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Abstract 

Light-sheet Fluorescent Microscopy (LSFM) is an emerging technology in embryology which allows for 

the tracking of cells in entire organisms as they develop—at larger sizes, greater resolution and with less 

photodamage than when compared with other methods. LSFMs produce large high-resolution 3D+t 

datasets; and when they are used to image organisms transfused with histone-GFP fusion protein, it is 

possible to obtain information about the migration of cells in the developing organism. However, any 3D 

microscopy technique suffers from reduced resolution due to scattering, especially at higher depths 

within the image—which confounds cell identification and tracking. We discuss methods to recover cell 

positions from greater z-depths of the microscope image; present a simple multiscale blob-based tracking 

strategy; and then discuss statistics that can be performed on the space of trajectories once they are 

computed. 
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Section 1: Introduction 

Light-Sheet Fluorescence Microscopy 

Light-sheet Fluorescent Microscopy (LSFM) is a powerful technique in developmental biology which 

allows for the 3D+t imaging of developing organisms at larger scales and with finer resolution than can 

be obtained with other methods, such as two-photon microscopy or confocal laser scanning microscopy 

(CLSM) [1]. In LSFM, a planar sheet of light illuminates successive horizontal slices of a transparent 

organism, and fluorescent responses within the organism (for example, from expressed GFP or RFP) are 

captured by a camera perpendicular to the sheets of light. A 3D volume is constructed after all horizontal 

slices are illuminated; and a 3D+t dataset is constructed when the procedure is repeated at various 

timepoints. Because only one sheet of the organism is illuminated at a time, photobleaching and 

photodamage to the organism are reduced; and because an entire sheet of the organism can be imaged at 

once, LSFM is able to capture images more rapidly than is possible with other methods (such as CLSM) 

[2]. 

LSFM is able to produce high-quality images at subcellular 

resolutions [3], which makes it an ideal modality for studying  

the migration of cells within developing embryos [4]. In 

particular, to study the migration of developing neurons, 

transparent Zebrafish (Danio rerio) embryos have been 

transfused with fluorescent histone-GFP (green fluorescent 

protein) fusion protein, which causes cell nuclei to fluoresce. 

Within the light-sheet microscope, the laser sheet successively 

illuminates slices of the Zebrafish, and when excited the GFP-

histone molecule re-emits green light that is captured by the 

Figure 1 - 2D slice of a developing 

Zebrafish embryo imaged with 

LSFM 
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camera. GFP captures light at a peak wavelength of 400nm and re-emits at 500nm, which fluoresces as 

a visible green. 

At each timepoint, the light-sheet microscope produces a series of 2D images (one image at each z-

depth), which are then collated into a 3D volume. A 3D+t dataset is constructed when 3D image-stacks 

are collected at multiple timepoints. This dataset can then be used to track the migration of cells over 

time [5].  

Cell Tracking 

Although fully-automatic cell tracking has not yet been realized (most algorithms require careful 

parameter tuning or post-processing to work well), cell-tracking has been the subject of a substantial 

body of recent work, and is relevant enough that it has even spawned a Cell-Tracking Challenge, a review 

of the submissions of which is described by Ulman et al. Cell-tracking algorithms are myriad and it is 

difficult to fully taxonomize them; however, they can be broadly classified into two categories—

“tracking by contour evolution” methods which segment cells in the first frame of the dataset and then 

evolve their contours to follow them in subsequent frames; and “tracking by detection” methods which 

first segment the image into cells; and then only later establish temporal associations between subsequent 

frames [6]. Tracking algorithms generally operate in two steps: segmentation and tracking (in “tracking-

by-contour-evolution” methods these steps are performed simultaneously). First, the location of cells 

within the image is determined and cells’ constituent voxels are identified. Next, cells’ migrations are 

tracked over time.  

Amat et al. [7] have developed a software suite, Tracking-using-Gaussian-Mixture-Models (TGMM) that 

has achieved 3D full-scale cell segmentation and tracking with up to 97% accuracy on the datasets on 

which it was tested. The algorithm has seen success in several domains, including in zebrafish, fruit flies 

and mouse embryos and is the tracking algorithm that is used as a benchmark in this paper. 
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Optical Dynamics 

In order to track cells, it is first necessary to find them within the image. It is a known problem that in 

3D microscopy the resolution of the depth-axis of the microscope is substantially worse than those of the 

lateral axes. At lower depths, light must travel further through the specimen and immersion medium and 

undergoes greater scattering before it reaches the camera. Various research has been conducted in finding 

cells by forming exact physical models of the optical dynamics of microscopes [8]—however, these 

methods require precise understandings of the optical characteristics of both the microscope as well as 

the specimen and immersion medium (for example, refractive indices, working distances, etc.) and are 

often cumbersome to use. 

Under ideal circumstances, a fluorophore acts as a point-source of light and when imaged under a 

microscope produces a diffraction pattern in the form of an Airy disk, which can be approximated by a 

Gaussian profile. For many purposes a Gaussian approximation for the diffraction point-spread function 

is simply simpler to use, and in fact provides a very good approximation in a number of applications [9]. 

In this paper, we model cell nuclei as having roughly Gaussian profiles.  

Trajectory Modeling 

Trajectories themselves are the subject of investigation in various domains. Tracking of people may be 

conducted in surveillance applications; tracking of objects may be conducted in robotics applications; 

and the tracking of animals may be conducted in the study of ecosystems [10]. As a result, a sizable 

amount of work exists on the subject of modeling trajectories in 2D spaces; less work has been conducted 

in modeling trajectories in 3D space; and many applications involve reducing 3D trajectories to 2D 

subspaces.  
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Fazli et al. have conducted work in trajectory clustering in 3D datasets of T. gondii cells [11] and have 

found a method to reparametrize cellular trajectories in a way that is invariant to absolute spatial 

coordinates. Moradi et al. have found success in performing statistics on trajectories by first modeling 

them as point patterns [12] and then conducting statistics between collections of points.   Various other 

authors have written on trajectory clustering through several other means—for example by clustering 

trajectories based on common sub-trajectories in the TRACLUS algorithm.  Various distance metrics can 

be applied for use on trajectories—for example the Hausdorff distance, Bhattacharyya distance, Frechet 

Distance, Longest-common-subsequence (LCSS) distance, and dynamic-time-warping (DTW) Distance.  
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Section 2: Cell Segmentation 

Before cells can be tracked, they must first be found within the image. Cells in more dorsal regions of 

the embryo are clearly delineated (Figure 2) and can be identified by simply filtering the image (with a 

Gaussian blur, for example) and finding peaks. However, at greater z-depths cells become decreasingly 

differentiated from one another as light scatters more when it travels through the organism. Figure 1 

shows the extent to which the spatial resolution of the image decreases with z-depth: at lower depths, 

cells are barely distinguishable. We propose a variant of the popular Laplacian of the Gaussian filter to 

correctly differentiate blurred cells.  

Under ideal conditions, cell nuclei will appear as a bright spot of light convolved with a Gaussian kernel 

(simulating scattering and diffraction) in a pattern similar to that of a blurred Airy disk. As z-depth 

increases however, light emitted from fluorophores must travel longer distances through the medium 

before reaching the sensor and, due to variance in the optical characteristics of the specimen, it becomes 

difficult to predict the profile of the cell nucleus exactly. Still, we can assume that cell nuclei will appear 

as a bright spot of light convolved with some anisotropic kernel which resembles a Gaussian. The salient 

Figure 2 Slice along x-z axis of Zebrafish embyro, 18 hours-post-fertilization 



7 

 

feature of cell nuclei is that they should be local maxima of the image. That is to say, the convexity of the 

center of a blurred cell nucleus is negative, and hence we can use second-order methods to find cell 

nuclei. We propose finding cell nuclei using a variant of the Laplacian of the Gaussian.  

The Laplacian of an image at a point p is the divergence of the gradient of the image at p, or equivalently 

the trace of the Hessian at p (or the sum of the unmixed second partial derivatives): 

Δ𝐼 =
𝜕2𝐼

𝜕𝑥2
+
𝜕2𝐼

𝜕𝑦2
+
𝜕2𝐼

𝜕𝑧2
 

It is coordinate-invariant; and for a smooth image is high at areas of positive curvature, zero at inflection 

points, and low at areas of negative curvature. Intuitively, the Laplacian measures the speed with which, 

when considered as a fluid, the signal at a point will diffuse into surrounding regions of the image. For a 

discrete image, the Laplacian can be approximated as convolution with the 3D kernel  

Δdiscrete𝐼 = 𝐼 ∗ 𝐿, with 𝐿[0] = [
0 0 0
0 1 0
0 0 0

] , 𝐿[1] = [
0 1 0
1 −4 1
0 1 0

] , 𝐿[2] = [
0 0 0
0 1 0
0 0 0

] 

The Laplacian can be found at larger scales by first convolving with a Gaussian 𝐺𝜎: 

L ∘ G[I] = 𝐼 ∗ 𝐿 ∗ 𝐺𝜎 = 𝐼 ∗ (𝐺𝜎 ∗ 𝐿) 

Figure 3 ClippedLaplacian applied on an image. Noise is removed and most cells are segmented from 

one another and separated by the 0-isocontour of the Laplacian.  
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The Laplacian filter is commonly used for detecting edges and blobs within an image. Zero-crossings of 

the filtered image correspond to edges; and troughs of the filtered image correspond to the centers of 

blobs. For the purposes of detecting cells, we are interested in both: a cell will be a bright spot surrounded 

by a fuzzy edge. We consider the clipped Laplacian, a filtering operation conducted on the image:  

ClippedLaplacian[I] := 

  Clip[ 

    NegativeLaplacian[ 

      Gaussian(𝜎1)[ 

        Median(1)[I] 

      ] 

    ], 0.0, ∞ 

  ] 

First, we take a median filter with radius 1 over I in order to remove speckled noise and to correct for 

artefacts in the data. Next, we compute the Laplacian of the Gaussian, find its negative, and discard 

negative values. This operation preserves only the hills of the image and discards valleys. 𝜎1 should be 

roughly the radius of a cell.  

Figure 4 – 0th, 1st, and 2nd derivatives of the function 𝑓(𝑥) =
1

𝑥2+1
+ 𝑥. f is always increasing, yet the 

second-derivative allows us to capture the shape of the inflection point centered around x = 0. This 

property is useful when finding blobs in regions of increasing noise.  
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The result of this filter can be seen in Figure 2. If we find the local maxima of this image, we recover 

information about the centers of blobs in the image. Cells are also conveniently differentiated from one 

another by the zero-isocontour of the Laplacian. Because cells are separated from one another, the task 

of differentiating cells can be conducted with a simple watershed algorithm: starting at peaks and filling 

pixels until a minimum is reached. In regions where local maxima are connected, peaks of the Laplacian 

will define blobs. 

This filter allows us to differentiate cells even in regions of low resolution (Figure 4). Figure 5 shows a 

maximum-intensity-projection (MIP) of the unfiltered and filtered images. Cells are segmented from one 

Figure 5 – Maximum-Intensity-Projection of (left) the filtered image and (right) the unfiltered image. 

Figure 6- Cell nuclei captured with TGMM on a small 2D x-z slice of the data. (Left) when TGMM is 

run on a filtered image; (right) when TGMM is run on the unfiltered image. Recognized cell nuclei are 

marked with grey spots. Notice that when run on the unfiltered image TGMM has more false-positive 

detections in deeper regions. 
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another in the image and separated by their inflection points. For a given cell, the region within its 

inflection isocontour will be positive and the region outside of it will be zero. 

Empirically, this filter is also an effective pre-processing step which can be run before a more complex 

cell-segmentation algorithm. By running this filter over the data prior to running TGMM (which uses a 

persistence-based clustering approach to identify cells), we were able to reduce the number of 

redundant cell detections especially in deeper regions of the image (Figure 6). Prior application of this 

filter also improved TGMM speed by a factor of 7, and reduced the amount of memory used during the 

segmentation task. 

An alternate approach might involve filtering the image by finding the minimum eigenvalue of the 

Hessian, and setting the value at each pixel to be 𝐼[𝑝] ≔ max [min
𝑖
(𝜆𝑝)𝑖]. Such an approach would 

provide information about the convexity of each pixel of the image which would be useful in shape-

estimation.  

Choosing a scale for the ClippedLaplacian 

The clipped Laplacian is a useful preprocessing step that can be performed before running a more 

complex segmentation- or tracking algorithm. However, it is not immediately obvious how to find a scale 

at which to run this filter prior to analysis. For a given image and average cell radius, we find that there 

is a large window of acceptable values 𝜎 with which the filter can be run (Appendix B), which simplifies 

the task greatly. We propose a simple method to automatically find 𝜎.   

Consider the function 𝐟𝐢𝐧𝐝_𝐛𝐥𝐨𝐛𝐬(𝐼, 𝜃),  𝜃 ∈ ℤ, which finds blobs in the image 𝐼 and then discards blobs 

which contain fewer 𝜃 voxels. This is useful for enforcing a minimum blob size and for discarding noise 

in the image. Let 𝚲𝛔 = |𝐟𝐢𝐧𝐝_𝐛𝐥𝐨𝐛𝐬(ClippedLaplacian(𝐼, 𝜎), 𝜃)| denote the count of the number of 

blobs in the filtered image 𝐼 with volume greater than 𝜃 voxels. Here, 𝜃 is a parameter which enforces 
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the minimum volume of a blob in voxels. A reasonable value of 𝜃 might be 53 = 125, which is larger 

than the size of a single voxel but smaller than the size of most blobs in the image. 

When the clipped Laplacian is performed at a very low scale 𝜎, a large number of small blobs will be 

found, most of which will have volumes smaller than 𝜃, and 𝚲𝛔 will be quite small. For very large 𝜎, 

most blobs will cease to exist and 𝚲𝛔 will again be small. In order to maximize the number of blobs with 

volume greater than 𝜃, we thus let  

𝜎𝑚𝑎𝑥 = argmax
𝜎

𝚲𝝈 = argmax
𝜎

 |find_blobs[ClippedLaplacian(𝐼, 𝜎), 𝜃]| 

The maximum can be found with a simple linear search over 𝜎, and this parameter 𝜎𝑚𝑎𝑥 should be 

constant for all images in the dataset. 

Minimum eigenvalues of the Hessian 

Cell nuclei are differentiated based on their convexity. In 3D, a function 𝑓 is convex at a point 𝑝 if, 

when the Hessian of 𝑓 is computed at 𝑝, its eigenvalues are all nonnegative (𝑓 is strictly convex at 𝑝 if 

all of its eigenvalues are positive). To identify regions of the image which are part of cell nuclei, we 

identify pixels of the image with negative convexity: 

𝐼′[𝑝] ≔ max [0, 𝜆1𝑝] 

Where 𝜆1𝑝 is the minimum eigenvalue of the Hessian matrix of 𝐼 at point 𝑝. 
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The discrete image Hessian can be computed as: 

ℋ𝑝 =

(

 
 
 

1

2
(2𝐼𝑝13 − 𝐼𝑝12 − 𝐼𝑝14)

1

4
(𝐼𝑝15 − 𝐼𝑝9 − 𝐼𝑝17 + 𝐼𝑝11)

1

2
(2𝐼𝑝13 − 𝐼𝑝10 − 𝐼𝑝16)

1

4
(𝐼𝑝3 − 𝐼𝑝5 − 𝐼𝑝21 + 𝐼𝑝23)

1

4
(𝐼𝑝1 − 𝐼𝑝7 − 𝐼𝑝19 + 𝐼𝑝25)

1

2
(2𝐼𝑝13 − 𝐼𝑝4 − 𝐼𝑝22))

 
 
 

 

denoting 𝑝𝑛 as the 𝑛th neighbor of 𝑝 in raster order:  

𝑝0 = 𝑝 + (−1 −1 −1) 

𝑝1 = 𝑝 + (−1 −1 0)  

𝑝2 = 𝑝 + (−1 −1 1)  

𝑝3 = 𝑝 + (−1 0 −1)  

𝑝4 = 𝑝 + (−1 0 0)  

 ⋮ 

𝑝13 = 𝑝 + (0 0 0)  

and so on. 

 

Although not discussed in detail in this paper, the Hessian image provides insight into the shapes and 

positions of blobs, and admits stronger guarantees about convexity than does the Laplacian. Figure 7 

depicts a single 2D slice of the data. Note that the Hessian image is tighter than the Laplacian image, and 

not all blobs are large enough to be seen in the slice shown (though they are visible in deeper slices).  
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Figure 7 - (left) original image; (middle) Laplacian of Gaussian filter; (right) minimum-eigenvalue-of-

Hessian filter 
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Section 3: Modeling Data with Multivariate Gaussians 

Raster data requires a large amount of memory to store and is inherently difficult to perform computation 

on. It is useful to be able to model image volumes in terms other than as raw pixel values. Further, 

knowing the locations of cell nuclei is more physically significant than knowing the values of particular 

voxels in the image. 

Data from the light-sheet microscope can be assumed to be comprised of a collection of cell nuclei 

surrounded by noise (ie. unusable data) and then blurred. We propose a method to approximate the 

volume of cells in the image as a sum of Gaussian profiles, which is an idea that arises naturally from 

the segmentation provided by the clipped Laplacian defined previously. We propose a scheme by which 

we view the data as being a sum of scaled multivariate Gaussians, which is a model which provides 

insight into the locations, shapes and orientations of cell nuclei.  

The Multivariate Gaussian Distribution is a well-known probability distribution in ℝ𝑝 with probability-

density-function  

𝑝(𝑥|𝜇,𝑀, 𝑘) = (2𝜋)
𝑘
2 det(𝑀)−

1
2 exp (−

1

2
(𝑥 − 𝜇)𝑇𝑀−1(𝑥 − 𝜇)) 

for 𝑥 ∈ ℝ𝑝, where 𝑀 ∈ ℝ𝑝×𝑝 is the shape of the distribution, 𝜇 is its mean, and 𝑘 is the dimension of 

the data. 

Letting 𝑘 = 3 and introducing a variable scaling parameter 𝜅 ∈ ℝ+ before the exponent, we define the 

profile of a Multivariate Generalized Gaussian as 

𝑔(𝑥|𝜇,𝑀, 𝜅) = 𝜅 exp (−
1

2
(𝑥 − 𝜇)𝑇𝑀−1(𝑥 − 𝜇)). 

We attempt to find the set of best-fit Multivariate Gaussian profiles for a given 3D volume of the data.  
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The data is assumed to be a collection of cell nuclei surrounded by i.i.d noise (ie. essentially unusable 

signal). Within the algorithm, cell nuclei will ultimately be modeled by multivariate Gaussian profiles. 

However, our model of the image has a bit more complexity: 

We assume that the boundaries of histone molecules are precise, and that each cell nucleus admits an 

intensity function 𝜙: 𝑃 → {1,0} indicating whether GFP is emitted from a particular location, where 𝑃 is 

a location in the image. We assume that nuclei do not intersect and that GFP-emitting regions are 

ellipsoidal: ie. 𝜙−1(1) satisfies (𝐴(𝑥 − 𝜇))
2
< 1 for some 𝐴 ∈ ℝ3𝑥3, 𝜇 ∈ 𝐼, and all 𝑥 ∈ 𝜙−1(1). 

We assume then that each nucleus is subject to a symmetric Gaussian blur (due to optical scattering), and 

then subject to noise (from the sensor). Thus, the image will resemble: 

𝐼 =∑𝜅 ⋅ 𝑔𝑖 ∗ Im(𝜙𝑖)

𝑖

 + 𝑛 

Where Im(ϕi) is the image which contains the intensity response of 𝜙𝑖, ie. Im(ϕi)[𝑝] =  𝜙𝑖(𝑝),  

𝑔𝑖 ∗ (⋅) represents a symmetric Gaussian blur convolution kernel with some 𝜎, and 𝑛 is an i.i.d noise 

term with |𝑛| < 𝛿 for some small 𝛿. Experimentally, we find that the proposed algorithm works well 

with 𝑛 < 0.05 ⋅ 𝐼𝑚𝑎𝑥, where 𝐼𝑚𝑎𝑥  is the maximum value in the image. 

Figure 8 - result of climb[climb[⋯ climb[p]]]. We assign a point 𝑝𝑖 to its natural source when 

following the discrete gradient direction in the image. All points within this blob will belong to 

the same locus 𝑋𝑖 

𝑋𝑖 

𝑝𝑖− 
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In practice, the shapes of cell nuclei rarely perfectly resemble a Gaussian (cell nuclei usually have flatter 

peaks and irregular shapes)—however, Gaussians provide a computationally-simple way to model cells.  

We assume that at each region, there is some 𝜎 such that convolution of the region with 𝜎 will result in 

a local maximum of the Laplacian within the region. We estimate the positions of nuclei based on 

connected regions of the image with negative Laplacian. 

Consider the image 𝐼. Compute the clipped Laplacian 𝐿 = ClippedLaplacian[I]. Find the local maxima 

of 𝐿 and store it in 𝑋, 

𝑋 = {𝑋1, … , 𝑋𝑛} = local_maxima(𝐿) 

𝑋1, … , 𝑋𝑛 thus list all of the local maxima of L, or equivalently all local minima of the Laplacian of I, or 

the natural sinks of the Laplacian of I. These 𝑋𝑖 enumerate the peaks of blobs. 

We next assign each nonzero point in 𝐿 to a blob in 𝑋. For each 𝑋𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), let 𝐵𝑖 be the set of points 

that are assigned to the blob centered at 𝑋𝑖. For each 𝑋𝑖, 𝐵𝑖 = {𝑝𝑖1 , 𝑝𝑖2 , 𝑝𝑖3 , … , 𝑝𝑖𝑚𝑖
}. 

For a voxel 𝑝 within the image 𝐼, Define climb[p] =  𝑝 + ∇discrete𝐼|𝑝, where ∇discrete𝐼|𝑝 is the discrete 

gradient of I evaluated at p. climb[p] assigns 𝑝 to the adjacent voxel of greatest value; or, if 𝑝 is already 

a local maximum, then climb[𝑝] = 𝑝. We assign a voxel 𝑝 to a blob 𝐵𝑖 if climb[climb[⋯climb[p]] ] =

𝑋𝑖—that is, 𝑝 reaches 𝐵𝑖 through repeated hill-climbing. Thus, 𝑋𝑖 contains the centers of blobs and 𝐵𝑖 

contains all of the voxels which are contained within blob 𝑋𝑖. The position of blob 𝑖 is given by its locus 

𝑋𝑖. 

Our next task is to estimate the shape 𝑀𝑖 and center 𝜇𝑖 of blob 𝑖. A blob 𝑖 is defined by the image’s 

fluorescent responses, which are greater in regions of higher fluorophore density and lesser in regions of 

lower fluorophore density (the relationship between fluorophore density and image voxel value will be 
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linear). The center 𝜇𝑖 of blob 𝑖 can be found by finding the center of the fluorescent response, which is 

given by the weighted mean of the pixels within the blob: 

𝜇𝑖 =
∑ 𝐼[𝑝]⋅𝑝𝑝∈𝐵𝑖

∑ 𝐼[𝑝]𝑝∈𝐵𝑖

.   

Similarly, the shape 𝑀𝑖 of blob 𝑖 is given by the weighted covariance of the fluorescent responses, 

𝐶𝑜𝑣[𝐵𝑖, 𝐼𝐵𝑖], which is the weighted covariance of 𝐵𝑖 with weights given by image values 𝐼𝐵𝑖: 

𝑀𝑖𝑘𝑙 =
1

∑ 𝐼[𝑝]𝑝∈𝐵𝑖

∑(𝑝𝑘 − 𝜇𝑖𝑘)
𝑇
(𝑝𝑙 − 𝜇𝑖𝑙)𝐼[𝑝]

𝑝∈𝐵𝑖

 

We can then compute the scale parameter 𝜅: 

𝜅 =
∑ exp [−

1
2𝑝𝑖

𝑇𝑀𝑝]𝑝∈𝐵𝑖

∑ 𝐼[𝑝]𝑖
 

Future work may involve finding an appropriate scaling factor to transform shapes from Laplacian-space 

to image-space. 

Figure 9- XZ- slice of (left) original data (right) data modelled by multivariate Gaussians. 
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Our strategy for computing 𝜇 and 𝑀 provides good results given the data. For data that is a perfect 

Gaussian, our weighted mean and covariances model the data exactly. Figure 9 compares this approach 

to a standard optimization technique in finding a multivariate-Gaussian-of-best-fit. From left to right, the 

models shown are (1) a symmetric Gaussian centered at an edge of the window; (2) a symmetric Gaussian 

centered in the center of the image; (3-5) various incarnations of a geometric skew-normal distribution 

[13],  

∑
𝑝(1 − 𝑝)𝑘−1

(2𝜋)
3
2|Σ|

1
2𝑘
3
2 
exp [−

1

2
𝑘(𝑥 − 𝑘𝜇)𝑇Σ−1(𝑥 − 𝑘𝜇)]

𝑁

𝑘=1

 

(6-8) various incarnations of a geometric skew-normal distribution with an added exponential parameter: 

∑
𝑝(1 − 𝑝)𝑘−1

(2𝜋)
3
2|Σ|

1
2𝑘
3
2 
exp [(−

1

2
𝑘(𝑥 − 𝑘𝜇)𝑇Σ−1(𝑥 − 𝑘𝜇))

𝛽

]

𝑁

𝑘

 

Figure 10 - Centroids and shapes of cells modelled in 2D using BFGS and our analytic approximation. 
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From top to bottom, the images depict (1) the synthetic data constructed with the model; (2) the least-

squares error attained when modeling the data with the zero-image; (3) the error attained when modeling 

the data with a multivariate Gaussian with parameters given by our analytic approach; and (4) the error 

attained when modeling the data with a multivariate Gaussian with parameters computed using BFGS 

optimization, seeded with the model derived from our analytic approach.  

We find that the analytic approach closely models the data in all cases when most of the cell nucleus is 

contained within the window. With the exception of the first image, errors are not substantially different 

between the analytic approach and the iterative (BFGS) approach. Neither approach perfectly models the 

last image (8), which has both a skew and exponential parameter. In practice, cell shapes are rarely 

perfectly modeled by a Gaussian. By using our approaches to model data which is inherently skewed (eg. 

produced by a multivariate skew-normal distribution), we can gain an understanding of how modeling 

approaches handle data that is not perfectly Gaussian.  
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Section 4: A Simple Tracking Strategy 

This model of cells as multivariate Gaussians gives rise to a natural tracking strategy. 

Cells can have varying radii, and there is not necessarily a single scale at which one must compute the 

Laplacian in order to correctly identify all of the cells in an image. To find cells at varying scales, we 

compute a reconstruction of the data at multiple scales with varying values 𝜎, and construct a scale-tree 

relation between successive scales. A blob found at scale 𝑠𝑖 may in fact be contained within another larger 

blob found at scale 𝑠𝑖+1. It may itself contain multiple child blob, each found at scale 𝑠𝑖−1. Thus we 

represent a single frame of the dataset as a hierarchy of Gaussian blobs. 

Let 𝑆𝑖 contain all blobs at scale 𝑖. Then, a blob 𝐵 ∈ 𝑆𝑖 is the child of blob 𝐵′ ∈ 𝑆𝑖+1 if there is no other 

blob in 𝑆𝑖+1 that is closer to 𝐵 than 𝐵′, using the Euclidean distance metric with respect to the centers of 

blobs.  

Next, we draw a graph connecting blobs between adjacent frames in the 3D+t imageset. Blobs in 

successive frames are connected if their covariance ellipsoids (one standard deviation from the mean) 

intersect, regardless of scale. Now, we can use a graph traversal strategy to track cells between frames. 

A source of uncertainty exists in choosing the particular scale at which a blob pertains to a particular 

nucleus. We note that a single cell nucleus will be associated with a single blob at a particular scale as 

well as all of the blob’s descendents, which uniquely belong to the same cell. A cell 𝐶𝑖 is therefore a 

collection {𝐵𝑖} ∪ {𝐵𝑗: 𝐵𝑗 is a descendent of 𝐵𝑖}. This simplifies the tracking task, as tracking cell 𝐶𝑖 

becomes equivalent to tracking any of its constituent blobs 𝑏 ∈ 𝐶𝑖. 

An entire dataset consists of frames 𝐹1, … , 𝐹𝑇. Each frame 𝐹𝑖 consists of a collection of cells 𝐶𝑖, each 

cell consists of a series of scales 𝑠1, … , 𝑠�̂�, and each scale consists of a collection of blobs found at that 

scale, 𝐵𝑖. 
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A cell is a tuple (𝐶𝑝𝑟𝑒𝑑, 𝐶𝑠𝑢𝑐𝑐 , 𝐵), consisting of a predecessor, a set of successors, and a set of blobs. Our 

goal is to find the set of cells which constitute the entire experiment. 

Maintain a set of valid blobs for each frame, initially consisting of all blobs in each frame. Denote the 

set of valid blobs in frame 𝑡 as 𝑣𝑎𝑙𝑖𝑑(𝐹𝑡) ̂ . Also set a maximum distance that cells can travel between 

subsequent frames. Call this 𝑀. This is a parameter that varies based on image resolution and the 

particular sample being imaged. In the data used in this experiment, 𝑀 was set to 30 voxels. 

We initialize the set of cells at frame 0 to consist of the set of blobs at the minimal scale. At each 

subsequent frame 𝑡, we proceed by finding successors for each cell in frame 𝑡 − 1 within distance 𝑀. 

Until each cell in 𝐹𝑡 has a successor OR no such pairing can be found, find the closest pairing between 

cell 𝐶 in frame 𝐹𝑡−1 and blob 𝐵 in frame 𝐹�̂�. 𝐶, 𝐵 = argmin
𝐶∈𝐹𝑡−1,𝐵∈𝑣𝑎𝑙𝑖𝑑(𝐹𝑡) ̂

distance(𝐶, 𝐵). If distance(𝐶, 𝐵) >

𝑀, then no other cell in frame 𝐹𝑡−1 has a successor within distance 𝑀, and therefore has no 

successor in the succeeding frame, and we end the loop. If instead there is a closest pairing, then 

we mark the successor of 𝐶 as 𝐵, and then invalidate all descendants of blob 𝐵 as well as all blobs 

for which 𝐵 is a descendant.  

Finally, if there are any blobs which are not yet accounted for, then we mark these blobs as being 

born, and we add them to the subsequent frame. If there is a cell in the previous frame within 𝑀 

distance, then we mark this cell as being the predecessor of the cell, and mark this as being a 

possible cell division. 

  



22 

 

 

As a sanity check, this algorithm produces tracks that seem biologically plausible. More work should be 

done to verify correctness. 

 

 

  

Figure 11 (left) a subset of axially-migrating tracks  (right) set of tracks 

computed using this algorithm—the whole embryo, between 11 and 17 hours 

post-fertilization. 
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Section 5: Statistics on Tracks 

Tracks are embeddable in an n-dimensional Euclidean space  [14] 

The output of a tracking algorithm is a set of tracks T, each following a single cell through the duration 

of a single run of the experiment. Because time-resolution is finite, each track T can be thought of as a 

list of discrete points in space over time, 𝑇𝑖 = {𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑛𝑖}. We notice that we can expand each point 

and in fact treat a track 𝑇𝑖 as a point in an 𝑛 × 3 -dimensional vector space:  

𝑇𝑖 ≅ (

𝑝𝑖1𝑥 𝑝𝑖2𝑥 … 𝑝𝑖𝑛𝑖𝑥
𝑝𝑖1𝑦 𝑝𝑖2𝑦 … 𝑝𝑖𝑛𝑖𝑦
𝑝𝑖1𝑧 𝑝𝑖2𝑧 … 𝑝𝑖𝑛𝑖𝑧

) ≅ (𝑝𝑖1𝑥, 𝑝𝑖1𝑦, 𝑝𝑖1𝑧 , … , 𝑝𝑖𝑛𝑖𝑥, 𝑝𝑖𝑛𝑖𝑦, 𝑝𝑖𝑛𝑖𝑧). 

Immediately, we can see that this transformation forms a metric space with the Euclidean norm and the 

induced metric 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖2.  

Define the naïve transformation  

𝜙𝑛𝑎ï𝑣𝑒: 𝑇𝑖 → (𝑝𝑖1𝑥, 𝑝𝑖1𝑦, 𝑝𝑖1𝑧 , … , 𝑝𝑖𝑛𝑖𝑥, 𝑝𝑖𝑛𝑖𝑦, 𝑝𝑖𝑛𝑖𝑧). 

The naïve norm here gives us a rough indication of how closely a trajectory remains near to the origin 

(0,0,0). However, because trajectories exist throughout the volume of the organism, and because the 

space-origin has no special significance, we attempt to construct another transformation 𝜙𝑇 which 

provides a translation-invariant norm. 

Define  

𝜙𝑇: 𝑇𝑖 → (𝑝𝑖1 − 𝑝𝑖1, 𝑝𝑖2 − 𝑝𝑖1, … , 𝑝𝑖𝑛𝑖 − 𝑝𝑖1) 

= (𝑝𝑖1𝑥 − 𝑝𝑖1𝑥, 𝑝𝑖1𝑦 − 𝑝𝑖1𝑦, 𝑝𝑖1𝑧 − 𝑝𝑖1𝑧 , … , 𝑝𝑖𝑛𝑖𝑥 − 𝑝𝑖1𝑥, 𝑝𝑖𝑛𝑖𝑦 − 𝑝𝑖1𝑦, 𝑝𝑖𝑛𝑖𝑧 − 𝑝𝑖1𝑧). 
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For each point, we subtract the first point; and the construction is the same as with 𝜙𝑛𝑎𝑖𝑣𝑒. Now, the norm 

gives us an indication of the rough distance away from the start that the cell takes on its trajectory. For 

example, a cell which goes in a circle will have non-zero norm. The induced metric then becomes 

translation-invariant, but not scale- or rotation- invariant (non-rotation-invariance is desirable, because 

we want to recover information about the direction of cell migration). The canonical inner product 

< 𝑇1, 𝑇2 > =∑𝑇1𝑖 ⋅ 𝑇2𝑖 

gives us information about the orthogonality of trajectories: trajectories that coincide perfectly will have 

a high inner product; and trajectories that move in perpendicular directions will have low inner product. 

Thus, this construction is physically meaningful and trajectories form a Hilbert space. 

Before performing computation, some strategy must be used to ensure that trajectories have the same 

length. For a fixed trajectory length ℓ, we simply resample each trajectory at equal intervals ℓ times, 

linearly interpolating between points. This method allows for easy computation, but information about 

the start- and end- timepoints of trajectories is lost. 
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Dimensionality reduction and clustering of tracks 

Treating the space of trajectories as a Euclidean space, 

it is now possible to perform statistical methodology 

in the space of trajectories such as clustering and 

dimensionality reduction. We consider a set of tracks 

over 100 timepoints obtained with the algorithm 

described above. 

Standard dimensionality reduction using PCA 

separates trajectories roughly by their overall direction 

of travel, which is denoted by color: 

Color := track[n-1] – track[0] 

Color := Color / norm(Color) 

Color := (1.0 + Color)/2.0  

Trajectories which move in the x+ direction are light red; in the x- direction are dark red; in the y+ 

direction are light green; in the y- direction are dark green; in the z+ direction are light blue; and in the 

z- direction are dark blue. 

  

Figure 12 – Top two PCA-components on a set 

of tracks. PCA roughly separates tracks by 

color, ie. by overall direction. 
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Locally-Linear-Embedding is also able to recover some structure about the manifold on which tracks lay, 

and in fact also separates tracks by their overall direction of travel. Figure 13 shows a set of trajectories 

when reduced to two dimensions using LLE. It produces an ‘L’ shape which seems to separate points by 

their direction of travel. Figure 13 depicts the LLE embedding in 2D as well as the 3D trajectories that 

each portion of the embedding corresponds to.  

 

 

Figure 13 - Locally-Linear-Embedding also arranges tracks with relation to their 

direction of travel. 
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t-Distributed Stochastic Nearest Neighbor Embedding (t-

SNE) is a dimensionality-reduction technique which 

attempts to embed a higher-dimensional space into a 

lower-dimensional one by preserving similarities 

between points as closely as possible, where the 

similarity between two points 𝑥𝑖 and 𝑥𝑗 in the embedding 

space is given by 𝑝𝑖𝑗 =
(1+‖𝑦𝑖−𝑦𝑗‖

2
)
−1

∑ (1+‖𝑦𝑘−𝑦𝑙‖
2)−1𝑘≠𝑙

, and the 

similarity of two points in the original space is given by 

the more complicated (but symmetric) relation 𝑝𝑖𝑗 =

𝑝𝑖|𝑗+ 𝑝𝑗|𝑖

2𝑛
, 𝑝𝑖|𝑗 =

exp(−‖𝑥𝑖−𝑥𝑗‖
2
)

∑ exp (−‖𝑥𝑘−𝑥𝑙‖
2)𝑘≠𝑙

. t-SNE minimizes the KL-divergence between these distributions. t-

SNE is better than other dimensionality-reduction techniques at visualizing data that lies on several 

different lower-dimensional manifolds [15], and is an ideal dimensionality-reduction technique for 

visualizing bundles of intertangled trajectories. Figure 14 visualizes MDS, Isomap and t-SNE when 

Figure 15 – Rendering of all trajectories, 

colored by direction. Trajectories can be 

seen over the dorsal surface of the 

Zebrafish, but this image is 

unenlightening. 

Figure 14 - (top left) Example trajectories consisting of a series of longitude lines on a sphere 

(half going N-S, and half going S-N), surrounded by circular orbits arranged in a torus, and their 

dimensionality-reduced models as produced by (top right) MDS; (bottom left) Isomap; (bottom 

middle) t-SNE; (bottom right) LLE. 
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applied to an example dataset consisting of three types of trajectories. t-SNE does not preserve the 

geometry of the data, but does effectively cluster the types of trajectories present. 

t-SNE produces visible clusters when applied to a dataset consisting cell trajectories. We can then identify 

these clusters using a clustering algorithm. In this paper, we use a hierarchical agglomerative clustering 

approach. Initially, we mark each point as being in its own singleton cluster. We then iteratively find the 

two clusters which, when merged, have the minimum intra-cluster variance, and then merge these 

clusters. We terminate the algorithm when 𝑁 clusters remain, for some 𝑁. In the clustering performed in 

Figure 16, there are 10 clusters. We capture these clusters and then display a sample of the resulting 

Figure 17 - Results of visualizing the data with t-SNE (left), and then clustering within the embedding 

space (right). 

Figure 16 – A sample of the data visualized with t-SNE (left) and colored based on hierarchical 

clustering in the latent space of trajectories (right) 
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clusters in 3D. Figure 15 is a rendering of all cell trajectories in the developing embryo. This is rather 

unintuitive to understand; but when we view individual clusters, we can see that cell paths follow clear 

patterns (Figure 19). We can see that one group of cells migrates axially, while another group of cells 

migrates tangentially.  

We may perform agglomerative clustering either in the latent space of trajectories or in the embedding 

space output by t-SNE (Figure 17). Conveniently, we find that clusters identified within the latent space 

closely resemble clusters generated by t-SNE (Figure 16). We may understand these clusters as trajectory 

phenotypes of various cells within the developing Zebrafish. Figure 18 visualizes 10 clusters of 

trajectories computed by performing clustering within the latent space. Clear similarities between 

trajectories within each cluster can be observed. These trajectories are taken from a small region around 

the center-of-mass of the zebrafish between 13- and 15.5- hours post fertilization.  

  

  

Figure 18 - Rendering of 10 trajectory phenotypes. Images 1 and 7 seem to contain mostly noisy 

trajectories. 
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Dimensionality reduction using splines 

We notice that subsequent timesteps of a trajectory are highly correlated. To aid analysis, we perform 

another transformation on datapoints 𝜙𝑠𝑁  which transforms trajectories into cubic splines with 𝑁 knots—

which provides a compact representation of trajectories with minimal loss of information about the 

shapes of trajectories.  

A 3D spline with 𝑁 knots can be described with (3)(4)𝑁 = 12𝑁 coefficients. On experimental data, we 

find the following relationship between 𝑁 and the average approximation error of splines  

𝐸 ≔
1

|tracks|
∑

1

|𝑇|
∑‖spline𝑇,𝑁(𝑝) − 𝑝‖

𝑝∈𝑇𝑇∈tracks

 

where tracks  represents the set of tracks, |tracks| is the total number of tracks, |𝑇|for 𝑇 ∈ tracks is the 

number of points contained within the original track 𝑇 obtained with the cell-tracking algorithm, 𝑝 ∈ 𝑇 

is a point along the track 𝑇, and splineT,N(𝑝) is the equivalent point’s approximation using a spline-

approximation for the trajectory 𝑇 with 𝑁 knots.  

To be precise, let the track 𝑇 have a spline approximation 𝑆𝑇,𝑁(𝑡) for 𝑡 ∈ [0,1], and call 𝑇𝑖  the 𝑖th point 

along track 𝑇, for 𝑖 ∈ 0, … , |𝑇|. Then,  

splineT,N(𝑇𝑖) ∶=  𝑆𝑇,𝑁 (
∑ ‖𝑇𝑗 − 𝑇𝑗−1‖
𝑖
𝑗=1

∑ ‖𝑇𝑗 − 𝑇𝑗−1‖
|𝑇|
𝑗=1

) 

  



31 

 

 

Acceptable error values are attained with 𝑁 > 4, with 48 coefficients, where the voxel error is less than 

the diameter of a cell nucleus. Clustering conducted on splines produces results that are similar to those 

obtained with the previous method.  

 

𝑵 (# of knots) 𝑬 (voxel error) 

2 27.38 

3 17.37 

4 12.78 

5 10.11 

6 8.77 

7 7.42 

8 6.68 
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Figure 19 - Two clusters of trajectories captured with t-SNE and then agglomerative clustering, and 

their projections on the x-y, x-z, and y-z planes. 
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Conclusion and Future Work 

In this paper, we have described two second-derivative filters which can act as preprocessing steps to 

denoise and segment blobs in a microscopy image. The Laplacian filter is effective in improving the 

accuracy of other cell-segmentation-and-tracking algorithms. By finding peaks and basins of attraction 

of this Laplacian filter, we presented a method to efficiently recover the shapes of cells and model images 

using multivariate Gaussian profiles. A simple tracking algorithm can also be constructed after modeling 

the data at different scales.  

After tracks are found, it is possible to analyze them using regular statistical techniques such as clustering 

and dimensionality reduction, and we find that the clustered trajectories reveal salient patterns through 

embryological development. Future work involves assessing these methods for correctness (through 

manual comparison with human-tracked data) and interpreting trajectory data for physical significance. 

It is likely that future directions involve machine learning approaches for cell classification and tracking. 

Even within a particular region of a particular organism, the shapes of cells are myriad, and a simple 

identification of cells by convexity produces a high volume of erroneous detections (ie. blobs detected at 

various scales, which detect various transient features of the cell rather than the cell itself). In particular, 

our segmentation algorithm fails when cells are too close to one another and the blobs from one merge 

with the blobs of another. The problem of cell-segmentation can easily be understood as one of 

classification, and a machine-learning model (for example, a neural network) can be trained to identify 

cells at the correct scale respective to a certain setting of the resolution of the microscope. Cell-tracking 

can similarly be described in a way that is solvable with machine learning methods. The limiting factor 

is the collection or generation of sufficient quantities of labeled training data.  
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Appendix A 

  

Figure 20 – Renderings of 20 trajectory phenotypes, corresponding to clusters identified in Figure 17. 
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Appendix B 

 

Figure 21 - A comparison of the results of deconvolution with a Gaussian kernel (left) and the clipped 

Laplacian operator (right) with varying sigma = {1, 3, 5}. The original image is atop each column. 

Deconvolution is more sensitive to the scale of the Gaussian kernel. The Laplacian offers cell centers 

reliably at various scales. 
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For finding cell nuclei, the Laplacian is also preferable to deconvolution because it can be performed at 

a single scale over the entire image. Deconvolution must be performed with different point-spread-

functions because light-scattering is nonconstant within the image. 
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Appendix C 

 

 

Figure 22: 3D Rendering of blobs found in the Zebrafish embryo 13 hours post fertilization,  when 

imaged in LSFM and modeled using our algorithm. The Gaussians are replaced with ellipsoids in this 

rendering. 
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Appendix D 

 
 

Visualization of trajectories over 100 timepoints on another dataset of Zebrafish trajectories taken 

between 13 and 15.5 hours post-fertilization, near the midline of the embryo. The general shape of the 

Zebrafish can be seen from the grey background. The dorsal end faces the camera, and the caudal end 

of the Zebrafish is to the left. Image 9 (left-to-right, 1-16) identifies two symmetric groups of tracks 

that migrate cranially.  
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