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ABSTRACT

Deep neural networks (DNNs) are becoming increasingly memory intensive. We study mem-

ory allocation patterns in DNNs and propose a “memorization” based technique, MemoMalloc,

for optimizing both memory usage and inference latency. Specifically, we use static memory

planning techniques to reduce both peak memory consumption and heap mutex contention.

We present an implementation of MemoMalloc and evaluate memory consumption and exe-

cution performance on a wide range of DNN architectures. MemoMalloc substantially out-

performs state-of-the-art caching allocators in terms of execution performance, by as much

as 40%.

v



CHAPTER 1

INTRODUCTION

Deep neural networks (DNNs) are ubiquitous as components of research and production sys-

tems; they are employed for fulfilling tasks across a broad range of domains, including image

classification, object detection, speech recognition, and content recommendation. Tradition-

ally, DNNs are deployed to multi-processor (or multi-core processor) server-class platforms,

such as those found in commercial data centers and scientific high-performance clusters. This

is because of DNNs, generally, being resource-intensive, in terms of compute, memory, and

network usage; see Table 1.1 for representative DNN workloads at Facebook, Inc., a large

social media services company that employs DNNs in many of its products.

Indeed, as a result of latency constraints imposed by quality-of-service guarantees, data

center deployments usually target CPU architectures (and corresponding memory hierar-

chies), as opposed to GPGPU architectures [38]. This is a consequence of the fact that

CPUs are better suited for low latency applications, owing to their high clock speeds and

synchronous execution model, as opposed to GPUs, which typically have lower clock speeds

and an asynchronous execution model. Further, new DNN techniques, such as Transform-

ers [8] and Mixture-of-Experts [49], lead to networks with billions, or even trillions [18], of

Category Model Type Model Size
(# params)

Typical
Batch Size

Max # Live
Activations

Latency
(constraint)

Ranking Linear 1 - 10M 1 - 100 >10K ∼ 10 ms
Embedding >10 billion 1 - 100 >10K ∼ 10 ms

Vision ResNet50 25M 1 (image) 2M N/A
ResNeXt-101-
32x4

43 - 829M 1 (image) 2.4 - 29M N/A

FasterRCNN 6M 1 (image) 13.2M N/A
ResNeXt3D-101 21M 1 (movie clip) 58M N/A

Language Seq2seq 100M - 1B 1 - 8 tokens >100K ∼ 10 ms

Table 1.1: Resource requirements of representative DNN inference workloads implemented
on CPU. Reprinted with permission from [38].
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floating-point parameters (called weights), thus indicating (current) upper bounds on po-

tential memory consumption; for instance, training BERT networks (a transformer) requires

up to 16TB of memory [53]. Applying such complex DNNs effectively in high traffic services

necessitates managing system resources carefully. To be specific, managing memory usage

is important, both for preventing failures (such as out-of-memory conditions), and, as we

discuss in the following, reducing latencies.

In this work, we focus on the implications of memory management for execution perfor-

mance in server-class deployments of DNNs. It is well-known that in multithreaded environ-

ments, with many non-uniform service requests, heap synchronization routines can lead to

blocking that inhibits scaling performance gains [7]. Specifically, we refer to contention on

locks (i.e., mutexes) held to enforce mutual exclusion on code that modifies the heap data

structure (i.e., malloc and free). The standard mitigation of such issues is replacing system

malloc with a caching allocator such as jemalloc [17], tcmalloc [20], or SuperMalloc [28].

Caching allocators such as these alleviate lock contention by maintaining many independent

heaps, each with its own mutexes, and distributing memory requests among them, thereby

reducing pressure on any single lock. These allocators can be effective for many workloads

and memory allocation patterns, but they are not a panacea. In the case of diverse DNN

workloads on servers, where a process may exhibit 2 × 107 malloc requests per second, dis-

tributed across 2,000 concurrent threads [22], it is still possible for a program to experience

significantly reduced performance due to lock contention. For DNNs with many allocation

requests, spanning a wide range of sizes, this can readily be observed (see Section 2.2).

It’s important to note that DNNs allocate memory in addition to that needed for just

their weights; substantial temporary memory is associated with buffers (known as ten-

sors) that correspond to intermediate results created during the evaluation of layers of

the DNN. We observe that even with reasonable input sizes, the intermediate tensors of

resnext101 32x8d [64] comprise 27% of the total 13GB run-time memory, 57% (of 760MB)
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for squeezenet1 0 [26], and 66% (of 2473MB) for mnasnet0 75 [60]. Similar figures have

been reported in prior work [40]. These intermediates are often short-lived (serving only to

propagate results between sequential operations) and overlap with only a small subset of the

lifetimes of other intermediates. Thus, the effective memory needed to materialize the entire

collection of intermediates is often much less than the sum total of the individual memories.

Given foreknowledge of all lifetimes and sizes of intermediate tensors, and a strategy for

computing corresponding offsets, memory can be allocated statically (or, at worst, just prior

to inference). More importantly, as it pertains to performance, this single batch allocation

effectively eliminates lock contention. Such an approach is called static memory planning,

or static allocation. Unfortunately, due to pointer aliasing and control flow, comprehensive

and robust lifetime and size data are difficult to derive statically (i.e., correctly, completely,

and prior to any execution).

Hence, to reduce allocations while satisfying peak memory usage constraints, we propose

a hybrid static-runtime memory management solution, called MemoMalloc, that makes use

of both the statically known structure of the neural network and a single profiling pass.

Specifically, our method uses a representation of the neural network, along with lightweight

stack tracing and pointer tagging, to completely and accurately reconstruct the lifetimes,

sizes, and aliasing relationships of all intermediate tensors. Our system then constructs

memory plans using one of several performant strategies. We present an implementation of

the technique in the PyTorch [39] deep learning framework and evaluate our implementation

on a large and representative set of DNNs. In terms of execution performance (as measured

by latency) our solution outperforms PyTorch + jemalloc (i.e., PyTorch backed by the

state-of-the-art caching allocator jemalloc). Specifically, across almost all input sizes and

threading configurations (in terms of the number of threads) we observe, on average 20%

lower inference latencies, and at best 40% lower latencies.

In summary, the principal contributions of this work are:
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1. A study of the memory allocation patterns of a wide range of DNN architectures.

2. A study of several different exact and heuristic static allocation strategies, as they

pertain to DNNs.

3. An implementation and evaluation of MemoMalloc, a system for managing memory for

DNNs.

The remainder of the paper is organized as follows: Chapter 2 gives necessary background

on representations of DNNs and memory allocators, along with a discussion of worst-case

results concerning caching allocators and DNNs. Chapter 3 discusses our implementation,

with a particular focus on how we resolve aliases exactly and performantly. Chapter 4

presents a thorough evaluation of our implementation, across various representative DNN

architectures and workloads (in terms of input sizes and threading environment). Chapter 5

discusses the evaluation and the insights garnered thereof. Finally, Chapter 6 reviews prior

work in this area and Chapter 7 concludes and discusses future work, including dynamics,

training, GPUs, and applications to edge device deployments.
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CHAPTER 2

BACKGROUND

We review the necessary background for our work. This includes a discussion of how DNNs

are represented in deep learning frameworks (i.e., PyTorch) as it pertains to our manip-

ulation of those representations. We then discuss the memory allocation issues addressed

by caching allocators (including an empirical study of worst-case performance). Finally, we

define memory planning formally and introduce the memory planning strategies that inform

the design of the static memory planning component of MemoMalloc.

2.1 Representations of DNNs

Deep neural networks are typically specified using high-level frameworks that can be com-

piled into low-level platform and hardware specialized code. For example, TVM [13] gen-

erates highly optimized, hardware-specific code for various hardware backends by efficiently

exploring the space of possible DNN transformations (specifically, with respect to kernel

fusion). Such transformations are carried out on a representation of the DNN (Relay [46]

of TVM, HLO of TensorFlow [30], TorchScript [2] of PyTorch) that captures the data and

control flow dependencies between individual layers, as well as attributes of the data (i.e.,

tensors), such as type (e.g., float32, int, or bfloat16), memory layout (e.g., contiguous,

strided, or sparse), and shape. Note that inputs to DNNs are characterized by their shape,

i.e., the sizes of the dimensions of the input tensors, represented as arrays; a common shape

corresponding to an image input for computer vision networks is (N,C,H,W ), with corre-

sponding size N×C×H×W ×size(dtype), where size(dtype) is the width of the data type

(e.g., 4 bytes for float32). This representation is called an intermediate representation (IR)

since it functions as an intermediary between the high-level specification and the lower-level

hardware characteristics.
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TorchScript (TS) is a compiler infrastructure within the PyTorch deep learning frame-

work that produces a type-annotated, static single assignment (SSA) IR (called TS IR).

TorchScript is executed using an interpreter attached to a Just in Time (JIT) optimizer and

compiler. There are two ways to generate TS IR from a PyTorch specified DNN:

• torch.jit.trace, which executes a forward pass iteration of a DNN and records the

PyTorch operators (corresponding to the conceptual layers that comprise the DNN)

that are invoked, thus “freezing” control flow;

• torch.jit.script, which analyzes the Python abstract syntax tree representation of

the DNN and lowers it to TS IR.

In this work we exclusively make use of the torch.jit.trace path. Consider the example

neural network, specified as a PyTorch model, presented in Listing 1. Given an input tensor

with shape (3, 4), it is “traced” to the TS IR presented in Listing 2.

Within TS IR, identifiers on the left-hand sides of assignments are called values, and

identifiers on the right-hand sides are the operators invoked during execution. As prescribed

by SSA semantics, each value is assigned only once, and thus the TS IR representation

permits a one-to-one mapping with a directed, acyclic, control and data flow graph (hence,

the pairing of operator and output are considered a node in this graph). Note, as well, that

all values have type annotations of varying levels of specificity; for example (cf. Listing 2),

the concrete annotation Float(3, 4, strides=[4, 1]) uniquely determines the size of the

intermediate tensor %11 as 3 × 4 × size(Float) = 48 bytes (strides=[4, 1] indicates the

tensor is arranged contiguously in memory) while the abstract annotation Tensor indicates

value %12’s type cannot be determined until runtime. The TS compiler has facilities for

traversing and transforming these representations of DNNs. In particular one can implement

graph rewrite passes that arbitrary insert, remove, and rearrange nodes. We make use of

these facilities in our implementation to augment the IR with memory allocation nodes that

are then executed by the TS JIT and effectuate the memory plan (see Chapter 3).
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class Net(torch.nn.Module):

def __init__(self):

super(Net, self).__init__()

self.linear = nn.Linear(4, 4)

self.relu = nn.ReLU()

def forward(self, x, h):

y = self.linear(x) + h

y = self.relu(y)

return y

Listing 1: Example neural network

graph(%x : Tensor, %h : Tensor):

%6: int = prim::Constant[value=1]()

%linear_weight: Float(4, 4, strides=[4, 1])

= prim::Constant[value=<Tensor>]()

%linear_bias: Float(4, strides=[1]) = prim::Constant[value=<Tensor>]()

%11: Float(3, 4, strides=[4, 1]) = aten::linear(

%x, %linear_weight, linear_bias

)

%12: Tensor = aten::add(%11, %h, %6)

%13: Tensor = aten::relu(%12)

return (%13)

Listing 2: TS IR representation of neural network in Listing 1

2.2 Caching Allocators and Lock Contention

Caching allocators [6] address performance issues with memory allocation and deallocation,

at runtime. Specifically total memory usage (i.e., reduction of internal and external fragmen-

tation of allocated memory), cache locality of sequences of allocations, and overall latency

in allocating memory for complex objects. They accomplish their goals by caching recent

allocations (typically for configurable lengths of time called decay times) in order to reduce

the number of expensive system calls (sbrk and mmap). An implicit concern of allocators

is the performance overhead of the use of the allocator itself. An allocator that allocates
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optimally (either in terms of cache locality or total usage) but does so at the cost of exces-

sive blocking times per allocation is of questionable value for typical users. In the context

of multi-threaded applications running on multiprocessor systems, blocking occurs during

synchronization to prevent race conditions on the cache data structures. Caching allocators

balance these costs (against those associated with fragmentation) by deploying multiple,

independently managed caches (called arenas) and distributing allocation requests among

them (thereby reducing request service and synchronization pressure on any one cache). In

principle, this solution is in direct contradiction with the stated aim of reducing fragmenta-

tion: many independently managed caches managed by a single caching allocator degenerate

to the same fragmentation pattern as many independent non-caching allocators managing

their own subsets of system memory. Thus, care must be taken with respect to large allo-

cations (typical of DNNs) to prevent severe fragmentation (i.e., mixing of small and large

allocations in the same regions of memory).

“Per-thread” caching allocators, such as jemalloc, tcmalloc, and SuperMalloc, support

thread-specific caching, in addition to maintaining multiple caches (called, appropriately,

thread caches). That is to say, they maintain unique caches for each live thread executing

on a system. This enables those allocations that can be serviced by the thread cache to

happen without any synchronization and therefore very efficiently. This leads to very fast

allocation in the common case, but also increases memory usage and fragmentation since

a fixed number of objects can persist in each thread cache over the course of the entire

execution of the program [29]. Effectively, this is the same failure mode (writ small) as that

which betides conventional caching allocators operating many caches. To account for such

fragmentation, thread caches are usually configured to be quite small; the default thread

cache for jemalloc is 32KB in size. In addition, as in the case of DNN workloads, it is

common to instantiate a manually managed arena for “oversized” allocations that has no

thread cache at all; typical allocation size thresholds for this oversized arena are 1MB, 2MB,

8



or 4MB.

To further illustrate the challenge posed by memory allocation patterns in the context of

DNN workloads, with respect to latency, we perform a worst-case analysis; we exercise some

common networks with jemalloc as the allocator with no thread cache and a single arena

for all allocations. To be precise, we execute ten iterations of a forward pass on inputs sized

(1, 3, 128, 128) ≈ 192KB and record (using perf) time spent in malloc mutex lock slow

(a jemalloc utility function related to locking). See Figure 2.1. The result is that even

at moderate concurrency (16 threads on our 32-core test platform; see Chapter 4) most

iterations spend considerable time contending with locks. We can further investigate lock

contention by collecting statistics on blocking wait times for lock acquisition (as recorded

by mutexes.ctl.total wait time and mutexes.ctl.max wait time1). The results, shown

in Figure 2.2, can be understood given consideration of the sizes and frequencies of the

intermediate allocations made by these DNNs. We observe that the DNNs most affected

make many allocations, most below 1MB (see Figure 2.3), and incur high request rates on

jemalloc and locks related to those allocation sizes, evident from statistics on individual

arena bins (jemalloc partitions arenas into bins of size 2k, and distributes allocations re-

quests amongst those bins). We make use of this data to tune jemalloc during our evaluation

(see Chapter 4).

1. http://jemalloc.net/jemalloc.3.html#tuning
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2.3 Memory Planning

In general, memory planning can be framed as an instance of the offline dynamic storage

allocation (DSA) problem. To be precise, given static knowledge of all intermediate tensor

sizes and lifetimes, we seek to determine the initial allocation size and the set of suitable

offsets such that all intermediate tensors fit within the allocation. Therefore, the offsets can

be computed by solving the mixed-integer program (MIP) formulation of offline DSA [48]:

min total mem

s.t. offseti + memi ≤ total mem

(2.1)

where tensors with overlapping lifetimes are constrained to be ordered in memory by

offseti + memi ≤ offsetj + zij ∗ total mem

offsetj + memj ≤ offseti +
(
1 − zij

)
∗ total mem

Here zij are decision variables, defined as

zij :=


0 if offseti + memi ≤ offsetj

1 if offsetj + memj ≤ offseti

that determine ordering (in address space) of allocations that overlap in lifetime.

While the offsets that comprise the solution to the MIP formulation are provably correct

and optimal, the MIP is, in general, computationally intractable [33]. The best-known

polynomial-time approximation is 2 + ε by Buchsbaum [9], over the previously 3 + ε best by

Gergov [19]. There also exist simpler heuristics that generally perform well in terms of peak

memory usage, fragmentation, and planning time. In this work, we consider five distinct

memory planning strategies:
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• bump allocation, the baseline allocation strategy that consists of iterating through

all allocations and maintaining a maximum offset, which is incremented (“bumped”)

for each new allocation;

• mip [48], i.e., offsets computed by solving the MIP optimization specified by Eqns. 2.1;

• gergov [19], Gergov’s 3+ε approximation, based on constructing an infeasible solution

and then transforming to a feasible solution using the First Fit heuristic for interval

graph coloring;

• greedy by size [40], that operates by sorting all intermediate allocations by size and

then proceeding to assign offsets for overlapping (in lifetime) tensors according to a

best fit criterion;

• mincost flow [32], which frames the allocation problem as a minimum cost flow prob-

lem (with edges in the flow network corresponding to memory reuse).

We evaluate these strategies for the purposes of designing the memory planning component

of MemoMalloc (see Section 3.2).
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CHAPTER 3

IMPLEMENTATION

Our implementation consists of three components:

• A hybrid static analysis and profiling component that captures sizes and lifetimes of

all memory allocations;

• A memory planner that constructs structured plans, consisting of an initial memory

allocation and offsets for allocations associated with each operator of the DNN;

• A runtime component that effectuates the memory plan by computing runtime offsets

and instantiating tensors, which are then consumed by operators.

We describe each component in turn.

3.1 Profiling

Initial implementations of this system involved recovering sizes of intermediate tensors wholly

from the TS IR representation of a DNN. While practical and conceptually straightforward

(involving propagating input shapes on tensors and computing tensor sizes from outputs

of operators) it suffers from a critical flaw: since TS IR is a higher-level representation of

the DNN than the kernel-level implementations, it does not capture all allocations made

during the execution of the DNN (see Table 3.1). Primarily, this a product of operators that

delegate to generic implementations; for example, a max pool2d operation could appear in

the TS IR as

%input.177 : Float(1, 512, 15, 15, strides=[...])

= aten::max_pool2d(%input.151, %4, %3, %3, %3, %6)

14



Tensor max_pool2d(

const Tensor& self,

IntArrayRef kernel_size,

IntArrayRef stride,

IntArrayRef padding,

IntArrayRef dilation,

bool ceil_mode) {

if (self.is_quantized()) {

return at::quantized_max_pool2d(

self, kernel_size, stride, padding, dilation, ceil_mode

);

}

if (self.is_mkldnn()) {

return at::mkldnn_max_pool2d(

self, kernel_size, stride, padding, dilation, ceil_mode

);

}

auto output_and_indices = at::max_pool2d_with_indices(

self, kernel_size, stride, padding, dilation, ceil_mode

);

return std::get<0>(output_and_indices);

}

Listing 3: max pool2d C++ implementation. Note, in the case of dele-
gating to at::max pool2d with indices, an immediate free occurs when
std::get<0>(output and indices) is tail called.

and reflect only a single output tensor, but whose actual implementation (see Listing 3) del-

egates to one of various specializations, and then, potentially, immediately frees parts of the

results. Such implementation-dependent allocations are not reflected at the IR level and are

fairly common. While it might be argued that such issues should be handled in a principled

manner (e.g., by refactoring max pool2d with indices) such delegation is necessary given

the breadth of operators that PyTorch supports.1

Another complication involved in using TS IR to reconstruct all tensor lifetimes is the

inherent aliasing of names; while TS is equipped with alias analysis infrastructure, it is, by

1. Over 2,000 as of this writing.
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necessity, conservative. For example, TS does not attempt to analyze aliasing of tensors

that are inserted into containers (such as Dict, List, and Tuple). Nor is it able to precisely

infer aliasing relationships between tensors that are never materialized but are actually views

on tensors (e.g., slices of tensors). In fact, memory planning in the context of this type of

aliasing leads to “overplanning”, i.e., overestimation of memory needs due to planning for

tensors that don’t correspond to unique allocations.

Note that the diametrically opposed alternative, namely a purely memorization-based

approach that depends solely on the order of allocations, would be brittle with respect to

relationships between operators and allocations. This is because such relationships are crit-

ical for adjusting memory plans post any optimization passes (such as those performed by

an optimizing JIT) that occur after constructing a memory plan. Consider a “ResBlock”

in a ResNet (see Figure 3.1) where control flow diverges after the MaxPool activation layer;

since there is no total order of operations on distinct paths, a JIT compiler is free to reorder

them. This has implications for the allocations performed by those operators. Consider

the Conv + BatchNormalization pairs of operators, which make intermediate allocations

of the same sizes but with differing lifetimes. If a given memory plan assigns memory ad-

dresses [offset1, offset1 + size) to the intermediate tensor in Group 1, computed under

the assumption that its lifetime covers (see Figure 3.2a) the lifetime of the intermediate

tensor in Group 2 (with assigned memory addresses [offset2, offset2 + size)), then a re-

ordering of those operations such that Group 1’s BatchNormalization operator executes

prior to Group 2’s (see Figure 3.2b) would lead to an illegal address access by Group 2’s

BatchNormalization operator. This cannot be averted, since, at the time of allocation, a

purely order-based solution could only distinguish allocations according to lifetime starts

and tensor sizes. In the structured approach (i.e., one that unambiguously associates al-

locations with operators), offset1 and offset2 would be effectively reordered along with

their respective operators, thus avoiding any illegal memory accesses.
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Figure 3.1: A “ResBlock” in a ResNet DNN, where the final Conv and BatchNormalization

layers along both paths require allocations of the same size, but which can be made in
arbitrary order (figure created using [45]).
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(b) Group 2’s intermediate allocation out-
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Figure 3.2: Problematic orderings of operators. If a given memory plan assumes the order-
ing of operators in Figure 3.2a then a reordering such as that of Figure 3.2b leads to the
BatchNormalization operator in Group 2 performing an illegal memory access (because its
allocation should only “last” until time = 11).

As a result of all of these complexities, we refined our approach and designed a hybrid

solution: we use profiling to capture all allocation sizes and lifetimes and avail ourselves of

the TS IR representation of the DNN. We do so by instrumenting the allocator to record

pointer values associated with sizes. We capture this information in tandem with lightweight

stack tracing that establishes the provenance of an allocation (i.e., the operator and kernel

within whose scope that allocation was made). The stack tracing is “lightweight” in the

sense that it does not unwind the stack but rather keeps an auxiliary stack (which only

records calls to functions in the aten namespace).
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Table 3.1: Statistics on captured intermediate allocations (total number and total memory),
by TS IR versus allocations captured by our profiling approach.

Model TS IR # TS IR memory (MB) Profiling # Profiling memory (MB)
mnasnet0 75 98 11 12,931 44
wide resnet50 2 121 41 662 71
efficientnet b4 379 50 57,238 190
resnext101 32x8d 240 87 3370 194
googlenet 138 11 788 24

One challenging aspect of this approach is in the capture of lifetime endpoints; since calls

to free only receive a pointer (and no other metadata about the use of the memory pointed

to), there is, in principle, no way to bracket the lifetime of a tensor (i.e., associate mallocs

with corresponding frees). A naive solution could rely on pointer values themselves (in

combination with a lookup table that records the size corresponding to a pointer) to make this

identification, but this approach fails when the system allocator (that has been instrumented)

reuses an address (which one hopes it often does!). Instead, we employ a tagged pointer [37]

approach. Specifically, we make use of the fact that, on x86 64 architectures, pointers

only occupy the lower six bytes of an 8-byte word (on AArch64, this feature is called Top

Byte Ignore [3]). Making full use of the upper two bytes, we store a unique identifier,

corresponding to each allocation (up to 216 unique allocations) made during the profiling

pass. This identifier is then used to uniquely identify frees with their corresponding mallocs.

Note, x86 64 requires pointers to be in “canonical form”, i.e., having the upper two bytes

be zero, before they are dereferenced (otherwise a “stack fault” is generated). We resolve

this issue by encapsulating the tagged pointers in a smart pointer that canonicalizes (in a

standards-compliant way) on dereference (see Listing 4).

In addition to enabling us to determine tensor lifetimes, tagged pointers enable us to

completely resolve aliases (by querying for this tag at operator and kernel boundaries). Using

fully the resolved aliasing relationships can reconstruct relationships between operators and

the kernels they delegate to.
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3.2 Memory Planner

After profiling to collect unambiguous tensor lifetimes and sizes, we statically plan memory

allocation for subsequent forward pass iterations. In designing this aspect of the system,

we considered the strategies discussed in Chapter 2. In order to evaluate the best plan-

ning strategy, we compared execution times and errors (relative to the optimum produced

by the MIP). We observed that greedy by size generally achieves near-optimal results in

terms of memory usage. We also evaluated the fragmentation incurred by various memory

planning strategies (see Appendix 8.1) and observed that greedy by size generally has ac-

ceptable fragmentation. In addition to being efficient with respect to peak memory usage,

greedy by size is performant enough to be executed prior to every forward pass of a DNN

(see Figure 3.3). Our memory planner executes the greedy by size strategy by default but

can be configured to use any of the other aforementioned planning strategies.

3.3 Runtime

After performing memory planning, we use the TS IR to “scope” the allocations to each

operator, in order to preserve the structure of the allocations (i.e., groupings of allocations

made in the service of carrying out an operation). On subsequent inference passes, we lever-

age that structure to assign offsets to tensors requested by operators. As already discussed,

inline void* canonicalize(void* ptr) {

uintptr_t p2 = (((uintptr_t)ptr & ((1ull << 48) - 1)) |

~(((uintptr_t)ptr & (1ull << 47)) - 1));

return (void*)(p2);

}

Listing 4: Standards-compliant method of canonicalizing a tagged pointer. The first bitwise
AND (&) clears the upper 16 bits of the pointer. Then, if bit 47 is 1, the bitwise OR (|) sets
bits 47 through 63, but if bit 47 is 0, the bitwise OR is a no-op (since it is an OR with 0).
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Figure 3.4: Peak memory usage for intermediate tensors for various DNNs, per memory
planning strategy, for input shape (1, 1, 128, 128).
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the alternative, simply assigning offsets on subsequent execution passes in some fixed order,

was deemed to be brittle because it prevents plans from being transformed by IR passes that

optimize the DNN, i.e., passes that potentially reorder operators and their concomitant al-

locations (see the discussion in Section 3.1). Our extension of TS IR (and the corresponding

TS runtime) includes two new primitive operators:

• prim::AllocateSlab, borrowing terminology common in the allocator literature, is

an operator that allocates all of the memory that will be necessary for the duration of

the inference pass of the DNN. It takes, as an attribute, the total size and returns

a Storage value (called %memory) backed by this allocation.

• prim::AllocateTensor, which takes, as attributes, the size and offset for the

planned allocation that will be requested by the immediately subsequent operator and

takes as input the %memory value. Internally, it functions in one of two ways: it either

constructs a Tensor with manually set address (using pointer arithmetic to calculate

offset′ = offset + start(%memory)) if the subsequent operator can directly consume

the allocation (i.e., it is an out variant operator) or it queues allocations that will be

made implicitly by the operator (using, counterintuitively, a stack structure owned by

an instance of MemoMalloc).

See Listing 5 for a simple example. Note that tensors returned to the user (such as %5 in

Listing 5) are not managed since the solution aims to be orthogonal to other aspects of the

PyTorch runtime (i.e., MemoMalloc should not own tensors that “escape” the DNN).
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graph(%w : Tensor, %x: Tensor, %h: Tensor):

%memory: Storage = prim::AllocateSlab[total_size=1344]()

%1: Tensor = prim::AllocateTensor[size=448, offset=0](%memory)

%2: Tensor = aten::mm(%w, %x, %2)

%3: Tensor = prim::AllocateTensor[size=448, offset=488](%memory)

%4: Tensor = aten::add(%2, %h, %3)

%5: Tensor = aten::relu(%4)

return (%5)

Listing 5: Simple memory planning example.
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CHAPTER 4

EVALUATION

We evaluate our system (here denoted PyTorch+MemoMalloc) on several DNNs that are

designed for various computer vision tasks; DCGAN [41] is used for representation learn-

ing; DeepLabv3 [11] and FCN [50] are used for semantic segmentation; GoogLeNet [58],

WideResNet [66], VGG16 [54], InceptionV3 [59], RegNet [42], and SqueezeNet [27] are used

for image classification. Our test platform (see Table 4.2) is a workstation with a processor

having a number of cores (64 including hyperthreading) comparable to that of multicore

processors in server-class platforms [22].

We evaluate our system against a baseline of PyTorch with memory managed by jemalloc

(a common pairing in deployments of PyTorch). For PyTorch+jemalloc, we set the oversize

arena (informed by our analysis in Section 2.2) threshold at 1MB, i.e., all allocations with

sizes below 1MB are managed by jemalloc in the default way, making full use of the thread

cache and n × 4 = 64 × 4 = 256 arenas (since n, the number of processor cores, is 64 on

our test platform). For allocations above 1MB, the PyTorch+jemalloc configuration uses

one arena with no thread cache and default decay rates. These configuration parameters

are comparable to those typical of PyTorch deployments on server-class platforms. For Py-

Torch+MemoMalloc, neither a caching allocator nor an oversize arena is used (i.e., only the

single static allocation in combination with a memory plan).

We run each design configuration in a multithreaded fashion (with the number of threads

being a design parameter). Each configuration performs 10 iterations of its forward pass on

inputs with dimensions ranging in batch size and characteristic height/width (i.e., input

images are square). Additionally, the configuration with jemalloc is run for a warmup of 10

iterations (in order that jemalloc can collect allocation statistics). We repeat each configu-

ration 10 times and collect the average execution time across all non-warmup iterations. We

report the ratio of execution time between PyTorch+jemalloc and PyTorch+MemoMalloc
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Table 4.1: Design matrix for evaluation. Note that inputs are square (i.e., height width

determines both the height and width of the input image).

Dimension Values
batch size [1, 4, 8]
height width [128, 256]
num threads [1, 32, 64, 128]

Table 4.2: Test platform characteristics.

Component Value
CPU AMD Threadripper 3975WX 32-Cores
RAM 128GB DDR4
Hard drive 1.9T Samsung MZVLB2T0HALB-000L7

along with the standard errors on those ratios (see Figure 4.1). See Table 4.1 for our full

design matrix. Note that since batch size and height width completely determine input

size we group results by unit sizes equal to batch size× height width.
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Figure 4.1: Ratios of execution times of PyTorch+jemalloc relative to Py-
Torch+MemoMalloc. Note that inputs are unitized to the characteristic dimensions, i.e., the
product of batch size and height width. Shaded regions denote standard errors. Missing
traces are a result of OOM exceptions.
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CHAPTER 5

DISCUSSION

We observe that PyTorch+MemoMalloc robustly performs better than PyTorch+jemalloc,

in terms of latency, in almost all experimental configurations. How large that performance

advantage is, varies amongst the networks, most likely as a function of the computational

intensity of the kernels of those networks. In the instances that MemoMalloc performs worse

(fcn resnet50, regnet x 8gf, and dcgan at input size 128, see Figure 4.1a), it is the case

that most allocations made by those networks fall below the 1MB oversize threshold (see

Figure 5.1) and thereby have allocations serviced primarily by jemalloc’s thread cache.

Furthermore, it is evident that, even at this input size, jemalloc does incur some non-

negligible overhead; this can be observed from the inflection in relative performance (ratio)

between 32 and 64 threads for all networks.

One feature of the evaluation data that warrants a comment is the inversion of the

aforementioned inflection for all other input sizes. That is to say, MemoMalloc performs well

at 32 threads but then that relative performance starts to decay. This is most likely because

the processor on our test platform only possesses 32 physical cores, despite presenting as 64

to the operating system (due to hyperthreading). The limited number of cores (relatively

speaking) acts as a natural “speed bump” on the number of allocations a given thread can

make over the course of executing the DNN (thus constraining the maximum amount of

mutex contention in the PyTorch+jemalloc configuration).

Finally, it’s important to consider the tradeoffs made in deploying MemoMalloc over

jemalloc. MemoMalloc trades latency for, potentially, higher average memory usage; while

peak usage should be comparable (both allocators need to accommodate the maximum nec-

essary memory at any given time), average usage should be higher with MemoMalloc because

it does not perform any frees over the course of the forward pass. To investigate this trade-

off, we collect statistics on the total number of bytes in active extents actually mapped by
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Torch+MemoMalloc underperforms PyTorch+jemalloc at input size = 128. Note that size
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jemalloc (gathered using mallctl). Note that jemalloc always allocates aligned memory,

while MemoMalloc only sometimes allocates aligned memory (depending on adjacent allo-

cations), and thus the comparison is only approximate. Consider googlenet for input size

= 128 (see Figure 5.2). Indeed, we observe that peak usage by MemoMalloc is comparable to

that of jemalloc, average usage is higher (see in Appendix 8.1 for the same comparison for

other DNNs). This internal fragmentation is acceptable in environments that have ample

memory, or in instances where DNN processes take priority, but could prevent the use of

MemoMalloc in resource-constrained environments such as embedded devices (see Section 7).
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Figure 5.2: Comparing memory usage for for googlenet by jemalloc versus MemoMalloc.
Note that the entire ∼3.5MB is kept allocated for the duration of the forward pass.
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CHAPTER 6

RELATED WORK

There is ample related work in this area.

Sekiyama et al. [48] propose a profiling approach similar to ours. They formally define

the offline DSA problem (we make use of their formalization in Section 2.3) and then solve it

using a “Best-Fit” heuristic (due to [? ]) for a related problem (the orthogonal strip-packing

problem). They observe a moderate reduction in intermediate memory allocations across

batch sizes and a commensurate reduction in inference latency due to how their framework

of choice (Chainer [? ]) performs intermediate allocations. Their approach is distinct from

ours in that it does not attempt to recover the structure of the DNN.

Lee et al. [32] study memory management for DNNs in the context of deployment to

mobile devices. In this context, they aim to reduce peak memory usage such that networks

may satisfy the memory constraints of on-device accelerators on various mobile phones. To

this end, they describe two memory management algorithms: a greedy memory management

algorithm that allocates a pool of shared objects on an operator-by-operator basis, and the

mincost flow strategy we described in Section 2.3. They report good performance improve-

ments but primarily due to successfully migrating from CPU to the on-device accelerators.

They do not attempt to capture allocations made by kernel implementations of operators

(which do occur in their framework of choice, TensorFlow Lite).

Pisarchyk et al. [40] also study memory management in the context of DNNs but with

respect to peak usage rather than execution latency. They evaluate the same set of memory

planning strategies as us, in addition to a called Greedy by Breadth. Greedy by Breadth

operates under the assumption that intermediate tensor of large sizes cluster on an operator-

by-operator basis (i.e., large inputs to operators produce large outputs). Thus, they sort (in

decreasing order) operators by a measure they define as breadth (the sum of sizes of input

and output tensors) and assign offsets in this order. In fact, we evaluated this strategy in
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an earlier implementation but ultimately observed that it didn’t perform well. Pisarchyk et

al. evaluate their strategies on various DNNs tailored to deployment on edge devices. While

they observe that Greedy by Size achieves near optimal results (in concordance with our

evaluation) they do not make any use of the additional structure of the DNN, nor do they

attempt to perform alias analysis of tensors.

Nimble [51] does make use of the intermediate representation of the DNN and similarly

inserts primitive allocation operations into the IR, but, critically, Nimble does not introspect

into implementations of operators and therefore elides any implicit allocations. Notably,

TVM (closely related to Nimble) began discussions1 regarding static memory planning at

approximately the same time as this project began

One important body of work possessing high affinity with our own is the Multi-level

Intermediate Representation (MLIR) project [31]. In the MLIR framework, there exist

many intermediate representations (called dialects), that enable the specification of DNNs at

various levels of abstraction. In particular, in the linalg dialect, sequences of DNN operators

are decomposed in terms of the corresponding linear algebra; consider the representation of

conv in Listing 6. The important feature of this representation to note is that the allocation

%3 = memref.alloc() for the output of the convolution is explicitly represented, along

with its shape memref<1x32x112x112xf32> (along with the shapes of all other tensors).

This straightforwardly enables the writing of a compiler pass that implements static memory

planning; indeed in MLIR this is called a “comprehensive bufferization”2 and uses essentially

the mincost flow strategy.

1. [Discussion/Alignment] Memory Planning

2. mlir/lib/Dialect/Linalg/Transforms/ComprehensiveBufferizePass.cpp
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func @conv(%input: tensor<1x3x225x225xf32>, %filter: tensor<32x3x3x3xf32>,

%output: tensor<1x32x112x112xf32>)

-> tensor<1x32x112x112xf32> {

%0 = bufferization.to_memref %input : memref<1x3x225x225xf32>

%1 = bufferization.to_memref %filter : memref<32x3x3x3xf32>

%2 = bufferization.to_memref %output : memref<1x32x112x112xf32>

%3 = memref.alloc() : memref<1x32x112x112xf32>

linalg.copy(%2, %3) : memref<1x32x112x112xf32>,memref<1x32x112x112xf32>

linalg.conv_2d_nchw_fchw

{

dilations = dense<1> : tensor<2xi64>,

strides = dense<2> : tensor<2xi64>

}

ins(%0, %1: memref<1x3x225x225xf32>, memref<32x3x3x3xf32>)

outs(%3: memref<1x32x112x112xf32>)

%4 = bufferization.to_tensor %3 : memref<1x32x112x112xf32>

return %4 : tensor<1x32x112x112xf32>

}

Listing 6: Representation of conv in the linalg dialect of MLIR.
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CHAPTER 7

CONCLUSION

We studied the memory allocation patterns of DNNs, with respect to latencies incurred

by synchronization mechanisms in conventional caching allocators. We then proposed and

implemented a memory planning system for reducing such latencies (during inference) for

DNNs. We evaluated our system and observed that it performs better than jemalloc for

typical DNN workloads. Our implementation is wholly open-source and in the process of

being upstreamed to PyTorch.1 In the future, we intend to factor out MemoMalloc into an

independent module with a uniform API such that it can be plugged into any of the popular

deep learning frameworks.

Future work in this area includes several directions:

• Dynamics. All of our work here assumes that there is no control flow and that all

intermediate tensor sizes are fixed. In practice, this is only the case in certain environ-

ments and it would be preferable to be able to perform memory planning in the context

of both control flow and dynamic intermediate tensor sizes. We have done preliminary

work that indicates that in fact, this is possible; for DNNs where intermediate tensor

sizes can be algebraically inferred from input shapes, it is possible to construct memory

plans ahead-of-time (and to cache them) for common input shapes. Such a regime is

called symbolic memory planning, owing to the employment of symbolic shape inference

in order to derive algebraic relationships between input shapes and intermediate tensor

sizes. The simplest example of this is symbolic memory planning in the context of a

dynamic batch size; in this context it can be analytically proven that the MIP solution

scales linearly with batch size, thus enabling amortized MIP memory planning.

• Training. Our work here has targeted primarily DNN inference, on the assumption

1. https://github.com/pytorch/pytorch/pull/64347
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that latency matters most in this context. While it is the case that service-level agree-

ments and quality-of-service guarantees impose hard constraints on inference latencies,

it is also the case that during training of DNNs, lower latencies could proportionally

reduce costs (associated with the research process). The added complexities of training

are twofold: firstly, the graph corresponding to backpropagation of gradients must be

obtained (i.e., the backwards graph), and secondly, intermediate tensors must be kept

alive (or stored) in order to be available during gradient computation. Both of these

aspects present new challenges for static memory planning. Obtaining the backwards

graph in TS IR is currently not possible but alternative tracing mechanisms, such

as LazyTensor [56], could be used. Under current assumptions for heuristics mem-

ory planning strategies (such as greedy by size), intermediate tensors that need to

be persisted or stored undoubtedly lead to highly fragmented memory plans. Thus

training necessitates a different set of heuristics for computing offsets.

• GPUs. Motivated by current deployment practices, we have only considered CPU

deployment. But it is the case that GPUs are in fact, slowly being adopted as de-

ployment targets for inference. GPUs introduce many novel complications, due to

exotic scheduling environments and complicated memory hierarchies; for example, on

NVIDIA devices, execution of a group of threads will block on data being absent from

shared memory. Despite such complications, there is reason to believe that static

memory planning could be feasible on GPUs as well; NVIDIA has recently released an

extension to the CUDA API called CUDA Graphs2 whose use entails “freezing” and

reusing fixed sets of memory addresses for multiple iterations of arbitrary sequences

of kernels. Preliminary exploration of this API has shown that it does in fact reduce

many of the latencies associated with allocation.

• Edge Devices. Recently edge platforms (mobile phones, wearables, IoT sensors)

2. https://developer.nvidia.com/blog/cuda-graphs/
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have also become feasible deployment targets for DNNs, owing to advances in research

on DNN architectures that maintain accuracy while reducing resource consumption

(such as quantized [63] and sparse networks [65]). These advances notwithstanding,

those platforms reproduce many of the phenomena of their larger scale analogues [57].

Namely, memory consumption of DNNs on edge devices is of great importance, due

to proportionally scaled memories (i.e., relatively small), limited memory bandwidth

capacities [62], and less powerful memory management units [15]. Simultaneously,

limited threading capabilities impose constraints on the complexity (and therefore so-

phistication) of possible memory management schemes, such as dynamic allocators [43]

and software virtual memory [5]. We are investigating deploying MemoMalloc on such

platforms.
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CHAPTER 8

APPENDIX

8.1 Heap Maps for Memory Planning Strategies

We present “heap maps” generated by memory planning strategies for input size = 128. We

pair these with the mapped statistics reported by jemalloc for the same configuration.
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8.1.3 deeplabv3 resnet50
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Figure 8.15: greedy by size
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Figure 8.19: bump allocation
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Figure 8.21: greedy by size
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Figure 8.22: mincost flow
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Figure 8.27: greedy by size
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Figure 8.28: mincost flow
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Figure 8.32: gergov
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Figure 8.33: greedy by size
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Figure 8.34: mincost flow
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8.1.7 regnet x 8gf
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51



0 140 281 421 561 702 842 982 1,123 1,263
0

1

2

3

4

5

time

m
em

or
y
(M

B
)

Figure 8.40: mincost flow

0 140 281 421 561 702 842 982 1,123 1,263
0

1

2

3

4

time

m
em

or
y
(M

B
)

Figure 8.41: mip

8.1.8 squeezenet1 0

0 17 34 51 68 84 101 118 135 152
0

0.5

1

1.5

2

2.5

time

m
em

or
y
(M

B
)

mapped

Figure 8.42: jemalloc

0 17 34 52 69 86 103 121 138 155
0

5

10

15

20

time

m
em

or
y
(M

B
)

Figure 8.43: bump allocation

52



0 17 34 52 69 86 103 121 138 155
0

0.5

1

1.5

2

2.5

3

time

m
em

or
y
(M

B
)

Figure 8.44: gergov

0 17 34 52 69 86 103 121 138 155
0

0.5

1

1.5

2

2.5

3

time

m
em

or
y
(M

B
)
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Figure 8.46: mincost flow
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Figure 8.51: mincost flow
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Figure 8.52: mip
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Figure 8.53: jemalloc
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Figure 8.54: bump allocation
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Figure 8.55: gergov

55



0 67 134 202 269 336 403 471 538 605
0

1

2

3

4

5

6

time

m
em

or
y
(M

B
)

Figure 8.56: greedy by size
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Figure 8.57: mincost flow
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Figure 8.58: mip
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