
Thesis Proposal: Reconstructing the Lineage of Artifacts in

Data Lakes

Mohammed Suhail Rehman

February 5, 2022

1 Introduction

Data lineage, also called provenance or pedigree, is information about data’s origin and creation pro-
cess. Lineage information is used to understand the semantics of processed data, tracing errors from
the result of a transformation back to its input data, and estimating the quality of derived data[28].
Data lineage is a crucial component that enables error tracing, troubleshooting, quality estimation, and
knowledge building in a variety of data systems ranging from relational databases[27], OLAP ware-
housing systems[11], NoSQL systems[50] and systems for the Machine Learning Lifecycle[49]. Quality
lineage is crucial for building productive and sustainable data lakes; the lack of lineage information
can affect the quality of data processed and the insights derived from data lakes[34].

Prior work in database lineage deals with lineage has always been discussed from a capture, record
or annotate perspective[27, 8, 35, 22, 49, 20]. The assumption is that the lineage management system
is running in conjunction with the core database software, monitoring accesses and logs or allowing
for API calls to record the lineage information for every artifact accessed during each data life-cycle
activity. These systems effectively solve the lineage problem going forward; none of the proposed
solutions allow for retrospective tagging/analysis of data artifacts generated in the past.

On the other hand, existing data discovery solutions[9, 53, 51] do not consider lineage at all; they
use techniques from information retrieval to process data from a query-focused perspective. These
systems are designed to handle queries such as (Retrieve all artifacts that match a set of keywords or
is a likely join or union candidate for a specific input table).

To our knowledge, there has not been any work on inferring the lineage of data artifacts in a
retrospective manner, i.e., long after they have been created, without any supporting metadata about
the artifacts that could help with the inference procedure. Such a scenario is common within poorly
maintained and governed data lakes, and is often cited as an impediment to the overall vision of
reducing the time to insight from vast amounts of data organized in a central data lake[34].

This thesis aims to be the seminal retrospective data lineage thesis - we would like to outline
the problem statement, its feasibility, applications, and solutions for the problem. Our two-pronged
approach for the thesis aims to organize data artifacts in a lake into their generating workflows; then,
lineage can be ascertained within the workflows.

2 Background

2.1 Motivation

Relational databases have been the mainstay of data processing systems since the advent of System
R[6]. Within the relational model, operational data collection and storage were typically handled by
transaction-focused OLTP systems, and analytical queries, reporting, and data exploration tasks were
handled by read-query-optimized OLAP (data warehousing) systems. Decades of database research
have helped in the fine-tuned performance optimizations of both these types of systems, as well as
the development of hybrid engines that can be used to handle both types of workloads for organized,
schema-defined data[26].

However, the explosion in data as part of the expansion of the Internet, smartphones, and sensor
networks along with the ever-increasing requirements for complex analyses, machine learning, and
analytics have resulted in a shift away from these traditional, rigid, schema-first relational databases[7].

1

Data analysts and machine learning practitioners often have to process large amounts of data
from disparate sources, using multiple tools and processes and collaboratively, often using lowest
common denominator data interchange formats such as CSV, Apache Parquet, and so on. The resulting
decentralization of data away from relational database systems has prompted the industry to converge
around the idea of data lakes – centralized, shared data repositories that allow for the storage of both
raw data from multiple sources, as well as cleaned, transformed data and machine learning models[].
The availability of cheap, easy to integrate distributed file systems such as HDFS and cloud storage
such as S3 hastened the move towards this paradigm, making it easy to set up an internet-connected
data collection and retention system that is instantly scalable on-demand. According to [5], most
Fortune 500 companies operate a two-tiered architecture where a data lake is used to ingest and feed
non-relational analytics and machine learning pipelines, while some data is ETL-ed into warehouse
systems for more traditional OLAP workloads.

While the data lake vision promises to enable data discovery, reduce time-to-insight for real-time
analytics, and enable quick machine learning training and inference turnarounds; more often than not,
the data lake reality is that of a data swamp, a so-called data dumping ground with data curation
tasks taking a back seat. In data swamps, the data quality ends up being suspect and only gets worse
over time.

Supports multiple tools,
environments, data formats

Shiny new BI/ML/Analytics
tool that just “works” with

your data store.

Write your transformed data
back into the store!

Requires disciplined data
curation to be effective
Force all lake access to go
through a logging / compliance
layer
Logical Extreme: OLAP and DW

The Data Lake Compliance / Accessibility Tradeoff

Rigid Accessible

Raw Object StoresData Lake CurationData Warehousing

Figure 1: The Compliance/Accessibility Trade-off in Data Lakes

This situation is in part due to a rigidity/accessibility trade-off (Figure 1) that encompasses
database systems, data lakes, and other data operations. Traditional relational databases and data
warehouses figure on the left, with rigid schema acting as a compliance layer which forces data to be
well-structured and enough metadata (in the form of logging/access control/schema and constraint
management) to discern lineage information[].

On the other hand, Big data architectures and data lakes are an evolving market with many
emerging technologies that are vying for market share. In order to build a customer base and ease
customer adoption, there will be a natural tendency to skew right in Figure1 (towards less rigid and
accessible solutions that fit into the existing data systems). The resulting provenance crisis in data
lakes is a significant problem that impedes the original data lake vision. As we will see in Section 2.2,
existing solutions are insufficient to discern lineage in such data swamps in a retrospective manner
and require new tools and techniques to aid in the organization of said swamps. This thesis will focus
on inferring the lineage of these data artifacts in a retrospective manner; using tools and techniques
adapted and modified from various related fields as follows:

2

2.2 Related Work

Work related to this thesis proposal can be broadly classified into the following themes:

Research in Data Lineage Ikedaet al. have summarized traditional lineage research in a survey[28],
while providing a taxonomy of lineage systems for relational and probabilistic databases. Cuiet al.
[11] proposed a taxonomy of transformations for the purposes of lineage tracing. The categorization is
based on the number of input and output tuples involved in transformation; dispatchers (1:N), aggre-
gators(N:1), and black-box transformations; the paper provides the formalism and tracing procedures
for each of these transformation types assuming that the lineage tracing procedure is capturing both
the input and output tuples as they are being processed during query execution. A more recent survey
by Herschelet al. [24] provides an application-centric overview of all of the workflow lineage solutions
proposed in the domains of science, business, data analytics, and general programming.

Online Lineage Capture / Curation / Version Control: Systems such as OrpheusDB [27] and
ProvDB [33] provide (git-style) version control for relational databases, they have substantial barriers
to adoption—and are unlikely to be used in unstructured, ad-hoc data exploration settings like in
data lakes. For data lakes, lineage capture systems both from the industry [20, 21, 8, 5, 35, 1] and
academia [8, 27, 9, 4, 52] either require access to code or explicit API calls to register and link artifacts
in a curated fashion, which requires compliance and human effort to document lineage while artifacts
are being created and offer no help in a retrospective analysis of said artifacts. At the time of writing,
the Lakehouse architecture described in [5] is gaining traction among the plethora of solutions being
proposed by companies in managing data lake complexity going forward.

Data Discovery: ReConnect [2] and Rediscover [3] attempt to discover the relationship for a given
dataset pair. These papers define a space of relevant relationships, generate the conditions for each
relationship based on row and column statistics, and then suggest a relationship for a given dataset
pair by examining the conditions. ReConnect relies on user feedback to validate candidate relation-
ships, while ReDiscover uses a machine learning model to predict the relationship. However, both
ReConnect and ReDiscover only consider a limited relationship set, i.e., containment, augmentation,
complementation, template, and incompatible, and cannot handle any mix of them. Systems such
as Aurum [9] use sampling and estimation techniques to build, maintain, and query datasets in an
Enterprise Knowledge Graph (EKG). The system uses similarity metrics like Jaccard distance and
containment to find tables with columns that are most similar to a source table; JOISE[53] speeds
up searches for top-k joinable tables in data lakes using a novel set overlap similarity search system.
Aurum and JOISE assist in query-centric similarity search; neither system makes any inferences about
lineage.

Query Synthesis: A long line of work in Query Reverse Engineering (QRE) and Query By Example
(QBE) [48, 44, 12, 45, 29, 18] focuses on reverse-engineering SQL queries that are used to transform one
artifact to another. This approach has several issues that make it challenging to apply in our problem
context. Firstly, most of this work constrains the inferred SQL queries to some subset of Select-Project-
Join-Aggregate (SPJA) and assumes a perfect solution exists in that search space. Second, the input
and output artifacts are explicitly labeled, usually within the context of a normalized database schema
with established join paths via PK/FK constraints. We argue that artifacts generated by modern
data analytics systems do not satisfy either of these conditions. Besides SQL queries, manual edits,
scripts, and programs can also be involved in data curation, transformation, and feature engineering.
We also note that inferring a concise SQL query itself is a computationally hard problem [48]. We
may complicate the problem further if we try to formulate the delta between two artifacts as SQL
queries. Finally, current work focuses on a single pair of datasets. Instead, we aim to summarize
the relationship among a collection of datasets, which poses additional challenges since it involves all
possible dataset pairs.

Document Provenance Systems A separate line of work explores retrospective lineage using sim-
ilarity scores in information retrieval for plain text documents. Deolalikar et al. [15] demonstrate a
system that combines content analysis (cosine similarity over TF-IDF vectors) with filesystem times-
tamps to generate a list of documents, ordered by the time that is most relevant to a given document.
Similarity [13, 14] uses TF-IDF over-extracted named entities to discover provenance using semantic
similarity over a set of documents. These approaches are fine-tuned for documents and are unlikely
to yield good results over large data tables, as shown by [46], which uses a complex scheme to recover

3

the semantic meaning of tables present in the web corpus and utilize the semantic keywords and rel-
evant information to power a table search system. In our context, we deal with multiple tables with
varying degrees of semantic information or named entities (e.g., a time-series table of sensor values
may have little semantic information or named entities that can be extracted from the table). Since
the tables are assumed to have some derivation or transformation relationship to one another, they
are likely to saturate these semantic information signals to the extent that makes it difficult to assess
the fine-grained differences between versions of these individual tables. Table similarity is discussed in
[36], which uses a combined Schema and Data similarity metric to measure the distance between two
web tables and is an approach that is most closely related to our proposal.

3 Thesis Proposal

3.1 Thesis Statement

We propose a method that retrospectively uses sketch and estimation techniques as well as similarity
functions applied at various levels of granularity to:

• Organize data artifacts into the individual workflows that generated them, and,

• Infer a lineage tree for said artifacts that most closely resembles their ground truth derivations.

Our technique is specifically designed to operate with tabular artifacts generated by data wran-
gling, cleaning, analysis and machine learning preparation operations. Our technique relies solely on
the contents of the data artifacts to infer their lineage within the data lake - we operate under the
assumption that file system metadata is either absent or unreliable.

3.2 Scope of the Proposal

Data Lakes are designed to be a single unified location for all the organization’s data - including raw
data ingested from multiple sources as well as the cleaned, transformed intermediate and output data
as well as the resulting machine learning models, reports and visualizations.

Inferring the raw data that was responsible for a visualization[] or trained ML model[] is out of the
scope for this proposal and is covered in part by prior work[]. Likewise, images, videos, documents,
raw text files are also not within the scope of this proposal, as they are well represented within the
existing information retrieval literature[].

In our proposed work, however, we focus solely on the tabular artifacts and attempt to organize
them by workflow and infer the lineage within each workflow. These tabular artifacts are stored in
some materialized order, along with column labels.

3.3 Generating the Output Lineage

Given that our starting point is just the artifacts from a data lake without any additional metadata
or human input to the inference process, we have decided to infer a derivation tree of all the artifacts
within the data lake. We plan to show in future work that this may be further loosened with additional
input; given timestamps or a general assumption about the data, we could infer directionality;

We shall continue with this simplifying assumption as we first discuss our system, Relic, to infer
the lineage of a single workflow:

3.3.1 The RELIC System

Relic accepts a set of tabular artifact files, with no additional metadata, including versioning or
temporal ordering information. The task is to infer the underlying lineage graph that describes the
evolution of files in the workflow. Relic generates an undirected1 tree up to (n − 1) edges that
represent its best estimate of how the n artifact files evolved from one another in a single workflow2.

1Some operations (such as join) have directionality implied, while others, such as column add/drop, may be ambiguous.
We plan to explore directional inference in future work.

2Relic works on artifacts from multiple mixed workflows; albeit with reduced accuracy.

4

RELIC Inference System

Preprocessing

Schema
Clustering

Row and
Column

Alignment
Point-Preserving Estimators

Non-Point Preserving Detectors

Cell-Level
Jaccard

Similarity

Cell-Level
Jaccard

Containment

Join Detector Pivot DetectorGroupby Detector

Input Files

Inferred Lineage Graph

Figure 2: Overall Architecture of Relic

Group-By / Aggregation PivotPoint Edits

Inner-JoinAdd / Drop ColumnsAdd / Drop Rows

Column Modifications

Column Labels

Row IDs

Values

Changed Value

(a) Point Preserving Transformations (PPT) (b) Non- Point Preserving Transformations (NPPT)

Figure 3: Types of transformations and how row-ids, columns labels and values change between these
transformations.

Relic focuses on two-types of transformations, namely point-preserving transformations (PPTs),
and non-point-preserving transformations (NPPTs) (Figure 3. PPTs are transformations with a 1:1,
1:0, or 0:1 row mapping between source and destination artifacts. A destination row either exists as a
modified version of an existing row in the source (1:1), is filtered out (1:0), or is a new row(0:1), in case
of a concatenation or row addition. Examples of PPTs include row and column selections, sampling,
or spreadsheet-style cell-level edits.

Similarly, transformations with an N:1, 1:N, or N:N row mapping between source and destination
artifacts are called non-point preserving transformations (NPPTs). Examples of NPPTs include joins,
groupbys, and pivots. Relic uses different techniques to infer edges produced by PPTs (fine-grained
distance metrics) and NPPTs (operation-specific detectors) respectively.

Our technique (outlined in Figure 2) first involves two preprocessing steps, namely, row and colum-
nar alignment of the input artifacts, followed by clustering of the artifact files by those that have
the same schema (set of column names or identifiers). We then compute pairwise distance metrics
(Jaccard distances and containment scores) to infer point-preserving artifacts, and add edges within
each schema cluster in the order of highest score. We then look at more complex relationships and
attempt edge inference between artifacts connected by a join, groupby, or pivot in that order. The
final, inferred lineage graph is output to the user for analysis. We further expand on our technique as
follows:

Preprocessing: Given a set of input tabular artifact files Fi, Relic first attempts to infer consistent
row/column mappings across all artifacts using unique key detection techniques for row matching [23]

5

and column alignment using schema matching techniques [39]. Columns that share the same column
label and same datatype (as inferred from the column values) across artifacts are considered to refer
to the same column entity. If the row-indices of two artifact files do not share at least 50% of their
values, we re-index the artifacts to align them 3. We then cluster the artifacts based on column labels,
such that artifacts that share the exact set of column labels are placed into the same cluster.

Inferring PPTs: Two pairwise distance scores are computed for each set of artifacts; the Cell-Level
Jaccard Similarity (δcell) and Cell-Level Jaccard Containment (δcontain). They are computed for a pair
of artifact files Fi and Fj as follows (Equation 1):

δcell(Fi, Fj) =
|VFi ∩ VFj |
|VFi ∪ VFj |

(1a)

δcontain(Fi, Fj) =
|VFi ∩ VFj |

min(|VFi |, |VFj |)
(1b)

where VFi
denotes the (row-id, column label) indexed cell values in the artifact Fi.

Inferring NPPTs: Relic infers NPPTs using operation-specific detectors. These detectors look for
specific column label and value containment patterns that indicate the presence of a specific type of
transformation. The detectors have been sketched below; the complete description is available in [42].

The join detector evaluates the likelihood that three artifacts Fi, Fj , Fk were involved in a join
operation. The detector first looks for schema compatibility by determining which of the two files
(labeling them Fr and Fs) could have been joined to create the third (labeled Ft), by looking at the
set of column labels. It also looks for a common key column k such that the set of values in common
between the source and destination columns are coherently contained, similar to a technique used
in [29]. A join score (δjoin(Fi, Fj , Fk)) can then be computed from the various containment scores for
the artifact triple.

Similarly, the groupby detector determines if a pair of artifacts Fi and Fj were involved in a
groupby operation. It first assigns a source label Fs to the artifact that has a higher number of rows,
as we assume that a valid groupby operation results in a reduction of the number of rows after the
transformation. The detector then finds a subset of columns Cg that are in common between Fs and
Ft whose values in Fs are fully contained in Ft. It additionally checks that the set of values in Cg are
distinct in Ft while not distinct in Fs. If these conditions are satisfied, a groupby score (δgroupby(Fi, Fj))
is computed using the group column containment, schema difference and missing group values for the
artifact pair.

Finally, the pivot detector looks for pivots between pairs of artifacts Fi and Fj , looking for value
containment in the row-id and column labels in of the artifacts (and assigning it a target artifact
label Ft) from the other (hence labeled a source artifact Fs). It determines three separate column
mappings, Ci, Cc and Cv based on containment of values in the destination artifact’s index, column
labels and values. Using these assignments, a final pivot score (δpivot(Fi, Fj)) is then computed from
these containment scores.

Building the Lineage Graph: Relic adds edges in decreasing order of similarity scores to the
graph in the following sequence:

1. δcell edges within a cluster of artifacts that have the same schema until a threshold (εintra cell)

2. δcontain edges within a cluster of artifacts that have the same schema, until a threshold (εintra cell)

3. δjoin edges

4. δcell edges between clusters of artifacts that have the same schema until a threshold (εinter cell)

5. δcontain edges between clusters of artifacts that have the same schema until a threshold (εinter cell)

6. δgroupby edges

7. δpivot edges

3In case there are no pairs of columns that serve as an appropriate index, the artifact cells are then compared in their
physical, materialized order.

6

There are additional implementation details in Relic, such as the exact formulation of detector
conditions, scoring functions, thresholds, and tie-breaking techniques which are described in detail
in [42].

3.4 Experimental Evaluation of RELIC

Our evaluation methodology has been designed with the following goals in mind:

• Overall Accuracy: How accurate are the inferred lineage graphs are compared to the ground
truth?

• Variation with Workflow Configuration: How does the accuracy change with workflow
configuration (number of artifact files, size of the original artifacts, and number of operations
between materialization of artifact files)?

• Individual Detector Performance: What were the edge contributions from each detector
(cell, containment, join, groupby etc.) and how accurate were they?

• Runtime Performance: What is the overall time taken? What part of our technique takes
the longest time to run?

3.4.1 Datasets Used

To the best of our knowledge, there are no standardized data analysis benchmarks or workloads that can
be used for evaluating our lineage inference technique. Hence, we rely on a combination of workflows
derived from Jupyter notebooks published as a corpus [43] and synthetically generated workflows.

Workflows in the Wild To evaluate our technique on realistic workloads, we use a variety of work-
flows sourced from a notebook corpus [43], AzureML, and Kaggle. Jupyter notebooks are used ex-
tensively for data analysis and exploration, and the linear nature of notebook code allows us to au-
tomatically execute code, observe outputs, and construct ground-truth lineage in a semi-automatic
fashion [41]. However, as flexible as Jupyter notebooks are, they are also notoriously messy [43], as
they primarily contain experimental, ad-hoc, and exploratory code that may be manipulated and ex-
ecuted out of order. Additionally, the notebook corpus does not contain any associated metadata or
contextual information. We sifted through the corpus to find a sample of notebooks that primarily
use pandas for data preparation, load data from valid public URLs, generate at-least 5 dataframes,
and belong to a single workflow that deals with data analysis or ML prep (as opposed to homework
assignments or tutorial/example notebooks). These notebooks were then executed, verified, and hand-
annotated to produce the artifact files and ground truth lineage graphs. These workflows are outlined
in Table 1.

Name Description (|F|, |RF0 |, |CF0 |)
agri-mex Data Analysis Workflow* (9, 1300, 9)

churn Computing Customer Churn* (5, 3333, 21)

githubviz Github Repository Visualizations* (6, 8697,5)

london-crime Analysis of Crime in London* (11, 446975, 5)

nyc-cab Analysis of Cab Rides in NYC* (17, 150000, 21)

nyc-noise Analysis of 311 noise complaints* (24, 136080, 51)

nyc-property Analysis of NYC property taxes* (15, 13060, 11)

prop-64 California prop-64 donors* (10, 56379,8)

retail Bike rental ML prep† (21, 17379,16)

titanic Titanic survivor ML prep‡ (13, 891, 12)

Table 1: List of workflows obtained from Jupyter corpus(*), Azure ML(†), Kaggle(‡).

Synthetic Workflow Generator Our synthetic workflow generator can generate pandas dataframes
using the generation parameters listed in Table 2. To generate realistic datasets, we used the Faker [17]
python library to generate values in different types of columns. Columns are categorized into different
types, i.e., numeric, string, group-able. Group-able columns typically have lower cardinally (such as

7

Parameter Description

|F| Number of Artifacts

|RF0 | Base Artifact Number of Rows

|CF0 | Base Artifact Number of Columns

ν Materialization Frequency

Table 2: Parameters for generating synthetic workflows.

country or state), which allow for meaningful group-by operations to be performed. Base artifacts
are artifacts that do not have any ancestors in the workflow. Based on the statistics of scraped
dataframes [43], we vary the cardinality of columns for each of the base tables as a function of the
row-size of the table, to capture the properties of tables found “in the wild”.

After generating a base artifact with the specified number of rows and columns, a synthetic workflow
is generated by perturbing the artifact using a randomly selected pandas operation4 with random
parameters. For example, a random column may be selected and a random value within that column
maybe selected to be replaced with a new one. Our generator performs quality checks to keep the
operations meaningful (e.g., it does not generate empty tables or tables with NaNs, we also limit the
number of pivots and groupbys performed in a chain). The out degree of each artifact in the synthetic
workflows is also carefully controlled in order to generate a tree-like workflow that is roughly between
straight line path and a star-like workflow.

3.4.2 Configurations to be Evaluated

We have tested the following configurations in this paper:

• cell: Constructs a spanning tree consisting of edges in decreasing order of δcell, with no threshold
on the lowest edge score.

• cell+detectors: Constructs a spanning tree consisting of δcell edges followed by δjoin, δgroupby,
δpivot edges, each in decreasing order. We use εcell = 0.1, εjoin = 0.9, εgroupby = 1.0 and
εpivot = 0.99 to determine the minimum edge inclusion threshold for each detector.

• Relic: Constructs a tree as defined in Section 3.3.1. Artifacts are first clustered by schema,
then δcell edges are added within each cluster. This is followed by δjoin, δcontainment, δgroupby,
δpivot edges. We use εintra cell = εinter cell = 0.1, εcontain = 0.99, εjoin = 0.9, εgroupby = 1.0 and
εpivot = 1.0. This is the finalized configuration for Relic.

• column: Constructs a spanning tree consisting of edges in decreasing order of column-level
jaccard similarity (δcolumn) edges (as defined in Equation 2), with no threshold on lowest edge
score.

δcolumn(Fi, Fj) =

∑
k∈CFi

∩CFj

(
∆

jaccard

(
πCk (VFi), πCk (VFj)

))
|CFi ∪ CFj |

(2)

All the thresholds mentioned in this section were determined using sensitivity analysis of Relic on
our datasets and found to be the best for both our real-world and synthetic benchmarks. The column
configuration is adapted from the most closely related work at the time of writing, Aurum [9], which
is used for dataset similarity search. δcolumn is a column-oriented similarity function that returns the
average column jaccard similarity between two artifacts. Aurum uses approximate similarity search
techniques such as LSH [40], trading accuracy for a reduction of search space, which we have not
implemented in the interest of fairness to the column configuration.

4The operations are point-edits, row sampling, column drops, new derived columns, groupby, merge and pivot.

8

ag
ri-

m
ex

ch
ur

n

gi
th

ub
vi

z

lo
nd

on
-c

rim
e

ny
c-

ca
b

ny
c-

no
ise

ny
c-

pr
op

er
ty

pr
op

64
-n

ew

re
ta

il

tit
an

ic

Workflow Name

0.5

0.6

0.7

0.8

0.9

1.0

F1
 S

co
re

cell
cell+detectors

mnemosyne
baseline

(a) Real Workflows

0.6

0.8

1.0

F1
 S

co
re

artifacts = 20 | columns = 10 artifacts = 20 | columns = 20

10
0

10
00

10
00

0

10
00

00

Rows

0.6

0.8

1.0

F1
 S

co
re

artifacts = 50 | columns = 10

10
0

10
00

10
00

0

10
00

00

Rows

artifacts = 50 | columns = 20

cell
cell+detectors

mnemosyne
baseline

(b) Synthetic Workflows. Each bar represents the mean
F1 score of 10 separate workflows generated using the
(artifact, column, row) configuration. Error bars indi-
cate standard deviation.

Figure 4: Lineage recovery accuracy (F1 Score) for the workflows described in Section 3.4.1

3.4.3 Overall Accuracy

We first evaluate how effective Relic and other configurations are at recreating lineage for a set of
artifacts. Figure 4a shows our results for the 10 real workflows described in Section 3.4.1. The average
F1 score of our technique Relic across all the real workflows is around 0.90. We notice that the column
configuration performs quite well in a number of workflows (agri-mex, githubviz, nyc-cab), but
fails to produce sufficiently good results for other workflows. Specifically, nyc-noise contains multiple
groupby and pivot operations that are better handled in Relic via the respective detectors than the
generalized column baseline. Similarly, nyc-property contains sample and concat operations that
were handled by the clustering and containment scoring in Relic well. Relic’s performance on retail

highlights the importance of clustering; the retail workflow consists of multiple feature selection and
sampling, as well as test/train splits, causing erroneous edges to be inferred between feature splits in
the baseline configurations (which did not perform the initial clustering).

Finally, churn and titanic are the primary outliers in terms of accuracy; this can be attributed to a
few operations that are not supported, with Relic such as crosstab, and value scaling/normalization.
Relic still infers the lineage correctly for the rest of the edges in those workflows.

Figure 4b illustrates the accuracy of our method on synthetic workflows with varying number of
artifacts, rows, and columns. For each configuration, we generated ten random workflows. The F1
score for Relic is favorable with an average score of ∼ 0.91, and is the best performer on average for
all the workflow configurations. Overall, Relic is able to recover lineage for a wide variety of real
and synthetic workflows with reasonable accuracy. The addition of clustering and specialized detectors
allows Relic to infer edges more accurately than the other methods.

3.4.4 Individual Detector Performance

We now assess the contributions of the individual detectors towards our overall accuracy. Since each
stage of Relic uses a different similarity score or detector, we label edges as being inferred at that
specific stage, using a specific detector. Grouping the inferred edges by detector, we can compute the
detector-specific precision and recall, presented in Table 3. Note that the edges under consideration at
each stage decrease as the graph is built, since we add edges between pairs (or triples) of disconnected
components. We see the precision of the individual stages are quite good, with groupby and pivot
detectors having the lowest precision. We also see that cell level detectors pick up a majority of the
edges with a recall rate of around 0.65. The recall scores for δcontain are low as well, as this detector is
invoked after δcell and δjoin detectors to capture sample and concat-style operations, which is a small
fraction of the total edges in the workflow.

Additionally, we found that the groupby and pivot detectors often produce an ”equivalent edge” for

9

Score / Detector
real synthetic

precision recall precision recall

δcell 0.96 0.64 0.95 0.65

δjoin 1.00 0.86* 0.99 0.99*

δcontain 1.00 0.05 0.67 0.02

δgroupby 0.83 0.83* 0.69 0.37*

δpivot 1.00 0.67* 0.38 0.32*

Total 0.92 0.89 0.87 0.87

Table 3: Individual Stage Performance in Relic. The ground truth edge space is all edges in the
workflow, except for (*), which indicates the recall score specific to the edges for which that specific
detector was designed for.

that operation, which is the same operation applied to a different source dataframe to generate the same
result. This is plausible since we found that for every synthetically generated artifact produced by a
groupby or pivot in the ground truth, there are, on average, approximately 2 alternate groupby sources
and 6 alternate pivot sources that could have produced the same result. If these “equivalent-edges”
are taken into consideration, our synthetic workflow (precision, recall) numbers improve significantly
to (0.92, 0.50) for the groupby detector and (0.99, 0.84) for the pivot detector. Thus, the stage
ordering and thresholds used in Relic provides good opportunities for each of the detectors to find
the respective edges, and is reflected in the stage-wise performance metrics presented.

3.4.5 Effect of Materialization Rate on Accuracy

1 2 4 8
Materialization Frequency

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

F1
 S

co
re

Figure 5: Effect on materialization rate on Accuracy. Each bar represents the average of 5 workflows
generated using 50 operations with a base table size of 1000x20. Error bars represent the standard
deviation.

In addition to our overall results, we would like to see what effect materialization rate has on
accuracy for Relic. Artifacts that are materialized less frequently should exhibit less similarity and
may affect many of the conditions that we use in our NPPT detectors, impacting accuracy. Setting
a fixed number of operations, rows, and columns (50,1000,20), we vary the materialization rates from
1 (which generates an artifact after every operation) and 8 (which generates an artifact after every 8
operations). We refrain from generating join operations in this experiment as it is hard to keep the
number of artifacts fixed as a join requires two inputs. Figure 5 plots the average F1 score for each
materialization rate. We see that as the materialization rates increase the accuracy of our technique
decreases, especially for non-point preserving operations as the detectors may not correctly capture
the containment metrics that we target when several operations are stacked upon each other before an
artifact is materialized. However, even with 4 operations between materialization, we have a reasonable
accuracy range, which suggests that Relic could be used in more general lineage recovery scenarios.

3.4.6 Multiple Workflows

Finally, we evaluate the efficacy of Relic in inferring lineage in a data-lake style setting with artifacts
from multiple workflows mixed together in the same directory. Our first mixed workflow (real-world)
consists of all the artifacts from the workflows in the wild (Section 3.4.1). We also found that the

10

real world µ = 0.1 µ = 0.2 µ = 0.5 µ = 0.75
Artifacts 135 2156 2376 2249 2253
F1 Score 0.926 0.864 0.846 0.824 0.818
Cross Workflow FP Edges 0 0 0 2 5

0.0

0.2

0.4

0.6

0.8

1.0

F
1

S
co

re

Figure 6: Accuracy of Relic when inferring multiple mixed workflows as part of different data lake
configurations. The real-world configuration consists of all the artifacts from Section 3.4.1 mixed
together, while the others consist of synthetically generated data lakes, with 100 workflows each with
varying column overlap (µ), as described in Section 3.4.6.

1000

2000

3000

239 409

2569

475

ag
ri-

m
ex

ch
ur

n

gi
th

ub
vi

z

lo
nd

on
-c

rim
e

ny
c-

ca
b

ny
c-

no
ise

ny
c-

pr
op

er
ty

pr
op

64
-n

ew

re
ta

il

tit
an

ic

0

20

40

60

80

100

Ru
nt

im
e

(S
ec

on
ds

)

2 1 3 8 10 12

00_load
01_pairwise_cell
02_pairwise_cell_containment
03_clustering
05_intra
06_join
07_inter
08_groupby
09_pivot

(a) Real Workflows

10
0

10
00

10
00

0

10
00

00

Rows

0

100

200

300

400

500

600

700

Ti
m

e
(s

ec
on

ds
)

35 22
64

544

20 Artifacts | 10 Columns

10
0

10
00

10
00

0

10
00

00

Rows

42 37

126

590

20 Artifacts | 20 Columns

(b) Synthetic Workflows

Figure 7: Time to run the lineage inference technique, broken down into individual stages

accuracy and run-time of Relic is primarily dependent on how similar the schema of the artifacts
in the data lake is to one another; Evaluating Relic in such an environment requires generating
multiple synthetic workflows with controllable schema overlap. This experiment allows us to emulate
differing data reuse and similarity levels, typical in lakes with multiple datasets with similar attributes
being used simultaneously in different workflows. To synthesize a specific data lake with n workflows,
we first generate s distinct seed workflows using the techniques described in Section 3.4.1. We then
generate n−s overlapping workflows in which every base artifact has c columns that overlap with some
randomly selected seed workflow. c is chosen at random from a Gaussian distribution N = (µ, σ2).
We set n = 100, σ = 0.1, s = 25 and vary µ from 0.1 to 0.75 to generate four different synthetic data
lakes with increasing schema overlap.

Figure 6 shows the performance of Relic on these multiple workflows. We find that Relic can
infer edges with an average F1 score of 0.926 on the combined real-world artifacts described in
Section 3.4.1. In the synthetic data lakes, we observe that as the column overlap increases, we find
a reduction in accuracy and a slight increase in false-positive cross-workflow edges, (i.e., false-positive
edges inferred by Relic which cross the original ground truth workflow boundaries). Here we find
that Relic’s performance degrades as the datasets overlap, but suggests that Relic can be used in a
multi-workflow data-lake environment to help reconstruct the lineage of a data repository or at least
help in clustering artifacts by workflow. For future work we plan to investigate how Relic can be
extended for better support of multiple workflow lineage inference.

3.4.7 Time to Infer Workflows

We empirically show how Relic scales in terms of wall-clock time. Time-to-infer in our context
includes the wall-clock time to load all the artifact tables to memory, perform clustering, compute
pair-wise similarity scores and run the individual detectors. All of the experiments were run on a

11

desktop with a Intel Core i7-8700K CPU, 16 GB of RAM and SSD storage. Figure 7 breaks down
the time-to-infer using Relic for the real and synthetic workflows under consideration. Our method
scales in time linear to the table size and quadratic to the number of artifacts, due to the increase in
the number of pairwise similarities that need to be computed. The join detector forms the bulk of the
timing breakdown, especially for larger workflows, as the Join detector looks at artifact triples and is
thus cubic in time complexity. The time taken by individual detectors is dependent on the number
of components that remain to be connected at the instant the detector is invoked. Small workflows
such as agri-mex, chrun, githubviz, nyc-property, pro64-new and titanic have their workflows
inferred within 15 seconds, making interactive usage of Relic plausible. london-crime, nyc-cab,
nyc-noise and retail all have large artifacts and multiple tied joins and groupbys, which contributes
to the long time taken by those detectors.

3.5 Extending RELIC

The RELIC system presented in section 3.3.1 works well with pandas-centric workflows derived from
Jupyter notebooks. We were also able to show the system performing on a very limited set of mixed
workflows; Additional techniques will have utilized in order to generalize Relic for different types of
workflows; improvements in efficiency will be required if Relic is to scale to the size of larger data
lakes; they will be discussed next.

3.6 Relaxing RELIC’s assumptions

3.6.1 Lineage Graph structure

Relic infers n− 1 number of edges to be inferred from the given input set of artifacts, with the goal
of creating, at most a single, connected graph of artifacts that represents the lineage, subject to the
availability of enough edges that meet the connectivity and similarity detector thresholds.

However, this is a strong assumption. The original lineage may have multiple edges between
workflows, as multiple workflows may share the same set of input artifacts. Workflows could have
branches and merges, or may have cycles.

We plan to extend our framework in multiple ways to tackle this problem; a number of additional
parameters could be introduced to aid in the edge inference and selection process. We can set the
total number of edges to be inferred, or set constraints on the in or out-degrees for artifacts to steer
the edge selection process towards certain graph architectures.

3.6.2 Schema and Row Matching

Relic’s similarity metrics and detectors heavily rely on schema-matched and row-matched artifacts;
Within our pandas workflows, we leaned on the availability of consistently named columns and indices
that are matched for accurately computing scores such as the δcell. This is not always true; columns
can be arbitrarily renamed, rows can be sorted and indices can be dropped. For Relic to be useful in
arbitrary data-lake environments, we will need to include some form of schema matching to allow for
these deviations from our assumptions.

Schema Matching Valentine [30] is the most-up-to-date benchmarking survey of the state of the
art methods in schema matching, and an implementation was readily available for experimenting
with pandas dataframes[38]. Our initial experiments have shown that schema-based methods (column
names, types and relations) are strike a good balance between speed and accuracy for the retrospective
lineage inference application. Fig 8 shows the mean F1 accuracy of schema matching against the
synthetic dataset for 4 different schema matching systems for a sample of synthetically generated
workflows, organized by operation type:

• coma: COMA[16] combines multiple schema-based matchers. Schemata are represented as
rooted directed acyclic graphs, where the associated elements are graph nodes con- nected by
edges of different types (e.g. containment). The match result is a set of element pairs and their
corresponding similarity score.

12

• cupid: Cupid[31] is a schema-based approach. Schemata are translated into tree structures
representing the hierarchy of different elements (relations, attributes etc.). The overall similarity
of two elements is the weighted similarity of i) Linguistic Matching and ii) Structural Matching.

• jlm: A naive instance-based schmea matcher that uses jaccard-levenshtien distance of column
pairs, as implemented in [38]

• sf : Similarity Flooding[32] is a schema- based matching approach that relies on graphs, and
outputs correspondence between any kind of elements (relations, at- tributes, data types) of two
given schemata.

Figure 8: Mean F1 score accuracy of various schema matching techniques grouped by operation type
for different synthetic workflows. All of the techniques failed to produce a schema match for the pivot

operation. Error bars indicate standard deviation.

Figure 9: Mean run-time (in seconds) to infer the schema among a single pair of tables. Results are
organized by table size, schema matcher and operation. NaN indicates that the matcher took longer
than 3600 seconds to run (DNF).

Figure 9 shows the number of seconds elapsed when inferring the schema between a single pair
of artifacts organized by table size and operation. Our initial results show that Similarity Flooding
(sf) is the most promising in terms of both accuracy and performance for our application. We plan
to further experiment with this technique to find its accuracy among a broader set of operations and
within multiple workflows.

3.7 Scaling the Framework

In our previous work, we were able to show that retrospective lineage for single, small workflows can
be generated with reasonable accuracy. However, our initial framework scales poorly. Workflows with
a large number of artifacts, as well as artifacts that have a large number of rows and columns often
taken multiple hours to process on a single machine. Such an approach is not useful for a data lake

13

(a) Simple Random Sampling (b) Index-Aware Sampling

Figure 10: Effect of sampling on the δcell similarity score grouped by operation. The heatmap shows
the mean difference in similarity score for each operation (y-axis) and sampling rate (x-axis)

setting - pairwise (or triple-wise) assessment of similarity metrics for hundreds of thousands or millions
of artifacts is not practical.

Prior work in databases and information retrieval fields have successfully used sampling and es-
timation techniques to reduce the computational burden of searching through large datasets to find
the most relevant items for a given query. In my thesis I intend to explore two specific avenues for
scaling our technique - designing sampling strategies to reduce the data scanning involved with the
various scoring and detectors, as well as indexing techniques specifically designed to reduce the pair
and triple-wise comparisons involved in organizing the artifacts into workflows and to automatically
prune out non-viable candidate pairs and triples for our detectors.

3.7.1 Sampling Schemes

As seen in Figure 7a, within single-workflow scenarios, Relic scales poorly when used with artifacts
that have a large number of rows and columns. A typical optimization for similar problems is to
minimize the amount of data that needs to be scanned, typically by some sampling process.

Sampling for Cell-Level Jaccard Similarity Estimation Our initial experiments with sampling
techniques has yielded interesting results, specifically for Point-Preserving Transformations. We have
found that random sampling of rows results in a proportionate loss in precision for all of our scoring
metrics Figure 10a.

We have since developed a sampling scheme, known as index-aware sampling that ensures that the
same rows (in their materialised order) are sampled across all the artifacts. This increases the cell-level
jaccard similarity scores significantly, as well as the final F1 score for edge inference. In Figure 10b,
we can see the effect of index-aware sampling for the cell-level jaccard similarity scores grouped by
operation. We will continue to investigate sampling schemes that employ a robust efficiency/accuracy
tradeoff in terms of both pairwise accuracy as well as for use in the indexing techniques that we intend
to explore in Section 3.7.2.

Detector Jaccard Similarity Value Containment Schema Containment Cardinality Estimation
δcell X - - -
δcontainment - X - -
δjoin - X X X
δgroupby - X - X
δpivot - X X -

Table 4: Estimation components used in each of the similarity functions and detectors in Relic

Sampling for Detectors We are now looking at leveraging prior work in database sampling to
design detector-specific sampling schemes which can strike a balance between the number of rows read
and detector accuracy. Table 4 shows the requirements for each of the detectors; all of our detectors

14

designed thus far have a containment estimation component, while the group-by detector requires a
cardinality estimation component.

For value and schema containment, starting with independent Bernoulli sampling, we can arrive at
unbiased estimation expressions for a containment query as described in [47]. Given a set of records
X and a set containment query Q. If |X| = m, sample size b, true set containment cardinality t, and
a random variable ni which indicates that a specific record i is contained in set or not, an unbiased
estimate of the containment of Q in X is (Equation 3):

t̂ =
m

b

b∑
i=1

ni (3)

We further expect to enhance our search into and adapting prior work for cardinality estimation
for join queries, and expect to be able to derive a similar sampling strategy which can target our join
detector.

For the groupby detector, are exploring prior work in count distinct sketches, histograms and
wavelets to find promising directions for accelerating the time taken to score a given artifact pair for
groupby operations.

With a combination of index-aware sampling as well as specially-designed unbiased estimators for
containment and keyness checks, we expect to be able to significantly improve the scalability of our
scheme while reducing the effort required when scoring a given pair or triple of artifacts using our
distance metrics and custom detectors.

3.7.2 Indexing Techniques

Locality Sensitive Hashing (LSH) is a common technique used to prune the number of candidate pairs
to be evaluated in a search or information retrieval context[54, 9]. We plan to implement an LSH
scheme to aid in the lineage inference process; this involves:

• Designing an appropriate vector space (with and without shingling) for each of the similarity
scores we plan to use;

• Evaluating a MinHash-based signature scheme for cell-level jaccard similarity along with analysis
of the appropriate banding parameters to for lineage inference;

• Evaluating containment sketches to be used for join, groupby and pivot detectors.

Our plan is to first formalize the space and evaluate existing techniques [54, 9] for speeding up
Relic. We forsee the use of a combination of LSH indices to cover various similarity score requirements
similar to LSH Ensemble [54] in order to arrive at the appropriate pruned index for our application.

3.8 Workflow Generator and Benchmarking Tool

While designing the experiments for Relic, we fashioned a custom synthetic workflow generator that
generates realistic tabular artifacts that are typical in data analysis and machine-learning workloads.
Our generator is also able to manipulate these artifacts using typical data analysis operations such
as select, project and join in order to mimic the type of workflows that we have seen in the Github
corpus.

We have found that the core logic in our generator can be retrofitted into a dataframe benchmarking
tool (which we call FuzzyData) – similar to YCSB [10]. Our tool can be used to target tabular
dataframe systems and generate complex workflows of artifacts that are modified using select, project,
join, groupby and pivot operations. We have designed our workflow generator to be extensible – if
a user wants to benchmark a dataframe manipulation system for both performance and correctness,
they can implement a client which extends our DSL’s abstract base classes representing an artifact,
operation and workflow. The client thus plugs-in to the core logic of our dataframe benchmarking
system. A user can hence either generate a brand-new workflow or replay a previously generator
workflow to compare the results of the manipulation across these dataframe systems.

We have implemented clients for both pandas and SQL. We plan to implement and test our
dataframe generation system on a variety of dataframe systems such as Pandas, Modin[37], Koalas/SparkDataframes[19],
SQLite[25].

15

4 Research Plan

Table 5, contains research goals and milestones for this thesis. As described in section3.4, we have
demonstrated the ability to infer lineage of smaller sized workflows and for data lakes with upto 100
mixed workflows and approximately 3000-4000 artifacts. In order to claim that the lineage inference
problem to be solved for data lakes, we need to be able to expand our inference capabilities to much
larger data lakes. We plan to do this using sampling and estimation techniques which will reduce the
pairwise scoring overheads and the number of pairwise candidates to be evaluated.

4.1 Pending Goals

• Detector Design when sampling artifacts

• LSH Design for grouping artifacts by workflow

• LSH Design for PPTs

• LSH Design for NPPTs

• Randomized re-target-able workflow generator and benchmarking tool

• Implementation and Evaluation

Goal Expected Completion
Workflow Generator Complete Jan 2022
Sampling Experiments Complete Feb 2022
Basic LSH Experiments for Lineage Feb - March 2022
LSH Design for Detectors Apr - May 2021
System Integration & Experimentation June - July 2022
... ...

Table 5: Timeline

References

[1] AirBnB. Dataportal Project, 2020.

[2] Alawini, A., Maier, D., Tufte, K., and Howe, B. Helping scientists reconnect their datasets.
In Proceedings of the 26th International Conference on Scientific and Statistical Database Man-
agement (New York, NY, USA, June 2014), SSDBM ’14, Association for Computing Machinery,
pp. 1–12.

[3] Alawini, A., Maier, D., Tufte, K., Howe, B., and Nandikur, R. Towards automated
prediction of relationships among scientific datasets. In Proceedings of the 27th International
Conference on Scientific and Statistical Database Management - SSDBM ’15 (La Jolla, California,
2015), ACM Press, pp. 1–5.

[4] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludascher, B., and Mock, S. Ke-
pler: an extensible system for design and execution of scientific workflows. In Proceedings. 16th
International Conference on Scientific and Statistical Database Management, 2004. (2004), IEEE,
pp. 423–424.

[5] Armbrust, M., Das, T., Sun, L., Yavuz, B., Zhu, S., Murthy, M., Torres, J., van
Hovell, H., Ionescu, A., Luszczak, A., Świtakowski, M., Szafrański, M., Li, X.,
Ueshin, T., Mokhtar, M., Boncz, P., Ghodsi, A., Paranjpye, S., Senster, P., Xin, R.,
and Zaharia, M. Delta lake: high-performance ACID table storage over cloud object stores.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 3411–3424.

16

[6] Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N.,
Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu,
G. R., Traiger, I. L., Wade, B. W., and Watson, V. System R: relational approach to
database management. ACM Transactions on Database Systems 1, 2 (June 1976), 97–137.

[7] Bailis, P., Hellerstein, J. M., and Stonebraker, M. Readings in Database Systems, 5th
Edition, 2015.

[8] Bhardwaj, A., Bhattacherjee, S., Chavan, A., Deshpande, A., Elmore, A. J., Mad-
den, S., and Parameswaran, A. G. DataHub: Collaborative Data Science & Dataset Version
Management at Scale. arXiv:1409.0798 [cs] (Sept. 2014). arXiv: 1409.0798.

[9] Castro Fernandez, R., Abedjan, Z., Koko, F., Yuan, G., Madden, S., and Stone-
braker, M. Aurum: A Data Discovery System. In 2018 IEEE 34th International Conference
on Data Engineering (ICDE) (Paris, Apr. 2018), IEEE, pp. 1001–1012.

[10] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. Bench-
marking cloud serving systems with YCSB. In Proceedings of the 1st ACM symposium on Cloud
computing - SoCC ’10 (Indianapolis, Indiana, USA, 2010), ACM Press, p. 143.

[11] Cui, Y., and Widom, J. Lineage tracing for general data warehouse transformations. The
VLDB Journal The International Journal on Very Large Data Bases 12, 1 (May 2003), 41–58.

[12] Das Sarma, A., Parameswaran, A., Garcia-Molina, H., and Widom, J. Synthesizing
view definitions from data. In Proceedings of the 13th International Conference on Database
Theory - ICDT ’10 (Lausanne, Switzerland, 2010), ACM Press, p. 89.

[13] De Nies, T., Coppens, S., Van Deursen, D., Mannens, E., and Van de Walle, R.
Automatic Discovery of High-Level Provenance Using Semantic Similarity. In Provenance and
Annotation of Data and Processes, D. Hutchison, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mat-
tern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Ter-
zopoulos, D. Tygar, M. Y. Vardi, G. Weikum, P. Groth, and J. Frew, Eds., vol. 7525. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 97–110. Series Title: Lecture Notes in Computer
Science.

[14] De Nies, T., Mannens, E., and Van de Walle, R. Reconstructing Human-Generated Prove-
nance Through Similarity-Based Clustering. In Provenance and Annotation of Data and Processes
(Cham, 2016), M. Mattoso and B. Glavic, Eds., Lecture Notes in Computer Science, Springer In-
ternational Publishing, pp. 191–194.

[15] Deolalikar, V., and Laffitte, H. Provenance as data mining: combining file system meta-
data with content analysis. In First workshop on on Theory and practice of provenance (USA,
Feb. 2009), TAPP’09, USENIX Association, pp. 1–10.

[16] Do, H.-H., and Rahm, E. COMA: a system for flexible combination of schema matching
approaches. In Proceedings of the 28th international conference on Very Large Data Bases (Hong
Kong, China, Aug. 2002), VLDB ’02, VLDB Endowment, pp. 610–621.

[17] Faraglia, D., and Other Contributors. Faker, Feb. 2022. original-date: 2012-11-
12T23:00:09Z.

[18] Fariha, A., and Meliou, A. Example-driven query intent discovery: abductive reasoning using
semantic similarity. Proceedings of the VLDB Endowment 12, 11 (July 2019), 1262–1275.

[19] Foundation, A. S. PySpark Documentation — PySpark 3.2.1 documentation.

[20] Foundation, L. A. . D. amundsen-io/amundsen, Feb. 2022. original-date: 2019-05-
14T15:12:40Z.

[21] Foundation, L. A. . D. MarquezProject/marquez, Feb. 2022. original-date: 2018-07-
05T22:43:20Z.

17

[22] Halevy, A., Korn, F., Noy, N. F., Olston, C., Polyzotis, N., Roy, S., and Whang,
S. E. Goods: Organizing Google’s Datasets. In Proceedings of the 2016 International Conference
on Management of Data (San Francisco California USA, June 2016), ACM, pp. 795–806.

[23] Heise, A., Quiané-Ruiz, J.-A., Abedjan, Z., Jentzsch, A., and Naumann, F. Scalable
discovery of unique column combinations. Proceedings of the VLDB Endowment 7, 4 (Dec. 2013),
301–312.

[24] Herschel, M., Diestelkämper, R., and Lahmar, H. B. A survey on provenance: What for?
What form? What from? The VLDB Journal 26, 6 (2017), 881–906. Publisher: Springer.

[25] Hipp, D. R. SQLite Home Page.

[26] Huang, D., Liu, Q., Cui, Q., Fang, Z., Ma, X., Xu, F., Shen, L., Tang, L., Zhou,
Y., Huang, M., Wei, W., Liu, C., Zhang, J., Li, J., Wu, X., Song, L., Sun, R., Yu,
S., Zhao, L., Cameron, N., Pei, L., and Tang, X. TiDB: a Raft-based HTAP database.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 3072–3084.

[27] Huang, S., Xu, L., Liu, J., Elmore, A. J., and Parameswaran, A. Orpheus DB: bolt-on
versioning for relational databases. Proceedings of the VLDB Endowment 10, 10 (2017), 1130–
1141. Publisher: VLDB Endowment.

[28] Ikeda, R., and Widom, J. Data lineage: A survey. Tech. rep., Stanford InfoLab, 2009.

[29] Kalashnikov, D. V., Lakshmanan, L. V., and Srivastava, D. FastQRE: Fast Query Reverse
Engineering. In Proceedings of the 2018 International Conference on Management of Data (New
York, NY, USA, May 2018), SIGMOD ’18, Association for Computing Machinery, pp. 337–350.

[30] Koutras, C., Siachamis, G., Ionescu, A., Psarakis, K., Brons, J., Fragkoulis, M.,
Lofi, C., Bonifati, A., and Katsifodimos, A. Valentine: Evaluating Matching Techniques
for Dataset Discovery. arXiv:2010.07386 [cs] (Feb. 2021). arXiv: 2010.07386.

[31] Madhavan, J., Bernstein, P. A., and Rahm, E. Generic Schema Matching with Cupid. In
Proceedings of the 27th International Conference on Very Large Data Bases (San Francisco, CA,
USA, Sept. 2001), VLDB ’01, Morgan Kaufmann Publishers Inc., pp. 49–58.

[32] Melnik, S., Garcia-Molina, H., and Rahm, E. Similarity flooding: a versatile graph match-
ing algorithm and its application to schema matching. In Proceedings 18th International Confer-
ence on Data Engineering (Feb. 2002), pp. 117–128. ISSN: 1063-6382.

[33] Miao, H., Chavan, A., and Deshpande, A. ProvDB: Lifecycle Management of Collaborative
Analysis Workflows. In Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics
(New York, NY, USA, May 2017), HILDA’17, Association for Computing Machinery, pp. 1–6.

[34] Nargesian, F., Zhu, E., Miller, R. J., Pu, K. Q., and Arocena, P. C. Data lake
management: challenges and opportunities. Proceedings of the VLDB Endowment 12, 12 (Aug.
2019), 1986–1989.

[35] Netflix. Metacat, Feb. 2022. original-date: 2016-03-19T20:06:34Z.

[36] Nguyen, T. T., Hung Nguyen, Q. V., Weidlich, M., and Aberer, K. Result selection
and summarization for Web Table search. In 2015 IEEE 31st International Conference on Data
Engineering (Apr. 2015), pp. 231–242. ISSN: 2375-026X.

[37] Petersohn, D., Macke, S., Xin, D., Ma, W., Lee, D., Mo, X., Gonzalez, J. E., Heller-
stein, J. M., Joseph, A. D., and Parameswaran, A. Towards scalable dataframe systems.
Proceedings of the VLDB Endowment 13, 12 (Aug. 2020), 2033–2046.

[38] Psarakis, K. Valentine: Matching DataFrames Easily, Jan. 2022. original-date: 2019-06-
28T13:50:14Z.

[39] Rahm, E., and Bernstein, P. A. A survey of approaches to automatic schema matching. The
VLDB Journal 10, 4 (Dec. 2001), 334–350.

18

[40] Rajaraman, A., and Ullman, J. D. Mining of massive datasets. Cambridge University Press,
2011.

[41] Rehman, M. S. Towards Understanding Data Analysis Workflows using a Large Notebook
Corpus. In Proceedings of the 2019 International Conference on Management of Data (New York,
NY, USA, June 2019), SIGMOD ’19, Association for Computing Machinery, pp. 1841–1843.

[42] Rehman, M. S., Elmore, A. J., Huang, S., and Parameswaran, A. RELIC: REtrospective
lineage InferenCe. (Under Preparation) (2021).

[43] Rule, A., Tabard, A., and Hollan, J. D. Exploration and Explanation in Computational
Notebooks. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(New York, NY, USA, Apr. 2018), CHI ’18, Association for Computing Machinery, pp. 1–12.

[44] Tan, W. C., Zhang, M., Elmeleegy, H., and Srivastava, D. Reverse engineering aggrega-
tion queries. Proceedings of the VLDB Endowment 10, 11 (Aug. 2017), 1394–1405.

[45] Tran, Q. T., Chan, C.-Y., and Parthasarathy, S. Query by output. In Proceedings of the
2009 ACM SIGMOD International Conference on Management of data (New York, NY, USA,
2009), ACM, pp. 535–548.

[46] Venetis, P., Halevy, A., Madhavan, J., Paşca, M., Shen, W., Wu, F., Miao, G., and
Wu, C. Recovering semantics of tables on the web. Proceedings of the VLDB Endowment 4, 9
(June 2011), 528–538.

[47] Yang, Y., Zhang, W., Zhang, Y., Lin, X., and Wang, L. Selectivity Estimation on Set
Containment Search. Data Science and Engineering 4, 3 (Sept. 2019), 254–268.

[48] Yilmaz, G. S., Wattanawaroon, T., Xu, L., Nigam, A., Elmore, A. J., and
Parameswaran, A. DataDiff: User-Interpretable Data Transformation Summaries for Col-
laborative Data Analysis. In Proceedings of the 2018 International Conference on Management
of Data (New York, NY, USA, May 2018), SIGMOD ’18, Association for Computing Machinery,
pp. 1769–1772.

[49] Zaharia, M., Chen, A., Davidson, A., Ghodsi, A., Hong, S. A., Konwinski, A., Murch-
ing, S., Nykodym, T., Ogilvie, P., Parkhe, M., Xie, F., and Zumar, C. Accelerating the
Machine Learning Lifecycle with MLflow. IEEE Data Engineering Bulletin 41 (2018), 39–45.

[50] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and Stoica, I. Spark:
Cluster computing with working sets. In 2nd USENIX workshop on hot topics in cloud computing
(HotCloud 10) (2010).

[51] Zhang, Y., and Ives, Z. G. Finding Related Tables in Data Lakes for Interactive Data Science.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.
Association for Computing Machinery, New York, NY, USA, June 2020, pp. 1951–1966.

[52] Zhao, J., Goble, C., Stevens, R., and Turi, D. Mining Taverna’s semantic web of prove-
nance. Concurrency and Computation: Practice and Experience 20, 5 (2008), 463–472. Publisher:
Wiley Online Library.

[53] Zhu, E., Deng, D., Nargesian, F., and Miller, R. J. JOSIE: Overlap Set Similarity Search
for Finding Joinable Tables in Data Lakes. In Proceedings of the 2019 International Conference on
Management of Data (New York, NY, USA, June 2019), SIGMOD ’19, Association for Computing
Machinery, pp. 847–864.

[54] Zhu, E., Nargesian, F., Pu, K. Q., and Miller, R. J. LSH Ensemble: Internet-Scale
Domain Search. arXiv:1603.07410 [cs] (July 2016). arXiv: 1603.07410.

19

	Introduction
	Background
	Motivation
	Related Work

	Thesis Proposal
	Thesis Statement
	Scope of the Proposal
	Generating the Output Lineage
	The RELIC System

	Experimental Evaluation of RELIC
	Datasets Used
	Configurations to be Evaluated
	Overall Accuracy
	Individual Detector Performance
	Effect of Materialization Rate on Accuracy
	Multiple Workflows
	Time to Infer Workflows

	Extending RELIC
	Relaxing RELIC's assumptions
	Lineage Graph structure
	Schema and Row Matching

	Scaling the Framework
	Sampling Schemes
	Indexing Techniques

	Workflow Generator and Benchmarking Tool

	Research Plan
	Pending Goals

