving

comparative genomics. Due to the generic nature of the visualizations and the available

data augmentation techniques, we expect applications similar to our method to transform

genomics problems where ground truth datasets are limited.

45



CHAPTER 4

FEATURE TRANSFORMATION

In chapters 2 and 3, we demonstrated the effectiveness of transforming features and rep-

resenting them in a way that highlights entities and the relationships between them. The

transformation was in the form of a direct visual representation using domain knowledge

about the problem and the features it entails. In this chapter, we propose a method to

generalize the feature transformation process, and a pipeline to automate it. Starting with

the raw information, the goal is to perform the feature transformation and use an appro-

priate learner that can leverage that feature representation. Since the main idea behind

our method is to transform the feature vector to highlight entities and relationships, the

automation is only needed when domain-knowledge is lacking (otherwise we use that knowl-

edge to represent the entities and relationships visually as in chapters 2 and 3, or as separate

groups as will be demonstrated in this chapter). In the absence of domain-knowledge, one

way to automatically group the features is by testing the predictive power of each subset of

features in predicting the outcome, and use that to assign group scores and determine the

groups accordingly. Such approaches are intractable and infeasible as their computational

complexity will be on the order of the power set of the set of features. We propose a greedy

approach that measures the correlation values between the feature vectors and uses that to

determine feature groups. In the cases where no feature groups emerge, our method uses

a one-dimensional CNN on the transformed feature vectors to exploit locality between the

potentially related features that are now placed as neighbors in the transformed feature vec-

tor. Starting with the raw data usually presented in tabular form, the resulting transformed

feature vector is then either a partitioning of the original input feature vector that is fed

into a modular MLP, or a permutation of the original feature vector that is used an input

to a 1D CNN. An advantage of performing the feature transformation within the same rep-

resentation space (i.e. tabular representations) is the computational efficiency compared to

a transformation into the visual space (images require more memory, visual learners more

46



compute power). An outline of our approach is illustrated in Figure 4.1.

4.0.1 Related Work

The visual transformations applied in chapters 2 and 3 are human engineered and designed to

highlight the features relevant to the learning task. Other approaches seek to automate the

feature transformation into the visual space by mapping tabular features into pixels. Their

idea is to use statistical metrics to assess feature relationships, and place related features as

neighboring pixels. The resulting visual representation can then be used as an input to a 2D

CNN that is already adept at exploiting spatial locality, which now includes the neighboring

pixels that are related. DeepInsight [84] is one such approach that uses non-linear dimen-

sionality reduction techniques, namely as t-SNE [85] or kernel principal component analysis

(kPCA), and applies the convex hull algorithm to convert tabular features into pixels where

similar features are placed as neighboring pixels and dissimilar ones are placed further apart.

Refined [86] is another method that uses the euclidian distance between feature vectors, and

a Bayesian Multidimensional Scaling (BMDS), and apply a hill climbing algorithm, to trans-

form the tabular features into pixels. Their idea is to use 2D CNNs on the resulting images,

which exploits spatial correlation and a reduced number of parameters compared to a fully

connected network. The paper claims that 1D CNNs would not be effective in cases where

the order of the features does not describe their dependencies. Image Generator for Tabular

Data (IGTD) [87] is another method to transform tabular data into images by minimizing

the difference between the ranking of distances between features and the ranking of dis-

tances between their assigned pixels to find an optimized pixel assignment. Han et. al. [88]

convert tabular features into synthetic images to be used for classification tasks. They do

that using the correlation values between features, and between features and labels, and 0/1

optimization to maximize not only local but also global correlation in the new representation

of the data. Torumoy Ghoshal [89] proposes a method to transform non-image data to have

image-like properties and introduce the Hungarian Method to prevent information loss in

47



F
ig
u
re

4.
1:

S
ch
em

at
ic
of

ou
r
ap

p
ro
ac
h
:
(1
)
If
th
e
fe
at
u
re

ve
ct
or

re
p
re
se
n
ts

k
n
ow

n
en
ti
ti
es

an
d
re
la
ti
on

sh
ip
s
th
at

ca
n
b
e
cl
u
st
er
ed

u
si
n
g
d
om

ai
n
k
n
ow

le
d
ge
,
th
e
fe
at
u
re
s
ar
e
fe
d
to

a
m
o
d
u
la
r
M
L
P

in
th
ei
r
cl
u
st
er
ed

fo
rm

.
(2
)
If

n
o
d
om

ai
n
-k
n
ow

le
d
ge

cl
u
st
er
s

ar
e
k
n
ow

n
,
th
e
fe
at
u
re

ve
ct
or

is
re
-o
rd
er
ed

b
as
ed

on
th
e
fe
at
u
re

co
rr
el
at
io
n
m
at
ri
x
.
(3
)
If

co
rr
el
at
io
n
b
as
ed

cl
u
st
er
s
em

er
ge

(g
ro
u
p
s
of

cl
u
st
er
s
th
at

sh
ow

st
ro
n
g
in
te
r-
gr
ou

p
co
rr
el
at
io
n
va
lu
es

an
d
w
ea
k
ou

te
r-
gr
ou

p
co
rr
el
at
io
n
va
lu
es
),

th
os
e
fe
at
u
re
s

cl
u
st
er
s
ar
e
p
re
se
n
te
d
to

a
m
o
d
u
la
r
M
L
P
.
(4
)
If
n
o
co
rr
el
at
io
n
cl
u
st
er
s
em

er
ge
,
th
e
re
-o
rd
er
ed

fe
at
u
re

ve
ct
or

is
u
se
d
as

in
p
u
t
to

a
on

e-
d
im

en
si
on

al
co
n
vo
lu
ti
on

al
n
eu
ra
l
n
et
w
or
k
.

48



the transformation process. We argue that a transformation from tabular features to pixels

in methods similar to the ones discussed, are not only unnecessary, but add a computational

burden that could be mitigated by using similar distance metrics to re-order features and

exploit locality in a tabular setting by using a 1D CNN, in cases where domain knowledge

is lacking and prevents a meaningful human-engineered grouping of related features. Thus,

while our approach bears resemblance to the other approaches mentioned in this section, it

remains a much simpler method, both conceptually and computationally.

Other approaches exist that do not perform feature transformation from a tabular to a

visual domain. In a method called TABNN [90], the motivation is similar to our approach in

that the proposed method aims to leverage feature grouping and a reduced model capacity

to improve the learning performance, especially as compared to fully connected MLPs that

might suffer from complex optimization hyper-planes and thus a higher risk of over-fitting.

They attempt to automate the feature grouping using Gradiant Boosted Decision Trees

(GBDT), and then reduce the feature groups to encourage parameter sharing and reduce the

complexity of the resulting model. After clustering the feature groups, they use a recursive

encoder with shared embedding to design the neural network architecture, and transfer

structured knowledge from the GBDT to initialize the resulting neural network. Talip Ucar

et. al. SubTab [91] introduces a framework that divides the input features into multiple

subsets, and attempts to reconstruct the data from the subsets, arguing that this leads to a

better learning of the latent representation than methods that use auto-encoders on corrupted

versions of the data. Inspired by click-through-rate prediction problems, which deal with

high dimensional and sparse datasets, Weiping Song et. al. AutoInt [92] is a method that

automatically learns the high-order feature interactions of input features using a multi-head

self-attentive neural network with residual connections. Golinko et. al. [93] utilize a feature

embedding approach they developed, that is similar to principal component analysis in that

the original features are correlated with the embedded features. Then they train a 1D CNN

on the embedded data, and pop off the last layer to obtain a new representation of the

49



features, which is then used as input to a classical machine learning algorithm (support

vector machine, random forest, or nearest neighbor). Arlind Kadra et. al. [94] claim that

well regularized MLPs significantly outperform state of the arts method devised to learn

from tabular data, and use a combination of 13 regularization techniques in their method.

TabNet [95] is a method developed at Google, that uses sequential attention to select the

most salient features per learning instance. Its architecture includes a feature transformer

and an attentive transformer. We argue that by forming feature clusters, our method mimics

feature selection approaches without discarding the features that are not chosen as strong

predictors. As part of the empirical evaluations of our approach, we use some of the datasets

mentioned by DeepInsight, Refined, and TabNet in their corresponding papers, and compare

our approach’s performance to theirs in Chapter 6.

The rest of this chapter introduces our approach in more detail.

4.0.2 Feature Correlations

The first step in our approach is to compute the Pearson correlation matrix for all feature

vectors in the training dataset. We then follow a greedy approach to create a permutation

of the dataset. We will refer to the original dataset as O and the permuted dataset as P.

Below are the steps followed to create the ordered set P:

1. Start with P containing the first feature in O.

2. Find the feature in O that is most correlated with the last feature added to P.

3. Append the feature to P if it is not already there.

4. Repeat steps 2 and 3 until P contains all features in O.

Note that our method does not distinguish between positive and negative correlation,

but uses the magnitude of the correlation to determine the most correlated features.

50



4.0.3 Feature Clustering

The main idea behind our approach is presenting the input features as separate groups,

each representing an underlying entity or relationship in the raw data. In the cases where

we have domain knowledge that can be used to determine those feature clusters, we pass

the feature groups to a modular MLP learner, that mainly differs from a baseline MLP by

having multiple input layers each accepting a different feature group, and that concatenates

the corresponding hidden layers before adding more connections. Figure 4.2 illustrates these

two different MLP architectures.

With the lack of knowledge-based feature clusters, we attempt to form correlation-based

feature clusters. To form the clusters, we use a greedy approach that introduces the notion

of a wishlist. In the steps outlined earlier to get the ordered set of features P, we consider

one query feature at a time (the last feature appended to P), and survey the original list

of features O to get the feature most correlated with that query feature. When surveying

the features in O, we only consider the most correlated features that are not already present

in P, while keeping track of the features that would have been selected had they not been

duplicates. We save these features as the ”wishlist” of the query feature. When all features

have been processed, wishlists with more than two features are then considered in descending

order based on their size. If a set of wishlists is identified such that all features in O are part

of at least one wishlist, we consider the feature partitioning to be successful, and treat every

wishlist as a separate feature group to be received by a separate input layer by a modular

MLP.

In the cases where no feature clusters emerge, we use the ordered set of features P

as an input to a one dimensional CNN. The idea is that the ordered set places features

that are related as neighbors, allowing the kernels to learn the entities they constitute or

the relationships between them. This rationale is similar to other approaches mentioned

earlier (e.g. DeepInsight, Refined), but our method uses a different relationship metric and

performs the feature transformation within the same space (the transformed feature vector

51



(a) Baseline MLP

(b) Modular MLP

Figure 4.2: Sketches illustrating the difference between (a) a baseline Multi-Layer Perceptron
(MLP), and (b) a modular MLP used by our method. The modular MLP differs in the input
layer, that is made up of multiple input layers accepting different feature groups.

52



is still tabular), rather than transforming the feature vector into the visual space. We argue

that the idea of bringing related features to be within enough proximity to be picked up

by a convolutional neural network does not necessitate the transformation of the features

into pixels and using a 2D CNN, and that our approach makes the learning task more

computationally efficient with a smaller memory footprint.

53



CHAPTER 5

SYNTHETIC EXPERIMENTS

In this chapter, we provide an empirical evaluation of our method presented in Chapter 4. We

introduce three experiments (The Hanoi Experiment, The Rectangle Experiment, and The

Bit Vector Experiment) that use synthetically generated datasets. These experiments are

designed in a way that allows different levels of representation of the entities and relationships

that formulate the machine learning problem. This allows us to examine how the learning

outcome changes as a result of feature transformation and information representation. The

results of these experiments add further evidence supporting our hypothesis stating that

highlighting entities and relationships enhances representation learning and yields a better

learning outcome using less time and parameters.

5.1 The Hanoi Experiment

In The Hanoi Experiment, we use a synthetically generated dataset of ordered numerical se-

quences of length 10. The sequences are originally sorted in ascending order, before shuffling

between 0 and 3 distinct pairs of numbers in the sequence. The number of pairs that has

been shuffled is the label assigned to each sequence, making this a multi-class classification

problem (either the sequence is still in order, or anywhere between 1 to 3 distinct pairs have

been shuffled). We compare the performance of different representations of these sequences

using different learners. Visually, the sequence is represented as a vertical stack of rectangles

aligned at the center as shown in Figure 5.1. The width of each rectangle represents the

corresponding number in the sequence (i.e the top rectangle’s width represents the first num-

ber in the sequence when scaled according to the entire image width, the second rectangle’s

width corresponds to the second number of the sequence, and so on). The dataset is made

up of 10,000 balanced examples, 1,500 of which are used for validation.

We used the FASTAI library to perform these experiments. We used the CNN learner

54



Figure 5.1: An example of images generated for The Hanoi Experiment. Each example
is a sequence of numbers originally sorted in ascending order. The task is to classify the
number of distinct pairs (between 0 and 3 pairs) that were swapped after generating the
sequence. Visually, the sequence is represented as a stack of rectangles where each number
is represented by the width of its corresponding rectangle.

for the visual representation, and the Tabular learner for the tabular representation. The

CNN learner used is the ResNet18 model. We experimented with both a pre-trained and

un-trained versions of the model. The tabular learner took longer training time to converge,

and human time to fine tune the hyper-parameters. We ended up using a network having

two hidden layers with 20 neurons each, and a maximum learning rate equal to 0.05. Clearly

the two models have a significant difference when it comes to the number of parameters.

The difference in accuracy is also noticeable: the Tabular learner yielded an 89% testing

accuracy, while the ResNet18 model yielded a 97.9% testing accuracy.

To gain insight into the learning process, we investigated some of the visual learner’s

confident decisions using heatmaps generated by the GradCam approach mentioned earlier.

The gradcam approach highlights the regions in the image that are most influencing the

55



learner’s decision. A gallery of the generated heatmaps is shown in Figure 5.2.

(a) Example 1 (b) Example 2

(c) Example 3 (d) Example 4

56



(e) Example 5 (f) Example 6

(g) Example 7 (h) Example 8

57



(i) Example 9 (j) Example 10

(k) Example 11 (l) Example 12

58



(m) Example 13 (n) Example 14

(o) Example 15 (p) Example 16

Figure 5.2: Heatmaps generated by the GradCam approach, overlayed over input images
used in The Hanoi Experiment. The GradCam approach highlights the regions in the image
that are most influencing the model’s decision.

59



The figures suggest that in a significant number of cases, the learner’s attention is at the

outer edges of the rectangles, which define the relationships between the numbers, rather

than on the widths of the rectangles themselves. To test this idea further, we modify the

visual representation to keep the same information (vertical stack of rectangles representing

the numbers’ widths), but sabotage the alignment that allows the learning of relationships

between each number in the sequence and the next. To do that, we align every other rectangle

with the left margin of the image, and the rectangles in between to the right margin, as shown

in Figure 5.3.

Figure 5.3: A modified visualization of the examples in The Hanoi Experiment. The problem
remains the same: predicting the number of distinct pairs swapped in an ordered sequence of
numbers represented visually as a vertical stack of rectangles, but the rectangles are now no
longer aligned at the center of the image. Instead, the rectangles are left and right justified
one at a time (even-indexed rectangles are aligned with the left margin of the image, odd-
indexed rectangles are aligned with the right margin of the image).

Using this modified representation, we see a significant drop in performance, with the

testing accuracy dropping from 97.9% to 85.1%. This adds confidence to our claim that

60



the model is learning the relationships between the features, and that a representation that

makes it harder to capture feature relationships, leads to a poor learning outcome compared

to a representation that highlights feature relationships, even when using the same learner.

To stretch this idea further, we modify the tabular representation in a way that highlights

the relationships between the features. Namely, we append the tabular input data with a

sequence of signs highlighting the difference between consecutive pairs of numbers in the

original input sequence (for every ordered pair (x,y) in the sequence, we append -1 if x ¡ y,

otherwise 1). This improves the performance of the tabular learners significantly, making

it on par with the visual learner’s performance (97.2%). Table 5.1 summarizes the results

of all experiments performed on this dataset. We also include results using a pre-trained

version of the ResNet18 model, to highlight the effectiveness of transfer learning, showing

an improvement over using a visual learner with random weights.

Table 5.1: Summary of the results observed in The Hanoi Experiment: Testing accuracy of
tabular and visual learners (baseline and pre-trained) on different forms of representations of
the information. The baseline visual representation transforms every number in the sequence
to a rectangle, but does not align the rectangles in any meaningful way. The transformed
visual representation aligns the rectangles at the center of the image, facilitating the learn-
ing of relationships between them. The baseline tabular representation is the 10 numbers
representing the sequence. The transformed tabular representation appends the relationship
(smaller/larger) between every pair of numbers to the baseline tabular representation.

Representation Visual Pre-trained Visual Baseline Tabular
Baseline 87% 85% 89%

Transformed 99% 98% 97%

These experiments support our idea that representing the same information in a way

that highlights objects and the relationships between them make the problem easier for the

learner to learn and may have a significant effect on the learning outcome. The experiments

also suggest that certain transformations highlighting the relationships between features or

different feature attributes may significantly bridge the performance gap between the two

mainstream modes of representation: the tabular and the visual, while maintaining the

representation mode.

61



5.2 The Rectangle experiment

These experiments revolve around the relationship between two objects: a rectangle and a

single point. The task is binary classification with the question being whether the point

falls inside the rectangle or not. The dataset is synthetically generated and the distribution

between the two classes is balanced. It is made up of 10,000 examples, 3,000 of which are

used for validation. Both the rectangle and the single point fall in the first quadrant of a

Cartesian plane (in the square defined by (0,0) and (300,300). The features representing

these objects are:

• the 2D coordinates of the four corners of the rectangle, and

• the 2D coordinates of the single point.

We evaluate the performance of different learners on different representations of the same

information. In the tabular space, we use a baseline MLP, and compare its performance to

that of a modular learner, which is an MLP where the input is layer is fed through multiple

layers rather than having one input layer. Specifically for this example, the modular learner

accepts the input features belonging to each of the two axes separately. We divide the features

across the two axes following our domain knowledge that the function that determines the

label (whether the point is inside the rectangle or not) is a conjunction of two functions

comparing x-coordinates and y-coordinates separately. We also compare those to a visual

learner that takes as input an image representing the rectangle and the point (as a filled

circle). We experiment with two forms of visual representation of the rectangle: the first

shows the relationship between the points in the feature vector, by connecting the relevant

points and drawing the rectangle as a human would. The second is a direct representation of

the tabular features that only visualizes the four corner points without the connecting lines.

Figure 5.4 shows an example of the different visualizations.

To evaluate the tabular learners, we used Keras running on a Tensorflow backend, with

the Sigmoid activation function for the hidden layers, and default settings of the Adam

62



(a) Transformed visual representation

(b) Baseline visual representation

Figure 5.4: An example of images generated for The Rectangle Experiment. The task is to
classify whether a point lies inside or outside the rectangle described by four other points.
Two representations are used, figure (a) shows a transformed representation where the enti-
ties (rectangle corners) are connected with lines, highlighting the relationships between them
similar to how a human would, figure (b) shows a baseline visual representation of the raw
data with only the 5 points and no connecting lines.

63



optimizer. We trained both learners for 100 epochs and report the best achieved testing

accuracy. The modular learner scores a testing accuracy of 99.3% compared to 95.6% with

the baseline version. Some experiments suggest that the baseline accuracy may increase

further if left to train for longer periods of time, but the overall trend is that it’ll always

be lower (even if slightly) than the modular version. To evaluate the visual learners, We

used FastAI with the ResNet18 model, which has substantially more parameters than the

tabular counterpart. We train the visual learners for 25 epochs and report the maximum

testing accuracy. Table 5.2 summarizes the results achieved by the different learners on the

different representations. Note that when using a pre-trained version of the visual learner,

the sparse representation’s performance improves to 98%, while the dense representation

does not change.

Table 5.2: Summary of the results observed in The Rectangle Experiment: Testing accuracy
of tabular and visual learners on different forms of representations of the information. The
baseline visual representation transforms every coordinate to a single point (filled circle), but
does not connect the four corners of the rectangle. The transformed visual representation
include the rectangle lines. The baseline tabular representation is the 10 numbers corre-
sponding to the (x,y) coordinates of the 5 points. The transformed tabular representation
separates the numbers into two groups: one with the x-coordinates of the points and another
with the y-coordinates.

Representation Tabular Visual
Baseline 99.3% 96.7%

Transformed 95.6% 99.7%

5.3 The Bit Vector Experiment

In The Rectangle Experiment, we know that to ascertain whether the point falls within the

bounds of the rectangle we need to determine the truth value of the conjunction of two

algebraic functions: one that examines the x-coordinates and another that examines the

y-coordinates of the points in the feature vector. Namely, if the rectangle’s upper left corner

is (x1, y1) and lower right corner is (x2, y2) and the point in question is (q1, q2), then the

rule-based approach would ascertain the truth value of (x1 <= q1 <= x2) AND (y1 <= q2

64



<= q2) to determine whether the point in question falls within the bounds of the rectangle

or not. We hypothesized that separating the feature vector across the two axes, in a way that

allows the learning of each sub-function separately before learning the conjunction between

them, would yield a better learning outcome, and need less time and parameters. While the

experiments performed were in line with our expectations, the difference in learning outcome

was acute given the little room for improvement over the worst performing learners. In this

section, we introduce two more experiments with a higher margin for a performance gain.

Similar to The Rectangle Experiment, these experiments involve a number of sub-functions

grouped together by another function. There are 15 features divided equally across 5 groups.

Each group is an input to a sub-function, and all 5 sub-functions are an input to a higher-

order function. We hypothesize that presenting these features in a way that allows each

sub-function to be learned separately before the higher-order function can be learned would

lead to quicker learning that needs less parameters, and a better learning outcome.

Our rationale is that in some cases, the rule based methods clearly involve subsets of

features interacting amongst themselves (e.g. the two axes in the Rectangle Experiment, or

the five sub-functions in the Bitwise Experiment). In such cases, when the right answer for a

given learning instance is determined by a subset of these sub-functions, the features forming

the other sub-functions act as noise. To demonstrate this idea, consider the example (10,

10, 60, 10, 10, 60, 60, 60, 30, 100) from the Rectangle experiments. The values correspond

to (x1, y1, x2, y2, x3, y3, x4, y4, x5, y5), where (x1,y1)..(x4,y4) are the four corners of the

rectangle and (X5, y5) is the point in question. Clearly the point (30, 100) falls outside of

the boundaries of the described rectangle due to its y-coordinate. Now assume that all the

features are fed through a single input layer to an MLP. For the MLP to match the rule-based

function, a subset of the features would need to be positively reinforced (those describing the

x-coordinates of the points, since the x-coordinate of the query point is within the bounds of

the x-coordinates of the rectangle), but the rest of the features would need to be negatively

reinforced (since the y-coordinate of the point is outside the bounds of the y-coordinates of

65



the rectangle). Thus, an artificial neuron connecting all features would receive conflicting

feedback, with some features acting as a learning signal and the rest acting as noise. To

compensate, the learner might need more time, parameters, or to learn a function that is

entirely different from the rule-based one but that scores well on the given dataset.

5.3.1 Conjunction

In these experiments, the dataset is synthetically generated and spans all possible values for

15-bit vectors. The 15 bits are then divided into 5 equal groups (every 3 consecutive bits),

and the label is assigned as the truth value of the resulting Boolean function made up of the

conjunction of the bits in each group and the disjunction of the groups.

More formally, let the input vector V = b1,..., b15. F is defined as:

f1 = b1 ∧ b2 ∧ b3 (5.1)

f2 = b4 ∧ b5 ∧ b6 (5.2)

f3 = b7 ∧ b8 ∧ b9 (5.3)

f4 = b10 ∧ b11 ∧ b12 (5.4)

f5 = b13 ∧ b14 ∧ b15 (5.5)

F = f1 ∨ f2 ∨ f3 ∨ f4 ∨ f5 (5.6)

The label of each example then is the truth value of F. The overall dataset is made up of

32,768 examples, 15,961 of which belong to the positive class. We test the performance of

different tabular learners on the generated dataset. Specifically, we compare the performance

of a modular learner that accepts the input as five separate groups, to a baseline MLP with

a single input layer. The modular learner has the least number of parameters, 26, which

is the bare minimum needed to accept each group of features separately and generate an

66



output. The lower number of parameters suggests a disadvantage when compared to the

larger baseline learners. We experiment with two different architectures for the baseline

MLP learners. Specifically, we use a learner with one hidden layer, similar to the modular

learner, but experiment with a different number of neurons in that layer. We also train a

learner with two hidden layers. We report the testing performance of the different learners,

along with the number of parameters, in Table 5.3.

Table 5.3: Summary of the results observed in The Hanoi Experiment (Conjunction): the
testing accuracy and number of parameters of the different evaluated tabular learners. The
baseline tabular learners accept the entire 15 bit vector using a single input layer. The
modular tabular learner partitions the input vector into five groups: one for every 3 bits
constituting a sub-function, and passes each group through a separate input layer.

Testing Accuracy Number of parameters
Modular 100% 26
Baseline 77.3% 35
Baseline 82.3% 86
Baseline 94.7% 88 (2 layers)
Baseline 99.9% 256

All models were trained for 100 epochs, but the modular model converged around the 60th

epoch, quicker than the rest. Examining the Table, an additional benefit of using modular

approaches with a smaller number of parameters may lie in restricting the hypothesis space,

similar to how CNNs use weight sharing to produce similar effects and correspondingly a

superior learning outcome.

5.3.2 Disjunction

In these experiments, the dataset also spans all possible values for 15-bit vectors, grouped

into 5 equal groups (every 3 consecutive bits), but we change the Boolean function F to be

the conjunction of the groups, with each group being a disjunction of the bits constituting

it.

67



More formally, let the input vector V = b1,..., b15. F is defined as:

f1 = b1 ∨ b2 ∨ b3 (5.7)

f2 = b4 ∨ b5 ∨ b6 (5.8)

f3 = b7 ∨ b8 ∨ b9 (5.9)

f4 = b10 ∨ b11 ∨ b12 (5.10)

f5 = b13 ∨ b14 ∨ b15 (5.11)

F = f1 ∧ f2 ∧ f3 ∧ f4 ∧ f5 (5.12)

The label of each example then is the truth value of F. The overall dataset is also made

up of 32,768 examples, 16,807 of which belong to the positive class.

We hypothesize that the baseline MLP learner would show improved results in this variant

of the experiment. Our rationale is that in this variant, less features are needed to determine

the right outcome, so in a way, it takes less to be right. Also, if the learner is learning

a function that is different from the rule-based one, it is easier to find a function between

seemingly un-related features that produce the right output. Thus, the number of parameters

out-numbering the number of features in MLPs might prove to be an advantage to a baseline

learner in this case.

We also test the performance of different tabular learners on this dataset and report the

results, along with the number of parameters of each learner, in Table 5.4.

All models were trained for 25 epochs. We also trained the baseline version for 100

epochs (mentioned in Table 5.4). Note that in this example, the single-layer baseline model

performed better than the model with 2 layers and almost the same number of parameters,

perhaps because it would be even easier to get the guess right with the decision directly

being made by the neurons connected directly to the bit input vector.

68



Table 5.4: Summary of the results observed in The Hanoi Experiment (Disjunction): the
testing accuracy and number of parameters of the different evaluated tabular learners. The
baseline tabular learners accept the entire 15 bit vector using a single input layer. The
modular tabular learner partitions the input vector into five groups: one for every 3 bits
constituting a sub-function, and passes each group through a separate input layer.

Testing Accuracy Number of parameters
Modular 100% 26
Baseline 79.6% 35
Baseline 81.2% 35 (100 epochs)
Baseline 94.9% 86
Baseline 90.9% 88 (2 layers)
Baseline 100% 256

69



CHAPTER 6

REAL WORLD EXPERIMENTS

In this chapter, we compare our approach presented in Chapter 4, to some of the other

approaches automating feature transformation and selection mentioned in that chapter. We

resort to real world datasets that were used by the other methods to validate their results.

We especially focus on the experiments that are not performance saturated, and that offer

enough margin for a meaningful comparison. We use the same experimental setup devised

by the other tools. We thoroughly checked their specifications (and where possible, code-

bases) to devise a similar setup. Details about the data and the model hyper-parameters are

provided at the end of the chapter.

6.1 TabNet

TabNet aims to have a reduced model capacity that is efficient to learn but also effective

by directing its learning power to the features that it would mostly leverage in a given

example. It does that using a feature transformer and an attentive transformer as part of its

architecture. We compare our method to TabNet on datasets used to validate their results.

Our approach outperforms TabNet on all the datasets reported in this section. The models

we used are modular MLPs with an architecture described in Chapter 4, and details provided

at the end of this chapter.

6.1.1 Poker

The Poker Dataset represents a multi-class classification problem with the goal of classifying

Poker hands [96]. Each example is a Poker hand, consisting of 5 cards drawn from a 52-card

deck. The cards are represented by two features, which are the card’s suit and rank. Thus,

each learning instance in the dataset is represented by a total of 10 features capturing the 5

(suit, rank) pairs corresponding to the 5 cards. The output is the possible Poker Hands, of

70



which there are 10. The class distribution in the dataset is heavily imbalanced. Table 6.1

shows a breakdown of the number of examples across the 10 possible classes.

Table 6.1: Poker Hands representation in the training set: the percentage of examples
in the training set representing the corresponding poker hand. These percentages are an
approximate representation of the actual possible distributions of poker hands in a 52-card
deck.

Poker Hand Representation
High Card 49.952%
One Pair 42.379%
Two Pairs 4.822%

Three of a Kind 2.051%
Straight 0.372%
Flush 0.216%

Full House 0.144%
Four of a Kind 0.024%
Straight Flush 0.020%
Royal Flush 0.020%

Conventional methods suffer from the severe imbalance undermining the data. Using our

approach, the features were clustered into two groups: one containing the card ranks and

another containing the card suits. Such a breakdown could be expected given the different

range of values allowed for the ranks (1 to 13 ranks) and suits (1 to 4 suits), which would

affect the correlation scores between the features. The breakdown also matches our domain

knowledge of the problem, since the resulting Poker Hand is usually a function of either the

ranks (e.g One Pair, Two Pairs, Three of a Kind), the suits (e.g. Flush), or a combination of

both (Straight Flush). We compare the performance of different methods reported in TabNet

to our approach in Table 6.2. Our method outperforms all others and almost matches the

rule-based method performance.

Note that while the result tables in TabNet report a testing accuracy of 50% for a baseline

MLP, our experiments yielded different results, with a 99.2% testing accuracy, which is

significantly higher than what is reported in the TabNet study, but still lower than the results

achieved using our modular approach. This difference in performance is still significant given

the highly imbalanced nature of the dataset (6 of the 10 classes correspond to roughly 0.8%

71



Table 6.2: Testing accuracy achieved by different models evaluated using the Poker dataset.
Model Accuracy

Decision Tree (DT) 50%
baseline MLP 50%

Deep Neural DT 65.1%
XGBoost 71.1%
LightGBM 70%
CatBoost 66.6%
TabNet 99.2%

Modular MLP 99.9%

of the class distribution).

6.1.2 Higgs

The Higgs dataset introduces a binary classification problem with the goal of ”distinguishing

a signal process that produces Higgs bosons from a background process that does not” [97].

Each example in the dataset is represented by 28 features, 21 of which are low-level features

representing the momentum and other traits of particles generated after a collision event,

which are common to both the signal and the background process. The remaining 7 features

are functions of the 21 low-level ones defined with domain knowledge about the intermediate

processes separating the signal and the background. Our method clustered the features into

three groups.

The performance of different machine learning methods evaluated on this dataset falls

within a narrow range, with improvements reported by each method being extremely minute.

Similar to TabNet, we experimented with different neural network sizes. We compare the

results achieved by our method to different ML models in Table 6.3. Note that the small

version of our model outperforms nearly all other methods that have significantly more

parameters.

72



Table 6.3: Testing accuracy along with the number of parameters corresponding to the
different models evaluated using the Higgs Boson dataset.

Model Test Accuracy Model Size
Sparse Evolutionary MLP 78.47 81k
Gradient boosted tree-S 74.22 0.12M
Gradient boosted tree-M 75.97 0.69M

MLP 78.44 2.04M
Gradient boosted tree-L 76.98 6.96M

Tabnet-S 78.25 81K
Tabnet-M 78.84 0.66M

Modular MLP-S 78.74 81K
Modular MLP-M 79.04 0.41M

6.1.3 Sarcos

The Sarcos dataset introduces a multi-variate regression task with the goal of predicting

the inverse dynamics of an anthropomorphic robot arm given its position, velocity, and

acceleration values [98]. Each of these values is represented by 7 features, leading to an

input feature vector with 21 features. The arm has 7-degrees of freedom making this a

multi-variate regression task. The dataset is part of the validation experiments reported by

TabNet. In our approach, we feed each of the feature groups separately into an input layer.

We compare the performance of our approach to the methods mentioned in TabNet in Table

6.4.

Table 6.4: Testing accuracy along with the number of parameters corresponding to the
different models evaluated using the Sarcos dataset.

Model Test MSE Model Size
Random forest 2.39 16.7k

Stochastic decision tree 2.11 28K
MLP 2.13 0.14M

Adaptive neural tree 1.23 0.6M
Gradient boosted tree 1.44 0.99M

Tabnet-S 1.25 6.3K
Tabnet-M 0.28 0.59M
Tabnet-L 0.14 1.75M

Modular MLP-S 1.15 6.5K
Modular MLP-M 0.09 0.27M

73



To verify our results, we trained a baseline MLP with the same number of parameters used

in the small modular MLP, and achieved a score of 1.19, which is significantly better than

the score reported for the MLP in TabNet using much more parameters, and outperforms

almost all the other methods mentioned in Table 6.4, with the exception of the modular

MLP and the larger versions of Tabnet.

6.1.4 DeepInsight

As mentioned in Chapter 5, DeepInsight works by transforming tabular features into images

by placing related features as neighboring pixels. The performance of DeepInsight is eval-

uated on five datasets. One of these datasets required domain knowledge by the authors,

which we did not include in our evaluations. We compare the performance of our method

to that of DeepInsight and other tabular learners and present the results in Table 6.5. Our

approach outperforms DeepInsight on three of the datasets, and matches its performance on

a performance saturated one.

The following is a brief description of the datasets reported by DeepInsight that we

evaluate our method on:

• RELATHE - is a textual dataset extracted from a larger newsgroup documents with

the binary classification task of predicting the newsgroup each document belongs to

[99]. It is made up of 1,427 examples each represented by 4,322 features.

• RNA-seq is a public gene expression dataset extracted from TCGA (https://cancergenome.nih.gov).

It contains 6,216 examples each represented by 60,483 features. It is a multi-class clas-

sification problem with 10 possible cancer types.

• Madelon - is a highly non-linear synthetic dataset introduced in the NIPS 2003 feature

extraction challenge and represents a binary classification problem. It contains 2,600

examples each represented by 500 features.

74



• Ringnorm-DELVE is another synthetic dataset that implements the Leo Breiman’s

ringnorm example [100] and represents a binary classification problem. It contains

7,400 examples each represnted by 20 features.

Our method did not yield any feature clusters. Thus, the feature transformation applied

is a re-ordering of the original feature vector based on their correlation scores. Our intuition

is similar to that applied by DeepInsight, but we use a different relationship metric and

apply the transformation within the same space (the resulting feature vector is still tabular

rather than visual). To exploit local relationships between the re-ordered features, we use a

one dimensional convolutional neural network as a tabular learner. More details about the

network architecture and hyper-parameters can be found at the end of this chapter.

Table 6.5: Testing accuracy achieved by the different models evaluated using two datasets
(Relathe and Madelon) reported in the DeepInsight study, as compared to a baseline one-
dimensional convolutional neural network and our approach which re-ordered the input fea-
ture vector (re-ordered 1D CNN).
Dataset Decision Tree Ada-Boost Random Forests DeepInsight 1D CNN 1D CNN

(Baseline) (re-ordered)
Relathe 87% 85% 90% 92% 94% 96%
Madelon 65% 60% 62% 88% 92% 94%

In Table 6.5, we focused on the datasets that are not performance saturated and leave

enough room for comparison. The other two datastes are reported in the DeepInsight study

with an accuracy of 98% and 99% (corresponding to Ringnorm-DELVE and RNA-Seq re-

spectively). Our method achieved an accuracy of 99% for both of these datasets. Also, while

in the original study, the results achieved by DeepInsight are not compared to any other arti-

ficial neural networks, we report the performance of the same convolutional neural networks

used by our approach, but without the feature re-ordering step performed by our method.

These are listed as baseline 1D CNN in Table 6.5. Note that these learners achieve a higher

performance than all other learners, including DeepInsight, but lower than our method.

75



6.1.5 REFINED

As mentioned in Chapter 4, Refined is another method that transforms tabular features

into images. It uses the euclidean distance between features to determine the corresponding

pixel locations, with the idea of representing related features as neighboring pixels. One

of the experiments they validate their results on uses the Genomics of Drug Sensitivity in

Cancer (GDSC) dataset [101], ”which describes the responses to 222 anticancer drugs across

approximately 972 cancer cell lines”. The cell lines are represented by 1,211 gene expression

values, and the drugs are represented by 992 chemical descriptors. The goal is to predict

the drug response as measured by the IC50 value, which captures the concentration of drugs

needed to reduce the response by 50%, making this a regression task. We use a modular MLP

by presenting each of the drugs and the cell lines separately using two input layers. Note that

this is similar to the Refined approach, where they pass two separate images representing the

drugs and the cell lines through two input arms to a two-dimensional convolutional neural

network. We attribute the superior performance of our method to the simpler neural network

architecture and perhaps the smaller hypothesis space.

Note that when performing their experiments, they resort to an 80-10-10 train-validate-

test split, and cite computational limitations as a factor hindering more experimentation

and hyper-parameter fine tuning, and evaluating their results via cross-validation. Thus, an

additional advantage of our method is using smaller models with data that is significantly less

memory-intensive and more computationally efficient. we perform k-fold cross-validation,

training on the same percentage as their method, but testing on all remaining folds. For

example, when we train our method on 20% on the data, we test on the remaining 80%.

Using these significantly larger testing datasets adds confidence to the results reported by

our method. Table 6.6 shows a comparison of our method with the REFINED and other

methods reported in their paper using the same dataset.

Note that the 10-fold cross validation scored 0.389 NRMSE and 0.921 PCC with our

modular method, which is a further improvement when compared to their 80-10-10 split

76



Table 6.6: Normalized root-mean-square error (NRMSE) and Pearson correlation coefficient
(PCC) achieved by different models evaluated on the Genomics of Drug Sensitivity in Cancer
(GDSC) dataset and reported in the Refined study, compared to our approach (Modular
MLP). The training percentage resembles the percentage of the data each model was trained
on. Note that with the exception of our Modular MLP, all models were evaluated on a 10%
split from the dataset, whereas the results reported for our Modular MLP are the cross-
validation score while training on the reported percentage and evaluating our model on the
rest of the data.

Models Trained on 20% Training on 50% Training on 80%
NRMSE PCC NRMSE PCC NRMSE PCC

EN 0.890 0.488 0.889 0.484 0.887 0.486
RF 0.609 0.797 0.620 0.785 0.569 0.821
SVR 0.750 0.847 0.742 0.845 0.525 0.853
ANN 1.407 0.519 0.475 0.883 0.435 0.901

Random CNN 0.579 0.836 0.456 0.892 0.441 0.903
PCA CNN 0.612 0.820 0.461 0.891 0.443 0.901

REFINED CNN 0.541 0.845 0.439 0.899 0.414 0.911
Modular MLP 0.454 0.891 0.414 0.911 0.393 0.920

with a similar 10% size of the testing dataset.

6.2 Mnist1D

MNIST1D is a synthetic dataset constructed with the purpose of discriminating ML models

performance [102]. It is generated using template patterns that represent handwritten digits

between 0 and 9, analogous to the original MNIST dataset [103]. The templates are then

subjected to random amounts of padding, translation, correlated noise, iid noise, and scaling,

leading to a wide range of testing accuracy when tested using key ML models, as shown in

Table 6.7.

Table 6.7: Testing accuracy achieved by different models on the MNIST-1D dataset.
Dataset Logistic regression MLP CNN GRU Human expert

MNIST-1D 32% 68% 94% 91% 96%

A more challenging version of this dataset shuffles the features before training following a

method similar to that described in [104]. The MNIST1D dataset consists of 4,000 training

examples and 1,000 testing examples. Each example is represented by 40 features. Figure 6.1

77



shows a visualization of the tabular features as compared to the original MNIST examples.

We used Numpy’s random shuffle function to get a shuffled version of the dataset.

Figure 6.1: Generating the MNIST1D dataset: Digits are represented as one-dimensional
patterns that are then padded, translated, and transformed and subject to other processes.
In our experiments, we use a shuffled version of this dataset which randomly shuffles the
resulting feature vectors.

Our method did not produce any feature clusters, so we resorted to re-ordering the

features using their correlation matrix. We present a comparison of the performance of

different methods in addition to our method in Table 6.8.

Table 6.8: Testing accuracy achieved by different models on the shuffled version of the
MNIST-1D dataset, including our approach (CNN re-ordered) which uses the same CNN
model but with a re-ordered input feature vector.

Dataset Logistic regression MLP CNN GRU CNN-reordered Human expert
MNIST-1D (shuffled) 32% 68% 56% 57% 87% 30%

78



The performance of the CNN approach on the un-shuffled version of the data is 91%,

so clearly using our approach restores a similar level of performance and outperforms all

other methods on the shuffled version of the dataset. For a fair comparison of the results,

we use the same convolutional neural network used by the authors without changing the

configuration or any of the hyper-parameters.

6.3 Data and Hyper-Parameters

We outline some details about experiments reported earlier in this chapter. We used Keras

running on a Tensorflow backend, and unless otherwise stated, the default settings of the

Adam optimizer. Random seeds were fixed for reproducibility. In our experiments, we

reported the best testing accuracy achieved by our method while training the model.

6.3.1 Poker

The Poker dataset consists of 25,010 training examples and 1,000,000 testing examples.

Each example is represented by 10 features. In the modular approach, the input features

are split into two equal groups and fed separately through two input layers. Both tabular

learners we experimented with had two hidden layers, with the baseline MLP having more

parameters than the modular one. Each input layer in the modular learner was connected to

128 neurons, which were concatenated before being connected to another hidden layer with

16 neurons. The difference in the baseline learner is that its single input layer was connected

to a hidden layer with 256 neurons. We used the sigmoid activation function in the hidden

layers followed by softmax activation for the output layer.

6.3.2 Higgs

The Higgs dataset consists of 11,000,000 examples the last 500,000 of which are used for

testing. Each example in the data is represented by 28 features. Our method separated the

79



features into three clusters containing 17, 6, and 5 features each. The three groups of features

were fed to the modular learner through three separate input layers. Our modular neural

network had two hidden layers. Each input layer was connected to 256 neurons, which were

then concatenated to form the first hidden layer. The concatenated layer was then connected

with another hidden layer having 95 neurons. We used the RELU activation function for

the hidden layers and the Sigmoid activation function for the output layer, with Amsgrad

enabled and a learning rate of 0.001.

6.3.3 Sarcos

The Sarcos dataset consists of 48,933 examples, 4,449 of which are used for testing. Each

example is represented by 21 features. The features describe 7 joint position (7 features),

velocity (7 features), and acceleration (7 features) values of an anthropomorphic robot arm

with 7 degrees of freedom. We trained two modular MLPs of varying sizes (modular MLP-S

and modular MLP-M, referring to a small and a medium sized modular MLP learner). In

the modular MLPs, the input was passed through three separate input layers, each including

the 7 features corresponding to one of the variables mentioned earlier (i.e position, velocity,

or acceleration). In the modular MLP-S network, each input layer was connected with

a hidden layer containing 28 neurons. The three resulting layers were then concatenated

and connected to another hidden layer with 64 neurons. In the modular MLP-M network,

the three input layers were connected to a hidden layer with 128 neurons each. The three

resulting layers were then concatenated and connected to another layer with 512 neurons,

which was connected to another layer with 128 neurons, which was connected to a final

hidden layer with 32 neurons. We also trained a small baseline MLP network (baseline

MLP-S), which received the input as one input layer connected to a layer with 70 neurons,

which in turn was connected to another layer with 64 neurons. The Sigmoid function was

used as an activation function for all hidden layers, and the linear function was used for the

output layer.

80



6.3.4 DeepInsight

We used four datasets mentioned in the DeepInsight study to evaluate and compare the

performance of our method: RNA-seq, Relathe, Madelon, and Ringnorm-DELVE. Similar

to DeepInsight’s validation approach, we followed an 80-10-10 training-validation-testing

split. Our approach did not produce feature clusters but re-ordered the features based on

their correlation matrix. The re-ordered feature vector was then used as input to a 1D CNN

with two hidden layers using the Sigmoid activation function. For the Relathe dataset, the

first hidden layer was made of 64 kernels of width 128, and the second layer was made of 8

kernels of width 3. For the Madelon dataset, the first layer consisted of 16 kernels of width

50, connected to a second layer made of 8 kernels of width 5. For the Ringnorm-DELVE

dataset, the first layer was made of 16 kernels of width 5, connected to a second layer made

of 8 kernels of width 2. For the performance-saturated RNA-seq data, we simply used a

tabular learner from the FASTAI API with a single hidden learner having 30,000 neurons.

6.3.5 Refined

To compare our method to the Refined study, we used the GDSC dataset that is part of their

validation experiments. The dataset involves the interaction between 972 cell lines and 222

drugs. Each cell line is represented by 1,211 features, and each drug by 972 features. Our

modular approach uses a neural network with two hidden layers. First, the cell lines and

the drugs are passed separately through two input layers connected to 1,024 neurons. These

neurons are then concatenated and connected with another hidden layer with 128 neurons.

We used the Relu activation function for the input layers and the Linear activation function

for the output layer.

81



CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

We demonstrated that representing information in a way that highlights entities and rela-

tionships facilitates the machine learning process and yields a better learning outcome. We

presented feature transformation strategies towards that end, and resorted to empirical ev-

idence using synthetic and real world datasets for evaluation. The feature transformations

are either driven by human domain knowledge, such as by representing tabular features vi-

sually using manually crafted designs (e.g. representing genes as arrows in the problems of

identifying genomic islands and detecting operons in bacterial genomes presented in chapters

2 and 3), or by partitioning the input features into groups, where each represents a separate

entity or relationship. The different representations are used as input to different machine

learners with different inductive biases. For the visual representations, a two-dimensional

convolutional neural network is used. For the partitioned representation, a modular MLP

with multiple input layers is used. In cases were human domain knowledge is lacking, the

feature transformation is a permutation of the feature vector such that the re-ordered ver-

sion places related features within close proximity. For such representations, the re-ordered

feature vector is used as input to a one-dimensional convolutional neural network. This is

in agreement with the recent trend underpinning the approaches presented in Chapter 4,

that automatically transform tabular data into images with the goal of representing related

features as neighboring pixels to be learned from by the convolution operator in 2D CNNs.

We showed that such automatic transformations to the visual domain are unnecessary, and

that applying a similar approach of re-ordering the features and using a 1D CNN is not only

sufficient but also achieved better results.

In all these approaches (except manually engineered visual representations), the underly-

ing idea is having certain feature groups act as single units. Our intuition behind that is that

for certain problems, some features should be considered together to determine the quality

of the learner’s predictions, while the rest of the features might act as noise dampening the

82



learning signal. For example, in certain classification tasks (e.g. The Rectangle Experi-

ment in Chapter 5), certain features could satisfy a condition that positively reinforces the

learner’s output, while other features negatively re-inforce the same predicted output. The

corresponding output and error being back-propagated would have to update the weights

attached to all these features in the case of a fully connected baseline MLP, since all the

features would be connected to the same neurons. For that purpose, fully connected MLPs

have the a lower signal to noise ratio than networks that limit the connections. Thus, MLPs

may need more training time, data, or parameters to compensate. The limited connections

in alternative learners cannot be random and have to be meaningful in exploiting properties

inherent in the data. CNNs work because of spatial locality and corresponding properties

assumed in images. This is the main motivation behind representing related features as

neighboring pixels and using 2D CNNs in the approaches mentioned in Chapter 4, and our

approach that partitions the feature vector and feeds separate partitions through separate

input layers to a modular MLP (or a re-ordered feature vector to a 1D CNN).

Examining the modular MLP we presented earlier, one can see that it could be achieved

starting with a baseline MLP by means of skipping (or selectively deleting) certain con-

nections (Figure 4.2). Our next main objective is to automate this process and make it

part of the learner, to become part of the representation learning process rather than a

pre-processing transformation step. The outcome would be a method whereby the data is

presented to a network similar to the baseline model, but with a new layer type that knows

how to modulate the architecture and find meaningful feature partitions, for example by us-

ing gated layers or winner-take-all layers. The goal is to have this as an end-to-end operation

that allows the learner to perform representation learning using raw data and without any

pre-processing or human engineering.

To automate the process in our current approach when domain data is lacking, rather than

having a neuron with skipped connections reaching a select group of features that should act

as a unit, we group those features by re-ordering the feature vector, and use a 1D CNN with

83



an appropriate kernel size to capture the largest feature group. We realize that a modular

MLP with well-engineered partitions would be superior, and aim to have a robust learner that

could select the group of features needed to make a prediction as part of its learning process.

We mention some potential improvements that could be applied to the current version of our

method: while we used Pearson’s Correlation Coefficient to automate the feature re-ordering

and partitioning, we believe that a survey of different statistical measures (e.g. Spearman’s

Rho, tree based methods or ML methods with intrinsic feature selection, information gain)

and their properties could offer some insight into the limitations and applicability of these

measures in different domains and on different types of datasets and problems. Moreover, just

like feature importance is an established concept, feature group (or feature unit) importance

could be useful, especially for guiding a network architecture design that allows different

feature groups with different levels of importance to be represented differently (e.g. using

more neurons/layers), which might add further benefits to the learner.

We previously stated that some feature groups should operate as units. Sometimes the

units are sub-functions the overall output is a function of (e.g. the 5 sub-functions in the

The Bit Vector Experiment in Chapter 4). Such experiments make us wonder whether there

are certain classes of functions that benefit from a modular representation more than others,

and whether such functions and their sub-modules can be identified automatically. In case

there are multiple classes of functions, we wonder whether each could be better suited to

a different approach presented in this work, and whether it is possible to automate the

matching process.

Other than achieving a better learning outcome, a major contribution from seeking an-

swers to some of the questions presented in this work could be a better understanding of

the learning process. Our approach inspires some experiments that could shed light and

allow us to gain a better insight about the machine learning behavior. For example, it would

be interesting to show that the modular MLP learns a function closer to the rule based

method than the non-modular MLP that needs more parameters to emulate that function,

84



by dampening some neuron weights and amplifying others to achieve a good testing score

on the same dataset. We believe that a contribution enriching the theoretical foundation

around the ideas discussed in this work and the theory of learning in general, would be most

valuable.

85



REFERENCES

[1] Goyal, Anirudh, and Yoshua Bengio. ”Inductive biases for deep learning of higher-level

cognition.” arXiv preprint arXiv:2011.15091 (2020).

[2] Kuhn, Max, and Kjell Johnson. Applied predictive modeling. Vol. 26. New York:

Springer, 2013.

[3] Langille, M., Hsiao, W., Brinkman, F. (2010) Detecting genomic islands using bioinfor-

matics approaches. Nature Reviews Microbiology, 8(5), 373–382.

[4] Hacker, J., et al. (1990) Deletions of chromosomal regions coding for fimbriae and

hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates.

Microb. Pathog, 8, 213—225.

[5] Hudson, C., Lau, B., Williams, K. (2014) Islander: a database of precisely mapped

genomic islands in tRNA and tmRNA genes. Nucleic Acids Research, 43(D1), D48–

D53.

[6] Barondess, J.J., Beckwith, J. (1990) A bacterial virulence determinant encoded by lyso-

genic coliphage lambda. Nature, 346, 871—874.

[7] Dobrindt, U., Hochhut, B., Hentschel, U., Hacker, J. (2004) Genomic islands in

pathogenic and environmental microorganisms. Nat. Rev. Microbiol., 2, 414—424.

[8] Lu, B., Leong, H. (2016) Computational methods for predicting genomic islands in mi-

crobial genomes. Computational And Structural Biotechnology Journal, 14, 200–206.

[9] Juhas, M., van der Meer, J.R., Gaillard, M., Hood, D.W., et al. (2009) Genomic islands:

tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol. Rev., 33,

376—3793.

86



[10] Akhter, S., Aziz, R., Edwards, R. (2012) PhiSpy: a novel algorithm for finding prophages

in bacterial genomes that combines similarity- and composition-based strategies. Nucleic

Acids Research, 40(16), e126–e126.

[11] Fogg, P., Colloms, S., Rosser, S., Stark, M., Smith, M. (2014) New applications for

phage integrases. Journal of Molecular Biology, 426(15), 2703–2716.

[12] Hambly, E., Suttle, C.A.. (2005) The viriosphere, diversity, and genetic exchange within

phage communities. Curr. Opin. Microbiol., 8, 444-–50.

[13] Hacker, J., Kaper, J.B. (2000) Pathogenicity islands and the evolution of microbes.

Annu. Rev. Microbiol., 54, 641—679.

[14] Choi, I.G., Kim, S.H., (2007) Global extent of horizontal gene transfer. PNAS, 104(11),

4489–4494.

[15] Arndt, D., Grant, J., Marcu, A., Sajed, T., Pon, A., Liang, Y., & Wishart, D. (2016)

PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids

Research, 44(W1), W16–W21.

[16] Coates, A.R., Hu, Y. (2007) Novel approaches to developing new antibiotics for bacterial

infections. Br. J. Pharmacol., 152, 1147—1154.

[17] Bar, H., Yacoby, I., Benhar,I. (2008) Killing cancer cells by targeted drug-carrying phage

nanomedicines. BMC Biotechnol., 8, 37.

[18] Hacker, J., Blum-Oehler, G., Muhldorfer, I., Tschape, H. (1997) Pathogenicity islands of

virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol.,

23, 1089—1097.

[19] Schmidt H, Hensel M. (2004) Pathogenicity Islands in bacterial pathogenesis. Clin.

Mcrobiolog. Rev., 17, 14—56.

87



[20] Ho Sui, S.J,, Fedynak, A., Hsiao, W.W.L., Langille, M.G.I., Brinkman, F.S.L. (2009)

The association of virulence factors with genomic islands. PLoS One, 4, e8094.

[21] Moriel, D.G., Bertoldi, I., Spagnuolo, A., Marchi, S., Rosini, R., et al. (2010) Identifi-

cation of protective and broadly conserved vaccine antigens from the genome of extrain-

testinal pathogenic Escherichia coli. Proc. Natl. Acad. Sci. U S A, 107, 9072-–9077.

[22] Langille, M.G., Hsiao, W.W., Brinkman, FS. (2008) Evaluation of genomic island pre-

dictors using a comparative genomics approach. BMC Bioinformatics, 9, 329.

[23] Srividhya, K.V., Rao, G.V., Raghavenderan, L., Mehta, P., Prilusky,J., Manicka,S.,

Sussman, J.L., Krishnaswamy, S. (2006) Database and comparative identification of

prophages. In: Huang,D-S, Li,K and Irwin,GW (eds). Intelligent Control and Automa-

tion, Lecture Notes in Control and Information Sciences. Springer, Berlin, Vol. 344, pp.

863—868.

[24] Ester, M., Kriegel, H., Sander, J., Xu, X. (1996) A density-based algorithm for discov-

ering clusters in large spatial databases with noise. In: KDD-1996 Proceedings AAAI

Press, Menlo Park, pp. 226—231.

[25] Hsiao, W., Wan, I., Jones, S.J., et al. (2003) IslandPath: aiding detection of genomic

islands in prokaryotes. Bioinformatics, 19(3), b418—420.

[26] Waack, S., Keller, O. Asper, R., et al. (2006) Score-based prediction of genomic islands

in prokaryotic genomes using hidden Markov models. BMC Bioinformatics, 7, 142.

[27] Tu, Q., Ding, D. (2003) Detecting pathogenicity islands and anomalous gene clusters

by iterative discriminant analysis. FEMS Microbiol. Lett., 221, 269—275.

[28] Vernikos, G. S., Parkhill, J. (2006) Interpolated variable order motifs for identification

of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinfor-

matics, 22, 2196—2203.

88



[29] Fouts, D. (2006) Phage Finder: automated identification and classification of prophage

regions in complete bacterial genome sequences. Nucleic Acids Res., 34, 5839-–5851.

[30] Langille, M.G., Brinkman, F. IslandViewer: an integrated interface for computational

identification and visualization of genomic islands. Bioinformatics, 25, 664-–665.

[31] Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martins dos San-

tos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M. et al. (2002) Complete genome

sequence and comparative analysis of the metabolically versatile Pseudomonas putida

KT2440. Environ. Microbiol., 4, 799—808.

[32] Zhang, R., Zhang, C.T. (2004) A systematic method to identify genomic islands and

its applications in analyzing the genomes of Corynebacterium glutamicum and Vibrio

vulnificus CMCP6 chromosome I. Bioinformatics, 20(5), 612—622.

[33] Wattam, A.R, ZDavis, J.J., Assaf, R., Boisvert, S., Bun, T., Conrad, N., Dietrich, E.M.,

Disz, T., Gabbard, J.L., Gerdes, S., Henry, C.S., Kenyon, R.W., Machi, D., Mao, C.,

Nordberg, E.K., Olsen, G.J., Murphy-Olson, D.E., Olson, R., Overbeek, R., Parrello,

B., Pusch, G.D., Shukla, M., Vonstein, V., Warren, A., Xia, F., Yoo, H., Stevens, R.L.

(2017) Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis

Resource Center. Nucleic Acids Research 45(D1), D535–D542.

[34] Vernikos, G. S., Parkhill, J. (2008) Resolving the structural features of genomic islands:

a machine learning approach. Genome Res., 18, 331—342.

[35] Karlin, S., Mrazek, J. & Campbell, A. M. (1998) Codon usages in different gene classes

of the Escherichia coli genome. Mol. Microbiol., 29, 1341—1355.

[36] Sandberg, R., et al. (2001) Capturing whole-genome characteristics in short sequences

using a naive Bayesian classifier. Genome Res., 11, 1404—1409.

89



[37] Hatfull, G.F., Jacobs-Sera, D., Lawrence, J.G., Pope, W.H., Russell, D.A., Ko, C.C.,

Weber, R.J., Patel, M.C., Germane, K.L., Edgar, R.H., et al. (2010) Comparative ge-

nomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition,

and gene size. J. Mol. Biol., 397, 119—143.

[38] Williams, K.P. (2002) Integration sites for genetic elements in prokaryotic tRNA and

tmRNA genes: sublocation preference of integrase subfamilies. Nucleic Acids Res., 30,

866-–875.

[39] Reiter, W.D., Palm, P., Yeats, S. (1989) Transfer RNA genes frequently serve as inte-

gration sites for prokaryotic genetic elements. Nucleic Acids Research, 17, 1907-–1914.

[40] Bellanger, X., Payot, S., Leblond-Bourget, N., Guedon, G. (2014) Conjugative and

mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiol. Rev.,

38, 720—760.

[41] How to Retrain an Image Classifier for New Categories - TensorFlow Hub—TensorFlow.

(2018) Retrieved from https://www.tensorflow.org/hub/tutorials/image retraining

[42] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.. (2015) ImageNet large scale visual

recognition challenge. IJCV.

[43] Jia, Y., Weiss, R.J., Biadsy, F., Macherey, W., Johnson, M., Chen, Z. Wu, Y., (2019).

Direct speech-to-speech translation with a sequence-to-sequence model. arXiv preprint

arXiv:1904.06037.

[44] Poplin, R., Chang, P., Alexander, D., Schwartz, S., Colthurst, T., & Ku, A. et al.

(2018) A universal SNP and small-indel variant caller using deep neural networks. Nature

Biotechnology

90



[45] Howard, J. (2019) Lesson 2: Deep Learning 2019 - Data cleaning and production; SGD

from scratch. Retrieved from https://www.youtube.com/watch?v=ccMHJeQU4Qw

[46] Fran B, Perrin D, Monod J, et al. The operon : a group of genes whose expression is

coordinated by an operator. J Bacteriol. 29, 1727–9 (1960).

[47] Romero,P.R. and Karp,P.D. Using functional and organizational information to im-

prove genome-wide computational prediction of transcription units on pathway-genome

databases. Bioinformatics. 20, 709–717 (2004).

[48] Mao, Xizeng, Qin Ma, Chuan Zhou, Xin Chen, Hanyuan Zhang, Jincai Yang, Fenglou

Mao, Wei Lai, and Ying Xu. Door 2.0: presenting operons and their functions through

dynamic and integrated views. Nucleic acids research. 42, D654-D659 (2014).

[49] Taboada, B., Verde, C., & Merino, E. High accuracy operon prediction method based

on STRING database scores. Nucleic acids research. 38 (12), e130-e130 (2010).

[50] Taboada, B., Ciria, R., Martinez-Guerrero, C. E., & Merino, E. ProOpDB: Prokaryotic

Operon Data Base. Nucleic acids research. 40 (D1), D627-D631 (2011).

[51] Bergman, N. H., Passalacqua, K. D., Hanna, P. C., & Qin, Z. S. Operon prediction for

sequenced bacterial genomes without experimental information. Appl. Environ. Micro-

biol. 73 (3), 846-854 (2007).

[52] Fortino, V., Smolander, O. P., Auvinen, P., Tagliaferri, R., & Greco, D. Transcrip-

tome dynamics-based operon prediction in prokaryotes. BMC bioinformatics. 15 (1),

145 (2014).

[53] Hodgman TC. A historical perspective on gene/protein functional assignment. Bioin-

formatics. 16, 10–5 (2000).

[54] Joon M, Bhatia S, Pasricha R, et al. Functional analysis of an intergenic non-coding

sequence within mce1 operon of M. tu- berculosis. BMC Microbiol. 10, 128 (2010).

91



[55] Wang S, Wang Y, Liang Y, et al. A multi-approaches-guided genetic algorithm with

application to operon prediction. Artif Intell Med. 41, 151–9 (2007).

[56] Pantosti A, Sanchini A, Monaco M. Mechanisms of antibiotic resistance in Staphylo-

coccus aureus. Future Microbiol. 2, 323–34 (2007).

[57] Yada,T., Nakao,M., Totoki,Y. and Nakai,K. Modeling and predicting transcriptional

units of Escherichia coli genes using hidden Markov models. Bioinformatics. 15, 987–993

(1999).

[58] Craven,M., Page,D., Shavlik,J., Bockhorst,J. and Glasner,J. A probabilistic learning

approach to whole-genome operon pre- diction. Proc. Conf. Intell. Syst. Mol. Biol. 8,

116–127 (2000).

[59] Tjaden,B., Haynor,D.R., Stolyar,S., Rosenow,C. and Kolker,E. Identifying operons and

untranslated regions of transcripts using Escherichia coli RNA expression analysis. Bioin-

formatics. 18 (Suppl. 1), S337–S344 (2002).

[60] Ermolaeva,M.D., White,O. and Salzberg,S.L. Prediction of operons in microbial

genomes. Nucleic Acids Res. 29, 1216–1221 (2001).

[61] Zheng,Y., Szustakowski,J.D., Fortnow,L., Roberts,R.J. and Kasif,S. Computational

identification of operons in microbial genomes. Genome Res. 12, 1221–1230 (2002).

[62] Okuda S, Kawashima S, Kobayashi K, et al. Characterization of relationships between

transcriptional units and operon structures in Bacillus subtilis and Escherichia coli. BMC

Genomics. 8, 48 (2007).

[63] Chen,X., Su,Z., Xu,Y. and Jiang,T. Computational prediction of operons in Synechococ-

cus sp. WH8102. Genome Inform. 15, 211–222 (2004).

[64] Tran,T.T., Dam,P., Su,Z., Poole,F.L., Adams,M.W., Zhou,G.T. and Xu,Y. Operon pre-

diction in Pyrococcus furiosus. Nucleic Acids Res. 35, 11–20 (2007).

92



[65] Dam,P., Olman,V., Harris,K., Su,Z. and Xu,Y. Operon prediction using both genome-

specific and general genomic information. Nucleic Acids Res. 35, 288–298 (2007).

[66] Zhang,G.Q., Cao,Z.W., Luo,Q.M., Cai,Y.D. and Li,Y.X. Operon prediction based on

SVM. Comput. Biol. Chem. 30, 233–240 (2006).

[67] Bockhorst,J., Craven,M., Page,D., Shavlik,J. and Glasner,J. A Bayesian network ap-

proach to operon prediction. Bioinformatics. 19, 1227–1235 (2003).

[68] Edwards,M.T., Rison,S.C., Stoker,N.G. and Wernisch,L. A universally applicable

method of operon map prediction on minimally annotated genomes using conserved ge-

nomic context. Nucleic Acids Res. 33, 3253–3262 (2005).

[69] Westover,B.P., Buhler,J.D., Sonnenburg,J.L. and Gordon,J.I. Operon prediction with-

out a training set. Bioinformatics. 21, 880–888 (2005).

[70] Jacob,E., Sasikumar,R. and Nair,K.N. A fuzzy guided genetic algorithm for operon

prediction. Bioinformatics. 21, 1403–1407 (2005).

[71] Salgado,H., Moreno-Hagelsieb,G., Smith,T.F. and Collado- Vides,J. Operons in Es-

cherichia coli: genomic analyses and predictions. Proc. Natl Acad. Sci. USA. 97,

6652–6657 (2000).

[72] Yan,Y. and Moult,J. Detection of operons. Proteins. 64, 615–628 (2006).

[73] Overbeek, R., M. Fonstein, M. D’Souza, G. D. Pusch, and N. Maltsev. The use of gene

clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA. 96, 2896–2901 (1999).

[74] Zaidi, S. S. A., & Zhang, X. Computational operon prediction in whole-genomes and

metagenomes. Briefings in functional genomics. 16 (4), 181-193 (2016).

[75] Szklarczyk, Damian, John H. Morris, Helen Cook, Michael Kuhn, Stefan Wyder, Mi-

lan Simonovic, Alberto Santos et al. The STRING database in 2017: quality-controlled

93



protein–protein association networks, made broadly accessible. Nucleic acids research.

gkw937 (2016).

[76] Taboada, B., Estrada, K., Ciria, R., & Merino, E. Operon-mapper: a web server for

precise operon identification in bacterial and archaeal genomes. Bioinformatics. 34 (23),

4118-4120 (2018).

[77] Brouwer RWW, Kuipers OP, Van Hijum SAFT. The relative value of operon predictions.

Brief Bioinform. 367–75 (2008).

[78] Santos-Zavaleta, Alberto, Heladia Salgado, Socorro Gama-Castro, Mishael Sánchez-

Pérez, Laura Gómez-Romero, Daniela Ledezma-Tejeida, Jair Santiago Garćıa-Sotelo et

al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge

of gene regulation in E. coli K-12. Nucleic acids research. 47, no. D1, D212-D220. (2019)

[79] Sierro N., Makita Y., de Hoon M.J.L. and Nakai K. DBTBS: a database of transcrip-

tional regulation in Bacillus subtilis containing upstream intergenic conservation infor-

mation. Nucleic Acids Res. 36 (Database issue), D93-D96; (2008)

[80] Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. Grad-

cam: Visual explanations from deep networks via gradient-based localization. In Pro-

ceedings of the IEEE international conference on computer vision. 618-626 (2017).

[81] Okuda, S. and Yoshizawa, A.C. ODB: a database for operon organizations, 2011 update.

Nucleic Acids Res. 39 (Database issue), D552-555 (2011).

[82] Davis JJ, Gerdes S, Olsen GJ, Olson R, Pusch GD, Shukla M, Vonstein V, Wattam

AR and Yoo H PATtyFams: Protein Families for the Microbial Genomes in the PATRIC

Database. Front. Microbiol. 7-118. (2016)

[83] FastAI — FastAI. Retrieved from https://docs.fast.ai/index.html (2018)

94



[84] Sharma, Alok, Edwin Vans, Daichi Shigemizu, Keith A. Boroevich, and Tatsuhiko Tsun-

oda. ”DeepInsight: A methodology to transform a non-image data to an image for con-

volution neural network architecture.” Scientific reports 9, no. 1 (2019): 1-7.

[85] Van der Maaten, Laurens, and Geoffrey Hinton. ”Visualizing data using t-SNE.” Journal

of machine learning research 9, no. 11 (2008).

[86] Bazgir, Omid, Ruibo Zhang, Saugato Rahman Dhruba, Raziur Rahman, Souparno

Ghosh, and Ranadip Pal. ”Representation of features as images with neighborhood de-

pendencies for compatibility with convolutional neural networks.” Nature communica-

tions 11, no. 1 (2020): 1-13.

[87] Zhu, Yitan, Thomas Brettin, Fangfang Xia, Alexander Partin, Maulik Shukla, Hyun-

seung Yoo, Yvonne A. Evrard, James H. Doroshow, and Rick L. Stevens. ”Converting

tabular data into images for deep learning with convolutional neural networks.” Scientific

reports 11, no. 1 (2021): 1-11.

[88] Han, Huimei, Ying Li, and Xingquan Zhu. ”Convolutional neural network learning for

generic data classification.” Information Sciences 477 (2019): 448-465.

[89] Ghoshal, Torumoy. ”An Experimental Study on the Applicability of Convolutional Neu-

ral Networks Beyond Image Data.” PhD diss., The University of Mississippi, 2020.

[90] Ke, Guolin, Jia Zhang, Zhenhui Xu, Jiang Bian, and Tie-Yan Liu. ”TabNN: A universal

neural network solution for tabular data.” (2018).

[91] Ucar, Talip, Ehsan Hajiramezanali, and Lindsay Edwards. ”SubTab: Subsetting Fea-

tures of Tabular Data for Self-Supervised Representation Learning.” Advances in Neural

Information Processing Systems 34 (2021).

[92] Song, Weiping, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and

Jian Tang. ”Autoint: Automatic feature interaction learning via self-attentive neural

95



networks.” In Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, pp. 1161-1170. 2019.

[93] Golinko, Eric, Thomas Sonderman, and Xingquan Zhu. ”Learning convolutional neu-

ral networks from ordered features of generic data.” In 2018 17th IEEE International

Conference on Machine Learning and Applications (ICMLA), pp. 897-900. IEEE, 2018.

[94] Kadra, Arlind, Marius Lindauer, Frank Hutter, and Josif Grabocka. ”Well-tuned Simple

Nets Excel on Tabular Datasets.” Advances in Neural Information Processing Systems

34 (2021).

[95] Arık, Sercan O., and Tomas Pfister. ”Tabnet: Attentive interpretable tabular learning.”

In AAAI, vol. 35, pp. 6679-6687. 2021.

[96] Dua, Dheeru, and Casey Graff. ”UCI machine learning repository.” (2017). URL

http://archive.ics.uci.edu/ml.

[97] Baldi, P., P. Sadowski, and D. Whiteson. “Searching for Exotic Particles in High-energy

Physics with Deep Learning.” Nature Communications 5 (July 2, 2014).

[98] Vijayakumar, Sethu, and Stefan Schaal. ”Locally weighted projection regression: An o

(n) algorithm for incremental real time learning in high dimensional space.” In Proceed-

ings of the seventeenth international conference on machine learning (ICML 2000), vol.

1, pp. 288-293. Morgan Kaufmann, 2000.

[99] Mitchell, Tom M. ”Machine learning.” (1997).

[100] Breiman, Leo. Bias, variance, and arcing classifiers. Tech. Rep. 460, Statistics Depart-

ment, University of California, Berkeley, CA, USA, 1996.

[101] Yang, Wanjuan, Jorge Soares, Patricia Greninger, Elena J. Edelman, Howard Light-

foot, Simon Forbes, Nidhi Bindal et al. ”Genomics of Drug Sensitivity in Cancer (GDSC):

96



a resource for therapeutic biomarker discovery in cancer cells.” Nucleic acids research 41,

no. D1 (2012): D955-D961.

[102] Greydanus, Sam. ”Scaling down deep learning.” arXiv preprint arXiv:2011.14439

(2020).

[103] Deng, Li. ”The mnist database of handwritten digit images for machine learning re-

search [best of the web].” IEEE signal processing magazine 29, no. 6 (2012): 141-142.

[104] Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.

”Understanding deep learning (still) requires rethinking generalization.” Communications

of the ACM 64, no. 3 (2021): 107-115.

97


