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Abstract— Static declarative domain specific languages represented by JSON are an increasingly common means by which
to control a wide variety of types of systems. These range from database queries to application configuration to narrative
generation to twitter bots to data visualization and to many other areas. These languages allow human users to concisely
specify their intent through logic—and sometimes notation—that is relevant and matched to their task domain, as well as provide a
means for computational agents to easily manipulate that form, allowing for powerful recommendation engines and automated analyses.

In this thesis we explore the design space of this form of textual interfaces and describe a suite of tools that improve the
end user experience of these powerful tools. In particular, we investigate this space through four projects which variously consider how
JSON DSLs are designed, how abstraction can be integrated into those languages, how interfaces can be designed to specifically
facilitate their manipulation, as well as how those programs might be automatically validated. The through line of these projects is
the assertion that treating these textual interfaces as first-class elements of visualization interface design is a valuable choice for
end users. We primarily consider languages focused on various data visualization tasks, as there has been substantial work in the
visualization research community on this form of interface—although the lessons learned could be applied to any relevant domain. Our
initial findings suggest that there is substantial useful work that can be done through this lens and that interventions of the forms
described are useful for helping end users learn, use, and re-use programs written in these languages.

1 INTRODUCTION

Data visualizations come in an endless array of shapes, sizes, forms,
and kinds. Each type attuned to different problems, tasks and contexts.
For instance, a Gantt chart can effectively show project planning data,
but would do little to support the analysis of stock performance over
time. Similarly, the means by which one specifies the attributes and
form of a visualization varies based on the task at hand; with some
interfaces being better attuned to certain situations than others. To wit,
chart choosers (such as those found in Excel) are great for quickly
getting a chart put together, but can be bad for data exploration or
refining that graphic for presentation.

An increasingly common form of visualization specification is the
use of JSON-based domain specific languages (DSLs). These static
textual interfaces allow for the declarative specification of both static
and interactive graphics in a logically coherent manner that is manipu-
lable by both humans and computational agents. While they exist in a
variety of forms and formats they often are inspired by the Grammar
of Graphics [132]—a logic for specifying graphics via declaration of
the mapping of data elements to graphical elements—which yields a
simple and relatively human-readable form which is generally well
matched to restricted grammar of JSON —as opposed to ones based
on chart types such as scatter plots of bar charts. The most prominent

of these tools are those in the Vega family [107, 108], however, as we
discuss in Sec. 2, they are far from the only entrants in this paradigm.

The utility of these tools for visualization is closely analogous to that
of SQL for declarative interaction with databases. End users can (with
training) build powerful analyses through SQL queries, while com-
putational agents can automatically generate queries through ORMs,
provide exploration recommendations, and facilitate tasks such as data
discovery. Reciprocally, end users can be trained to effectively use
tools such as Vega-Lite [107] to explore and create visualizations in
real world settings (for instance, Vega-Lite is at the heart of the Kibana
analytics system for ElasticSearch [55]), while recommenders and other
analysis systems can be used to automatically generate appropriate
charts.

The representation of domain-specific programs in a static medium,
such as JSON, has a variety of benefits. They are portable and can
be used across a variety of platforms, allowing visualization created
in one environment (such as a graphical editor like Lyra [105, 141])
to be utilized in another context (such as a textual interface like the
python-based altair [121]). Because the languages are limited in what
they can express they have a greater degree of security than might
be found in visualizations described in general purpose programming
languages. For instance, the MediaWiki Graph extension [131] enables
the use of Vega on Wikipedia. This static representation provides all the
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flexibility of a full visualization language without the issues associated
with sending end-user editable executed code to billions of users.

While there has been ample work on using these visualization JSON-
DSLs for various ends, such as recommendation [136] and program-
ming by demonstration [104, 141], there has been little work on im-
proving the human experience of their usage. The primary exception
being Hoffswell et al.’s work on debugging Vega charts [46, 47]. In
this thesis we will explore the design and usage of these languages
both unto themselves and as end-user tools. Using the lessons learned
therein we develop a series of systems which utilize and exhibit the
unique advantages and disadvantages of this interface form. The essen-
tial hypothesis being that consideration of JSON-DSLs as first class
interface elements is a valuable design choice for end users.

More formally, we will seek to defend the following thesis:

Mixed-modality UIs can make JSON-based visualization
DSLs more powerful and versatile in their design, as well
as easier to use and reuse in end-user systems.

To examine this perspective we will consider four interconnected
projects. Each of these will investigate a different aspect of JSON-
DSLs. We will begin, in Sec. 2, by trying to understand just what
JSON-based DSLs are, by surveying the current state of the art for their
design and implementation patterns. Then, in Sec. 3, we will describe
an abstraction layer over JSON grammars which can be coherently
manipulated by a variety of end users (and hence through a variety of
interface modalities) in a visual analytics system called Ivy. While this
system demonstrates that the use of mixed-modality interfaces can be
useful, we find that editing the textual representation of JSON-DSL to
be sometimes error prone or hard to learn. To address these concerns
in Sec. 4 we describe a GUI , tentatively called JSONG (JSON + GUI),
that complements and extends traditional textual editing with direct
manipulation, live program visualizations, and structure editing. Finally
in Sec. 5 we will describe a method for validation of charts created
through the use of these grammars, which we will situate within a larger
framework for describing how visualizations can go wrong.

Through these projects we will demonstrate JSON-DSLs can be
more effectively used through mixed-modality interfaces (which blend
graphical and textual specification) and these abstraction and analysis
tools (which allow for reuse and improved usage than without these
augmentations).

As suggested throughout this introduction we will primarily focus on
languages in the visualization landscape, however there are a multitude
of other domains in which JSON-DSLs are utilized. Some of the more
familiar applications involve application configuration (such as that of
webpack [128]) and NoSQL query languages (such as MongoDB [8]

or ElasticSearch [54]), however they have also been used for narrative
generation [15, 35], game generation [27], chatbots [62], dance [93],
fabrication [118], and a variety of others. We will explicitly touch on
some of these areas, however we believe that the general lessons learned
from these projects and the philosophy of end-user empowerment
through static DSLs is one that can be applied to many domains.

1.1 Plan to completion
Throughout this document we will describe the intended path to com-
pletion for each of the sub-projects, but we also give an overview of
that plan in Fig. 1. As described above and in Fig. there are four com-
ponents to this thesis. Two of them (Ivy and Mirages) are completed.
At time of this writing the remaining two projects, No Grammar and
JSONG, are approximately 50% and 10% completed respectively. We
intend to submit a preliminary version of this work to the IEEEVIS
Doctoral Colloquium. Should there be extra time following the comple-
tion of the two remaining projects we will pursue one of several stretch
goals described in Sec. 6
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Fig. 2. Following Mernik et al.’s [84] partitioning of the DSL design
process, we describe the visualization DSL design through a series of
stages, at each stage of which there are design choices to be made.
Here we show a draft of the patterns categories found in our analysis.
The patterns listed here will be covered in explicit detail in the full version
of this work.

2 DESIGN: NO GRAMMAR TO RULE THEM ALL

This section describes work that is actively in progress, and is aimed
to be submitted to IEEEVIS22 Conference at the end of March.

There has been a substantial growth in the use of static JSON-based
grammar to create visualizations [97]. Each of these grammars serve
various purposes: some focus on particular computational tasks, such
as animation, some are focused on certain chart types, such as maps,
and some focus on particular data domains. There are a wide variety
of approaches to implementing each of the languages, some are inter-
preted and some compiled. They hold a variety of relationships with
one another, some are composed, some compiled, some are restricted
versions of another language, and, of course, most are unrelated. For
instance, the animation grammar Gemini [58] wraps Vega-Lite [107],
which compiles to Vega [108].

Yet, despite the growing popularity of this approach, there has been
little study of implementation and design patterns utilized by these
various systems. While these languages have allowed for the creation
of a variety of systems [106], we suggest that a richer understanding
of the design space will allow for richer development of subsequent
systems.

In this project, we propose to conduct a survey of this design space
This survey will categorize and describe the ways in which each of
these JSON languages are designed and implemented across a variety
of axes, such as what types of data they use, their host language, the
execution strategy, and their relationship to other languages. These cat-
egorizations will draw upon previous work on characterizing the design
patterns of domain-specific languages, such as Mernik et al.’s [84] char-
acterization of implementation and abstraction patterns, Van Deursen
et al.’s [120] survey of 75 DSLs, Fowlers practical consideration of
the design and implementation of DSLs [31], as well as Erdweg et
al.’s [28] work on typifying the relationships between and composition
of languages. Through this analysis we will rarefy a design space, a
sketch of which is shown in Fig. 2, that will allow language imple-
menters to identify and execute important decisions for the design of
and implementation of their visualization grammars.

Why JSON Grammars? An essential question underpinning this study,
as well as this thesis, is why concern ourselves with this particular in-
terface form? Programming language and interface design experts reg-
ularly take to social media to opine the prevalence of this approach [63]
as declarative JSON grammars lack many of the features that make
programming languages usable, such as tools for debugging, autocom-
pletion, and abstraction. According to the discoverer of JSON, Douglas
Crockford [112] it is a “lightweight data-interchange format” and not
a programming or markdown language. While many grammars are
expressive, their design always has constraints precluding the spec-
ification of that language, such as unusual chart types or elements
(such as in the difficulty of specifying Gantt charts in Vega-Lite in a
way that does not require numerous round trips to the data). These
potential drawbacks notwithstanding, it is the declared context of this
proposal that we are interested in trying to better understand how to
help end-users operate in this style of language more effectively. These
languages are prevalent and so understanding how they are designed
is a natural first step in this pursuit. Further, Chasins et al. [11] high-
light a growing convergence between HCI and programming language
communities, and that programming language backed interfaces is a
powerful pattern—a perspective shared by Heer et al. [41] in the design
of Trifacta. While simple, JSON languages offer a direct and accessible
entry into this mixing point, which may have useful outcomes for more
sophisticated languages.

Prior work. This work draws on prior studies of domain-specific
languages in both visualization and in general. In describing the design
of Encodable—a system for papering over the inconsistent charting
interfaces in JS through grammars that are reminiscent of Vega-Lite—
Wongsuphasawat [133] sketched a taxonomy of visualization speci-
fication languages premised on level of abstraction. He later [134]
extended this taxonomy and provided a close reading of a series of vi-
sualization grammars, such as examining the way in which a user could
form a candlestick plot. Pu et al. [97] organized a special interest group
at CHI21 on visualization grammars, which highlighted the pressing
need for more formal study of these entities. We expand upon these
works through a more in-depth survey, which locates the designed task,
implementation strategy, and embedding style—among other features.

There are a wide range of domain-specific languages for visualiza-
tion that do not utilize static grammar. Rautek et al.’s [99] ViSlang pro-
vides a system for making and coordinating small DSLS. A number of
DSLs focus on scientific visualization [13, 26, 60], a space which Shen
et al. [113] consider as part of their survey of visual computing DSLs.
While these languages are interesting, their use of non-standardized
syntax requires more substantial tools to manipulate computationally
than JSON static grammars.

Our approach to this study also draws upon a number of previous
works that describe design patterns of other aspects of visualization and
data analysis systems. Heer and Manash [40] described design patterns
for visualization systems with a particular focus on data management
concerns. Lau et al. [68] surveyed the design patterns exhibited in
computational notebooks. Our work also seeks to typify the relationship
between visualization specification and data management, however our
focus is more related to the language by which the visualization is
specified. Gathani et al. [32] survey the space of SQL debugging tools,
which is naturally related to our concerns as the ecosystem around a
language is an essential as the core of the language itself.

2.1 Survey
Our survey encompasses systems from both academia, industry, and
other open source contexts. We searched Google Scholar, ACM Digital
Library, IEEE Xplore, and Github. Given the influence of the works on
Vega on this style of paper we also reviewed all papers that cite any of
the papers defining Vega and Vega-lite [107–109]. We have so far used
the following keywords: “JSON”, “XML”, “YAML”, “visualization”,
“map”, “chart”, “grammar”, “language”, “DSL’, and “domain-specific
language”. We include the closely related YAML and XML-based
languages, as understanding other visualization grammars built on
top of comparable static languages are similarly useful and, given the
now waning ubiquity of XML, provide evidence of the longer term
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Axis Values
Domain or task The self described purpose of that language, such as animation, XR, genomics, etc
Language Source Where the language arises from, e.g. Academic, Industry, Open Source
Extensible Whether and how the language can be extended, e.g. by end users, through an API, etc
Abstraction Mechanisms Which simple abstraction mechanisms the language features, e.g. control flow or variables
Embedded language Whether the language contains another language, these include SQL, JS Snippets
Execution strategy How the language is implemented, e.g. compiled, interpreted, composed
Output Type What the execution of the language produces, e.g. vector, raster, text, interactive websites
Data Type The type of input data transformed by the visualization, such as CSVs or domain-specific file formats
Juxtaposition strategy The way in which multiple graphics are combined, e.g. via operators
Data manipulation strategy The way in which language users can manipulate the input data, e.g. filters
Visualization/domain model The logical model underlying the grammar, such as Grammar of Graphics, series-based, or the reference model
Encodable taxonomy Where the grammar fits within Wongsuphasawat’s [133] abstraction based taxonomy
When and How taxonomy Where the grammar fits within Mernik et al.’s DSL taxonomy [84]
Annotated bib taxonomy Where the grammar fits within Van Deursen et al.’s DSL taxonomy [120]

Fig. 3. Current axes of analysis in the survey. In addition, we also consider a number of boolean axes, including: Produces Interactives, Has an
Algebra, Has Alternate API, References Grammar of Graphics, Open Source, Formal Definition Available, and Has GUI by Default.

prevalence of this type of design pattern. In contrast: while SVG,
HTML, and other high-level static markup languages qualify under this
definition, we exclude them as they are capable of producing far more
than just visualization and their intent is not focus on the visualization
or other associated tasks. In addition to these straightforward methods
we also utilized snowball sampling, as some grammars would reference
other similar systems.

Our criterion for inclusion identifies any system that explicitly uses
JSON or describes itself as using JSON (or another standard static
language such as XML or YAML) as a way to control its functionality
and contains a (broadly defined) visualization. In particular, we follow
our own exceptionally broad definition of a visualization [77] as being
a transformation of data into a visual form meant to be interpreted
by a human. So far we have identified 56 languages which qualify
under our survey domain. This search method suggests a bias towards
grammars occurring in published works (44 of our current sample are
drawn from academia), however we believe that the patterns exhibited
by this sample are evocative of the general case.

Our criterion excludes a number of systems. For instance, some sys-
tems merely subset Vega-Lite in order to demonstrate a separate func-
tionality, for instance GraphScape [59] operates over a non-interactive
and non-composable subset of Vega-Lite in order to explore sequence
recommendation. We exclude these systems from our analysis as they
merely use a visualization grammar rather than constructing one for
their own purposes. Further, while a number of visual builder systems
possess systematically described languages (such as Visception [66])
they do not utilize a static carrier language so they are excluded as
well. These systems are of interest and their approach to representation
should be studied in future work.

Plan for analysis. After data gathering we will code each system
based on a variety of axes, which are sketched out in Fig. 3. We will
then organize and theme this sample to form a design space. Mernik et
al. [84] describe the process of creating a DSL as consisting of a
sequence of stages: decision, analysis, design, and implementation.
We organize our discussion around this partitioning, with the minor
adjust of merging the first two categories. Further, following prior
work [88, 134], we intend to focus some of our analysis on close
readings of examples in order to better understand syntactic patterns
exhibited in the grammars.

As part of our survey we will also harvest all of the provided
examples of each language (which can range from a handful to
hundreds of examples). In order to facilitate reader exploration
and further our own analysis we will prepare this survey as an ex-
plorable website, an early version of which is available at https:
//festive-blackwell-a343de.netlify.app/. This will allow
for easy exploration of the space of languages. While this component
is a minor contribution, given that assembling the examples of each of
these languages has proved to be a surprisingly non-trivial process, we

believe that surfacing this database of examples will provide a valuable
point of comparison for subsequent grammar designers.

Initial results. Our initial reading of the survey suggests a number of
intriguing findings.

Language design tends to emphasize one of several considerations:
task (such as animation [58]), data domain (such as genomics data
[75]), conceptual model (such as S-expressions [92] or the Grammar
of Graphics [107]). Some languages utilize a more expressive algebra
while others are more limited, which appears to be related to the domain,
with the latter sometimes being more closely related to what is typically
thought of as API design than grammar design.

Language implementation tends to follow one of several patterns
including compilation and interpretation across a variety of embedding
forms including language chaining, unification, wrapping, extension,
and restriction. Many grammars “reimplement” the wheel, painstak-
ingly recreating aspects of other languages, such as data transforma-
tions. There appear to be distinct families of syntax, with Vega-Lite
guiding the majority of systems. To this end, most grammars tend to
be focused on a level of abstraction similar to that of the Grammar of
Graphics.

2.2 Plan for completion and intended contributions
The central contribution of this work will be a description of the design
space of static visualization languages, with a minor contribution docu-
menting and collating examples of all the languages usage. Our aim is
to submit a paper describing this work to VIS22, tentatively titled “No
Grammar to Rule Them All: A Survey of JSON-Based Visualization
DSLs”. If we miss this deadline or the paper is rejected, our fall back
plan is to submit the work to CHI22 or EuroVIS23. The survey began
in early fall 2021 and continued on through January 2022. The survey
has begun to reach a stable state and analysis has begun.
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3 ABSTRACTION: IVY

This section describes work that appeared as a full paper at CHI21 [82].
The system is available at https://ivy-vis.netlify.app/

Every user interface design involves compromise. Which tasks
should be made easy at the expense of making other tasks cumbersome
or even impossible?

There are several common user interface modalities for creating
visualizations, each with distinct trade-offs [36], as in Fig. 5 Chart
choosers (as in Excel) allow users to rapidly construct familiar visu-
alizations at the expense of flexibility. Shelf builders (as in Tableau)
facilitate dynamic exploration but can obstruct the construction of spe-
cific chart forms or the addition of visual nuances. The declarative
textual programming languages discussed so far in this document are
highly expressive but can impede precise configuration.

Ideally, interfaces of varying complexity could be integrated such
that both novice users (for whom chart choosers are often best suited
[37]) and experts (whose most profitable interface will vary) obtain
the benefits of each modality as their tasks require. Unfortunately
this territory remains under-explored, as visualization systems tend
to prefer one-size-fits-all designs. The static JSON-based declarative
visualization grammars that we have looked at so far in this proposal
are an enticing starting point as they provide significant flexibility
for specifying visualizations as text. However, they lack the abstrac-
tion mechanisms found in full-featured programming languages. This
project considers the question:

Can we extend declarative grammars with abstraction mechanisms
for reuse, in a way that facilitates explorability as in shelf builders and
ease of use as in chart choosers?

We answer this question by introducing a novel abstraction mech-
anism called parameterized declarative templates. These templates
abstract “raw” declarative specifications with parameters that specify
data fields for a visual encoding (e.g. Color) and design parameters
(e.g. height and width), making them more easily reused. To test
applicability of this notion we systematically apply this idea in a proto-
type visualization editor, called Ivy, in which templates are created and
instantiated through text- and GUI-based manipulation.

3.1 Template Language Design
Templates provide a simple set of abstractions over JSON-based gram-
mars. Put simply, a template is a function specified in a superset of
JSON, which includes variables and simple control flow operators, that
when applied to arguments produces a chart in a particular visualization
grammar. Templates are grammar-agnostic as they abstract arbitrary
JSON specifications. Each template consists of two components: a
body and parameters. Template bodies consist of JSON literals, as well
as variables and conditional expressions. The former are value refer-
ences to template parameters. The latter are equivalent to if statements
in other languages, and similarly depend on the result of predicate,
which is a “raw” JavaScript code string that evaluates to a boolean
value. Template parameters are abstract over data fields and stylistic
choices in the definition of a visualization and define GUI elements
that allow users to specify argument values for these parameters. These
are then evaluated by traversing the JSON during which conditionals
are evaluated and variables substituted. The complete template syntax
and semantics is described in the full version of the paper.

3.2 Interface Design
Equipped with the notion of templates, we next describe the Ivy UI. As
shown in Fig. 4, the application consists of two panes, one for chart
editing and another for chart viewing. The chart editing pane contains a
data column filled with Tableau-style “pills” representing data columns,
and an encoding column with “shelves” for those pills to be placed
upon. This encoding column can be used to instantiate (i.e. provide
arguments for) the parameters of the template, or to edit the GUI of the
current template. The editing pane also includes a code editor which
can manipulate the current template and UI state textually. Here, we
describe how Ivy supports the creation, selection, and application of
templates to produce charts.

Template Selection as Chart Choosing. The root of Ivy is a template
gallery, which is populated with a library of system-provided and
Ivy user created templates. Simpler templates allow users to jump
quickly to familiar visual forms (such as line or bar charts), while more
sophisticated templates privilege thinking with their data [101].
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Each template is accompanied by a set of user-defined examples,
namely, settings chosen by users to instantiate the template, with data
bindings and output renderings with respect to a collection of predefined
datasets. These examples serve as “crowd-sourced documentation” for
how individual templates operate. Furthermore, this adds an element
of opportunistic programming: to create templates, users can borrow
small snippets—such as a well-formatted list of color schemes—and
use them in their own creations.

Template Application via Shelf Building. After selecting a template
and uploading a dataset, the user is presented with a shelf builder-
style GUI for setting the template parameters and specifying basic
data filters. We choose this GUI design seeking to exploit the same
affordances that drive the explorability of shelf builders. Specifically,
our design closely follows that of the Polestar shelf builder system,
which Wongsuphasawat et al. [135, 136] constructed as a simulacra of
Tableau to serve as a baseline comparison in the development of their
recommendation-based exploration systems. While emulating Polestar
is a relatively small threshold to overcome in the context of VA systems,
it demonstrates the promise of our template-based approach. Systems
such as Tableau or PowerBI possess features that—although larger and
more complex—are not substantially different from those in Polestar.

To select data parameters of interest, users drag-and-drop from a list
of data fields, color-coded according to their data roles, onto encoding
shelves, as in Fig. 4a, d. Following prior work [1, 115, 135] roles
include Measure u (quantitative fields), Dimension u (nominal or
ordinal fields), and Time u(temporal fields). When a dataset is loaded,
we make heuristic guesses about the role for each column, which the
user can later modify. We use roles in Ivy to construct a naive automatic
Add to Shelf feature (akin to Tableau’s Add to Sheet [76]), except
ours is simply based on order and data role. If a template has three
DataTargets, the first of which allows only a Measure uwhile the
latter two allow anything, clicking Add to Shelf on a Dimension uwill
add it to the second parameter. In addition to the visual aesthetics of
Polestar (and hence that of Tableau), we also emulate the functionality
of its shelf-building interface through a “default” library template called
IvyPolestar. The only features not replicated are the Automatic Mark
Type—implementation of which, though possible in Ivy, was beyond
the scope of the paper—and the chart bookmarks—which we replaced
with a notion of view tabs.

Template Creation and Text Editing. Templates can be created or
modified in two ways, either by modifying the textual representation or
through GUI interactions. The textual representation facilitates both
small tweaks, as well as creating new templates. For instance, users may
copy code snippets found online—such as in language documentation
or Stack Overflow—and templatize them to suit their task. Templates
can also be created by “freezing” and refining the GUI state when
interacting with an existing template. For example, a user might apply
a full-featured template, such as IvyPolestar, to construct something
resembling their desired chart, fork the text output as a new template
(as in Fig. 4d), and then provide fine textual grained updates. As ever,
we believe that exposing textual representation to the end user furthers
flexibility and reusability.

To ease the construction of templates, Ivy uses domain-specific pat-
tern matching and rewrite rules to suggest potential transformations
to users. For instance, if a user were to find a chart in the Vega doc-
umentation that they wanted to copy, they would simply start a new
template and paste the code into Ivy. The code pane then suggests
ways to transform the code. For example, if a value in a Vega-Lite spec
is used where a data reference is expected (e.g. "field": "age"),
then Ivy suggests swapping "age" with a reference to a new parameter.
Rules are defined by Ivy developers, rather than Ivy users.

Template-Based View Search. The systematic formulation and applica-
tion of templates allows us to emulate recommendation and exploration
features found in a variety of existing charting systems as a conse-
quence of our design. Here we highlight two such features that follow
naturally from the use of templates: one arises by fixing the arguments
and varying the template, and the other by fixing the choice of template
and varying the arguments. The gallery in Ivy is equipped with cat-
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Fig. 5. Chart making modalities have distinct strengths and weaknesses.
Using parameterized declarative templates, Ivy strives to combine the
strengths of several common modalities in this design space.

alog search, which allows users to search across the set of available
templates based on compatibility with a set of specified columns of
interest—specifically, by using a simple type-compatibility algorithm
that compares template parameter types with the data roles of selected
columns. Comparisons in visual analytics (VA) are often made tempo-
rally, requiring the analyst to hold mental reference to each of the values
under consideration. To reduce this cognitive burden, Ivy users can fan
out a template by applying multiple settings and rendering their output
simultaneously. These mechanistic approaches successfully emulate
smart recommendation systems [69, 135, 136] without succumbing to
the uninterpretable black box nature of these systems, which, as we’ve
noted [78], can be opaque, inflexible, brittle, and domineering.

3.3 Evaluation
We assessed our template-based approach by considering two questions:
Do templates facilitate organization and reuse of existing visualiza-
tions? and Is Ivy’s multimodal UI approachable by real users?

We address the first of these questions by reproducing all of the
examples in both the Vega-Lite example gallery [123] (consisting of
166 examples) and the chart chooser found in Google Sheets [33]
(consisting of 32 examples) as templates, looking for opportunities to
factor related visualizations into templates. This yielded 3.5x and 1.8x
compression ratios, respectively, where compression is the number of
examples constructible by a given template. This demonstrates that
our simple template abstraction mechanisms enhance the flexibility
of existing declarative grammars while improving their reusability by
serving a variety of use cases.

We consider the latter question through a small approachability
study (n=5). This study sought to understand whether this form of
multimodality was usable. It consisted of a series of structured tutorial
tasks followed by a series of open-ended data exploration and template
construction tasks. Participants were professional data analysts who
had recently graduated from MSCAPP. All participants were able
to complete all tasks and found the system to be generally usable,
yielding a mean system usability score of µ = 68.0—describable as
being between “OK” and “Good” [2]. Participants were enthusiastic
about mixing code and graphical specification. P5 commented that
the combination “feels more useful than just coding”. More critical
than users’ perception of the usability, which may have been positively
biased, is the demonstration that they were able to navigate the system
and use the interlocking modalities to achieve various tasks.

3.4 Key Findings and Contributions
This investigation demonstrated that this form of multimodality is an
approachable system design for users with modest VA experience. This
connection between text and GUI appears to help users learn and com-
prehend JSON-based charting grammars, which may be unfamiliar or
difficult to understand. The repeatable customization found in templates
might also, for example, enable practitioners to explore designs in a
structured manner. While this architecture does have some limitations
(such as the sometimes clumsy textual editing and that the grammar
agnosticism prevents the system from providing grammar specific af-
fordances) the benefits appear to outweigh the limitations. Our central
contribution is demonstrating that template-style abstraction can be
usefully applied to create approachable multimodal interfaces.
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4 MANIPULATION: JSONG
This section describes work that is in the early stages of development,
and is aimed to be submitted to EuroVIS23 or UIST23.

JSON’s restricted textual form provides a number of useful benefits
for the domains addressed by our languages of concern. For instance,
in terms of the cognitive dimensions of notation framework [38], it
decreases the viscosity (as syntax is typically quite terse requiring few
changes to make big alterations), their small domain-focused form
helps to maintain consistency, and their naturally abstracted form can
help improve the abstraction. However, it also imposes a variety
of expressiveness limitations. The strict syntax can be difficult to
manipulate, as even small errors will cause programs to be unreadable
by many parsers, yielding a disproportionate error response. Further,
the terse syntax leaves little wiggle room and can make it difficult to
learn the language. Depending on the grammar it can be difficult to
evaluate incomplete specifications, yielding difficulties for progressive
evaluation. Just as in other declarative languages it can be difficult to
debug [32] requiring the programmer to hold a potentially unfamiliar
execution model held by the DSL in their mind to address possible
subtle errors (providing visibility, hard mental operations difficulties)

Previous approaches to these problems have generally involved GUI
Facades or Live Programming Annotations.

GUI facades is a design pattern in which the languages is completely
obscured from the user by placing them behind a GUI, such as in
Lyra [105, 141] or Voyager [135, 136]. Heer et al. [41] describe this
in terms of the GUI lifting over the grammar, and is described as an
useful pattern and worthwhile of study by Chasins et al. [11]. This
pattern is advantageous in that it allows for complex interactions with
the underlying grammar, however it loses the ability to precisely tune or
modify those programs and becomes limited by the design of the GUI.
The mixed-GUI and textual interface we described with Ivy weaves
together these approaches, however it succumbed to the shortcomings
and difficulties of manual text editing, and the interplay between writing
JSON and writing JS snippets sometimes proved challenging.

Live Programming Annotations, in contrast, embed contextual
or evaluation information into a text editor itself. This practice is
common in live-coding contexts which tend to blur evaluation and
editing. For instance Omnicode [52] visualizes all program values all
the time. Hoffswell et al. [47] aid the debugging of Vega programs
via contextual inline-annotations such as sparklines and other word
sized graphics. Their system shows the state of Vega’s signal variables
at the heart through these in-line annotations, which they find to be
helpful for debugging, thereby reducing some of the required hard
mental operations. Similarly, Lieber et al. [72] describe a method for
surfacing run-time call counts to JS programmers in inline.

In this project we will address these concerns through a strategy akin
to the latter of these design patterns, with an eye towards being able to
make an Ivy-style integration into a GUI. We focus on this combination
of modalities because we believe that exposing programmatic represen-
tations of GUIs to end users is useful, and seek to explore the utility of
a system that takes JSON-DSLs as a first class design component. In
particular we propose to develop a graphical interface, tentatively titled
JSONG (JSON + GUI) that combines structure and projection-based
editing in order to provide relevant information directly in context to
the tasks being addressed. Both approaches have been used in other
contexts, however they have not been generally made to support JSON
grammars specifically. This could be because JSON grammars are still
relatively uncommon compared to other programming languages or
application interfaces, or, as discussed in Sec. 2 because JSON gram-
mars are often looked down upon by experts. Further, this continues
our expressed philosophy of meeting the users where they are: JSON
grammars are prominent across a variety of contexts and a lack of
tooling specifically for those languages. This creates an execution gap
in users ability to effectively and concisely express their intents.

Here we lift our focus from visualization to encompass JSON gram-
mars from other domains, including the narrative generation language
Tracery and MongoDB’s aggregation language. While the lessons are
applicable to visualization, we believe exploring other domains will
prompt greater utility in the design of this system.

{
  "data": {"url": "data/penguins.json"},
  "width": 600  ,
  "height": 300  ,
  "transform": [
    {"filter": "datum['Beak Length (mm)']"},
    {"window": [{"op": "count", "as": "index"}]},
    {"fold": [ "Beak Length (mm)"  , "Beak Depth (mm)"  ,    ]},
    {
      "joinaggregate": [
        {"op": "min", "field": "value", "as": "min"},
        {"op": "max", "field": "value", "as": "max"}
      ],
      "groupby": ["key"]
    },
    {
      "calculate": "(datum.value - datum.min) / (datum.max-datum.min)",
      "as": "norm_val"
    },
    {
      "calculate": "(datum.min + datum.max) / 2",
      "as": "mid"
    }
  ],
  …
}
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Data Fields

The aggregation operation to apply (e.g., "sum", "average" or "count"). 
See the list of all supported operations here.

Type:  AggregateOp, String

Switch to:   ▽max

Actions:   remove property    set as null

A

B

C

D

E

Fig. 6. A mockup of JSONG configured to be part of an Ivy-style applica-
tion. (A) shows standard contextual type based enhancements (here a
number dragger). (B) shows a list of data fields held outside of the editor
which can be dragged directly onto a drag target (C) within the program
specified as a projection. (D) shows the result of clicking on any value
underlined field: a popover featuring JSON-Schema and AST generated
type information which can be used to structurally manipulate the value.
(E) a custom projection defined for each element in the transform pipeline
that allows for inspection of the data transform at that stage, accessed
by clicking on the control element at the start of the object.

4.1 System Design

Our proposed solution involves three major forms of augmentation to
the traditional text editor: direct manipulation, projectional augmenta-
tions, and type-based structure editing. We selected these families of
enhancements because they are richly expressive while still privileging
the textual interface without substantial obfuscation.

Direct Manipulation Enhancements. Direct manipulation [114] in
user interfaces is often highlighted as an essential way to close the
gulf of execution [89] found in many computer systems. Textual pro-
gramming languages have a failure in closeness of mapping famously
highlighted by Victor’s various direct manipulation experiments [124].

There have been a variety of systems that explore various ways to
cross this gulf, causing many enhancements to be now standard (or
easily accessible via extension) in modern code editors, such as sliders
for numerical values, inline color pickers for colors, toggles for boolean
values. We will employ a variety of these enhancements in our design as
appropriate. Beyond these now everyday offerings a number of works
have explored more exotic interactions. For instance, Lee et al. [70]
describe a system for drag-and-drop refactoring in Eclipse. Hempel
and Chugh explore this gap by proposing a variety of mechanisms to
modify text and graphics bidirectionally [44] providing in-situ widgets
for output manipulation. Our approach differs in that we work over
a more restricted language and so are able to offer more expressive
manipulation controls. For instance, we propose to add controls that
allow for manipulating structurally similar elements simultaneously;
such as changing the content of every object in an array.
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Projectional Augmentations. Traditional editors only allow the pro-
grammer to edit text. While this is deeply expressive, it is far from
the only representation available. Projectional editing allows the user
to specify edits [6] to the AST representation of the program without
modifying the text, typically through an abstracted representation of
the program. This ensures that the program is always in a valid state
(a concern shared by the structure editing). These alternative repre-
sentations are often presented alongside the text as live-programming
annotations and can be designed in such a way as to match the domain
the user is working in. For instance, Lerner’s projection boxes [71] pro-
vide live graphical visualizations of the dynamic execution of python
programs as a means to allow interactive program synthesis [29, 94].
This approach is related to livelits [90] which allow for programmatic
specification through live direct manipulation GUIs in a functional
programming language, which is itself an extension of previous work
on GUI-based manipulation widgets in Java [91].

We propose to follow a similar tack by enabling the creation of
grammar specific projections that are able to show both static and dy-
namically evaluated information about the program. These projections
will be optionally manipulable so that changes can be made structurally
to the program. For example, in Fig. 6 we show a sketch of a version of
the editor configured to be part of a visual analytics application. Rather
than abstracting the relationship between the data fields and their place
in spec as Ivy does, this approach instead allows users to drop pills
directly onto relevant parts of spec itself. The location of projections
can be specified through two query languages: one based on the key
path and one based on the JSON-Schema.

Type-based structure editing. Despite being occasionally maligned
for their lack of types [20], JSON supports a variety of type information,
both from its limited grammar, as well as from external specifications
such as JSON Schema [96]. We intend to use both of these families
of tools in order to allow the user to manipulate JSON programs in
such a way that they are always in a valid state. This will include
basic language-level manipulations (such as inserting, deleting, and
reordering elements), domain-based type information (such as selecting
from a set of allowed values or adding a new object or inlining a remote
data source), as well as novel interactions (such as, again, manipulating
structurally similar elements simultaneously).

While some structure editors restrict editing exclusively to graphical
representations (such as Scratch [100]) others allow for mixed text and
structure editing. Deuce [44] enables users to edit both the textual
version of code as well as through an opt-in structure editing mode
in a FPL focused on SVG manipulation. IdyllStudio [16] provides a
structure editor specialized to interactive data-journalism based on a
custom DSL. Ko and Myers described systems for constructing struc-
ture editors abstractly [64, 65]. Our approach contrasts with these in
that we address a more restricted language of JSON rather than a cus-
tom FPL, DSL, or on ASTs in general. Our approach also resembles a
number of community created tools, such as jet [95] and jsoneditor [19].
We expand on these in several ways: our support for JSON-Schema is
substantially more robust than other offerings, in that we are able to
process large schemas, such as those of Vega and Vega-Lite. We do
so by forking the JSON parser from VSCode’s JSON LSP [86], which
already featured strong support schema inferences (which is likely a
component of the motivation for the use of the Monaco editor in the
Vega Editor [122]).

4.2 Need Finding Survey
Beyond our described families of modifications to the traditional textual
interface, we intend to guide the construction of our design based on
a need finding survey of users of JSON-DSLs. In particular we seek
to better understand the usage and pain points they have in learning,
writing, and using programs written in this style. While we are confident
that the problems described by our cognitive dimensions discussion
are prominent, both from our own experience using these languages
and from prior works seeking to alleviate these specific problems [46,
47, 110], we believe that it will be useful to consult with users of
these textual interfaces about the problems that arise for them in their
local context. We will target a variety of communities including those

{
"origin": ["[myPlace:#path#]#line#"],
"line": [

"#mood.capitalize# and #mood#, the #myPlace# was #mood# with #substance#", 
"#nearby.capitalize# #myPlace.a# #move.ed# through the #path#, filling me with #substance#"

],
"substance": ["light", "reflections", "mist", "shadow", "darkness", "brightness"],
"mood": ["overcast", "alight", "clear", "darkened", "blue", "shadowed", "illuminated"],
"path": ["stream", "brook", "path", "ravine", "forest", "fence", "stone wall"],
"move": ["spiral", "twirl", "curl", "dance", "twine", "weave", "meander", "wander", "flow"]
"nearby": ["beyond the #path#", "far away", "ahead", "behind me"],

}

Actions:   add modifier   add action   randomly rephrase
                   remove item   duplicate item  move backward

beond the
Expansion (click to edit source)

ravine

Field:   nearby > "beyond the #path#"
Examples:

Called by: line[1]
“beyond the ravine” “beyond the fence” “beyond the stream” Actions:   add modifier   add action   randomly rephrase

                   remove item   duplicate item  move backward

Field:   nearby > “behind me”
Called by: line[1]

Fig. 7. Each domain and grammar necessarily presents unique chal-
lenges unique. For instance, users of the narrative generation grammar
Tracery are likely concerned with partial evaluation of the grammar and
the way in which the various pieces are combined.

likely to be using Vega (visualization), Tracery (games), and MongoDB
(databases). That said, we will phrase the survey in such a way that it
is accessible to any one with experience using any JSON language.

4.3 Evaluation
We will evaluate how our GUI-enhanced approach by considering two
questions: Can this approach replicate the prior work? and How does
this design compare to familiar forms of editing?

Expressiveness. In order to demonstrate the utility of this modular
approach we will construct examples of our system applied to a variety
of JSON-based DSLs, both in the context of visualization and otherwise.
We will replicate the inline annotations described by Hoffswell et
al. [47]. We will create editors for Tracery (such as the one shown in
Fig. 7) and MongoDB.

Usability study. While the ability to create these enhancements to a
standard textual JSON interface is useful, we also seek to understand
how well these approaches enhance users ability to accomplish actual
tasks. We will conduct a between-subjects study of users accomplishing
tasks using JSON-DSLs in versions of our editor both with the various
augmentations activated and with them deactivated. We will evaluate
them based on the correctness of their solutions, how long they took
to complete it, and will collect qualitative feedback on the experience
using this style of manipulation.

4.4 Plan for completion and intended contributions
The central contribution to this work is the demonstration that this
style of augmentation is practical and enhances the usability of JSON-
DSLs. Our aim is to submit a paper describing this work in the late Fall
of 2022, tentatively titled “Yours for a JSONG: Modular contextual
editor augmentations for JSON DSLs almost for free”, to a HCI or
visualization venue (such as EuroVIS23, ICSE23, VIS23, or UIST23).
A proof-of-concept prototype was developed in Fall of 2021 in order
to validate the feasibility of the described system augmentations. The
need finding design study will occur during Spring 2022 and will occur
concurrently with further prototyping and implementation. Evaluation
and writing will occur during Fall 2022.
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Fig. 8. Visualizations that aggregate data can mask their underlying
data distributions, which can create mirages, as in this bar chart over
synthetic data. Not all distributions equally support the message that
sales in Y are reliably higher than X. For instance, this difference could
be driven by a single outlier (B), a possibly erroneously repeated value
(C), or be an artifact of high variability caused by low sample size (D).

5 VALIDATION: MIRAGES

This section describes work that appeared as a full paper at CHI
2020 [80], which won an honorable mention for best paper.

Visualizations, like all forms of communication, can mislead or
misrepresent information. Visualizations often hide important details,
downplay or fail to represent uncertainty, or interplay with complexi-
ties in the human perceptual system. Viewers often encounter charts
produced by analytical pipelines that may not be robust to dirty data
or statistical malpractice. It is straightforward to generate charts that,
through chance, callousness [83], or carelessness, appear to show some-
thing of interest in a dataset, but do not in fact reliably communicate
anything significant or replicable. We refer to the charts that super-
ficially convey a particular message that is undermined by further
scrutiny as visualization mirages. We define a visualization mirage as
follows:

A visualization mirage is any visualization wherein a cur-
sory reading would appear to support a particular message
arising from the data, but a closer re-examination of the
visualization, backing data, or analytical process would in-
validate or cast significant doubt on this support.

In this project, we consider a conceptual model of these visualization
mirages and show how users’ choices can cause errors in all stages of
the visual analytics (VA) process that can lead to untrue or unwarranted
conclusions from data. Using our model we observe a gap in automatic
techniques for validating visualizations, specifically in the relationship
between data and chart specification. We address this gap by developing
a theory of metamorphic testing for visualization which synthesizes
prior work on metamorphic testing [111] and algebraic visualization
errors [61]. Through this combination we seek to alert viewers to
situations where minor changes to the visualization design or backing
data have large (but illusory) effects on the resulting visualization, or
where potentially important or disqualifying changes have no visual
impact on the resulting visualization. We develop a proof of concept
system that demonstrates the validity of this approach, and call for
further study in mixed-initiative visualization verification. While this
technique is generally applicable to any context in which the types
of a visualization program are known, this approach is particularly
applicable to JSON-DSLs as they can be manipulated computationally
in a direct and concise manner.

WranglingCurating Visualizing

Metamorphic Testing for Visualization

Vis Verification Vis SkepticismData Verification

Visualizing
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Fig. 9. A pipeline model of visualization indicating the places in which
error can arise throughout the process.

A Mirage Model. A long sequence of contexts and decisions, from the
initial data curation and collection, to the eventual reader’s literacies
and assumptions, determine the message that a visualization delivers.
Mistakes, errors, or intentionally deceptive choices anywhere along
this process can create visualization mirages, from dirty data [57] to
cognitive biases [21]. Failures can occur at an early stage, but not result
in a mirage until a later stage. For instance, missing data as a result of
an error in data collection may be visible in a particular visualization,
such as univariate data in a dot plot, and so be unlikely to lead to an
error in judgment. Yet this data flaw may be invisible in a less robust
visualization-design such as a histogram [18]. Whether the missing data
results in a mirage is contingent on the choice of eventual visualization
design. We suggest how choices can create errors and highlight the
way that those errors can propagate to become mirages in Fig. 9. In the
full version of this work we locate 83 types of known error that can be
classified as mirages and locate them at each point in this process when
the designer can exert agency.

5.1 Metamorphic Testing for Visualization
There have been a variety of approaches to avoiding mirages in visual
analytics. These include data verification (such as in the Vizier sys-
tem [9], the machine-learning-focused data linter [51], or Barowy et
al.’s [3, 4] systems for debugging data in spreadsheets) and visualiza-
tion verification (such as in line-up protocols et al.’s [48, 130]), as well
as through more familiar means such as recommendation [69], smart
defaults [30], and personal reflection [137]. There has been compar-
atively less consideration towards detecting errors that occur in the
relationship between data and chart. Prior work principally focuses on
static validation [12, 50, 67, 79, 98] rather than dynamically validating
existing charts. To address this gap we combine a concept from the
software engineering community, metamorphic testing, which focuses
on detecting errors in contexts that lack a truth oracle, with work from
Algebraic Visualization Design (AVD) [61], to form a notion of meta-
morphic testing for visualization. The most simplistic specification of
AVD asserts that a good visualization will change significantly if that
it’s data is changed significantly, which we can represent graphically
(figure from [81]):
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D2 R2

R1 V1
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(1)vω 1r◦ ◦=α2r◦ ◦v
reflected by a change in the image

A change to the input should be

ωα

Change in representation 

Data Representation Output Image

Visualization process

Failures of these assertions can result in “hallucinators” (visualiza-
tions that look dramatically different despite being backed by similar
or identical data) and “confusers” (visualizations that look identical
despite being backed by dramatically different data). In the worst case,
visualizations can be completely non-responsive to their backing data,
functioning as mere number decorations and creating what Correll &
Heer [17] refer to as visualization “non-sequiturs.” These AVD failures
directly tie to our notion of mirages (as they can result in visualizations
that are fragile, non-robust, or non-responsive), but, by providing a
language of manipulations of data and visualization specification, lend
themselves to mixed-initiative or automatic testing. AVD provides a
useful framework for designing tests that detect failures that require
little domain knowledge. We can simply induce trivial or non-trivial
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data change, and check for corresponding changes in the resulting
visualization.

Metamorphic Testing. In complex software systems it can be difficult
or prohibitively expensive to verify whether or not the software is
producing correct results. In the field of software testing distinguishing
between correct and incorrect behavior is known as the “test oracle
problem” [5]. The metamorphic testing (MT) ideology attempts to
address this challenge by verifying properties of system outputs across
input changes [111]. Rather than checking that particular inputs give
correct outputs, MT asserts that properties called metamorphic relations
should remain invariant across all appropriate metamorphoses of a
particular data set. MT has been successfully applied to a wide variety
of domains [23, 111, 140]. Donaldson et al. [23], whose concerns
were focused on shaders, formalize this technique, asserting that the
following equation should be invariant:

∀x : p( fI(x)) = fO(p(x))

where x is a given shader program, p a shader compiler, fI perturbations
to the input, and fO changes to the output (usually the identity under
their framework). The definition of equality in MT plays a significant
role in the effectiveness of its analysis.

Applying Metamorphic Testing. We now introduce the idea of using
metamorphic testing as a mechanism to verify individual visualizations.
Tang et al. [116] describe visualization as the function vis(Data,Spec).
This suggests two key aspects across which we can execute metamor-
phic manipulations: alterations to the data and alterations to the design
specification. This perspective has the advantage that we can test a
wide variety of types of visualization without knowing much about the
chart being rendered. We observe that the representation of MT above
is isomorphic to AVD’s commutativity relation. MT is a concrete way
to test the invariants of systems in general, whereas AVD describes the
types of invariance-failures that occur with visualizations specifically.
Observing this overlap we define a Metamorphic Test for Visualiza-
tion (MTV) as a function parameterized by an equality measure (Eq),
an input perturbation (α), a visual perturbation (ω), which evaluates a
tuple of data and chart specification (denoted as a pair as x), and returns
a Boolean:

MTV :: (Eq,α,ω)⇒ (spec,data)⇒ Boolean
MTV(Eq,α,ω)x = Eq(v(α(x)),ω(v(x)))

We leave v, the visualization system itself, out of the parameterization
because we are interested in testing for problems in the relationship
between data and chart specification, as opposed to validating the
system mapping chart specification to data space (which we assume
to be error free). This formulation clearly describes the relationship
between expectation and permutation in a manner that we believe
allows for concise and unambiguous descriptions of invariance tests.

To our knowledge MT has not previously been used in visualization
contexts, though there has been prior work that uses implicitly related
techniques. Most notably are Guo et al.’s [39] metamorphic-like strat-
egy to detect instances of Simpsons’s paradox in VA systems, Gotz et
al.’s [34] “Inline Replication” analysis of the visual impact of “alterna-
tive” analyses and tests for the reliability of a given chart, or Dragicevic
et al.’s [24] “Multiverse Analysis.”

5.2 Proof Of Concept
We implemented a proof of concept system for inducing morphisms
on Vega-Lite [107] specs and their backing data in order to identify po-
tential mirages or unreliable signals in charts. Our primary goal in this
system is to demonstrate the validity of our metamorphic testing. While
there are a wide variety of types of test this approach might generate,
we describe here four metamorphic tests for visualization (MTVs) Each
test should have predictable impacts on the resulting image. Failing
to adhere to a prediction (and hence violating an MT relation) can
indicate an error in the backing data or visual specification of the chart,
pointing to a potential mirage. MTV: Shuffle asserts that changes to
the order of the input data should not change the rendered image. MTV:
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Fig. 10. Our MTV: Bootstrap test applied to the quartet of distributions
shown in Fig. 8, shown here in (i). In each case we execute our test
N = 100 times. We create 100 new potential bar charts by resampling
from all the data that are aggregated into each bar. The results of this
test are overlaid (ii-iv) for each low opacity “potential” bar chart on top
of each other. Large “fuzzy” bands indicate that the specific values in
the chart are not robust to resampling. We sort our bar charts into two
categories: “passes” (iii) where the original insight that AVG X > Y is
preserved, and “fails” where this insight is not preserved (iv). A high
number of passes indicate a robust insight.

Bootstrap asserts that the apparent patterns in visualizations should be
robust: that is, a particular relationship should continue to be present
across minor changes [18, 74]. MTV: Contract Records asserts that
findings should remain consistent when the number of records has
been contracted (emulating dirty data). MTV: Randomize asserts that
randomizing the relationship between two variables should result in
non-significant findings.

To test this approach, we conducted a series of simulation studies
in which synthetic data was evaluated by each of these tests. Fig. 10
shows the results of one family of these tests. In general, the impact of
our morphisms became larger as the severity of our data manipulations
increased: the fragility of the values in a given bar chart increases as
the means become closer together, the sample size shrinks, outliers are
added, or the variability increases. While we recognize that our simu-
lation does not fully capture the utility of our proposed metamorphic
tests, we present these initial results as evidence that our tests can be
used as measures for the robustness of signals in visualizations.

5.3 Key Findings and Contributions
We believe that MT offers a useful complement to directly testing data
or chart specifications, as it requires a smaller set of assumptions and
parameters than statistical tests, and is portable across visualization
toolkits and is especially well-suited to visualization grammars as they
can be manipulated programmatically with great clarity. We see the
types of visualization tests described here as being analogous to testing
methods from software engineering. Direct tests, like unit tests, verify
isolated properties (for instance, that quantitative axes begin at ‘0’ in
bar charts); while metamorphic tests, like integration tests, look to see
that the whole image is working as desired. We believe that, in tandem,
these validation approaches offer an effective way to target a wide
variety of charting errors arising in the Wrangling and Visualization
steps of visual analytics. We believe our model and testing approach
provide ample starting ground for future work on automated detection
of subtle errors in visualization, as well as validating the design of
visualizations based on the relationship between their data and design.
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6 CONCLUSION

JSON-based grammars are an increasingly popular way to specify
intent in a variety of complex domains that is expressive, concise,
portable, and frequently secure. In this proposal we have described
a series of systems and approaches that enrich the aspects of those
languages that make them strong while reducing the difficulty of using
them in a variety of situations. In particular we have argued that the
development of purpose specific interfaces can enhance JSON-DSLs as
a direct interface modality, and therein that mixed graphical and textual
interfaces are a particularly intriguing way to approach this domain.

6.1 Stretch Goals

If there is sufficient time left after the completion the work described
here, we will consider some of the following projects:

Let Ivy grow over other modalities. We believe that mixed GUI and
textual template editing is a useful approach to constructing visualiza-
tions based on grammars. So far we have only evaluated this approach
in the context of a self-contained visual analytics system, however these
approaches may also have useful application in a variety of contexts. In
particular we propose to port the core of the Ivy template manipulations
to spreadsheets, notebooks, and visual builders (such as Illustrator).

Several prior works have explored combinations of user interface
modalities for creating visualizations. Liger [103] mixes together shelf-
based chart specification and visualization by demonstration. Han-
puku [7], Data-Driven Guides [56], GraphPad [139], StructGraph-
ics [119], and Data Illustrator [73] combine visual editor-style manip-
ulation with visual chart specification or textual programming. Vic-
tor [124] explored a prototype that combined a spreadsheet with di-
rect manipulation and manual view specification. Systems including
mage [53], Wrex [25], and B2 [138] expand on these ideas by inter-
mingling text and graphical specification in computational notebooks.
ReVize [49] seeks to support multiple modalities by chaining together
analysis tools through a Vega-Lite-based API.

This exploration would allow us to compare and contrast the affor-
dances of each of the mediums against a constant background of Ivy’s
template-based affordances.

JSON Grammar Case Studies. While we found quite a number of
insightful grammars in Sec. 2, we believe that we could usefully explore
the space further through a series of case studies.

Domain Specific Dialects: A Gantt Grammar. Some grammars focus
on particular chart forms (such as graph and map grammars) others
on embedding particular computations into a language (such as Set-
Cola’s [45] high-level constraints). In this case study we explore a
domain-first language design by creating a grammar for focused Gantt
charts—a form of project planning diagram—show both temporal and
logical dependencies across aspects of a project. This visual language
is of a relatively limited form that receives extremely high use from
practitioners in the context of tools like Microsoft Project. While they
can be produced through a wide variety of visualization grammars,
they are often shoehorned-in in a manner that is unnatural to the data
domain. For instance, in Tableau and Vega-Lite one can describe them,
but they typically require external calculation in order to construct
an appropriate layout. These calculations can be non-trivial, for in-
stance, calculating the critical path (which is the essential blocking
tasks of a project) requires a topological sort. f The externalization
of an important part of the exploration process can slow down and
impede the construction of these charts injecting numerous potentially
time-consuming round trips to the data as adjustments are made. This
grammar explores notations that are aligned with data domain rather
than the mark domain.

Task Specific Dialects: An Annotation Grammar. A common task in
the construction of visualization is the addition of annotations. These
textual or graphical additions typically add clarifications or call outs to
the graphic in a way that increases the readability or visual intrigue. Yet,
annotations tend to fall far outside of the language in which visualiza-
tions are phrased. The strategy found in extant JSON-languages tends
to hard code these decorations (as in this Vega-Lite chart), making it

difficult to design them in a way that is maintainable or natural to the an-
notation task. We will describe a grammar for annotation, describe the
design space associated with this task, and provide a proof-of-concept
implementation based around Vega-Lite.

Beyond problems related to their conceptual specification, annota-
tions are often graphically nuanced requiring minor adjustments causing
textual specification to be tedious. We will instrument a wrapping layer
over our annotation grammar so that direct manipulation can be used to
specify the annotations in such a way that those changes are propagated
back to the textual representation. This form of bidirectional manipula-
tion is naturally connected with similar techniques seen in the context
of mixing drawing with traditional programming languages [14,22,43],
as well as in visualization to a certain extent [102, 103, 105, 141].

Compile towers: 3D Unit Visualizations for Cheap. While hand-
crafting interpreters for these domain-specific languages can yield
powerful benefits (such as the big-data zooming found in Kyrix-S
[117]), doing so can be labor intensive. This can mean that the focus of
development is on the grammar and semantics of a language, rather than
on usability features such as expressive color spaces or tooltips. One
such example is found in the implementation artifact of the Atom unit
visualization language [92]. This L-System inspired grammar seeks to
describe the design space of so-called “unit visualizations”, which are
forms in which each mark in the output represents a single data entity.
For example, the waffle plot shown in Fig. 4 is a unit visualization. The
artifact produced as part of that work is limited: it has implementation
errors and missing cases, and does not feature any of a variety of
features that might contribute to its usability. In this case study we seek
to ensure that this grammar is more generally sustainable by transferring
the ad hoc d3-based rendering system into a compiler. We will target
the Vega compiler for its ubiquity, tooltips, and color palette support.
Further, we can reuse a recently developed deck.gl [127] renderer for
Vega (built for a recent version of SandDance [85]) to explore unit
visualizations in 3D almost for free.

Bidirectional Editing of JSON Grammars. While JSONG’s structure
and projectional approach to enhancing the usability narrows the gap in
usability of these JSON-DSLs, an even more direct strategy would allow
users to directly manipulate the output of these programs and have those
modifications be propagated back to the program themselves. This
would be analogous to the work that Sketch-n-Sketch [42, 43] does for
SVG programming as well as the sketch-based visualization generation
via program synthesis demonstrated by Wang et al. [125, 126].

6.2 Future work

Beyond these extensions there are a number of lines of research which
would be natural follow ups to the work described in this proposal, but
we believe are out of scope for the completion of this thesis.

The creation of JSON-DSLs is a time consuming process. It in-
volves developing a careful understanding of the domain, modeling it
in a manner that both fits into JSON and maintains a connection with
the original context, and then producing a mechanism for evaluating
programs in the language. In future work we would like to develop
abstract tools to help bridge the latter two of these steps through the
development of visualization JSON-DSL workbench. In such a system
users define the syntax and semantics of their language, which would
then produce execution libraries and other support tools (such as a
JSON Schema and or a visualization linter [12, 50, 79]) as appropriate.
Pu et al. [97] highlight that debugging and testing visualization gram-
mars is a hard problem and having a formal version of the semantics of
a visualization language would aid in the verification and construction
of novel grammars.

More focused on the specific domain of visualization, there is a
wealth of potential in the space of automated visualization analysis. As
described in Sec. 5 most visualization analysis is either rudimentary
lints or recommendation (which in the language of Draco [87] would
be autocompletes). Subsequent work should work to investigate the
spectrum between these mediated by agency, in such a way that auto-
mated guidance can be applied in a polite [129] and context specific
fashion.
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