
THE UNIVERSITY OF CHICAGO

FRAMEWORKS FOR PROVIDING SUPPORT FOR

GENERAL-PURPOSE ADAPTATION IN COMPUTING SYSTEMS

A DISSERTATION PROPOSAL SUBMITTED TO

THE FACULTY OF THE PHYSICAL SCIENCES DIVISION

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

AHSAN PERVAIZ

CHICAGO, ILLINOIS

2022



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 THESIS STATEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DDS: SERVER-DRIVEN STREAM FOR VIDEO ANALYTICS . . . . . . . . . . 2

3 GOAL: GOAL-ORIENTED ADAPTATION LANGUAGE . . . . . . . . . . . . . 10

4 WASL: COORDINATING CONTROLLERS . . . . . . . . . . . . . . . . . . . . . 16

5 REMAINING WORK AND TIMELINE . . . . . . . . . . . . . . . . . . . . . . . 19

ii



LIST OF FIGURES

2.1 Difference DNN-based and traditional video streaming protocols. . . . . . . . . 4
2.2 DDS’s adaptive feedback control system dynamically tunes the low and high

quality configurations based on the difference between the estimated available
bandwidth for the next segment and that used for the previous segment. . . . . 6

2.3 DDS can handle bandwidth variance and maintain a sizeable gain over AWStream
even under substantial bandwidth fluctuations. . . . . . . . . . . . . . . . . . . 8

2.4 Performance of DDS and AWStream under real network traces . . . . . . . . . . 9

3.1 Types Of Adaptation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Existing declarative approaches result in suboptimal behavior. . . . . . . . . . . 13

4.1 Multi-Module Search Engine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



LIST OF TABLES

3.1 Properties of applications used to evaluate GOAL. . . . . . . . . . . . . . . . . . 14

5.1 Expected Timeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



ABSTRACT

Modern computer systems are becoming increasingly complex. Apart from functional cor-

rectness, they are expected to provide strict guarantees on quality-of-service (QoS), expressed

as goals, in face of unpredictable changes in operating conditions and workload. Furthermore,

these systems have a plethora of configurable variables that, combined with unpredictable

external conditions, impact the system’s QoS. All aforementioned factors make it difficult to

optimally deploy and operate modern systems.

The systems community views adaptation as a crucial capability for systems to deliver

reliable quantitative behavior in the presence of dynamic operating conditions. Prior work

suggests programming frameworks that can simply be instantiated by system. The frame-

work then monitors the system behavior and changes its configurations on behalf of the

system to ensure that the quantifiable goals are met despite unpredictable external changes.

However, A major limitation of prior frameworks is that they are implemented for a specific,

narrow set of goals and knobs. Hence, they cannot be used for complex adaptive systems that

must meet different goals using different sets of knobs for different deployments, or different

execution stages of one deployment. For such scenarios developers are expected to embed

different frameworks in their systems to support different goals. This, in turn, increases the

size of the system code base and makes development and deployment more difficult.

In our research we explore the benefits of providing a single generalized adaptation frame-

work that is agnostic of knobs and goals. We show the deployment and runtime benefits

of using such a framework in a number of real-world systems including a networked video

analytics pipeline. Our research shows that it is not only possible to implement a gen-

eralized adaptation framework but that using such a framework is more favorable from a

development, deployment and performance perspective.
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CHAPTER 1

THESIS STATEMENT

Adaptation is crucial in modern computer systems to meet quality-of-service goals in the

presence of unpredictable changes in operating conditions and workload. However, imple-

menting adaptive systems is a specialized skill. Requiring application developers to im-

plement adaptive modules for their systems creates a burden for developers who must be

experts, not only in their domain, but also in building adaptive systems and their underlying

principles, e.g. control theory or machine learning. Prior work suggests adaptation frame-

works to alleviate this burden. However, several fundamental limitations in the suggested

frameworks restrict the scenarios and applications for which they can be used. Hence, in this

body of research we propose a fully generalized adaptation framework that, with minimal

development effort, can be used to add adaptation to systems irrespective of the underlying

configurable components or goals.
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CHAPTER 2

DDS: SERVER-DRIVEN STREAM FOR VIDEO ANALYTICS

Internet video must balance between maximizing application-level quality and adapting to

limited network resources. This perennial challenge has sparked decades of research and

yielded various models of user-perceived quality of experience (QoE) and QoE-optimizing

streaming protocols. In the meantime, the proliferation of deep learning and video sensors

has ushered in new analytics-oriented applications (e.g., urban traffic analytics and safety

anomaly detection [9, 3, 6]), which also require streaming videos from cameras through

bandwidth-constrained networks [7] to remote servers for deep neural nets (DNN)-based

inference. We refer to it as machine-centric video streaming. Rather than maximizing

human-perceived QoE, machine-centric video streaming maximizes for DNN inference accu-

racy. This contrast has inspired recent efforts to compress or prune frames and pixels that

may not affect the DNN output (e.g., [73, 18, 19, 17, 75, 42, 70, 22]).

A key design question in any video streaming system is where to place the functionality of

deciding which actions can optimize application quality under limited network resources. In

traditional streaming schemes, it is the content source that decides how the video should be

best compressed and streamed. Such schemes can be referred to as source-driven approaches.

For example, in internet videos streaming (e.g., YouTube, Netflix), the server (the source)

encodes a video at several pre-determined bitrate levels, and although the mainstream pro-

tocol, DASH [4], is dubbed a client-driven protocol, the client does not provide any instant

user feedback on user-perceived QoE to let server re-encode the video. Current machine-

centric video streaming relies largely on the camera (the source) to determine which frames

and pixels to stream.

We argue that it is suboptimal for analytics-oriented applications. The source-driven

approach hinges on two premises: (1) the application-level quality can be estimated by the

video source, and (2) it is hard to measure user experience directly in real time. Both need
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to be revisited in machine-centric video streaming.

First, it is inherently difficult for the source (camera) to estimate the inference accuracy of

the server-side DNN by itself. Inference accuracy depends heavily on the compute-intensive

feature extractors (tens of neural network layers) in the server-side DNN. The disparity

between most cameras and GPU servers in their compute capability means that any camera-

side heuristics are unlikely to match the complexity of the server-side DNNs. This mismatch

leads to the suboptimal performance of the source-driven protocols. For instance, some works

use inter-frame pixel changes [17] or cheap object detectors [75] to identify and send only

the frames/regions that contain new objects, but they may consume more bandwidth than

necessary (e.g., background changes causing pixel-level differences) and/or cause more false

negatives (e.g., small objects could be missed by the cheap camera-side object detector).

Second, while eliciting real-time feedback from human users may be hard, DNN models

can provide rich and instantaneous feedback. Running an object-detection DNN on an image

returns not only detected bounding boxes, but also additional feedback for free, like the

confidence score of these detections, intermediate features, etc. Moreover, such feedback can

be extracted on-demand by probing the DNN with extra images. Such abundant feedback

information has not yet been systematically exploited by prior work.

In this work, we explore an alternative DNN-driven approach to machine-centric video

streaming, in which video compression and streaming are driven by how the server-side

DNN reacts to real-time video content. DNN-driven video streaming follows an iterative

workflow. For each video segment, the camera first sends it in low quality to the server for

DNN inference; the server runs the DNN and derives some feedback about the most relevant

regions to the DNN inference and sends this feedback to the camera; and the camera then

uses the feedback to re-encode the relevant regions in a higher quality and sends them to

the server for more accurate inference. (The workflow can have multiple iterations though

this work only considers two iterations). Essentially, by deriving feedback directly from the
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Figure 2.1: Difference DNN-based and traditional video streaming protocols.

server-side DNN, it sends high-quality content only in the minimal set of relevant regions

necessary for high inference accuracy. Moreover, unlike prior work that requires camera-side

vision processing or hardware support (e.g., [75, 17, 42]), we only need standard video codec

on the camera side. Figure 2.1 illustrates the difference between traditional video streaming

frameworks and a DNN-driven video streaming framework.

The challenge of DNN-driven protocols, however, is how to derive useful feedback from

running DNN on a low-quality video stream. We present DDS (DNN-Driven Streaming),

a concrete design which utilizes the feedback region derived from DNN output on the low-

quality video during the first iteration and sparingly uses high-quality encoding for the

relatively small number of regions of interest for the second iteration. We apply DDS to three

vision tasks: object detection, semantic segmentation, and face recognition. The insight is

that the low-quality video may not suffice to get sufficient DNN inference accuracy, but it can

produce surprisingly accurate feedback regions which intuitively require higher quality for

the DNN to achieve desirable accuracy. Feedback regions are robust to low-quality videos

because they are more akin to binary-class tasks (i.e. whether a region might contain an

object and need higher quality) than to more difficult tasks such as classifying what object

is in each region. Moreover, DDS derives feedback regions from DNN output without extra
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GPU overhead.

DDS is not the first to recognize that different pixels affect DNN accuracy differently, e.g.,

prior works also send only selected regions/frames to trigger server-side inference [75, 49].

But unlike DDS, these regions are selected either by simple camera-side logics [75] which

suffer from low accuracy, or by region-proposal networks (RPNs) [49] which are designed to

capture where objects are likely present, rather than where higher quality is needed (e.g.,

large targeted objects will be selected by RPNs but they do not need high video quality to

be accurately recognized). Using RPNs also limits the applications to object detection and

does not generalize to other tasks such as semantic segmentation. In a broader context, DDS

is related and complementary to the trend in deep learning of using attention mechanisms

(e.g., [55, 68])—attention improves DNN accuracy by focusing computation on the important

regions, while DDS improves bandwidth efficiency by sending only a few regions in high

quality to achieve the same DNN accuracy as if the whole video is sent in the highest

quality.

We evaluate DDS and a range of recent solutions [73, 70, 17, 75, 49] on three vision tasks.

Across 49 videos, we find DDS achieves same or higher accuracy while cutting bandwidth

usage by upto 59%, or uses the same bandwidth consumption while increasing accuracy by

3-9%.

Furthermore, like other video streaming protocols, DDS must adapt its bandwidth usage

to handle fluctuations in available bandwidth. There are several effective control knobs that

affect the bandwidth usage of DDS. However, we empirically find that these knobs affect the

bandwidth-accuracy tradeoff in a similar way, so DDS only tunes quality levels that are used

to encode the video for the two iterations of DDS.

To tune the low and high quality levels, we implement a feedback control system (illus-

trated in Figure 2.2). Our controller is based on prior work that proposes a virtual, adaptive

control system that can be customized for specific deployments [54, 12]. To instantiate this
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Figure 2.2: DDS’s adaptive feedback control system dynamically tunes the low and high
quality configurations based on the difference between the estimated available bandwidth
for the next segment and that used for the previous segment.

controller, DDS needs to specify three things: a bandwidth constraint to be met, feedback

for monitoring bandwidth usage, and the tunable parameters that affect bandwidth usage.

For DDS, the bandwidth constraint is the estimated available bandwidth for the next seg-

ment (labelled (1) in the figure), the feedback is the total bandwidth usage (for both low and

high quality) from the previous time segment (labelled (2) in the figure), and the tunable

parameters are the resolution and quantization parameters (i.e. the QP in Figure 2.2) of

both the low and high quality (labelled (3) in the figure). We define a segment as a fixed

number of consecutive frames that are processed by DDS as a single batch. The controller

continually estimates the base bandwidth usage; i.e. the previous segment’s bandwidth usage

if the default parameter settings had been used. The default parameter settings are defined

as the settings that consume the least amount of bandwidth. The controller then takes this

base behavior as well as the difference between the desired bandwidth constraint for the next

segment and the achieved bandwidth usage for the previous segment and computes a scaling

factor for the base bandwidth. This scaling factor is passed to an optimizer which finds the

low and high quality settings that deliver the scaled bandwidth usage while maximizing F1

score.

DDS’s dynamic bandwidth adaptation has several useful formal properties based on its
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use of feedback control.

First, the content estimator can handle dynamic video content which changes the rela-

tionship between the parameters and bandwidth usage. The adaptation mechanism uses a

Kalman Filter [71] to continually estimate the base bandwidth usage. Hence, when the video

content changes, the control model—that captures the relationship between the parameters

and bandwidth usage—will update itself, allowing DDS to capture unmodeled non-linearities

in the relationship between quality settings and bandwidth use. Intuitively, we can think of

the relationship between bandwidth usage and quality parameters as a curve and the base

bandwidth (estimated by the Kalman filter) as a tangent to that curve. When adjusting

the quality parameters, the DDS controller uses this tangent as a linear approximation to

the true behavior. Using this formulation, the bandwidth usage converges to the bandwidth

constraint in time proportional to the logarithm of the error in this estimation [54]. This

adjustment technique provides robustness in the face of shifts and variations in the system

including when there does not exist a single control model that captures all system dynamics

[24].

Second, the optimizer finds the highest quality given the bandwidth usage specified by the

controller. This optimality is achieved by scheduling configurations over multiple segments.

As the system has a small, constant number of constraints (simply respecting the bandwidth

requirement), an optimal solution can be found in constant time [45].

We evaluate DDS’s ability to handle bandwidth variation against the state-of-the-art

AWStream [73]. We compare the systems under both synthetic and real-world bandwidth

traces.

For the synthetic trace, the available bandwidth of is drawn from a normal distribution

of 900 · N(1, σ2)Kbps while we increase σ from 0.1 to 0.9. Figure 2.3 shows the accuracy

and network delay of DDS and AWStream under increasing bandwidth variance. DDS

is able to maintain a higher accuracy than AWStream. Although DDS and AWStream
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(a) Accuracy (b) Network Delay

Figure 2.3: DDS can handle bandwidth variance and maintain a sizeable gain over AWStream
even under substantial bandwidth fluctuations.

use the same bandwidth estimation strategy (average of the last two segments), DDS uses

the available bandwidth more efficiently because DDS’s feedback control system continually

adapts the model configuration parameters to bandwidth, allowing DDS to choose the best

possible configuration parameters at each instant. Even under high variance DDS maintains

a relatively low response delay while AWStream’s delay increases significantly.

Next, we compare the performance of DDS and AWStream under two 4G/LTE networks

traces [1]. However, the available bandwidth in the traces on average is greater than the

bandwidth needed to stream the original video. Hence, we scale the available bandwidth by a

constant factor to mimic settings where multiple cameras share the bottleneck bandwidth. In

particular, we scale the average bandwidth of traces to 1,100kbps and 600kbps, while retain-

ing the relative bandwidth variance in the trace. Figure 2.4 shows that DDS consistently

achieves higher accuracy under both network traces because its adaptive control system

is able to utilize the estimated available bandwidth more efficiently. Hence, DDS’s adap-

tation mechanism highlights the advantages of principled adaptation over heuristic-based

approaches.

While designing DDS’s controller we realized that not only does DDS need to meet

the bandwidth constraint but it also needs to update the bandwidth constraint itself as the
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(a) Network Trace 1 (b) Network Trace 2

Figure 2.4: Performance of DDS and AWStream under real network traces

available bandwidth changes during execution. Hence, DDS needs to update the constraint of

the controller after the controller has been initialized. After implementing this capability for

DDS, we realized that most real-world systems have similar requirements. And while prior

work has proposed adaptation frameworks to add adaptation to existing systems, to the

best of our knowledge, no existing framework allows the system to interact with any aspect

of adaptation during execution. Hence, we recognized that there is a clear gap between

adaptation requirements of modern computer systems and the capabilities existing solution.

In the following part of this body of work we take a closer look at the limitation of existing

solution for adaptation and illustrate how these limitations lead to suboptimal behavior in

several real-world systems. Finally, we propose a novel approach to address the limitations

of existing solutions by providing support for general-purpose adaptation while allowing

systems to interact with all aspects of adaptation as first-class programming objects. We

illustrate the effectiveness of our proposed approach using a number of real-world systems

and also examine how our proposed approach can be used to easily add adaptation in DDS.
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CHAPTER 3

GOAL: GOAL-ORIENTED ADAPTATION LANGUAGE

Logical correctness is no longer the only guarantee that modern software systems are expected

to provide. Increasingly, these systems—from mobile to cloud—must meet quality-of-service

goals, expressed as constrains and objectives on metrics ; e.g., request latency, energy con-

sumption and result accuracy [64, 8, 31, 53, 16]. While developing software to meet such

diverse requirements is already a challenge, the problem is further complicated by the fact

that all of these quantifiable metrics are affected not just by the application code, but also by

factors beyond program’s control like changing operating environment, input workload, and

user needs. Successful system deployment now requires applications that are both logically

correct and capable of adapting to meet a specified goal to deliver predictable quantifiable

behavior even in unpredictable dynamic environments [47, 44].

Implementing adaptive systems requires an adaptation logic (AdaptLog) that can efficiently—

at runtime—convert observed metrics into knob settings that meet the goals [72, 50, 65, 67,

35]. However, implementing a reliable and robust AdaptLog is difficult because it requires

software developers to be experts in their specific domains along with a wide range of fac-

tors that could impact the system’s ability to meet the specified goals. Furthermore, it

requires the developers to acquire specialized knowledge of the underlying principles used to

implement the AdaptLog, e.g., control theory, machine learning etc.

Existing systems employ either a heuristic or a declarative pattern to implement their

adaptation.

In heuristic approaches (Figure 3.1a), the AdaptLog is written using existing language

constructs and inter-mixed with application code that provides core functional behavior.

Heuristics have the benefit of putting the application in full control of all adaptation; i.e.,

they do not rely on some independently developed module to produce the correct behavior.

However, designing robust heuristics is quite difficult and the heuristics are not easy to port
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Figure 3.1: Types Of Adaptation.

to other systems [47, 44, 59, 27, 62]. For example, when the hardware for the Samsung

Galaxy S9 was upgraded for the S9+, the achieved performance and energy efficiency was

worse despite the better hardware [30]. The problem was tracked down to misconfigurations

in the AdaptLog of the HMP scheduler [29]. Furthermore, heuristic adaptation makes soft-

ware unwieldy and harder to maintain as embedding adaptation logic in the core program

violates separation of concerns by mixing core functionality with code for adapting to de-

liver quantifiable behavior. Additionally, even minor changes in the application code can

significantly impact the efficacy of the heuristics.

In declarative approaches (Figure 3.1b), developers use an existing adaptation framework,

packaged in the form of libraries or language runtimes [14, 60, 76, 43, 46, 15, 23, 40, 39, 32,

21, 20], to add adaptation to their applications. Developers use the frameworks’ interface to

instantiate the packaged AdaptLog and provide an adaptation specification (AdaptSpec): a

declaration of the system’s goals and the knobs that can be configured to achieve it. The

framework’s internal AdaptLog then tunes the knobs in response to any runtime changes.

The instantiated AdaptLog operates outside of the core program functionality, allowing

developers to focus on their application domain and delegate adaptation. Recent proposals

package a machine learning [16, 13, 41, 48, 69] or control theory [26, 37, 38, 32, 74, 28]
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based AdaptLog that is instantiated by the larger software system. In contrast to heuristic

approaches, declarative approaches are quite robust and achieve good separation of concerns.

Unfortunately, all existing declerative frameworks focus on a narrow, predefined set of

possible AdaptSpecs (i.e., one or two metrics and a small collection of knobs). For example,

Eon [63] only supports accuracy and energy metrics using alternative method implementa-

tions as knobs. Similarly, PowerDial [38] only supports accuracy and throughput tradeoffs

using application-level parameters as knobs.

This lack of generality arises because prior adaptation frameworks develop their Adapt-

Log using specialized models that relate specific metrics to specific knobs. Whether the

AdaptLog is based on machine learning, control theory, or heuristics, the model is essential

to predict how metrics will change in response to changes in the knob configurations, which

then guides the AdaptLog to set the knobs to ensure the goals are met. However, because

the model relates specific knobs to specific metrics, the relevant knobs and metrics need to

be enumerated before the model is constructed and that model must be reconstructed for

use with a different knobs and/or metrics. This reliance on a narrowly defined model makes

it difficult to implement a general adaptive system that can be deployed with different goals

in different environments.

The use of fixed models also prevents a system from dynamically changing AdaptSpecs

during execution. We define the runtime alteration of an AdaptSpec as meta-adaptation. For

many applications it is not enough to just adjust knob configurations; meta-adaptation is

necessary as the goals themselves must be changed in response to external conditions [34, 58].

For example, consider a CCTV camera installed with a backup battery [61]. It must always

meet a target frame rate to prevent data loss, but its other goals vary depending on power

source. On line power the system must maximize quality, however, during a power outage, it

must minimize energy to prolong battery life [2]. Running this system in either AdaptSpec

for its entire execution is suboptimal, either wasting energy on battery or lowering quality

12



Figure 3.2: Existing declarative approaches result in suboptimal behavior.

on line power. Figure 3.2 shows the execution of the CCTV system using both of the goal.

During both executions the system is able to meet its throughput constraint of 30 frames/sec.

However, not surprisingly, the AdaptSpec that maximizes quality improves peak signal-to-

noise-ratio (to 56 dB) at a cost of an average increase of 2.2 Watts, or roughly 1.5x increase in

power consumption. On the other hand, the AdaptSpec that minimizes power consumption

degrades quality unnecessarily by roughly 1.37x.

Developers add adhoc support for meta-adaptation using existing declarative approaches

by embedding several different adaptation frameworks in their application. During execution,

the system then switches between the AdaptLogs by destroying one and initializing another

to meet a different goal or tune a different set of parameters. This makes the development

of adaptive systems more difficult and requires the developer to enumerate all adaptation

requirements at the time of development. Furthermore, having to debug and maintain code

that uses interfaces of several different adaptation frameworks puts significant burden on

developers.
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Name Platform
# App.
Knobs

# Sys.
Knobs

Initial
Objective

Initial
Constraint

Change after
Meta-adaptation

CCTV Camera [37] Embedded 3 2 max(quality) thruput == 30 min(power)
Video Object Detector [51] Embedded 4 2 min(power) thruput == 20 Restrict QP
Service Oriented Architecture (SOA) [26] Server 3 N/A max(reliability) latency == 0.5 min(cost), rel == 0.6
Synthetic Aperture Radar (SAR) [66] Embedded 4 2 max(quality) thruput == 80 max(thruput), quality == 0.7
AES Encryption [33] Embedded 1 2 max(thruput) power == 1.5 max(thruput / power), block size == 256
Search Engine [11, 38] Server 1 2 min(power) thruput == 18.0 Restrict searched doc.
Optical Character Recognition (OCR) [5] Server 1 2 min(power) thruput == 8.0 max(quality), thruput == 8.0.

Table 3.1: Properties of applications used to evaluate GOAL.

To support more general and dynamic adaptation—including meta-adaptation—this work

presents GOAL: Goal-Oriented Adaptation Language. GOAL provides novel adaptation

framework implemented in Swift [10]. Its key components are its (1) runtime AdaptLog and

(2) its interface for writing AdaptSpecs.

Central to GOAL’s design is its AdaptLog, which takes the form of a virtualized, time-

variant, adaptive control system. Unlike prior approaches, GOAL’s virtual control system is

independent of any specific model relating metrics to knobs; instead, it is parameterized by

a model which is passed in at runtime. Furthermore, GOAL’s controller continually adjusts

itself at runtime while also carefully exploiting structure of optimization problems so that it

can control non-linear systems with a series of linear approximations.

GOAL’s AdaptSpecs are written using a novel domain specific language (DSL), which

is compiled just-in-time (JIT), separating the AdaptSpec declaration from system imple-

mentation. This separation allows different AdaptSpecs to be used with the same binary

for deployments with different requirements or even for changing the requirements while the

system is running. GOAL also provides a Library API so users can declare knobs and metrics

and alter these values during execution. These features support complex adaptive behavior

that would have been difficult and inefficient to implement with existing frameworks.

To demonstrate GOAL’s effectiveness, we re-implement seven adaptive applications from

the literature. Collectively, these case studies cover a wide range of metrics (throughput,

latency, accuracy, power, cost, reliability and efficiency) and knobs (at both the application

and system level, including two different hardware systems with distinct knobs). Our re-
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sults show that GOAL’s generalized approach meets goals just as well as prior work that

synthesizes AdaptLogs specifically for each application’s narrow goals and knobs [25]. To

highlight GOAL’s benefits, we then modify each application to perform meta-adaptation.

Table 3.1 outlines the implemented applications and the adaptation and meta-adaptation

requirements of each application. We observe that due to GOAL’s ability to support a wide

range of AdaptSpecs and meta-adaptation, GOAL-based applications exhibit a 1.69× aver-

age improvement in corresponding metrics after meta-adaptation is performed, compared to

prior approaches that cannot support meta-adaptation. Furthermore, we show that GOAL

incurs negligible overhead and is robust to errors in profiling, changing workloads and oper-

ating conditions.

This work makes the following contributions:

• Motivates the benefits of support general purpose adaptation and meta-adaptation.

• Proposes a general adaptation logic and runtime that supports a wide range of knobs,

metrics and goals.

• Proposes a programming framework and DSL for writing adaptation specifications.

• Implements GOAL and releases it as open source.

As mentioned earlier, control theoretic AdaptLogs provide robust performance while

meeting a higher level user-specified goal. However, using control theory for adaptation

poses three challenges: (1) AdaptLogs are difficult to design and implement, (2) AdaptLogs

are often developed for a narrow set of knobs and metrics, and (3) such AdaptLogs provide

incorrect behavior when operating in parallel with other AdaptLogs. GOAL provides so-

lutions to the first two challenges. However, GOAL does not address the third challenge.

The next part of this body of research aims to extend GOAL to tackle the challenge of

coordinating AdaptLogs so that they meet their respective goals.
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CHAPTER 4

WASL: COORDINATING CONTROLLERS

Control theoretic AdaptLogs allows systems to self-adapt to deal with unpredictable changes

in the operating conditions and workloads. Control theory provides a framework for formally

reasoning about the controlled system’s behavior. With the rise in usage of control theory

for adaptation a new challenge has emerged: how to ensure that multiple colocated adaptive

modules achieve their goals.

Prior approaches have been suggested to allow multiple modules with non-competing

goals to be operate correctly on a system [36]. However, synchronizing behavior between

two modules with competing goals is an open and challenging research problem. As an

example, consider a search engine running on a server machine. The application module

needs to meet a target energy per query while maximizing the quality of search results while

the system module is expected to meet the same energy per query target while maximizing

performance of the system. This is a concrete example of two modules with competing goals.

Decisions taken by one module impair the other modules ability to meet its goals. Hence, it

is obvious that they cannot be allowed to operate in an uncoordinated manner.

Figure 4.1 shows the execution of the aforementioned multi-module search engine appli-

cation. The application and the system modules are required to meet a target 0.5 Joules

energy per iteration while maximizing quality and maximizing performance respectively.

The figure shows that when only the system module and only the application module are

operating they are able to meet their goal quite well. They are able to meet their goal with

a MAPE of roughly 7%. However, when they are both executing in parallel, the MAPE of

the entire system increases by roughly 4×. This shows that both modules cannot be allowed

to execute in parallel in an uncoordinated manner.

Existing research has suggested synthesizing a monolithic controller that actuates knobs

for modules colocated on the system [46, 52, 57]. However, this makes such a controller
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Figure 4.1: Multi-Module Search Engine.

difficult to design, maintain and port to other systems. Another approach is to assign

priorities to controllers. This means that modules with the lowest priority sacrifice their

goal satisfaction for modules with higher priorities. This can lead to needlessly sacrificing

on the goal of lower priority agents if the goal is feasible. However, the problem at the heart

of these solutions is that all of these approaches require conflicts to be resolved at design

time making the design and implementation of multi-module adaptive systems difficult.

Furthermore, dynamically changing the modules or the requirements of a single module

becomes very difficult.

In this work, we propose a novel approach for online coordination of multiple adaptive

modules. Using our approach, individual modules share their models, knobs, goals and

gain with a coordination server. The server then negotiates contracts between individual

modules ensuring that decisions taken by one module do not negatively impact the other

module. The key insight behind the coordination is that the control actions of the module

that can impact the constrained metric more drastically (module A) should be curtailed or
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slowed down by reducing the gain appropriately. This allows the other module (module B)

to view changes made by the other controller as a gradual change in the operating conditions

which allows it to actuate knobs accordingly to continue meeting its goals. Hence, when both

modules are operating module B views the changes made by module A as a gradual change

in its operating point, while module A views changes made by module A as disturbances.

Our approach allows all modules to be developed independently, because all conflicts are

resolved at runtime. The only requirement for the modules is that the underlying adaptation

algorithm should be a model-based closed-loop feedback controller. This provides a number

of common properties that are use by the coordination server during the negotiation process.

Additionally, since our approach resolves conflicts at runtime, the user can change the number

of operating modules and their goals dynamically.
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CHAPTER 5

REMAINING WORK AND TIMELINE

The WASL project still requires a significant amount of work. There are several questions

that need to be answered for the core algorithm. During the rest of this and the following

academic year we hope to be able to answer those questions and hopefully address any related

challenges. During the first phase of evaluation, we aim to show the efficacy of our system

on the case-studies that were used for GOAL’s evaluation.

To further motivate the use of our system we will identify benchmarks from recently pub-

lished relevant works. Our current aim is to predominantly consider embedded application

benchmarks. For example, sensing applications would be great candidates for our system

because they need to manage performance, accuracy and energy tradeoffs. On such systems,

the sensing application will have goals that are competing with the goal of the underlying

system. Hence, these would be straightforward use-cases for our proposed approach. We

have already identified OpenDataCam [56] as one such application. Furthermore, we aim to

extend the individual sensor node case-study to sensor networks in which our system will be

used to coordinate nodes to meet node level goals while meeting a global network level goal.

While we will predominantly focus on embedded applications, we will also evaluate our

approach for server applications. For example, we aim to employ our approach for pipelined

systems that provide ML-as-a-service.

By evaluating our system not only for different applications but for different architectures

as well, we hope to be able to show the generality of our system which is a core part of this

body of research.

In accordance with the work still left to be done for the project we propose the following

timeline:
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Goal Expected Completion
Finalize controller prediction accuracy metric Feb 2022
Finalize gain scheduling scheme Feb - March 2022
Test system on GOAL case-studies March 2022
Implement Server & API March 2022
Find benchmarks from recent related work Feb - May 2022
Implement benchmarks from related work March - May 2022
Collect additional results May 2022
Iterate on Design of System May - June 2022
Finalized Results June 2022
Away for internship June - Sep 2022
Preparing Paper Sep - Oct 2022
Submit Paper Autumn - Winter 2022/3
Prepare Thesis Document Jan 2023
Defense Feb 2023
Formally File Thesis Apr 2023

Table 5.1: Expected Timeline
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