
THE UNIVERSITY OF CHICAGO

OPTIMIZING ERROR-BOUNDED LOSSY COMPRESSION FOR SCIENTIFIC DATA

WITH DIVERSE CONSTRAINTS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

BY

YUANJIAN LIU

CHICAGO, ILLINOIS

MARCH 15TH, 2022

TABLE OF CONTENTS

LIST OF FIGURES . iv

LIST OF TABLES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 RELATED WORK . 4
2.1 SZ Compression Model . 4
2.2 Prediction Algorithms . 5

2.2.1 Lorenzo Prediction . 5
2.2.2 Linear Regression . 7
2.2.3 Interpolation . 8

2.3 Quantization Algorithms . 10
2.4 Encoding Algorithms . 10
2.5 Lossless Compression Algorithms . 12
2.6 Addressing Diverse User Demands . 12

3 DIVERSE CONSTRAINTS IN SCIENTIFIC DATASETS 14
3.1 Irrelevant (or missing) data . 14
3.2 Global value range . 15
3.3 Interval-based error bound . 16
3.4 Region-based error bound . 16
3.5 More complex error bounds . 17

4 PROBLEM FORMULATION . 18
4.1 Optimization Goal . 18
4.2 User-required Constraints . 19

5 ERROR-BOUNDED LOSSY COMPRESSION FRAMEWORK WITH DIVERSE
CONSTRAINTS . 21
5.1 Handling irrelevant data . 21
5.2 Preserving global value range . 23
5.3 Preserving value-interval error bounds . 23
5.4 Preserving multiregion error bounds . 27
5.5 Preserving irregular regions by bitmap . 31
5.6 Artifact removal in multiprecision compression 32

ii

6 EXPERIMENTAL EVALUATION . 35
6.1 Preserving Irrelevant Data (constraint A) and Global Value Range (constraint

B) . 36
6.2 Multiinterval Error-Bounded Compression (Constraint C) Based on Visual

Quality . 39
6.3 Multi-Interval Error-Bounded Compression Based on Post Hoc Analysis in

Nyx Cosmological Simulation . 42
6.4 Multi-Interval Error-Bounded Compression Using Hurricane Katrina Simulation 44
6.5 Multiregion Error-Bounded Compression (constraint D) Based on Visual Quality 46
6.6 Bitmap Specified Error Bound Compression (constraint E) 50
6.7 Compression Time and Scalability . 53

7 CONCLUSION AND FUTURE WORK . 56

REFERENCES . 57

iii

LIST OF FIGURES

2.1 General procedure of prerequisite-preserving error-bounded lossy compression:
Constraint (A) is handled before the prediction step; constraint (B) is handled
primarily in both the prediction and quantization stage by replacing data points
with Lorenzo-predicted values; constraints (C), (D), and (E) are addressed by
designing a new quantization method. 5

2.2 Example of Lorenzo Prediction in two-dimentional data: the point to be predicted
can be predicted by its surrounding data points. 6

2.3 Illustration of linear regression model . 8
2.4 Illustration of Cubic Spline Interpolation . 9
2.5 Illustration of Multilevel Linear Spline Interpolation 9
2.6 Illustration of The Basic Quantization Algorithm 11

3.1 Without preserving the global range, the color mapping shifts, causing significant
different visualization result compared to the original image. 15

5.1 Illustration of how irrelevant data values are cleared in a 2D dataset. 22
5.2 Multi-interval error-bound model. This example shows a few exaggerated error

bounds in each range for simplicity of description: each rectangle represents twice
the error bound in that range, and the ranges are tightly connected. The error
bound will usually be smaller in practice, and each range may contain hundreds
or thousands of error bounds. 24

5.3 Constraint(D) region selection for 1D, 2D, and 3D data: In 3D cases, each region
can be specified with seven parameters: the starting positions (3 parameters),
the length of each direction (3 parameters), and the error bound (1 parameter). 30

5.4 Illustration of bitmap error bound setting: Use an index to represent the error
bound for each data point, and use a separate array to store all possible error
bounds. 32

5.5 Multiprecision compression problem: In (A), although the RMSE and PSNR
behave normally, the continuity of the visualization seems to be broken compared
with a lower-precision setting in (B). The block size for the 2D dataset is 32 in
SZ3; if we change it to 64, we can obtain the visualization shown in (C). 34

6.1 Data distribution of the five fields in the hurricane dataset. The irrelevant data value is 1E35.

To visualize it in the distribution figure, the big value is modified to an outside value that is

not in the normal data range. 37
6.2 Temperature data points with (left) and without (right) irrelevant data. We show only a

sample of 10,000 points (between index 50,000 and 60,000 in the original dataset). We observe

the data points in the given index range and can see that the irrelevant data is mixed among the

normal data points, harming data continuity; after clearing them with the Lorenzo predictor,

the separating effect disappears. 38
6.3 Performance of irrelevant data-handling methods: all methods slightly improve

the compression ratio with a cost of longer compression time and decompression
time. 38

iv

6.4 QMCPACK data: (A) The basic method is setting one error bound for the global
range. Obvious artifacts are visible in the blue area. (B) Apply the multi-
interval algorithm, set the interesting range [-8,-5) and give it a tighter error
bound 0.15 while leaving other ranges a higher error bound 1. Fewer artifacts are
observed, while the compression ratio is kept the same as the global range method.
Compared with the original data shown in (C), the data in the interesting range
have better visualization results. 40

6.5 Miranda density slice No. 120. Comparing B with A, we can see that not only can the multi-

interval solution preserve a high precision at a value range of interest with high compression

ratio, but it also prevents the blue regions from getting distorted. 41
6.6 Nyx halo cell visualization: The fallback method sets a global error bound to

be 0.5, and the compression ratio is 75. The proposed solution (C) sets three
ranges: [min, 81) with error bound 1, [81, 83) with error bound 0.01, and [83,
max) with error bound 1, and the compression ratio is 78. In the visualization,
our solution (C) has cells almost identical to the original data’s result, while the
fallback method (B) shows some distortion and the cells’ position and number
are not identical to (A). 43

6.7 Hurricane Katrina data: Each row is a frame of the Katrina simulation: (1) is
frame 120, (2) is frame 130, and (3) is frame 141. Each column represents a
different setting of ranges and error bounds. Most of the blue data points in
the graphs are close to zero. By applying a global range with error bound to
be 0.01 with our solution, the visualization is almost identical to the original
data’s, and therefore one column (A) is used to demonstrate the visualization
result as a reference. The fallback version shown in (B) is to use the original
1D SZ compressor, which has only the Lorenzo predictor and does not handle
the irrelevant data; thus it has the lowest compression ratio even with a higher
error bound 0.1. “Composed” in (C) and (D) means using a composed Lorenzo
and linear regression predictor to predict values. “Lorenzo” in (E) means using
only the Lorenzo predictor with no linear regression. Comparing (B) and (C),
the proposed solution wins on the global range test by handling the irrelevant
data and using the composed predictor (both Lorenzo and linear regression).
Comparing (C) and (D), the multi-interval solution wins in both the compression
ratio and visualization result. Comparing (D) and (E), a further improvement
on the compression ratio can be made by using the Lorenzo predictor only and
allowing some distortion in the deep blue area. 45

6.8 QMCPACK visual quality comparison: Each slice has 69×69 pixels. We select
slice 200, 300, and 400 to observe the visual distortion because each has a different
range: slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400
has range [-0.0025, 0.0005]. 46

v

6.9 QMCPACK Slice 450, value range [0, 8]: A higher precision 0.001 for data in the
area where x ∈ [0, 30] and y ∈ [30, 69], while keeping the error bound of other
areas 0.5; The compression ratio is 242, and the SZ3 method with global error
bound equal to 0.5 has a compression ratio 243. The region almost does not harm
the compression ratio at all. 47

6.10 CESM with a region: while keeping the compression ratio high (CR=316), the
interesting region is more precise (eb=0.01). The error bound for the rest regions
is 0.02 in this example. If using the SZ3’s global error bound, to reach eb=0.01
for the desired area, the compression ratio is 57. 48

6.11 Compression time comparison: The reference point is the Fallback version, which
means using a uniform error bound for all data points. The overhead of region-
based method is slightly lower than the multi-interval method. 49

6.12 Six Fields in CESM: the visualization indicates that bitmap-separated precisions
may be suitable to compress these fields. 51

6.13 BDW partition: for each pair of bars, the left side is multi-interval solution’s re-
sult, and the right side is SZ’s result. CP/DP Time are compression/decompression
time respectively. Write ZIP/Write DP are the I/O time to write the com-
pressed/decompressed file respectively. Read ORG is the time to read the original
file. 54

vi

LIST OF TABLES

3.1 Examples of user-required constraints applied to scientific simulation datasets . 14

4.1 Key Notation . 20

6.1 Basic dataset information . 35
6.2 Machine Specifications . 36
6.3 The 5 fields tested in the hurricane dataset . 36
6.4 QMCPACK RMSE & PSNR Comparison . 42
6.5 Miranda density RMSE & PSNR Comparison 42
6.6 Comparison of Different Range Settings. Fallback sets only a global error bound

(here 0.01 and 0.5), and the multi-interval solution uses the proposed multi-
interval error-bounded compression with three error bounds ([min, 81)=1, [81,
83)=0.01, and [83,max)=1) . 44

6.7 Compression Time and Overhead of Interval/Region/Fallback Methods 49
6.8 Compression Setting Definition . 52
6.9 Impact of compression settings on compression ratio (CR) and PSNR for the six

CESM fields of Fig 18: P 0/P 1 are the PSNR in the bitmap separated blue/red
area respectively; CR’ is the compression ratio that takes the bitmap into account 53

vii

ACKNOWLEDGMENTS

I foremost thank my advisor Dr. Ian Foster and Dr. Kyle Chard for guiding me through the

process of coming all the way from China to the United States to pursue computer science

research and writing elements of this Master’s thesis. My grad school is packed with support

and understanding and I owe a big thank you to you both.

I thank Dr. Sheng Di for providing me lots of knowledge, ideas, and time to discuss

every detail of the research topic. You helped me a lot in forming the thesis’ main idea and

writing skills that will certainly manifest in my future efforts.

I acknowledge the senior Ph.D. student Kai Zhao for providing easy-to-read and well-

written C++ coding and explanation, which helps me a lot when developing algorithms used

in this thesis.

I am also grateful for the current and former students Xi Jiang, Sian Jin, Xin Liang,

Matt Baughman, Greg Pauloski, Maksim Levental, Tyler Skluzacek for their kind support

when I was confused about things from academics to life.

Finally, I want to thank my parents and other family members for their strong support

of my decision to go abroad and pursue academic achievement.

viii

ABSTRACT

Vast volumes of data are produced by today’s scientific simulations and advanced instru-

ments. These data cannot be stored and transferred efficiently because of limited I/O band-

width, network speed, and storage capacity. Error-bounded lossy compression can be an

effective method for addressing these issues: not only can it significantly reduce data size,

but it can also control the data distortion based on user-defined error bounds. In practice,

many scientific applications have specific requirements or constraints for lossy compression,

in order to guarantee that the reconstructed data are valid for post hoc analysis. For ex-

ample, some datasets contain irrelevant data that will not be used and users often have

intuition regarding value ranges, geospatial regions, and other data subsets that are crucial

for subsequent analysis. Existing state-of-the-art error-bounded lossy compressors, however,

do not consider these constraints particularly during compression, resulting in reduced over-

all compression ratios due to data that provide little or no value for post hoc analysis. This

thesis addresses this issue by proposing an optimized solution based on the state-of-the-art

SZ lossy compression framework. Specifically, the solution can automatically clean the irrele-

vant data, efficiently preserve different precisions for multiple value intervals, and allow users

to set diverse precisions over both regular and irregular regions. Evaluations are performed

on a supercomputer with up to 3,500 cores. Experiments with six real-world applications

show that the proposed diverse constraints based error-bounded lossy compressor can obtain

a higher visual quality or data fidelity on reconstructed data with the same or even higher

compression ratios compared with the traditional state-of-the-art compressor SZ. The exper-

iments also demonstrate a very good scalability in compression performance compared with

the I/O throughput of the parallel file system.

ix

CHAPTER 1

INTRODUCTION

Modern scientific simulations can produce extraordinary volumes of data. For example,

climate and weather simulations [Kay et al., 2015] can produce terabytes of data in a matter

of seconds [Baker et al., 2014b], and the Hardware/Hybrid Accelerated Cosmology (HACC)

simulation code [Habib et al., 2016] can generate petabytes of data from a single run. The

resulting data must be stored for subsequent use; however, the cost and availability of storage

often lead to difficult decisions regarding future utility. Further, there is a growing need to

transfer and share simulation data over wide area networks (e.g., via Globus [with Globus]),

which may have lower bandwidth.

Error-bounded lossy compressors [Lindstrom, 2014, Di and Cappello, 2016, Cappello

et al., 2019, Wu et al., 2019b, Tao et al., 2018, Jin et al., 2019, Tao et al., 2017a] are widely

used to reduce scientific data volumes while meeting user requirements for data fidelity. For

instance, the SZ [Di and Cappello, 2016, Tao et al., 2017b], ZFP [Lindstrom, 2014], and

MGARD [Ainsworth et al., 2018] compressors each allow users to request that the difference

between original and reconstructed data be bounded by a specified absolute error bound (i.e.,

a threshold) when performing lossy compression. Climate research scientists have verified

that the reconstructed data generated by error-bounded lossy compressors are acceptable

for post hoc analysis [Sasaki et al., 2015b, Baker et al., 2014b, 2019]. Similarly, adopting a

customized error-bounded lossy compressor has been shown to reduce the memory capacity

required for general quantum circuit simulations [Wu et al., 2019b].

Existing error-bounded lossy compressors have a significant limitation, however: none

support preserving specific constraints, such as isolating irrelevant values, preserving value

ranges, or preserving different precisions for different value intervals in the dataset or differ-

ent regions in the space. For example, in environmental sciences, different values in a dataset

commonly have different significance to post hoc analysis. Thus, users can set different pre-

1

cisions (or error bounds) based on various value intervals in the dataset. A typical example

is tracing a hurricane’s moving trajectory over the sea: only the data points whose water

surface values are greater than a threshold (such as 1 meter) are interesting to environment

scientists. The Nyx cosmological simulation [NYX simulation] presents another good exam-

ple as scientists performing post hoc analysis focus on a specific quantity of interest (e.g.,

dark matter halo cell information). According to the dark matter halo analysis algorithm,

the construction of dark matter halos is determined primarily by the values of two fields

(dark matter density and baryon density) in a specific value interval [81,83]. Therefore, in

order to preserve the features (such as the count and location) of the dark matter halos,

the values in this interval should have higher precision than the values in other intervals.

Some other datasets such as the Community Earth System Model (CESM) [Kay et al., 2015]

map the geolocations into the data location, and it is important to choose certain regions

for investigation. When studying the impact of weather in the United States, for example,

scientists may care more (or only) about areas within or near U.S. boundaries.

This thesis proposes a novel compression method based on the SZ error-bounded lossy

compression framework,1 which allows users to specify constraints, such as setting different

error bounds in various value intervals or spatial regions, so that the reconstructed data

can meet users’ required quality better than traditional uniform-error-bounded lossy com-

pression. In particular, the constraint-based compression model addresses irrelevant data

in scientific datasets and effectively preserves the global value ranges, which are critical to

obtaining a high compression quality in some cases.

The key contributions are summarized as follows.

• This thesis proposes a constraint-based error-bounded lossy compression model, which

is the first attempt, to the best of our knowledge. The user-specified constraints include

1. The SZ compression framework is adopted because it provides leading error-bounded lossy compression
quality, as verified by several studies of different scientific datasets [Di and Cappello, 2016, Tao et al., 2017b,
Underwood et al., 2020, Liang et al., 2018a].

2

(A) isolating irrelevant values; (B) preserving global value range; (C) preserving multi-

interval-based error bounds; (D) preserving multiregion-based error bounds; and (E)

using a bitmap to mask complicated regions and apply different error bounds on each

region. These constraints are critical to post hoc analysis of different applications in

practice.

• A series of optimization strategies are developed for preserving constraints efficiently.

Specifically, the quantization stage in the SZ error-bounded lossy compression frame-

work is redesigned.

• A comprehensive evaluation is performed using multiple real-world scientific datasets

across different domains. Experiments show that the proposed solution can respect

users’ constraints, while maintaining a high compression ratio. Specifically, the solution

can obtain better visual quality or data fidelity in the lossy-reconstructed data for

different applications, with the same compression ratios compared with the global error-

bounded compressor. Experiments also demonstrate good scalability in compression

time compared with the parallel file system’s I/O cost.

The rest of the thesis is organized as follows. Chapter 2 introduces existing compression

technologies and discuss related work. Chapter 3 discusses the five scientific constraints

posed by scientists across different domains. Chapter 4 formulates the research problem

based on the SZ error-bounded lossy compression model. Chapter 5 proposes a battery of

efficient algorithms to preserve the user-required constraints and also optimize the compres-

sion quality and performance for different cases. Chapter 6 presents the evaluation results.

Chapter 7 summarizes the findings and concludes with a vision of future work.

3

CHAPTER 2

RELATED WORK

Data compression is used widely in scientific research, for example to reduce data storage

and transfer size and costs. Data compressors are typically split into two classes: lossless

compression [Zstd, Gzip, Burtscher and Ratanaworabhan, 2008, Blosc compressor, 2018] and

lossy compression [Di and Cappello, 2016, Tao et al., 2017b, Lindstrom, 2014, Lindstrom and

Isenburg, 2006, Zender, 2016]. The former introduces no data loss during compression, but it

suffers from very low compression ratios (generally ∼2:1 [Son et al., 2014, Ratanaworabhan

et al., 2006]). The latter can achieve very high compression ratios [Di and Cappello, 2016,

Tao et al., 2017b, Lindstrom, 2014, Liang et al., 2018a], but potential data loss may distort

analysis results. This work focuses on error bounded lossy compression as it can reduce the

data size much more significantly while preserving enough precision for utilizing the com-

pressed data. The following sections first introduce the fundamental compression framework

and then describe existing technologies for each stage.

2.1 SZ Compression Model

The error-bounded lossy compression model implemented by SZ is illustrated in Figure 2.1.

As shown in the figure, the compression model is composed of four key stages: predic-

tion, quantization, Huffman encoding, and lossless compression. Given a set of raw data,

SZ scans the whole dataset (either pointwise [Di and Cappello, 2016, Tao et al., 2017b] or

blockwise [Liang et al., 2018a]) to predict the data values. In a 1D dataset, the prediction

method is simply a first-order Lorenzo predictor [Tao et al., 2017b], which uses only the

preceding value to approximate the current data point. In a 2D or 3D dataset, SZ adopts

a hybrid data prediction method combining the first-order Lorenzo predictor (using three

nearby values in the 2D Lorenzo and 7 nearby values in the 3D Lorenzo) and a linear-

4

regression-based predictor [Liang et al., 2018a]. Such a hybrid predictor can significantly

improve the data prediction accuracy, which in turn can substantially increase the com-

pression ratio, especially when the error bound is relatively large. The second stage in SZ

uses a linear quantization method to convert the distance between the predicted value and

original value to an integer number (called the quantization code or quantization number)

for each data point. A customized Huffman encoder is then applied to compress the integer

quantization codes, followed by a lossless dictionary coding (using Zstd [Zstd] by default in

SZ).

Prediction Quantization Huffman
Encoding Compression

Predicted
 Value

 Data
Value

Encoded
 Value

Compressed
Value

Quantization

 Code

Stage I Stage 2
Lossless

Stage 3 Stage 4

Figure 2.1: General procedure of prerequisite-preserving error-bounded lossy compression:
Constraint (A) is handled before the prediction step; constraint (B) is handled primarily in
both the prediction and quantization stage by replacing data points with Lorenzo-predicted
values; constraints (C), (D), and (E) are addressed by designing a new quantization method.

2.2 Prediction Algorithms

2.2.1 Lorenzo Prediction

The easiest prediction method is called Lorenzo Prediction. According to Tao et al. [2017b],

the value of (i0, j0) on the prediction surface can be expressed by the linear combination of

the data values in the neighborhood, as shown in Figure 2.2. Because Tao et al. [2017b]’s

evaluation results show that the first and second layer prediction yield the best results in

most datasets, we only give the formula for the first two layers here.

5

Figure 2.2: Example of Lorenzo Prediction in two-dimentional data: the point to be predicted
can be predicted by its surrounding data points.

Let V (i, j) be a function that returns the recontructed data of point (i, j). Let f(i, j) be

the prediction function for point (i, j). For the 1-layer lorenzo prediction, the formulae is

f1(i, j) = V (i, j − 1) + V (i− 1, j)− V (i− 1, j − 1) (2.1)

And for the 2-layer lorenzo prediction, the prediction formulae is

f2(i, j) =2V (i− 1, j) + 2V (i, j − 1)− 4V (i− 1, j − 1)− V (i− 2, j)− V (i, j − 2)+

2V (i− 2, j − 1) + 2V (i− 1, j − 2)− V (i− 2, j − 2)

(2.2)

Note that V does not return the original data but the reconstructed data, meaning the

prediction of previous data points will affect the prediction result for the succeeding points.

6

2.2.2 Linear Regression

Liang et al. [2018a] proposed a linear regression method to predict data points, as illustrated

in Figure 2.3. During the compression, each data block is approximated by a linear hyper-

plane with four coefficients (f(x, y, z)=β1x + β2y + β3z + β0), and thus only four coefficient

values need be stored to substitute all the data in that block. During the decompression,

each data block would be recovered by the hyperplane reconstructed with the four regression

coefficients. Without loss of generality, suppose the data block size is n3×n2×n1, then its

regression coefficients can be calculated as the following formula (dijk refers to the data

values in the data block at the location {i,j,k}).

β1 = 6
n1n2n3(n1+1)

(2Vx
n1−1 − V0)

β2 = 6
n1n2n3(n2+1)

(
2Vy
n2−1 − V0)

β3 = 6
n1n2n3(n3+1)

(2Vz
n3−1 − V0)

β0 = V0
n1n2n3

− (n1−12 β1 +
n2−1
2 β2 +

n3−1
2 β3)

(2.3)

where V0 =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

dijk, Vx =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

i ∗ dijk,

Vy =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

j ∗ dijk, Vz =

n1−1∑
i=0

n2−1∑
j=0

n3−1∑
k=0

k ∗ dijk.

In this compression method, the compression ratio can be estimated based on the follow-

ing formula. For instance, when the block size is 4×4×4, the compression ratio is 64/4=16;

when the block size is 3×3×3, the compression ratio is 27/4=6.75.

CR =
n3n2n1

4
(2.4)

7

f(x,y)=β0 +β1 x + β2 y

x
y

Figure 2.3: Illustration of linear regression model

2.2.3 Interpolation

Zhao et al. [2021] proposed a light weight cubic interpolation based prediction method for

each unknown data point by only using its four surrounding data values. This method is

claimed to outperform previous methods in terms of compression ratio (the prediction is

more accurate) but have higher computational cost. The authors reduced the computational

costs by precomputing a closed-form interpolation formula based on four specific neighbor

data points (using the data points i − 3, i − 1, i + 1 and i + 3 to predict data point i as

shown in Figure 2.4). There are two spline methods to do the prediction: (1) Linear spline;

(2) Cubic spline. The closed form formula are equation 2.5 and 2.6 respectively.

pi =
1

2
di−1 +

1

2
di+1 (2.5)

pi = −
1

16
di−3 +

9

16
di−1 +

9

16
di+1 −

1

16
di+3 (2.6)

To predict data points in the whole dataset, the interpolation method follows a level-

8

Figure 2.4: Illustration of Cubic Spline Interpolation

order pattern. Suppose the dataset has n elements in one dimension. The number of levels

required to cover all elements in this dimension is l = 1+ ceil(log2 n). In the example shown

in Figure 2.5, at level 0, the algorithm uses 0 to predict d1; at level 1, it uses d1 to predict

d9. For now d9 and d1 are not necessarily 0 because there are quantizations to drag the

predicted data back to an error bounded range. After recursively doing the interpolation

through each level, all data points would be predicted properly.

Figure 2.5: Illustration of Multilevel Linear Spline Interpolation

Such a multilevel interpolation can be applied on a multidimensional dataset. The idea

9

is that for each level, the interpolation will be done along every dimension. The details are

presented in Zhao et al. [2021]’s work, and will be omitted here.

2.3 Quantization Algorithms

Previous work all simplified this part by using an integer quantizer with a constant er-

ror bound. This thesis focuses on the quantization algorithms to make improvement for

compression performance. The following text briefly describe the existing error controlled

quantization first proposed by Tao et al. [2017b].

The design of the quantization stage is shown in Figure 2.6. The first step is to use a

prediction method to obtain a predicted value p. Tao et al. [2017b] call this value p the “first-

phase predicted value”. Then 2m−2 values are expanded from the first-phase predicted value

by sclaing the error bound linearly. And they are called the “second-phase predicted values”.

The quantization process is to add a certain integer (can be negative) times of double error

bounds to p and make the specific second-phase predicted value within the error bound from

the original value. Therefore, even if the prediction is not that accurate, the quantization

can always pull the value back to the original data unless totally unpredictable.

2.4 Encoding Algorithms

Two encoding algorithms are adpoted in the SZ compression framework: (1) Huffman En-

coding[Huffman, 1952]; (2) Run-length Encoding[Robinson and Cherry, 1967]. As they are

classic algorithms, we will only give a very succinct introduction here.

Huffman Encoding is an Entropy-based lossless compression scheme which assigns each

symbol in the data stream a unique prefix-free code. SZ will use this encoding to compress

the quantization bins. Because the prediction is supposed to be relatively precise, there

would be a large number of 0 or values near 0 in the quantization bins. The Huffman

10

Figure 2.6: Illustration of The Basic Quantization Algorithm

Encoding can significantly reduces the quantization bins’ size in SZ.

Run-length Encoding reduces size by eliminating the space taken by large number of

repeating values. An illustrative example is to encode ‘111110000222222’, the runlength en-

coding will be ‘5[1]4[0]6[2]’, which records the number of repeating times for each consecutive

pattern.

11

2.5 Lossless Compression Algorithms

Typical lossless compressors include Gzip[Gzip], LZ4[LZ4, 2018], FPC[Burtscher and Ratana-

worabhan, 2008], Fpzip[Lindstrom and Isenburg, 2006]. Gzip[Gzip] is a generic compression

tool that can compress any type of data stream, such as video stream and graph file. It

integrates LZ4 and Huffman encoding to perform the compression. LZ4[LZ4, 2018] algo-

rithm makes use of a sliding window to search the same repeated sequences of the data and

replace them with references to only one single copy existing earlier in the data stream.

FPC[Burtscher and Ratanaworabhan, 2008] is a lossless floating-point data array compres-

sor, which analyzes the IEEE 753 binary representations and leverages finite context model.

Fpzip[Lindstrom and Isenburg, 2006] was proposed to compress the HPC data by particu-

larly focusing on the floating-point data compression. Fpzip can obtain higher compression

ratio because of its more elaborate analysis on the HPC floating data, such as predictive

coding of floating-point data.

In the SZ compression framework, ZSTD[Zstd] is used by default in the lossless compres-

sion stage because of its performance evaluated in [Tao et al., 2017b][Di and Cappello, 2016].

As the focus of this thesis is not on the lossless compression, ZSTD will be adopted in the

lossless compression stage to compare fairly with previous SZ versions and demonstrate the

improvement brought by new algorithms.

2.6 Addressing Diverse User Demands

Existing error-bounded lossy compressors offer different types of error bounds to address

diverse user demands. The most common error-bounding approach involves using an absolute

error bound, which ensures that the pointwise difference between the original raw data

and reconstructed data is confined within a constant threshold. Many compressors such

as SZ [Di and Cappello, 2016, Tao et al., 2017b, Liang et al., 2018a], ZFP [Lindstrom,

12

2014, Diffenderfer et al., 2019], and MGARD [Ainsworth et al., 2018] support absolute error

bounds. Other error-bounding approaches have been explored to adapt to diverse user

requirements. For instance, SZ supports pointwise relative error bounds [Zhang et al., 2019];

and Digit Rounding [Delaunay et al., 2019], Bit Grooming [Zender, 2016], ZFP [Lindstrom,

2014], and FPZIP [Lindstrom and Isenburg, 2006] support a precision mode that allows users

to specify the number of bits to be truncated in the end of the mantissa, in order to control

the data distortion at different levels.

To satisfy user demands on a specific quality of interest, researchers have recently studied

how to respect some specific metrics. For instance, Tao et al. Tao et al. [2018] developed a

formula that can link the target peak signal-to-noise ratio (PSNR) metric to an absolute error

bound setting in SZ such that data can be compressed based on a user-specified PSNR metric.

MGARD Ainsworth et al. [2018] supports various norm error metrics and linear quantities of

interest in its multigrid compression method. However, none of the existing error-bounded

lossy compressors allow users to set particular prerequisites (or constraints/conditions) in

the error-bounded compression and hence impose a significant impediment on the practical

use of such compressors. In fact, users often have diverse precision demands for various data

value intervals or specific requirements on different spatial regions, which are determined by

their sophisticated post hoc analysis purposes and quantities or features of interest.

13

CHAPTER 3

DIVERSE CONSTRAINTS IN SCIENTIFIC DATASETS

This chapter describes a novel concept in the practical use of error-bounded lossy compression—

preserving diverse constraints specified by users.

A constraint is defined as a particular prerequisite that must be applied during the error-

bounded lossy compression. There are five types of constraints that are commonly required

in real-world science applications (see Table 3.1)

Table 3.1: Examples of user-required constraints applied to scientific simulation datasets
No. User-Required Constraints Science Domains
(A) Isolating irrelevant value Climate, Weather, etc.
(B) Preserving global value range Climate, etc.
(C) Preserving value-interval-based error bounds Weather, Cosmology, etc.
(D) Preserving multiregion-based error bounds Weather, Seismic imaging, etc.
(E) Preserving irregularly shaped regions Hydrodynamics, Weather, etc.

3.1 Irrelevant (or missing) data

Scienfitic datasets are often sparse, and missing data are often encoded in esoteric manners.

Specifically, some datasets (particularly those generated by climate and weather simulations)

often contain extremely large values (such as 1E35) that are far from the normal value

range. These values are used to indicate “missing” values or background information (such

as coastline locations). Those data points need to be recorded in the dataset for the purpose

of post hoc analysis. However, these data affect data smoothness in space, which may

substantially reduce data transform efficiency or prediction accuracy, significantly degrading

the lossy compression quality.

Although the irrelevant data contribute negatively to the compression ratio, they still

carry important information such like coastline locations. Proper restoration of those ir-

relevant data in the decompression stage is required. This thesis will provide a series of

14

algorithms to handle the irrelevant data to improve the compression ratio while making sure

they are restored after decompression.

3.2 Global value range

In some scientific datasets values outside a “normal” range may result in serious errors for

post hoc analysis. For instance, the temperature of liquid water at one standard atmospheric

pressure has a meaningful value range, which is 0◦C ∼ 100◦C. Any values outside this range

would cause incorrect post hoc analysis. For the existing error-bounded lossy compressors,

however, the reconstructed data could fall outside of the meaningful value range. For exam-

ple, if the error bound is 5◦C, some of the decompressed data values may reach up to 105◦C

or down to -5◦C, which is undesirable for water temperature.

(A) Visualization of the decompressed data (B) Visualization of the original data

Figure 3.1: Without preserving the global range, the color mapping shifts, causing significant
different visualization result compared to the original image.

Moreover, when analyzing data using visualization, often colors will be mapped according

to the value range. If the image corresponding to the decompressed data has different color

mapping compared to the original data, the visualization result will look very different, and

may harm the post hoc analysis, as shown in Figure 3.1.

15

3.3 Interval-based error bound

In practice, post hoc analyses often focus on specific value intervals within the whole dataset.

Thus, researchers may want to apply different error bounds (or precisions) based on value

intervals. For instance, environmental scientists track the location of Hurricane Katrina

Scheffner et al. [1994] by calculating the height of the water surface (overly high water

surface values indicate the location of the hurricane at that moment). Accordingly, the

researchers care only about the data whose values are greater than a threshold, such as 1

meter, in the simulation.

On the other hand, the decompressed data are supposed to be confined within the original

interval. In the Hurricane Katrina simulation, for example, if the water surface threshold is

set to 1 meter, all the reconstructed data points whose values are greater than 1 from the

previously lower-than-1 raw values would be considered “false alarms,” which is undesired

by users.

3.4 Region-based error bound

The data locations in scientific datasets always have a particular physical or chemical in-

terpretation. For example, CESM [Kay et al., 2015] records the climate change globally,

and its data indexes refer to geolocations. Researchers making use of a specific scientific

dataset generally understand which spatial regions need to be studied. Thus, it is possible

to set different error bounds across different regions of the datasets so that specific regions

of interest can be kept at a high resolution to achieve necessary data fidelity, while other

regions can be less precise to obtain a high compression ratio.

In particular, regions are required to be in regular rectangular shapes (for 2D data)

or cubic boxes (for 3D data), so that a starting position vector and a length vector can

sufficiently describe a region. For instance, if the starting position p = (100, 100, 100) and

16

the length l = (50, 50, 50), the region will be a cube with its upper left corner positioned at

(100, 100, 100) with a side length 50.

3.5 More complex error bounds

While the above constraints cover most real-world error bound requirements, some appli-

cations have more complex and fine-grained demands. For instance, geolocation-related

datasets such as those in CESM [Kay et al., 2015] may have sophisticated contours around

lands and oceans, and scientists may wish to have higher precision in land areas. In this case

the proposed solution allows users to mark a customized 2D or 3D area and use a bitmap

array to specify different error bounds for every data point. It is also possible to use the

bitmap to automate some region selection for users based on the data patterns. By ap-

plying advanced bitmap generation algorithm, the solution can preserve customized diverse

precisions for a dataset.

Since the bitmap defines an error bound for each data point, the original size of a bitmap

will be almost at the scale of original data size without proper compression. This thesis

proposes an efficient method to compress the bitmap based on some assumptions so that the

compression ratio for the bitmap can reach as high as 800, causing very limited overhead.

The details will be discussed in the succeeding chapters.

17

CHAPTER 4

PROBLEM FORMULATION

This chapter formulates the diverse constraint error-bounded lossy compression problem.

The compression work can be defined as an optimization problem, and the following text

will clarify the optimization goal and the corresponding constraints respectively.

Given a scientific dataset D composed of N floating-point values (either single precision

or double precision), the objective is to develop an error-bounded lossy compressor that can

respect a set of user-defined prerequisites (i.e., conditions) such as preserving global value

range or preserving multiple error bounds based on value intervals or different regions in the

dataset.

4.1 Optimization Goal

Three assessment metrics are considered. The first two are compression speed sc and de-

compression speed sd, respectively. They are usually measured in megabytes per second:

in other words, the size (in MB) of the original dataset processed (either compressed or

decompressed) per time unit. The third metric is compression ratio (denoted by ρ), which

is defined as follows:

ρ =
N ·sizeof(dataType)

Sizecompression
, (4.1)

where dataType can be either float or double and Sizecompression is the total size after

compression.

The optimization goal then can be formulated as Formula (4.2).

Maximize ρ

subject to user-required constraint
(4.2)

18

4.2 User-required Constraints

The user-required constraint refers to additional requirements applied to the lossy compres-

sion beyond the traditional error-bounding constraint. Five constraints listed in Table 3.1

are formulated as follows:

constraint (A): Preserve and isolate di /∈ [Rmin, Rmax] (4.3)

constraint (B): Preserve

 max(d̂i) = high(r(D))

min(d̂i) = low(r(D))
(4.4)

constraint (C): |di − d̂i| ≤ e(di) (4.5)

constraint (D, E): |di − d̂i| ≤ e(LOC(di)), (4.6)

where di∈D denotes the ith data point in the original dataset D, d̂i is its corresponding

decompressed value, low(r(D)) and high(r(D)) are the boundaries of the dataset D’s value

range r(D), e(di) denotes the user-required error bound in terms of data point di’s value (i.e.,

user-specified error bound in terms of the value interval that covers di), LOC(di) refers to

spatial location of the data point di, and e(LOC(di)) denotes the user-specified error bound

for the specific region covering LOC(di). Constraints D and E have identical formulas: the

key difference is that E allows irregular shapes, whereas D focuses on a regular shape defined

by a rectangular box or cube. We summarize all the notation in Table Table 4.1.

Here is an example to further illustrate how the research problem is formulated in this

work. As described above, researchers using the Hurricane Katrina dataset to track the

path of the hurricane are concerned only with water surface values above 1m. Based on

Formula (4.2) and Formula (4.5), the target is to maximize the compression ratio while

ensuring the relatively higher values have lower error bound (e.g., if di ≥ 1, then e(di) = 0.01;

otherwise, e(di)=0.1). Another example is the Nyx cosmological simulation with a specific

19

Table 4.1: Key Notation

Notation Description
di original data value at position i
pi predicted value of di
d̂i reconstructed data value after decompression
r(x) value interval of data point x (di)
e(x) specified error bound based on a value interval (x=r(di))
e(LOC(x)) specified error bound based on the location (x = di)
l(x) length of some value range (x = r(di))
low(r(x)) lower boundary of value interval r(x)
high(r(x)) higher boundary of value interval r(x)
q quantization index (i.e., quantization code)
qs shifted quantization number

quantity of interest dark matter halo information. According to the Nyx analysis code [NYX

simulation], the dark matter halo cells are computed based on a threshold located in the

interval of [80,85], which means that for any data point di in [80,85], their error bounds e(di)

should be lower than e(dj), where dj refers to the data points that fall outside of the critical

interval [80,85]. Such a multi-interval-based error bound setting can eliminate the distortion

of halo cells calculated by the reconstructed data with the same compression ratios. The

details will be presented in Chapter 6.

20

CHAPTER 5

ERROR-BOUNDED LOSSY COMPRESSION FRAMEWORK

WITH DIVERSE CONSTRAINTS

This chapter designs a constraint-based error-bounded lossy compression framework in the SZ

compression model Tao et al. [2017b]. All the aforementioned constraints will be addressed

in the following text.

5.1 Handling irrelevant data

In order to handle the irrelevant values correctly and efficiently, the first three stages in SZ

(i.e., prediction, quantization, and Huffman encoding) all need to be modified. The details

are as follows.

In stage 1 (data prediction), the key problem is to fill the missing values for the irrelevant

data points such that the smoothness of the data will not be destroyed by irrelevant values.

This strategy can maintain a high prediction accuracy at each data point throughout the

whole dataset. To this end, Lorenzo predicted values [Tao et al., 2017b] are adopted to replace

irrelevant values. More specifically, for a 1D dataset, the irrelevant data will be replaced by

the values of their preceding data points (di ← di−1); for a 2D dataset, di,j ← di,j−1 +

di−1,j − di−1,j−1; and for a 3D dataset, di,j,k ← di−1,j,k + di,j−1,k + di,j,k−1 − di−1,j−1,k

− di−1,j,k−1 − di,j−1,k−1 + di−1,j−1,k−1. Figure 5.1 illustrates how irrelevant values are

modified in the prediction stage for a 2D dataset. As shown in the figure, the irrelevant

value is 1E35. When encountering an irrelevant data point during compression, the values

will be estimated based on the Lorenzo predictor: for example, 1.29← 1.25+1.27−1.23; 1.33

← 1.31+1.29−1.27).

After modifying the “irrelevant” data points, two strategies are applied to preserve the

irrelevant values during the second stage of the compression pipeline.

21

1.23 1.25

1.27
1E35

1E35

1.29

1.331.31
1E35

Normal data points

Normal data points

used to fix the

missing data points

Irrelevant data

points

Figure 5.1: Illustration of how irrelevant data values are cleared in a 2D dataset.

• Strategy A: Since the irrelevant value is often a single floating-point number (such

as 1E35), we use a 1-bit array to mark whether this is an irrelevant value for each data

point (1 indicates irrelevant value, and 0 indicates normal data).

• Strategy B: Use one quantization bin (such as bin #1) from the quantization range

to mark whether the data point is an irrelevant value. Thus, there are three types of

quantization bins in this case: (1) quantization bin #0 records the unpredicted data

value as usual Tao et al. [2017b], (2) quantization bin #1 is used to mark the irrelevant

data, and (3) the remaining quantization bins are used to record the distance between

the predicted value and original value.

Each of the two strategies has its own advantages and disadvantages. Strategy A has no

impact on the distribution of quantization codes, so it can maintain high Huffman-encoding

efficiency on the quantization codes; but it suffers from an overhead of storing the extra

bit array. Strategy B does not have such an overhead; but it may affect the distribution

of quantization codes to a certain extent, which will inevitably lower the effectiveness of

compressing the quantization codes by Huffman encoder.

In the third stage (Huffman encoding), if the solution adopts strategy A, we compress the

1-bit array using Huffman encoding. This compression may significantly lower the overhead

22

because irrelevant data points are generally a small portion of the whole dataset and therefore

the 1-bit array is composed mainly of 0s (to be demonstrated in Section 6.1).

5.2 Preserving global value range

The simplest, yet suitably efficient, strategy for preserving the global value range is to

include the original value range information as metadata in the compressed data. During

decompression, when a reconstructed data value outside the “original value range” is found,

the algorithm will replace it with either the minimum value or maximum value of the value

range. This strategy introduces little computation overhead in the compression stage because

we need only to scan the dataset to find the maximum and minimum values, a process we

refer to as “preprocessing” in our evaluation. During decompression, a small computation

overhead (generally ∼10% in our experiments) may be introduced by this strategy, because

the algorithm needs to check each data point to determine whether the reconstructed value

falls outside of the original dataset’s value range. If so, it would be substituted by either the

maximum or minimum value.

5.3 Preserving value-interval error bounds

To define a series of intervals with different error bounds, an array of triplets, each containing

the low, high, and error bound was used. Figure 5.2 illustrates the fundamental idea using

a simplified diagram with relatively large error bounds. In this example the user specifies

different error bounds for four value intervals: [−100, 0), [0, 14), [14, 38), and [38, 238); the

error bounds are 10, 1, 3, and 50, respectively. Different quantization bins (whose length is

twice the error bound) are then applied in different intervals. As illustrated in the figure,

each square denotes a quantization bin in its corresponding value interval. The algorithm

calculates the total number of varied-length quantization bins involved between the predicted

23

value and the raw value during the compression and identifies the quantization bin based on

the error bounds during the decompression.
D

a
ta

 V
a
lu

e

…
…

2e=2

2e=20

2e=6

2e=100

0

-20

-40

-60

-80

-100

10

8

6

4

2

0

14

12

38

32

26

20

14

238

138

38

Range 0 Range 1 Range 2 Range 3

Figure 5.2: Multi-interval error-bound model. This example shows a few exaggerated error

bounds in each range for simplicity of description: each rectangle represents twice the error

bound in that range, and the ranges are tightly connected. The error bound will usually be

smaller in practice, and each range may contain hundreds or thousands of error bounds.

Before describing the solution in detail, the notations will be reviewed. Let di denote

the original data value at position i. Let pi denote the predicted value for di. R is used to

denote the radius of the quantization bin (for instance, if there are 65536 quantization bins,

the radius R is equal to 32768). Let d̂i denote the decompressed data value. Let r(x) be

a function that returns a value interval index based on a given data value x=di. Let e(x)

be a function that returns the user-specified error bound based on a given value interval

24

(x=r(di)). Let l(x) denote the length of some value interval based on the interval index

(x = r(di)). Let low(r(x)) and high(r(x)) denote the low boundary and high boundary of

the value interval r(x), respectively. Let q denote the quantization code, and let qs denote

the shifted quantization number.1 The notation are summarized in Table 4.1 in order to

help understand the following text.

As illustrated in Figure 5.2, this thesis proposes a multi-interval quantization method that

calculates the total number of quantization bin index based on the varied-length quantization

bins, followed by other compression techniques including Huffman encoding and dictionary

encoding (Zstd). Algorithm 1 presents the pseudocode of the multi-interval quantization in

the compression stage.

Algorithm 1 Multi-interval Quantization in Compression Stage
Input: user-specified intervals and error bounds ε
Output: compressed data stream in form of bytes

1: for each data point di do
2: Use the composed prediction that combines Lorenzo predictor and linear regression predictor to obtain

a prediction value pi.
3: Ip ← r(pi). /*Obtain interval index of pi*/
4: Id ← r(di). /*Obtain interval index of di*/
5: if Id == Ip then

6: q←round((di−pi)
2e(Id)

)./*Quantized distance between di & pi.*/

7: else if Id > Ip then

8: t =
∑Id−1

i=Ip+1
l(i)
2e(i) . /*Count bins for middle intervals.*/

9: tp = round(
high(Ip)−pi

2e(Ip)
). /*Get quantized distance for Ip.*/

10: td = round(di−low(Id)
2e(Id)

). /*Get quantized distance for Id.*/

11: q = t+ tp + td. /*Get the logic quantization code.*/
12: else
13: t =

∑Ip−1
i=Id+1

l(i)
2e(i) . /*Count bins for middle intervals.*/

14: tp = round(high(Id)−d
2e(Id)

). /*Get quantized distance for Id.*/

15: td = round(
pi−low(Ip)

2e(Ip)
). /*Get quantized distance for Ip.*/

16: q = t+ tp + td. /*Get the logic quantization code.*/
17: end if
18: qs ← q + R. /*Shift quantization code.*/
19: end for

For each data point, three relationships between the original raw value di and its predicted

1. Since the C array has no negative index in an array, the logic quantization bins [-R,R] need to be
shifted to [0, 2R] in the implementation.

25

value pi must be dealth with: (1) r(di) = r(pi): they fall in the same interval; (2) r(di) <

r(pi): the predicted data is in some range ahead of the original data; and (3) r(di) > r(pi):

the predicted data is in some range before the original data.

Situation 1 (lines 5∼6): If the original raw value di and the predicted value pi fall in

the same interval (i.e., r(di) = r(pi)), the quantization problem falls back to the traditional

linear-scale quantization Tao et al. [2017b]. Specifically, the following formulas can be used

to compute the logic quantization code and decompressed data.

q = round(di−pi
2e(r(di))

) (5.1)

d̂i = pi + 2e(r(di)) · q (5.2)

The following example illustrates how the linear-scale quantization works. Suppose the

error bound (i.e., e(r(di))) is 20 and we have di=−74, pi=−95. Then di − pi = 21 and

q = round(21/40) = 1. The decompressed value d̂i is −75, whose distance to the raw value

is less than the error bound.

Situations 2 and 3 (lines 7∼17): These correspond to the situation where the raw value

di and its predicted value pi fall in different value intervals (i.e., r(di) ̸= r(pi)). The following

text describes the situation with r(di) > r(pi) (i.e., lines 7∼11 shown in the algorithm); the

other situation is similar.

The fundamental idea in handling this situation is to adjust the quantization policy

to use various bin lengths or sizes in different value intervals. Specifically, the quantized

distance (i.e., the number of quantization bins) is counted from the predicted value to the

original raw value. Whenever the counter crosses a different interval, it continues to add the

quantization bins from the boundary of the new interval. As illustrated in Figure 5.2, suppose

the predicted value is located at -10 and the original value is 100. Then the calculation of the

quantization bins involves all the value intervals, and the quantization code is 1+7+4+1=13.

26

The decompressed data would be (38+238)/2=138. Obviously, the decompressed data value

is determined by the last value interval and its quantization bin size. The formula for

reconstructing the decompressed value is given below (assuming the raw data is greater than

the predicted value, without loss of generality):

qt = round(
di−low(r(di))−e(r(di))

2e(r(di))
) (5.3)

d̂i = low(r(di)) + e(r(di)) + 2e(r(di)) · qt. (5.4)

The decompression is described in Algorithm 2. The algorithm proceeds by executing

similar operations to the compression process but in the reverse order to obtain the decom-

pressed data from a predicted data value and the corresponding quantization bins. As shown

in the pseudocode, we first calculate the number of quantization bins for each value interval

(line 3∼5). We then decompress each data point based on the multi-interval quantization

(lines 6∼34). If the raw data value is lower than the predicted value (i.e., qj < 0), the code

will scan all the involved value ranges downward (lines 10∼29). Lines 25∼29 refer to the sit-

uation where the predicted value and original raw data value fall in the same interval. Lines

13∼23 deal with the other situation where the two data values fall in different intervals.

Note that the edge conditions need to be handled carefully. For instance, when the

original data are near the high or low bound of an interval, the quantization value in this

final interval might be equal to quantRange[i], causing the decompressed value to be in the

next interval unexpectedly. In this case, the quantization is shifted by 1 in the compression

stage to ensure the decompressed data and original data are in the same interval.

5.4 Preserving multiregion error bounds

Sometimes it is not apparent how to set different error bounds for different value intervals

in a dataset; however, one usually knows which regions are likely to be interesting and thus

27

Algorithm 2 Multi-interval Quantization in Decompression
Input: compressed data stream
Output: decompressed data stream in the form of bytes

1: Read value intervals and error bounds in the header and initialize multi-interval quantizer.
2: Read the quantization bins and unpredictable data.
3: for each interval index Ii do
4: l̂i =

l(Ii)
2e(Ii)

. /*Calculate # quantization bins for each interval*/

5: end for
6: for each decompressed data position j do
7: Use the composed prediction that combines Lorenzo predictor and linear regression predictor to obtain

a prediction value pj .
8: qj = qs − R. /*Get the logic quantization code qj*/.
9: Ip ← r(pj). /*Obtain range index of pj*/
10: if qj < 0 then
11: ∆← pj − low(Ip) /*Compute pj ’s distance to the low boundary*/

12: ∆̂← round(∆/2(e(Ip))) /*Compute quantized distance*/

13: if qj + ∆̂ < 0 then
14: for i from Ip − 1 to 1 do

15: if qj + l̂i ≥ 0 then

16: d̂j←high(i)−e(i)+(qj+1)·(2·e(i)). /*Get decompressed data*/

17: if d̂j < low(i) then

18: d̂j ← low(i) + e(i). /*Correct decompressed data*/
19: end if
20: else
21: qj ← qj + l̂i. /*Add quantization length for further search*/
22: end if
23: end for
24: else
25: d̂j ← pj + qj · 2 · (e(Ip)). /*Compute decompressed value*/

26: if d̂j < low(Ip) then

27: d̂j ← low(Ip) + e(Ip). /*Perform correction to avoid undesired boundary-crossing*/
28: end if
29: end if
30: else if qj == 0 then

31: d̂j ← pj . /*The prediction is accurate, directly use the predicted value*/
32: else if qj > 0 then
33: Calculate the decompressed data using similar methods. /*For brevity we do not include details

here. It is similar to the case when qj < 0, with just a few changes to the low and high bounds and
some calculation differences.*/

34: end if
35: end for

28

require higher precision than others. For instance, in the CESM [Kay et al., 2015] dataset,

the data indexes correspond to the geolocations, and some regions are more important than

others for particular analyses (e.g., oceans, continents). Figure 5.3 illustrates the approach

enabling users to mark interesting regions that we then use to apply a tighter error bound

on each region according to the requirement and preknowledge of the data distribution.

To reduce the overhead in (de)compression time, regions are not set to each data point;

instead, each intrablock of data are considered in the same region. To make the algorithm

simpler, the intrablock is of size 6×6×6 for 3D data, which is consistent with SZ’s linear

regression prediction block size Liang et al. [2018a]. The undesired side-effect of this method

is that the user-customized region (a regular box) may cut through some intrablocks. Since

the data have to be compressed/decompressed in the unit of blocks (e.g., 6×6×6 for 3D

data), some storage overhead occurs at the edge of the customized region. This storage

overhead is acceptable because the region of interest is relatively large in practice (at a scale

of several thousands) while the block size is far smaller (such as 6×6×6). Keep in mind that

the purpose of proposing this region-based algorithm is to reduce the compressed data size

while preserving precision for post hoc analysis.

The whole process can be done in the quantization stage if the predictor is fixed, since the

varied error bounds will take effect only when calculating the quantization code. However,

when composing the linear regression predictor and Lorenzo predictor together, the data

sampling process will need a correct error bound to select an optimal predictor for the

current block. The varying error bounds can cause the predictor selection to yield a bad

result. This challenge exists in all kinds of blockwise compression where predictors may

change according to the error bound for each block. The solution to this problem will be

described in Chapter 5.6.

29

... 58 59 60 61 71 72 73 ...
1D

eb=0.01 eb=0.001

2D

... 58 59 60 61 71 72 73 ...

232

231

233

234

235

.

.

.

.

.

.

eb=0.01

eb=0.05

3D

... 58 59 60 61 71 72 73 ...

232

231

233

234

235

.

.

.

.

.

.

eb=0.01

Figure 5.3: Constraint(D) region selection for 1D, 2D, and 3D data: In 3D cases, each region
can be specified with seven parameters: the starting positions (3 parameters), the length of
each direction (3 parameters), and the error bound (1 parameter).

30

5.5 Preserving irregular regions by bitmap

To satisfy complex, customized regions of error bounds (rather than just rectangles or cubes),

this thesis introduces a bitmap error bound array (as shown in Figure 5.4). It contains a

set of integer values that indicate different data distortion levels, each of which corresponds

to a specific error bound value. Such a method allows users to specify an error bound for

each data point. However, it is not realistic to manually assign each data point an error

bound, since there are usually millions of data points. Instead, users can use third-party

software to mark a customized shape in a picture or apply computer vision techniques to

obtain contours that distinguish regions (e.g., land and ocean). Such a customized-marking

option is more accurate and flexible in practice especially in geolocation-related research (to

be demonstrated later).

Although using bitmaps supports the most complex error bound settings—allowing each

data point to have its own error bounds—there are rarely cases that require many different

error bounds to coexist in one dataset in practice. Most requirements are limited to a few

different error bounds in total, because of coherence of data in space; for example, “higher

precision may be required near the hurricane center” or “land areas need higher precisions

than ocean areas.” As such, one byte is sufficient to represent all different types of error

bounds. In other words, a byte array can be adopted to store the index of error bound for each

data point. After that, it is reasonable to apply Huffman coding and lossless compression

to compress the bitmap array. In the extreme case, the original single error bound would

be equivalent to an all-zero bitmap, which would bring almost zero overhead after proper

compression. The overhead of using a bitmap array will be presented in Chapter 6.

The bitmap solution solves a complicated error bound requirement (actually, all possible

error bound requirements) and presents an opportunity for automated error bound selection,

which may relieve scientists of having to configure advanced bitmap generation algorithms.

This solution can also have additional global advantages compared with the region-based

31

...
30

...

.

.

.

.

.

.

31 32 33 34 35 36

80

81

82

eb=0.2

eb=0.1eb=0.1

eb=0.05

eb=0.01
0 1 0 1 0 0 3

Figure 5.4: Illustration of bitmap error bound setting: Use an index to represent the error
bound for each data point, and use a separate array to store all possible error bounds.

method when different error bounds are distributed evenly across the dataset. By setting

a fixed proportion of data points with some certain error bounds, higher compression ratio,

lower root mean squared error, and comparable visual quality can be achieved (the result

will be presented in Chapter 6).

5.6 Artifact removal in multiprecision compression

The above three multiprecision compression methods may cause undesired artifacts because

of their blockwise design. As demonstrated in Figure 5.5, the two-precision setting (eb1 = 20

at ocean and eb2 = 10 at land) has a worse visual quality in the land area (with prominent

stripe-pattern artifacts) than does a uniform (eb = 20) setting. The root cause is analyzed

as follows. In fact, SZ splits each dataset into many small blocks (e.g., 6×6×6 for 3D) and

selects the better predictor between Lorenzo and linear regression based on the sampled data

points. In general, the Lorenzo predictor may work well when the error bound is relatively

low, whereas it is not as effective as linear regression when the error bound is high [Liang

et al., 2018a]. Therefore, the Lorenzo predictor would tend to be selected in each block

32

at relatively low error bounds. Based on experimental observation, the artifacts shown in

Figure 5.5 (A) are typical and are common to the Lorenzo predictor when the error bound is

relatively high. This can be verified by Figure5.5 (C), in which the corresponding land area

is using a linear regression predictor instead of Lorenzo because of increased blocksize (from

32 to 64). Although increasing the blocksize can mitigate the artifact issue to a certain

extent, the linear regression predictor may have an oversmooth visualization issue in the

corresponding blocks when the error bound is overly large, which may cause undesired block

pattern artifacts, as shown in Figures 5.5 (B) and (C)). Moreover, the compression ratio is

also degraded (compare Figure 5.5 (A) vs. (C)), which is undesired.

To overcome the artifact issue, a new predictor—called interpolation—is applied which

works well in situations with high user-required error bounds. Specifically, instead of han-

dling the data block by block, the interpolation-based method works level by level and

handles every dimension in a unified pattern without the requirement of data blocks. This

interpolation-based predictor may have much higher prediction accuracy than the linear re-

gression predictor especially at high error bounds. The details about this interpolation-based

compression method can be found in Zhao et al. [2021]’s work. This thesis combines the

multiprecision design for the linear quantization stage with the interpolation-based predic-

tor, which can thus resolve the artifact issue well. The evaluation of this method will be

presented in the next chapter.

33

(A) Bitmap with 2 precisions:
Land(eb=10), Ocean(eb=20);

CR=354, RMSE=3.61, PSNR=39.94

(B) Bitmap setting 2 precisions to
be the same (eb=20); CR=664,

RMSE=4.31; PSNR=38.40

(D) The original uncompressed
data

(C) Bitmap setting same with(A)
but change block size to 64;

CR=268, RMSE=5.29, PSNR=36.6

Figure 5.5: Multiprecision compression problem: In (A), although the RMSE and PSNR
behave normally, the continuity of the visualization seems to be broken compared with a
lower-precision setting in (B). The block size for the 2D dataset is 32 in SZ3; if we change it
to 64, we can obtain the visualization shown in (C).

34

CHAPTER 6

EXPERIMENTAL EVALUATION

This chapter evaluates all multiprecision compression methods designed above using multiple

real-world simulations, and compares the compression quality and performance with the

global constant error-bounded lossy compressor SZ, which has been verified as one of the

best error-bounded lossy compressors in most cases.

Evaluations are performed on datasets generated by seven scientific applications: QMC-

PACK QMCPack, RTM Migration, Miranda Miranda, CESM Kay et al. [2015], Nyx NYX

simulation, Hurricane Isabel Hurricane ISABELA Simulation Datasets, and Hurricane Kat-

rina Scheffner et al. [1994], as presented in Table 6.1.

Table 6.1: Basic dataset information
Dataset # Fields Dimensions Science

QMCPACK 1 33120×69×69 electronic
structure
of atoms,
molecules, and
solids

RTM 1 449×449×235 Electronic
Miranda 7 256×384×384 hydrodynamics

code for large
turbulence
simulations

CESM 79 1800×3600 Climate
Nyx 6 512×512×512 Cosmology

Hurricane Isabel 13 100×500×500 Weather
Hurricane Katrina 1 162×417642 Weather

All time measurements are performed on Argonne Bebop Machine. The machine’s con-

figuration is shown in Table 6.2.

35

Table 6.2: Machine Specifications
Partition # Nodes CPU Cores/Node Memory
bdwall 664 Intel

Xeon
E5-
2695v4

36 128 GB DDR4

6.1 Preserving Irrelevant Data (constraint A) and Global Value

Range (constraint B)

The Hurricane Isabel dataset is a good example to evaluate the preservation of irrelevant

data because this dataset contains an irrelevant data value marked as 1E35, which is well

outside the normal value range. As shown in Table 6.3, five out of 13 fields are chosen in the

dataset because these fields all contain irrelevant (or missing) data points as well as specific

value ranges. The reason why there exist missing values is that the data simulates an actual

event (hurricane) and, in the locations where there is ground, no meaningful wind speed or

pressure is recorded, thus causing missing values. More information about the dataset is

available on the website.1

Table 6.3: The 5 fields tested in the hurricane dataset
Field Description Value Range
P Pressure (weight of atmo-

sphere above a grid point)
-5471.8579/3225.4257

TC Temperature (Celsius) -83.00402/31.51576
U X wind speed (positive

means winds from west to
east)

-79.47297/85.17703

V Y wind speed (positive
means winds from south
to north)

-76.03391/82.95293

W Z wind speed (positive
means upward wind)

-9.06026/28.61434

Figure 6.1 shows the distribution of data points in the Hurricane Isabel dataset. Because

the actual value of the irrelevant data is far too large to be put in the same figure with

1. http://vis.computer.org/vis2004contest/data.html

36

Y Wind SpeedX Wind Speed

Pressure Temperature

Irrelevant
Data Irrelevant

Data

Irrelevant
Data

Irrelevant
Data

Normal data

Normal data

Normal data Normal data

Z Wind Speed

Irrelevant
Data

Normal data

Z Wind Speed

Irrelevant
Data

Normal data

Figure 6.1: Data distribution of the five fields in the hurricane dataset. The irrelevant data value is 1E35.
To visualize it in the distribution figure, the big value is modified to an outside value that is not in the
normal data range.

normal data, a value that is outside the range of each field is used to represent the irrelevant

value. The height of each bar means the total number of each value in the dataset. Every

field contains a non-negligible amount of irrelevant data, although not as many as normal

data points. While the amount of irrelevant data is small, they may severely harm the

overall compression ratio because they are mixed among normal data points, destroying the

continuity of normal data. This statement can be verified by sampling a random continuous

portion of the temperature field, as shown in Figure 6.2.

Figure 6.2 clearly shows that the irrelevant data are distributed among the normal data,

destroying the smoothness of the data space. Obviously, if predicting a normal data point

using the irrelevant data value, the prediction cannot be precise. The goal of designing such

a lossy compressor is to preserve the irrelevant data values while mitigating their influence

on the compression ratio. Note that even though these data appear to be irrelevant for

compression, they carry potentially useful information—in this case, they indicate the ground

37

Normal data

Irrelevant Data

Clear Irrelevant Data with
Lorenzo Predictor

We use 120 to
represent 1E35
for visualization

Figure 6.2: Temperature data points with (left) and without (right) irrelevant data. We show only a
sample of 10,000 points (between index 50,000 and 60,000 in the original dataset). We observe the data
points in the given index range and can see that the irrelevant data is mixed among the normal data points,
harming data continuity; after clearing them with the Lorenzo predictor, the separating effect disappears.

locations.

(A) Compression Time Comparison of Irrelevant Data
Handling Method

(B) Compression Ratio Comparison of Irrelevant Data
Handling Method

Figure 6.3: Performance of irrelevant data-handling methods: all methods slightly improve
the compression ratio with a cost of longer compression time and decompression time.

In Figure 6.3, five different ways of handling irrelevant data are investigated. Time is

measured on the Bebop machine[Bebop]. Ignore means treating all the irrelevant data as

normal data. Zero replaces all the irrelevant data by 0 for simplicity, and Clear replaces all

the irrelevant data using the Lorenzo predictor based on their nearby values (our solution).

Quant and Bitmap indicate the storage algorithm: Quant refers to using one additional

38

quantization bin to mark irrelevant data, and Bitmap indicates that we use a bit array

containing 1 and 0 to indicate whether each data point is an irrelevant value or not. (A)

shows that handling the irrelevant data may double the compression and decompression

time. The overhead is mainly in the additional traversing of the whole dataset to find,

clean, and recover the irrelevant data. Moreover, building up additional Huffman trees for

irrelevant data will add additional time to the compression and decompression. (B) shows

that handling irrelevant data is generally better than leaving them alone, but it is hard to

determine whether clearing them with the Lorenzo predictor or simply zeroing them is better.

Moreover, the simple bitmap method and quantization method exhibit similar performance.

The likely reason is that the irrelevant data take only a very small portion so that the

methods may never demonstrate a huge difference in terms of the overall compression ratio.

The conclusion is in this scenario the quantization strategy slightly outperforms storing a

bitmap.

The global range constraint is the easiest one to deal with, which requires only a traverse

in the preprocessing stage to obtain the max and min value. After the decompression, an

additional traverse will be sufficient to pull back those few points whose values are beyond

the min or max value. The time overhead is almost ignorable, as indicated in the grey bar

in Figure 6.3 (A).

6.2 Multiinterval Error-Bounded Compression (Constraint C)

Based on Visual Quality

Figures 6.4 and 6.5 show the substantial advantage of the multi-interval error bound-based

compression over the traditional constant error bounded compression, using two datasets

(QMCPACK and Miranda). Specifically, the multi-interval-based compression preserves

higher visual quality for the value intervals of interest, while achieving the same or even

higher overall compression ratios by lowering precision on insignificant value intervals. For

39

(B)Multi-Ranges; CR=210; [-17, -8)
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1;

RMSE[-8,-5]=0.086, PSNR=51.35

(A)Global Range; CR=210;
[-17, 17] eb=0.4;

RMSE[-8,-5]=0.233, PSNR=43.04

Artifacts

Fewer Artifacts

(C)Original Data

(D)Data Distribution

Interesting
Range

Although the majority
data gather around 0,
the interesting data

are sparse

Higher Precision
in this range

Figure 6.4: QMCPACK data: (A) The basic method is setting one error bound for the global
range. Obvious artifacts are visible in the blue area. (B) Apply the multi-interval algorithm,
set the interesting range [-8,-5) and give it a tighter error bound 0.15 while leaving other
ranges a higher error bound 1. Fewer artifacts are observed, while the compression ratio is
kept the same as the global range method. Compared with the original data shown in (C),
the data in the interesting range have better visualization results.

40

(C) Original data(A)CR=206;Global Range and single error
bound: [0.5, 3.5) eb=0.07;

RMSE[1.4,2]=0.036, PSNR=34.801

(B)CR=207; Multi-Ranges: [0.5, 1.4)
eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1;

RMSE[1.4,2]=0.027, PSNR=37.193

Artifacts

Fewer Artifacts

(D) Data Distribution

Interesting
Range

Higher Precision
in this rangeImprove: Use a tighter error bound for the

interesting range and thus a higher precision.

Figure 6.5: Miranda density slice No. 120. Comparing B with A, we can see that not only can the multi-
interval solution preserve a high precision at a value range of interest with high compression ratio, but it
also prevents the blue regions from getting distorted.

instance, in the QMCPACK dataset, over 90% of the data points are located around 0, but

they are smooth and easy to be predicted by neighboring data points; however, the data

points with values in the interval of [−8,−5] are the sparse interesting values that are harder

to be predicted accurately. That is, they are more important to preserve the overall visual

quality because the distortion of their values is easier to observe in the visualization image.

The proposed method grants a tighter error bound and thus a higher precision in the

more important value intervals, while allowing more distortion in insignificant value ranges,

such that the overall compression ratio is not degraded. Detailed evaluation results are

shown in Table 6.4 and Table 6.5. Given similar compression ratios, the proposed method

can achieve lower RMSE and higher PSNR in the critical value interval.

41

Table 6.4: QMCPACK RMSE & PSNR Comparison
Method Range eb RMSE PSNR

[-17, -8] 0.232 43.067
Global Range [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17, -8] 1.0 0.538 35.747
Multi-Intervals [-8, -5] 0.15 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

Table 6.5: Miranda density RMSE & PSNR Comparison
Method Range eb RMSE PSNR

[0.5, 1.4] 0.012 44.804
Global Range [1.4, 2] 0.07 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379

[0.5, 1.4] 0.1 0.013 43.5813
Multi-Intervals [1.4, 2] 0.05 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

6.3 Multi-Interval Error-Bounded Compression Based on Post

Hoc Analysis in Nyx Cosmological Simulation

This section considers compression of the Nyx cosmological simulation with a specific quan-

tity of interest (i.e., dark matter halo cell information). Dark matter halos play an important

role in the formation and evolution of galaxies and consequently in cosmological simulations.

Halos are overdensities in the dark matter distribution and can be identified by using differ-

ent algorithms; in this instance, the Friends-of-Friends algorithm Davis et al. [1985] is used.

For the Nyx simulation, which is an Eulerian simulation instead of a Lagrangian simulation,

the halo-finding algorithm uses density data to identify halos Friesen et al. [2016]. For de-

compressed data, some of the information can be distorted from the original, such as halo

cells and halo mass.

Figure 6.6 demonstrates that setting different error bounds for different value intervals in

Nyx simulation datasets can preserve the features of interest (i.e., halo cells in this example)

better than global-range error-bounded compression can. The key reason is that according

42

(A) Original Data (B) Fallback Compress (C) Multi-Interval Compress

Figure 6.6: Nyx halo cell visualization: The fallback method sets a global error bound to be
0.5, and the compression ratio is 75. The proposed solution (C) sets three ranges: [min, 81)
with error bound 1, [81, 83) with error bound 0.01, and [83, max) with error bound 1, and
the compression ratio is 78. In the visualization, our solution (C) has cells almost identical
to the original data’s result, while the fallback method (B) shows some distortion and the
cells’ position and number are not identical to (A).

to the Nyx halo analysis code, the values in the range of [81,83] need to be extremely precise

(the reason is related to the sophisticated physics, and we ignore the details here). For the

compression task, three value ranges are set: a smaller error bound (0.1) is assigned to the

data in the range of [81,83]. In this way the overall compression ratio will get higher with

less distortion on the halo visualization result, as shown in Figure 6.6.

Table 6.6 shows the substantially higher precision of the proposed multi-interval error-

bounded compression over global-range error-bounded compression. RMSE (root mean

square error) of cell number differences of halos and RMSE of mass differences of halos

are used in comparison with original data as two main metrics to evaluate the results.

Specifically, when passed through the post hoc analysis, the multi-interval solution can lead

to much lower RMSE of cell number and RMSE of halo mass compared with the original

RMSE under the global-range error-bounded compression.

43

Table 6.6: Comparison of Different Range Settings. Fallback sets only a global error bound
(here 0.01 and 0.5), and the multi-interval solution uses the proposed multi-interval error-
bounded compression with three error bounds ([min, 81)=1, [81, 83)=0.01, and [83,max)=1)

Method RMSE of cell number RMSE of halo mass
Fallback-0.01: 0.089 125.84
Fallback-0.5: 2.820 429.26
Multi-interval: 0.198 135.41

6.4 Multi-Interval Error-Bounded Compression Using Hurricane

Katrina Simulation

This section investigates the combination of our methods on the Hurricane Katrina dataset.

The combined methods include handling irrelevant data, multi-interval error bound settings,

and different predictor settings (LorenzolLinear regression). A performance boost after ap-

plying the proposed algorithms will be shown, and it is also a good example to see that the

multi-interval constraint indeed exists in the real-world scientific simulations.

Hurricane Katrina was one of the most devastating storms and the deadliest hurricane in

the history of the United States because of its resulted significantly high storm surge (over

10 meters on the Mississippi coast) and high velocity. To model Katrina, the study area

was discretized into 417,642 nodes forming 826,866 unstructured meshes. The simulation

was performed with a 1-second time step, from 18:00 UTC August 23 through 12:00 UTC

August 30, 2005. The output hourly water elevation data downloaded from the ADCIRC

website (adcirc.org) was used in this study, and the water elevation contour map with a

1-meter interval at four times—3:00 am and 17:00 pm UTC August 28 and 3:00 am UTC

and 14:00 pm UTC August 29—was plotted for illustrative comparison.

Katrina caused water elevation, and the elevation above 1 meter is considered to be sig-

nificant; thus the hope is to preserve the information of the elevation data that are above 1

meter more precisely (the multi-interval constraint). Moreover, some data points do not have

meaningful values in this dataset and are represented by -99999 (irrelevant data). Therefore,

proper treatment to these values is needed to mitigate their influence on the compression per-

44

(D) Composed; Double
Ranges: [-1, 1) eb=0.1, [1, 10)

eb=0.01; CR=50.78;

(1)

(2)

(3)

(A)Original* Composed;
Global Range eb=0.01;

CR=38.40;

(C)Fallback Composed; Global
Range eb=0.1; CR=42.9;

(E)Lorenzo Multirange [-1, 0.98)
eb=0.2; [0.98, 1.02) eb=0.001;

[1.02, 10) eb=0.01; CR=80

(B)Fallback Lorenzo; Global
Range eb=0.1; CR=37;

Figure 6.7: Hurricane Katrina data: Each row is a frame of the Katrina simulation: (1)
is frame 120, (2) is frame 130, and (3) is frame 141. Each column represents a different
setting of ranges and error bounds. Most of the blue data points in the graphs are close
to zero. By applying a global range with error bound to be 0.01 with our solution, the
visualization is almost identical to the original data’s, and therefore one column (A) is used
to demonstrate the visualization result as a reference. The fallback version shown in (B) is to
use the original 1D SZ compressor, which has only the Lorenzo predictor and does not handle
the irrelevant data; thus it has the lowest compression ratio even with a higher error bound
0.1. “Composed” in (C) and (D) means using a composed Lorenzo and linear regression
predictor to predict values. “Lorenzo” in (E) means using only the Lorenzo predictor with
no linear regression. Comparing (B) and (C), the proposed solution wins on the global range
test by handling the irrelevant data and using the composed predictor (both Lorenzo and
linear regression). Comparing (C) and (D), the multi-interval solution wins in both the
compression ratio and visualization result. Comparing (D) and (E), a further improvement
on the compression ratio can be made by using the Lorenzo predictor only and allowing some
distortion in the deep blue area.

formance. By considering both irrelevant data and multi-interval error-bound prerequisites,

the compression quality (as shown in Figure 6.7) can be improved significantly compared

with the original compression quality under the state-of-the-art SZ 2.1; see Figure 6.7 (D)

and (E) vs. (B) and (C).

45

6.5 Multiregion Error-Bounded Compression (constraint D)

Based on Visual Quality

(A) Oursol (CR=54): multiple regions, create a
small region-box for each significant region [190 0
0:20 69 69], [290 0 0:20 69 69], [390 0 0:20 69 69],

and give each region a dedicated error bound.

(B) Original Data: the value ranges for the
demonstrated regions are different, and each
region requires a different precision to have a

good visualization result.

(C) SZ3 All-0.01 (CR=27): the old method
cannot take care of all regions. Even when
giving a quite tight error bound 0.01, some

regions will be hugely distorted.

S-200S-300S-400 S-200S-300S-400 S-200S-300S-400

Figure 6.8: QMCPACK visual quality comparison: Each slice has 69×69 pixels. We select
slice 200, 300, and 400 to observe the visual distortion because each has a different range:
slice 200 has range [-0.06, 0], slice 300 has range [-0.0016, 0], and slice 400 has range [-0.0025,
0.0005].

To demonstrate the unique power of region-based compression method, post hoc analysis

on three regions is performed in the QMCPACK dataset: slices 200, 300, and 400. Since

each slice will usually be observed in one analysis step, it is better to set a suitable error

bound for each slice instead of using a uniform error bound. For example, an error bound

0.001 might be suitable for a slice with the data value range [-0.5, 0.5] but would be too

large for a slice with a range [-0.0025, 0.0005]. In Figure 6.8, significant distortion can be

observed in the selected regions in (C) even though the error bound is generally small (0.01)

for the whole dataset. The proposed solution improves the quality by applying tighter error

bounds on the three regions/slices. The compression ratio may not drop clearly, because the

“tight-error-bound regions” are small compared to the global dataset.

In addition to taking care of some chosen slices with specific regions, the region-based

compression algorithm can achieve the effect of “different precisions for different areas” in

each slice. As shown in Figure 6.9, the left-bottom corner has much better visual quality than

46

the rest has. These two examples demonstrate the flexibility and locality of this region-based

compression algorithm. In general, setting some small regions for some parts of the data that

are of interest to the researchers will not influence the global compression quality. Moreover,

researchers can set any number of regions in any parts of the dataset. Although it does

not make sense to set hundreds of regions to select every possible interesting data points,

the region-based algorithm offers the flexibility to accommodate complex requirements and

demands.

High Precision
Region

Low Precision
Region

Artifacts

Figure 6.9: QMCPACK Slice 450, value range [0, 8]: A higher precision 0.001 for data in
the area where x ∈ [0, 30] and y ∈ [30, 69], while keeping the error bound of other areas 0.5;
The compression ratio is 242, and the SZ3 method with global error bound equal to 0.5 has
a compression ratio 243. The region almost does not harm the compression ratio at all.

The feature “different precisions for different areas” is extremely useful in climate data.

Scientists and policy makers from different nations may share the same global climate data

while focusing on their own country’s details. The CLDHGH field in the CESM dataset

is used to exemplify this feature. Since the dataset has a rather tight value range and the

neighboring values are quite smooth, it is hard to visualize the difference directly between

the decompressed data and the original data in a small picture. The difference between each

data point is calculated and then visualized instead. In Figure 6.10 (B), it is obvious that

47

(A) CLDHGH Data(1800×3600): The climate data
map, the shape of which corresponds to the

geolocations on earth.

(B) The difference image using region-based

compression

Figure 6.10: CESM with a region: while keeping the compression ratio high (CR=316), the
interesting region is more precise (eb=0.01). The error bound for the rest regions is 0.02 in
this example. If using the SZ3’s global error bound, to reach eb=0.01 for the desired area,
the compression ratio is 57.

the data inside the region (circled by a red rectangle) are much more precise than the other

areas as there are almost no artifacts in the difference image. To reach the desired precision

for the regions of interest, the region-based method clearly outperforms the traditional SZ

compressor.

The (de)compression time overhead of both multi-interval and multi-region methods is

also evaluated. The overhead of multi-region method is proportional to the number of

regions, as each block needs to check the region list to find which region it belongs to, while

the overhead of multi-interval method is highly related to the precision of prediction. To

make the performance measurement as fair as possible, the same error bounds are used for

all regions and value-intervals on six datasets. Five different regions/intervals are set for

each compression to guarantee the overhead is observable.

The compression tasks are performed on Bebop bdwall partition with a single node, and

the average of 10 runnings for each compression configuration is recorded. As shown in

Figure 6.11 and Table 6.7, the compression time overheads of both multi-interval method

and region-based method are not very high. The region-based method has slightly smaller

48

Figure 6.11: Compression time comparison: The reference point is the Fallback version,
which means using a uniform error bound for all data points. The overhead of region-based
method is slightly lower than the multi-interval method.

overhead compared to the multi-interval method. The main reason is that the proposed

region-based method does not follow a point-to-point evaluation, instead, each intra block

is stipulated to be of the same region, cutting down lots of unnecessary computation. The

same approach cannot be applied to the multi-interval method because the assumption that

neighboring points are in the same value interval does not hold, and actually, they are very

likely to be in two different value intervals specified by the user. To conclude, both methods

lead to a certain compression time overhead, while the overheads are confined within an

acceptable range.

Table 6.7: Compression Time and Overhead of Interval/Region/Fallback Methods
Method CESM QMC RTM MIRAN NYX ISAB

Interval(s) 0.20 5.39 1.20 1.08 5.70 1.08
Region(s) 0.19 4.94 1.18 1.03 5.46 1.01

Fallback(s) 0.18 4.80 1.12 1.00 5.18 0.96

Interval% 8.9% 12.3% 7.1% 6.8% 10.0% 13.0%
Region% 3.3% 3.0% 5.4% 1.9% 5.4% 5.7%

49

6.6 Bitmap Specified Error Bound Compression (constraint E)

Without loss of generality, users are assumed to be capable of marking the regions of interest

by a third-party GUI toolkit, generating a bitmap array, which can thus allow users to specify

fine-grained error bounds for irregular regions of interest. A bitmap defines the most concrete

error bound information as it specifies an error bound for each data point. The overhead of

storing a bitmap is non-negligible if not properly compressed. The following text presents

the evaluation results about the bitmap solution in two situations: (1) the bitmap array is

a background information which is stored separately by users as a metadata (e.g., the world

map); (2) the bitmap needs to be stored with compressed data so it needs to be compressed

as well.

Situation 1

The CESM dataset is a good example to evaluate this bitmap method. By setting different

error bounds to ocean or land areas, the users can skip the details of uninteresting areas

(either land or ocean) to achieve enough precision for only the regions of interest, with

improved compression ratios. The proposed bitmap solution can help users specify different

precisions in a fine granularity on irregular regions, by contrast with the other regular-region

based multi-error-bounded compression method.

In the CESM dataset, the bitmap array is retrieved by using the LANDFRAC field,

because it is a good match for separating the land and ocean area in a world map (as shown

in Figure 6.12 (F)). Applying LANDFRAC as the bitmap, four different compression settings

(described in Table 6.8) are tested on the other five data fields, as shown in Table 6.9. It can

be observed that the bitmap solution sacrifices the precision in the red area and can obtain

a higher compression ratio. The overall PSNR will decrease when enlarging the error bound

for red areas but the compression quality for the interesting areas (here, the blue areas are

considered interesting areas) remain the same — P 0 almost does not decrease while P 1

50

(A)CLDLOW (B)FREQSH (C)LHFLX

(D)PBLH (E)TSMN (F)LANDFRAC

Figure 6.12: Six Fields in CESM: the visualization indicates that bitmap-separated precisions
may be suitable to compress these fields.

decreases due to a larger error bound set in the corresponding area.

Table 6.9 demonstrates that the region-based multi-error-bounded compression method

sigificantly outperforms all other solutions in compression quality. The key reason is two-

fold. (1) The bitmap mehtod can be used to fine-tune the precisions for different irregular

regions, which can preserve the quality for regions of interest more effectively while reaching

a high comipression ratio. This can be verified by comparing the setting C and D in the

table. (2) As discussed in Section 5.6, the interpolation predictor is much more effective

than linear-regression predictor used by SZ2.1. This can be verified by comparing setting

A and C in the table. The artifact issue described in Section 5.6 does not exist any more

when applying the interpolation predictor, based on experiments. The visualization image

is omitted here because of space limit. In fact, its visualization for the interpolation method

is identical to Figure 5.5 (D).

51

Table 6.8: Compression Setting Definition
Setting Description

A SZ2.1 [Liang et al., 2018a]: Lorenzo
& Linear Regression Predictor with
one global error bound

B Use SZ2.1’s predictor, but adopt two
error bounds set by a bitmap array

C Interpolation based Compression
with one uniform error bound [Zhao
et al., 2021]

D The proposed region based error
bounded compressor with two error
bounds set by a bitmap

Situation 2

In the second situation where the bitmap array needs to be stored together with the com-

pressed data, the bitmap array is compressed by integer-based Huffman encoding Di and

Cappello [2016] and Zstd Zstd. Specifically, the input data would be the integer bitmap

array with the same number of elements as the original dataset.

Table 6.9 also shows the compression ratio of the region-based multi-error-bounded lossy

compression method (denoted as CR’) after embedding the bitmap into the compressed data.

Since uniform error bounded compression does not need to store bitmap array, this column

shows only the compression ratios for setting B and setting D. It is clear to observe that CR’

is close to the CR (i.e., the compression ratio without storing bitmap array) in most of cases.

This is because the bitmap array is fairly easy to compress with high ratios (reach ∼800 in

this example) because of the limited number of error bounds. In fact, it is very common

to have a very limited number of error bounds in practice because because of the limited

number of value intervals of interest or the regions of interest in general. Accordingly, the

error bound values would likely exhibit repeated patterns in the bitmap array, especially for

the consecutive data points in space, leading to a very high compression ratio.

52

Table 6.9: Impact of compression settings on compression ratio (CR) and PSNR for the
six CESM fields of Fig 18: P 0/P 1 are the PSNR in the bitmap separated blue/red area
respectively; CR’ is the compression ratio that takes the bitmap into account

Data Field Setting CR CR’ PSNR P 0 P 1
CLDLOW A: eb=0.01 21 - 44.94 46.74 49.59
min=-0.1 B: eb=0.01, 0.1 30 29.0 29.71 46.74 29.73
max=1 C: eb=0.01 138 - 47.14 49.23 51.26

D: eb=0.01, 0.1 224 176.6 32.31 49.22 32.34
FREQSH A: eb=0.01 16 - 44.73 46.76 48.97
min=0 B: eb=0.01, 0.1 22 21.4 28.67 46.76 28.67
max=1 C: eb=0.01 88 - 46.79 48.83 50.99

D: eb= 0.01, 0.1 126 109.5 32.10 48.83 32.13
LHFLX A: eb=1 30 - 60.27 62.28 64.55
min=-100 B: eb=1, 10 48 45.4 49.36 62.28 49.55
max=600 C: eb=1 106 - 62.41 64.58 66.40

D: eb= 1, 10 216 171.6 47.81 64.63 47.84
PBLH A: eb=5 37 - 53.04 55.20 57.07
min=0 B: eb=5, 15 45 42.7 47.72 55.20 48.55
max=1600 C: eb=5 107 - 55.03 57.24 58.99

D: eb= 5, 15 169 140.5 49.23 57.26 49.93
TSMN A: eb=1 66 - 44.78 47.04 48.64
min=200 B: eb=1, 10 191 155.4 36.19 47.04 36.51
max=310 C: eb=1 292 - 47.14 49.41 50.99

D: eb= 1, 10 812 411.5 31.64 49.24 31.66

6.7 Compression Time and Scalability

To evaluate the compression time and scalability, a series of tests are performed in parallel

on thousands of CPU cores from Argonne LCRC Bebop supercomputer Bebop.

The dataset used to do the performance/scalability tests is QMCPack. This dataset is

chosen because the size is more than 600MB as per file and it is stored in binary form so that

the compression does not involve HDF5 plugins and other data extraction steps. The benefit

is that the time cost by each step of the algorithms can be accurately recorded. Further, the

multi-interval method takes the most amount of time among all multi-precision methods.

The result is demonstrated using multi-interval algorithm so that it can serve as an upper

bound for other methods. To be consistent with the previous quality tests, the multi-interval

53

error-bound requirement is set as follows: the data points in the range of [-8, -5) has much

higher precision than the data points in other value ranges. According to the visualization

result obtained from the previous section, it is observed that no data distortion can be viewed

by naked eyes as long as a relatively low error bound 0.15 is used. Considering the potential

impact of the lossy compression to user’s analysis, a very low error bound (1E-5) is set for

the range of interest: [-8,-5). That is, the compressor needs to use the error bound of 1E-5

for the value range [-8,-5), while the error bound needs be less than 0.15 in the other ranges.

Preserving this constraint, experiments are performed on the Bebop supercomputer with

different numbers of cores (each core has 600MB of raw data to compress). The results of

BDW partitions is shown in Figure 6.13.

Figure 6.13: BDW partition: for each pair of bars, the left side is multi-interval solution’s
result, and the right side is SZ’s result. CP/DP Time are compression/decompression time
respectively. Write ZIP/Write DP are the I/O time to write the compressed/decompressed
file respectively. Read ORG is the time to read the original file.

Based on the evaluation result, it is observed that the (de)compression time does not

increase with the number of cores, which shows that both our algorithm and SZ have very

good scalability. The key reason they are both well-scalable is that the lossy compression

adopted in practice follows an embarrassing parallel mode: there is no communication among

the execution ranks/cores. The key reason our algorithm has less compression/decompression

times than SZ is that our compression allows setting higher error bounds for non-interesting

54

ranges, which can lead to higher compression ratios.

Based on bar graphs of Figure 6.13, writing times take increasing portions with the

number of cores. Specifically, ‘Write Zip’ and ’Write DP’ refer to ‘writing compressed data

to PFS’ and ‘writing decompressed data to PFS’, respectively. Obviously, the I/O cost has

much worse scalability than the proposed lossy compression/decompression performance,

especially because of the limited number of I/O nodes used by the system. In fact, no

matter how powerful a supercomputer is, it always has a limited number of I/O node (thus

an upper bound in I/O throughput), which may easily cause a serious I/O bottleneck when

a large number of cores are used in an exascale simulation.

55

CHAPTER 7

CONCLUSION AND FUTURE WORK

This thesis proposes multiple novel error-bounded lossy compression methods that allow

preserving various user-defined constraints, which is the first attempt to the best of my

knowledge. Based on the evaluation using real-world simulations, the key findings are sum-

marized as follows:

• Multi-interval/region error-bound-based compression can significantly improve the vi-

sual quality for users with the same or even higher compression ratios.

• In the Nyx cosmology simulation, the multi-value-interval error-bounded lossy com-

pression can preserve the halo cells perfectly with a high compression ratio up to 78,

while the uniform error-bounded compression suffers significant distortion of cells.

• In the hurricane Katrina simulation, multi-interval error-bounded compression can

improve the compression ratio from 37 (based on SZ) to 80 (improved by 116%), even

with higher data fidelity in maintaining the shape of hurricane.

• Evaluation for the bitmap-based solution shows that the cost to satisfying a customized

complex region requirement is acceptable and the proposed solution can possibly be

generalized to suit all kinds of fine-grained error bound settings.

• Experiments on a supercomputer - Argonne Bebop Bebop with up to 3500+ cores show

that the proposed multi-precision lossy compressors have a very good scalability.

As future works, one can explore new data fidelity requirements used by more applications

in practice.

56

REFERENCES

Libpressio. URL https://github.com/CODARcode/libpressio.

Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. Multilevel techniques
for compression and reduction of scientific data—the univariate case. Computing and
Visualization in Science, 19(5):65–76, Dec 2018. ISSN 1433-0369.

C. A. Andrews, J. M. Davies, and G. R. Schwarz. Adaptive data compression. Proceedings
of the IEEE, 55(3):267–277, 1967. doi: 10.1109/PROC.1967.5481.

ANL Theta. https://www.alcf.anl.gov/theta, 2019. Online.

A. H. Baker, D. M. Hammerling, and T. L. Turton. Evaluating image quality measures to
assess the impact of lossy data compression applied to climate simulation data. Computer
Graphics Forum, 38(3):517–528, 2019. ISSN 0167-7055, 1467-8659. doi: 10.1111/cgf.13707.

Allison H. Baker, Haiying Xu, John M. Dennis, Michael N. Levy, Doug Nychka, Sheri A.
Mickelson, Jim Edwards, Mariana Vertenstein, and Al Wegener. A methodology for eval-
uating the impact of data compression on climate simulation data. In Proceedings of the
23rd International Symposium on High-performance Parallel and Distributed Computing,
HPDC ’14, pages 203–214, New York, NY, USA, 2014a. ACM. ISBN 978-1-4503-2749-7.
doi: 10.1145/2600212.2600217. URL http://doi.acm.org/10.1145/2600212.2600217.

Allison H. Baker, Haiying Xu, John M. Dennis, Michael N. Levy, Doug Nychka, Sheri A.
Mickelson, Jim Edwards, Mariana Vertenstein, and Al Wegener. A methodology for eval-
uating the impact of data compression on climate simulation data. In HPDC’14, pages
203–214, 2014b.

Allison H. Baker, Haiying Xu, Dorit M. Hammerling, Shaomeng Li, and John P. Clyne.
Toward a multi-method approach: Lossy data compression for climate simulation data.
In High Performance Computing, pages 30–42, Cham, 2017. Springer International Pub-
lishing. ISBN 978-3-319-67630-2.

Bebop. https://www.lcrc.anl.gov/systems/resources/bebop. Online.

Blosc compressor. http://blosc.org/, 2018. Online.

Martin Burtscher and Paruj Ratanaworabhan. FPC: A high-speed compressor for double-
precision floating-point data. IEEE Transactions on Computers, 58(1):18–31, 2008.

Jon Calhoun, Franck Cappello, Luke N Olson, Marc Snir, and William D Gropp. Ex-
ploring the feasibility of lossy compression for pde simulations. The International Jour-
nal of High Performance Computing Applications, 33(2):397–410, 2019. doi: 10.1177/
1094342018762036.

57

https://github.com/CODARcode/libpressio
https://www.alcf.anl.gov/theta
http://doi.acm.org/10.1145/2600212.2600217
https://www.lcrc.anl.gov/systems/resources/bebop
http://blosc.org/

Franck Cappello, Sheng Di, and et al. Use cases of lossy compression for floating-point
data in scientific data sets. The International Journal of High Performance Computing
Applications, 33(6):1201–1220, 2019.

Marc Davis, George Efstathiou, Carlos S Frenk, and Simon DM White. The evolution of
large-scale structure in a universe dominated by cold dark matter. The Astrophysical
Journal, 292:371–394, 1985.

X. Delaunay, A. Courtois, and F. Gouillon. Evaluation of lossless and lossy algorithms
for the compression of scientific datasets in netcdf-4 or hdf5 files. Geoscientific Model
Development, 12(9):4099–4113, 2019.

Sheng Di and Franck Cappello. Fast error-bounded lossy HPC data compression with SZ. In
IEEE International Parallel and Distributed Processing Symposium (IEEE IPDPS), pages
730–739. IEEE, 2016.

James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey Sanders, and Peter Lindstrom.
Error analysis of zfp compression for floating-point data. SIAM Journal on Scientific
Computing, 02 2019.

FastLZ. http://fastlz.org/, 2018. Online.

Andreas Fischer. A special Newton-type optimization method. Optimization, 24(3-4):269–
284, 1992.

Ian Foster, Mark Ainsworth, Bryce Allen, Julie Bessac, Franck Cappello, Jong Youl Choi,
Emil Constantinescu, Philip E Davis, Sheng Di, Wendy Di, et al. Computing just what
you need: online data analysis and reduction at extreme scales. In European Conference
on Parallel Processing, pages 3–19, 2017.

Brian Friesen, Ann Almgren, Zarija Lukić, Gunther Weber, Dmitriy Morozov, Vincent Beck-
ner, and Marcus Day. In situ and in-transit analysis of cosmological simulations. Compu-
tational Astrophysics and Cosmology, 3(1):1–18, 2016.

GA Gabriele and KM Ragsdell. OPTLIB: An optimization program library. Mechanical
Engineering Modern Design Series, 4, 1977.

A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, X. Liang, and F. Cappello. PaSTRI:
Error-bounded lossy compression for two-electron integrals in quantum chemistry. In 2018
IEEE International Conference on Cluster Computing (CLUSTER), pages 1–11, Sep. 2018.
doi: 10.1109/CLUSTER.2018.00013.

Gzip. https://www.gzip.org/. Online.

Salman Habib, Vitali Morozov, Nicholas Frontiere, Hal Finkel, Adrian Pope, Katrin Heit-
mann, Kalyan Kumaran, Venkatram Vishwanath, Tom Peterka, Joe Insley, et al. HACC:
extreme scaling and performance across diverse architectures. Communications of the
ACM, 60(1):97–104, 2016.

58

http://fastlz.org/
https://www.gzip.org/

David A. Huffman. A method for the construction of minimum-redundancy codes. Proceed-
ings of the IRE, 40(9):1098–1101, 1952. doi: 10.1109/JRPROC.1952.273898.

Hurricane ISABELA Simulation Datasets. http://vis.computer.org/vis2004contest/

data.html.

Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. Out-of-core
compression and decompression of large n-dimensional scalar fields. In Computer Graphics
Forum, volume 22, pages 343–348. Wiley Online Library, 2003.

Sian Jin, Sheng Di, Xin Liang, Jiannan Tian, Dingwen Tao, and Franck Cappello. Deepsz:
A novel framework to compress deep neural networks by using error-bounded lossy com-
pression. In Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing, HPDC ’19, pages 159–170, New York, NY, USA,
2019. ACM. ISBN 978-1-4503-6670-0. doi: 10.1145/3307681.3326608. URL http:

//doi.acm.org/10.1145/3307681.3326608.

JE Kay, C Deser, A Phillips, A Mai, C Hannay, G Strand, JM Arblaster, SC Bates, G Dan-
abasoglu, J Edwards, et al. The community earth system model (CESM), large ensemble
project: A community resource for studying climate change in the presence of internal cli-
mate variability. Bulletin of the American Meteorological Society, 96(8):1333–1349, 2015.

S. Kim, M. Kim, J. Kim, and H. Lee. Fixed-Ratio Compression of an RGBW Image and Its
Hardware Implementation. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 6(4):484–496, 2016.

Davis King. Dlib C++ Library - Optimization. URL http://dlib.net/optimization.

html#global_function_search.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Daniel Laney, Steven Langer, Christopher Weber, Peter Lindstrom, and Al Wegener. As-
sessing the effects of data compression in simulations using physically motivated metrics.
Scientific Programming, 22(2):141–155, 2014.

S. Li, S. Di, X. Liang, Z. Chen, and F. Cappello. Optimizing lossy compression with adjacent
snapshots for n-body simulation data. In 2018 IEEE International Conference on Big Data
(Big Data), pages 428–437, Dec 2018. doi: 10.1109/BigData.2018.8622101.

X. Liang, S. Di, D. Tao, Z. Chen, and F. Cappello. An efficient transformation scheme for
lossy data compression with point-wise relative error bound. In 2018 IEEE International
Conference on Cluster Computing (CLUSTER), pages 179–189, Sept. 2018. doi: 10.1109/
CLUSTER.2018.00036.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong Chen,
and Franck Cappello. Error-controlled lossy compression optimized for high compression

59

http://vis.computer.org/vis2004contest/data.html
http://vis.computer.org/vis2004contest/data.html
http://doi.acm.org/10.1145/3307681.3326608
http://doi.acm.org/10.1145/3307681.3326608
http://dlib.net/optimization.html#global_function_search
http://dlib.net/optimization.html#global_function_search

ratios of scientific datasets. In 2018 IEEE International Conference on Big Data. IEEE,
2018a.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong Chen,
and Franck Cappello. Error-controlled lossy compression optimized for high compression
ratios of scientific datasets. 2018 IEEE International Conference on Big Data (Big Data),
pages 438–447, 2018b.

Peter Lindstrom. Fixed-rate compressed floating-point arrays. IEEE transactions on visu-
alization and computer graphics, 20(12):2674–2683, 2014.

Peter Lindstrom. Error distributions of lossy floating-point compressors. In Joint Statistical
Meetings, pages 2574–2589, 2017.

Peter Lindstrom and Martin Isenburg. Fast and efficient compression of floating-point data.
IEEE Transactions on Visualization and Computer Graphics, 12(5):1245–1250, 2006.

LZ4. http://lz4.github.io/lz4/, 2018. Online.

Cédric Malherbe and Nicolas Vayatis. Global optimization of Lipschitz functions. URL
http://arxiv.org/abs/1703.02628.

Reverse Time Migration. http://www.seismiccity.com/RTM.html. Online.

Miranda. https://wci.llnl.gov/simulation/computer-codes/miranda.

NYX simulation. https://amrex-astro.github.io/Nyx. Online.

M. J. D. Powell. The NEWUOA software for unconstrained optimization without derivatives.
In G. Di Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, volume 83, pages
255–297. Springer US, 2006. ISBN 978-0-387-30063-4 978-0-387-30065-8. doi: 10.1007/
0-387-30065-1 16. URL http://link.springer.com/10.1007/0-387-30065-1_16.

Michael JD Powell. The BOBYQA algorithm for bound constrained optimization without
derivatives. Cambridge NA Report NA2009/06, University of Cambridge, Cambridge,
pages 26–46, 2009.

QMCPack. https://qmcpack.org/. Online.

Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. Fast lossless compression of scientific
floating-point data. In Data Compression Conference (DCC’06), pages 133–142, New
York, NY, USA, 2006. IEEE, IEEE.

A.H. Robinson and C. Cherry. Results of a prototype television bandwidth compression
scheme. Proceedings of the IEEE, 55(3):356–364, 1967. doi: 10.1109/PROC.1967.5493.

J. W. Ruge and K. Stüben. Algebraic multigrid. In Multigrid methods, volume 3 of Frontiers
in Applied Mathematics, pages 73–130. SIAM, Philadelphia, PA, 1987.

60

http://lz4.github.io/lz4/
http://arxiv.org/abs/1703.02628
http://www.seismiccity.com/RTM.html
https://wci.llnl.gov/simulation/computer-codes/miranda
https://amrex-astro.github.io/Nyx
http://link.springer.com/10.1007/0-387-30065-1_16
https://qmcpack.org/

Matthew J Saltzman. COIN-OR: an open-source library for optimization. In Programming
languages and systems in computational economics and finance, pages 3–32. Springer,
2002.

Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Exploration of lossy com-
pression for application-level checkpoint/restart. In Proceedings of the 2015 IEEE In-
ternational Parallel and Distributed Processing Symposium, IPDPS ’15, pages 914–922,
Washington, DC, USA, 2015a. IEEE Computer Society. ISBN 978-1-4799-8649-1. doi:
10.1109/IPDPS.2015.67. URL http://dx.doi.org/10.1109/IPDPS.2015.67.

Naoto Sasaki, Kento Sato, Toshio Endo, and Satoshi Matsuoka. Exploration of lossy com-
pression for application-level checkpoint/restart. In 2015 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pages 914–922, 2015b.

Norman W. Scheffner, David J. Mark, C. A. Blain, J. J. Westerink, and Jr. R. A. Luettich.
Adcirc: An advanced three-dimensional circulation model for shelves, coasts, and estuaries.
report 5. a tropical storm database for the east and gulf of mexico coasts of the united
states. DRP Technical Report DRP-92-6, 1994.

Scientific Data Reduction Benchmark. https://sdrbench.github.io/. Online.

Yair. Shapira. Matrix-Based Multigrid Theory and Applications. Numerical Methods and
Algorithms, 2. Springer US, New York, NY, 2. edition, 2008. ISBN 0-387-49765-X.

Snappy. https://google.github.io/snappy, 2018. Online.

Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng Liao, and
Alok Choudhary. Data compression for the exascale computing era-survey. Supercomputing
Frontiers and Innovations, 1(2):76–88, 2014.

Spring8. http://www.spring8.or.jp/en/, 2019. Online.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello. Fixed-psnr lossy compression for scientific
data. In 2018 IEEE International Conference on Cluster Computing (CLUSTER), pages
314–318, 2018.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. In-depth exploration of single-
snapshot lossy compression techniques for n-body simulations. In 2017 IEEE International
Conference on Big Data (Big Data), pages 486–493, 2017a. doi: 10.1109/BigData.2017.
8257962.

Dingwen Tao, Sheng Di, Zizhong Chen, and Franck Cappello. Significantly improving
lossy compression for scientific data sets based on multidimensional prediction and error-
controlled quantization. In IEEE International Parallel and Distributed Processing Sym-
posium (IEEE IPDPS), pages 1129–1139. IEEE, 2017b.

61

http://dx.doi.org/10.1109/IPDPS.2015.67
https://sdrbench.github.io/
https://google.github.io/snappy
http://www.spring8.or.jp/en/

Dingwen Tao, Sheng Di, Xin Liang, Zizhong Chen, and Franck Cappello. Improving per-
formance of iterative methods by lossy checkponting. In Proceedings of the 27th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing, HPDC ’18,
page 52–65, New York, NY, USA, 2018. Association for Computing Machinery. ISBN
9781450357852.

Dingwen Tao, Sheng Di, Hanqi Guo, Zizhong Chen, and Franck Cappello. Z-checker: A
framework for assessing lossy compression of scientific data. The International Jour-
nal of High Performance Computing Applications, 33(2):285–303, 2019a. doi: 10.1177/
1094342017737147.

Dingwen Tao, Sheng Di, Xin Liang, Z. Chen, and Franck Cappello. Optimizing Lossy Com-
pression Rate-Distortion from Automatic Online Selection between SZ and ZFP. IEEE
Transactions on Parallel and Distributed Systems, 30(8):1857–1871, 2019b. ISSN 1045-
9219. doi: 10.1109/TPDS.2019.2894404.

Pavlo Triantafyllides, Tasmia Reza, and Jon C. Calhoun. Analyzing the impact of lossy
compressor variability on checkpointing scientific simulations. In In the Proceedings of
the 2019 IEEE International Conference on Cluster Computing, Cluster ’19, Washington,
DC, USA, 2019. IEEE Computer Society.

Ulrich Trottenberg and Anton Schuller. Multigrid. Academic Press, Inc., Orlando, FL, 2001.
ISBN 0-12-701070-X.

Robert Underwood, Sheng Di, Jon C. Calhoun, and Franck Cappello. FRaZ: A generic high-
fidelity fixed-ratio lossy compression framework for scientific floating-point data. https:
//arxiv.org/abs/2001.06139, 2020. Online.

Data Transfer with Globus. https://www.globus.org/data-transfer. Online.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Yuri Alexeev, Hal
Finkel, and Frederic T. Chong. Full state quantum circuit simulation by using data
compression. In IEEE/ACM 30th The International Conference for High Performance
computing, Networking, Storage and Analysis (IEEE/ACM SC2019), pages 1–12, 2019a.

Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri
Alexeev, and Frederic T. Chong. Full-state quantum circuit simulation by using data com-
pression. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’19, NY, USA, 2019b. Association for Computing
Machinery. ISBN 9781450362290.

C. S. Zender. Bit grooming: statistically accurate precision-preserving quantization with
compression, evaluated in the netcdf operators (nco, v4.4.8+). Geoscientific Model Devel-
opment, 9(9):3199–3211, 2016.

Jialing Zhang, Xiaoyan Zhuo, Aekyeung Moon, Hang Liu, and Seung Woo Son. Efficient
encoding and reconstruction of HPC datasets for checkpoint/restart. In Proceedings of

62

https://arxiv.org/abs/2001.06139
https://arxiv.org/abs/2001.06139
https://www.globus.org/data-transfer

the 35th International Conference on Massive Storage Systems and Technology (IEEE
MSST19), 2019.

Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen, and
Franck Cappello. Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation. In 2021 IEEE 37th International Conference on Data Engi-
neering (ICDE), pages 1643–1654, 2021. doi: 10.1109/ICDE51399.2021.00145.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13
(4):600–612, April 2004. ISSN 1941-0042. doi: 10.1109/TIP.2003.819861.

Zstd. https://github.com/facebook/zstd/releases. Online.

63

https://github.com/facebook/zstd/releases

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Introduction
	Related Work
	SZ Compression Model
	Prediction Algorithms
	Lorenzo Prediction
	Linear Regression
	Interpolation

	Quantization Algorithms
	Encoding Algorithms
	Lossless Compression Algorithms
	Addressing Diverse User Demands

	Diverse Constraints in Scientific Datasets
	Irrelevant (or missing) data
	Global value range
	Interval-based error bound
	Region-based error bound
	More complex error bounds

	Problem Formulation
	Optimization Goal
	User-required Constraints

	Error-Bounded Lossy Compression Framework with Diverse Constraints
	Handling irrelevant data
	Preserving global value range
	Preserving value-interval error bounds
	Preserving multiregion error bounds
	Preserving irregular regions by bitmap
	Artifact removal in multiprecision compression

	Experimental Evaluation
	Preserving Irrelevant Data (constraint A) and Global Value Range (constraint B)
	Multiinterval Error-Bounded Compression (Constraint C) Based on Visual Quality
	Multi-Interval Error-Bounded Compression Based on Post Hoc Analysis in Nyx Cosmological Simulation
	Multi-Interval Error-Bounded Compression Using Hurricane Katrina Simulation
	Multiregion Error-Bounded Compression (constraint D) Based on Visual Quality
	Bitmap Specified Error Bound Compression (constraint E)
	Compression Time and Scalability

	Conclusion and Future Work
	References

