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ABSTRACT

Hardware systems today are largely at risk of leaking sensitive data through timing variations

in low-level operations, which leads to severe consequences such as confidentiality breaches

and malicious actors gaining root privileges. For example, the famous Spectre and Meltdown

attacks on modern processors are possible partly due to timing variations in the caches.

In order to ensure timing secure designs, hardware designers must be provided with the

necessary tools to detect and localize the bugs. While there exist techniques that can detect

timing-related security bugs, e.g. Information Flow Tracking (IFT), bug localization is

primarily performed through manual efforts, which are time consuming and inefficient. In

this paper, we first implement two techniques that can be utilized to automatically localize

timing-related security bugs in hardware designs: a simple and a novel dependency graph

walking technique. The main idea of these techniques involves the aggregation of timing

behavior in fault-causing simulations. We can obtain the information needed to capture

such timing variations by leveraging existing IFT infrastructure with low cost and high

precision. We experiment these techniques on various hardware designs and evaluate their

strengths and limitations. Based on these insights, we propose new techniques that can

overcome many of the old techniques’ limitations. We provide a theoretical analysis on

their localization accuracy and efficiency. We leave the further elaboration, implementation,

extension, and empirical evaluation of these new techniques as novel directions for future

work in security bug localization.
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CHAPTER 1

INTRODUCTION

Most, if not all, of today’s systems contain hardware that suffers or has the potential to

suffer from timing-related security bugs. A component of hardware possesses a timing-

related security bug if one of its operations exhibits variations in execution time that depend

on the value of sensitive data. These variations are observable by the outside word and

thus break the confidentiality property of security; potentially untrusted entities can observe

these variations to infer the values of sensitive data. Timing bugs are extremely subtle and

often overlooked in the hardware design process. The lack of attention towards these bugs

leaves a system vulnerable to a multitude of dangerous exploits such as those that target the

cache.

One of the most prominent hardware examples that contains timing-related security bugs

and is a major source of motivation for this paper is the cache. In the cache, sensitive data

leakage often comes from timing and access-based cache side-channel exploits. These attacks

exploit timing differences in cache accesses to infer secret information about a victim process,

e.g. a cryptographic algorithm’s secret keys. Cache attacks are especially dangerous since

they are clever, lightweight, simple, and efficient. For example, some techniques can take

advantage of cache directories while others can exploit transactional aborts to quickly leak

data [32, 5]. Not only can cache attacks be utilized standalone, but also to augment other

attacks. Out-of-order and speculative execution exploits such as Meltdown and Spectre

[17, 14] use cache exploits to construct covert channels that can leak data to an attacking

process. It is therefore imperative that exploit mitigations be implemented in all caches.

As with cache attacks, the hardware-based mitigations for such attacks come in a mul-

titude of forms. The Partition-Locked Cache (PLCache) [30], for example, mitigates side-

channels by allowing processes to dynamically partition the cache into private regions. In

order for a hardware designer to practically design and then implement fully secure miti-

gations, they need the ability verify them for security. Without automated verification and
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debugging tools, it is difficult for designers to quickly, efficiently, and securely construct mit-

igations, especially the more complex ones. Without these tools, designers waste resources

and may even unknowingly make mistakes during the design or implementation phase. For

example, some researchers [3] recently constructed and formally analyzed a PLCache design.

During their analysis, they found a subtle side-channel in which a specific set of accesses

to the same cache set as a locked line can take advantage of the cache’s replacement policy

to induce timing-related data leakage. Moreover, while caches are a main source of timing-

based security bugs, any hardware that possesses timing variations in one of its operations

has the potential to be buggy. With so many places in hardware for sensitive data to leak

through timing differences, it is extremely necessary to provide hardware designers with

tools to verify and debug their designs for timing-based security bugs. One tool that can be

effectively used to detect such security bugs is called Information Flow Tracking (IFT).

Security flaws within hardware should ideally be caught in the design phase (pre-silicon).

IFT is a pre-silicon security debugging technique that can detect security bugs by tracking

a datum’s sensitivity level as it flows through a hardware design. Information flows can

be tracked at different levels of hardware [28, 2, 1, 3], e.g. gate level or Register-Transfer

Level (RTL). The tracked data always possesses at least one label that denotes whether it

contains sensitive information. Some strategies, such as Clepsydra and VeriSketch [1, 3],

have developed IFT rules that separate information flows into timing-based flows (whether

computation of some data contains timing variations), and functional flows [22] (whether

the values of some data depends on the values of other data). As a result, the data in these

techniques will possess two labels: one for the functional flow and one for the timing flow.

However, while IFT techniques can be used to automatically detect security flaws, they have

not been used to automatically find the origin of, or localize, such flaws. The hardware

designer, who wishes to fix the bug, is therefore left with the arduous and not necessarily

guaranteed task of finding the the bug’s location.

We therefore focus on augmenting IFT strategies with techniques that can automatically
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localize a timing-based security bug in any faulty hardware design. We specifically seek

to utilize VeriSketch’s and Clepsydra’s IFT strategy to automatically identify the location

of a detected bug [3, 1]. In this paper, we construct and explore two strategies that can

automatically localize timing-related security bugs in Verilog hardware designs by analyzing

the IFT behaviors of security violating simulations. To the best of our knowledge, this is

the first work in the IFT space that attempts to automatically localize security related bugs.

We explore this strategy’s effectiveness on multiple buggy examples. Our results indicate

that the techniques can accurately localize bugs. However, upon further analysis we identify

that our techniques are not efficient and/or accurate enough for more complex designs. We

therefore discuss and theoretically evaluate new localization techniques that aim to solve the

problems of the old techniques.

In Chapter 2, we discuss the background, related work, and motivation for this paper.

Then in Chapter 3, we detail the assumptions and definitions that our techniques operate

under. We provide a high level description of our ideas in Chapter 4 and then describe

in detail in Chapter 5 how the strategies work. In Chapter 6, we state our experimental

methodology and describe the examples we utilized in our experiments. We report our

results in Chapter 7 and then discuss them and our techniques in Chapter 8. In Chapter 9, we

construct and evaluate new techniques that possess accuracy and/or efficiency improvements

over the old techniques. In Chapter 10, we discuss future works for these new strategies and

conclude this paper.
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CHAPTER 2

MOTIVATION, BACKGROUND, AND RELATED WORK

Timing-based security bugs occur when sensitive data is exposed, or leaks, to other and

potentially malicious processes as a result of data dependent timing variations in a system’s

execution. Many of today’s hardware components’ execution time, such as accesses to caches,

depend on the values of input data and are thus vulnerable to having timing bugs. As these

vulnerabilities rely on time, they are harder to track than traditional bugs, requiring special

techniques to detect or prevent them. These timing bugs are therefore often overlooked

during the hardware design process. We therefore begin this chapter by motivating the need

for timing-based security debugging tools by examining a multitude of timing-based security

bugs in hardware designs. We then discuss approaches that can be used to detect security

bugs. Finally, we examine and highlight the limitations of current security bug prevention

research and bug localization techniques to motivate the need for our technique.

2.1 Cache Side-Channel Attacks

In most cache side-channel attacks, the attacker monitors a victim’s cache lines or sets for

data access latency differences induced by line evictions or conflicts. The attacker can then

utilize these behavioral observations to infer the victim’s cache accesses and in turn their

secret information. In this section, we provide background on several commonly studied

examples of cache attacks.

2.1.1 Flush-based Attacks

Flush+Reload [33] is a flushed-based attack that targets Last Level Caches (LLCs) through

the use of shared memory and cache flushing instructions, e.g. clflush, to monitor a

victim’s cache accesses. Before the attack begins, the attacker loads into its own address

space the victim’s shared libraries or executable. Since pages of memory are shared among
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different processes, the attacker obtains direct access to the location of the victim’s data or

instructions in the cache. After the loading step, the attacker only needs to perform the

following operations:

1. Flush - Use flushing instructions to directly flush all monitored cache lines.

2. Wait - Wait for a long enough period of time such that the victim can access the cache

lines.

3. Reload - Reload the monitored cache lines and time the reload latency.

The attacker infers that the victim did not access a cache line during the wait period if they

observe a high reload latency. On the other hand, if the reload latency is low, then the

attacker knows that victim accessed the monitored cache line. The attacker can then use

this knowledge to infer secret information.

Flush+Flush [7] is a similar attack to Flush+Reload. It exploits shared memory and

utilizes flush instructions to evict specific cache lines. However, unlike Flush+Reload,

Flush+Flush does not directly access/reload memory. Instead, Flush+Flush exploits timing

differences in clflush’s execution. The attack executes clflush in a continuous loop on its

targeted cache line. If the flush is quick, then the victim has not recently accessed the cache

line. If the flush is slower, then the victim must have recently accessed the line and loaded

it into the cache.

2.1.2 Conflict-based attacks

Unlike flush-based attacks which utilize cache flushing instructions, conflict-based attacks

rely on causing cache conflicts with victim lines to leak sensitive information. Percival’s

Attack [25] is a simple conflict-based cache attack that constructs an appropriately spaced

array and then continuously accesses the array’s elements in sequence. Depending on the

access latency of an element corresponding to a cache set, the attacker can deduce whether

the victim process accessed that set. Evict+Time [23] is also a conflict-based attack that
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spies on a victim’s cache set accesses by evicting specific sets from the cache and then timing

the entire victim application’s execution.

Prime+Probe is a popular conflict-based attack that targets the L1 cache and with some

modifications, e.g. through the use of large pages, the LLC as well [23, 12, 19]. It spies on

the victim’s cache accesses through the use of eviction sets. Eviction sets are sets of virtual

addresses that map to the same cache set. These sets must have enough virtual addresses

so that an access to a subset of its addresses will evict an entire cache line. Construction

of such sets has been extensively studied and shown to require very little time (linear to

quadratic time) [29]. After finding an eviction set, the attacker only needs to:

1. Prime - Fill one or more cache sets with its own code or data.

2. Wait - Wait for a long enough period of time such that the victim can access the cache

lines.

3. Probe - The attacker then measures the time to load the same sets of data or code that

were previously primed into the cache.

If the memory access latency for one of the lines in the eviction set is high, then it can infer

that the victim had accessed that set. Otherwise, the attacker will incur a cache hit and

determine that the victim has not accessed that set.

2.1.3 New Attacks

In recent years, non-inclusive and/or sliced caches have become more common, rendering

many cache attacks ineffective. These cache designs complicate the mapping between address

and cache location, thus impeding the eviction set creation process. A recent paper by Yan

et al. [32] proposes an attack that is able to overcome these problems by attacking inclusive

cache directories instead. This attack reverse engineers the cache directory structure with

special eviction sets and then applies to it common side-channel attacks.
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Just this year, Gruss et al. [18] discovered the Collide+Probe and Load+Reload exploits

which target AMD processors’ caches. These attacks exploit AMD’s L1 cache way predictor,

which predicts which cache way an address is located in, to efficiently leak sensitive data

from the cache.

As we can see, cache timing vulnerabilities are ever increasing in number and come in a

multitude of forms. However, such vulnerabilities can be used in other security exploits as

well.

2.2 Cache Attack Applications

The vulnerabilities above have been extensively used to augment other hardware security

exploits. In this section, we describe several exploits that utilize cache attacks to very

effectively leak sensitive data.

2.2.1 Cache-based Exploits

Cache Template Attacks [8] is a strategy that automates cache-based security vulnerability

discovery and exploitation. In this strategy, the attack breaks up an application’s execution

into events. For example, events can be actions such as differing key bits when encrypting

the same file. They then use Flush+Reload to construct a profile of each event’s memory

access patterns. Using this profile and Flush+Reload again, the attacker can match the

victim’s access patterns with the profile to infer which event occurs.

2.2.2 Out-of-Order and Speculative Execution Exploits

The applications of cache attacks are not just limited to other cache-based exploits. Melt-

down [17] is an unprivileged, practical, simple, and generalizable end-to-end attack that

utilizes out-of-order execution and exception handlers to leak sensitive information such as

kernel memory. In this exploit, the attacker triggers an exception by accessing privileged
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data. The privileged data is then loaded into a pseudo-register for out-of-order instructions

to use. These transient instructions access an array, with the index depending on the secret

data. During out-of-order execution, the cache state is able to be modified, and thus the

accessed array data is stored in a cache line whose location is based on the sensitive index.

Cache side-channels such as Flush+Reload are then used to find the cache line that was

loaded in and transmit the sensitive index to the attacker.

Spectre attacks [14] leverage speculative execution, such as branch prediction, to leak

victim data. In one variant of a Spectre attack, the attacker induces mispredictions on con-

ditional branches, resulting in jumps to data leaking instructions. In another Spectre variant,

the attacker causes indirect branches to jump to specific code in the victim’s address space

called “gadgets”. These gadgets are then speculatively executed to load sensitive data into

the cache. In both variants of Spectre, the covert channel is similar to Meltdown’s: they both

use cache attacks to leverage the fact that changes to the cache (or other microarchitectural

states) are made during out-of-order or speculative execution.

Thus, as there are so many cache timing vulnerabilities and ways to exploit them, it is

imperative that designs be debugged of all timing-related security bugs.

2.3 Hardware-Based Cache Side-Channel Mitigations

In this section, we give some examples of hardware-based cache attack mitigations. Most

hardware-based cache side channel mitigations fall under three strategies: Complete Cache

Access Avoidance, Eviction Set Creation Prevention, and Victim Cache Access Inference

Prevention.

2.3.1 Complete Cache Access Avoidance

A guaranteed way to mitigate cache attacks is simply not to use the cache at all. For example,

AES-NI [9] is a set of x86 instructions that allow for hardware-supported AES encryption.
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Not only do these instructions avoid cache accesses, but they also execute in constant time,

making it impossible for any timing attack to leak secret information. Mitigations that avoid

the cache, however, are impractical as they are either inefficient or, like AES-NI, have to be

tailored towards specific applications.

2.3.2 Eviction Set Creation Prevention

As discussed, conflict-based cache attacks rely on eviction sets to cause conflicts with vic-

tim lines. Preventing eviction set creation effectively stops these attacks. One method of

preventing eviction set creation is the randomization of physical address to cache location

mappings. NewCache and the Random Permutation Cache [20, 30] achieve this randomiza-

tion through table-based indirection, with the former utilizing content addressable memory

and the latter relying on, as the researchers call it, a custom “permutation table”. CEASER

[26] on the other hand randomizes the mappings through the encryption of physical addresses

before cache accesses are made.

2.3.3 Victim Cache Access Inference Prevention

These types of mitigations are the most common and possess a wide variety of strategies

ranging from fuzzing timers to locking sensitive lines in the cache [21, 30].

An effective method for protecting a victim’s cache accesses involves partitioning the

cache into secure regions controlled by specific processes. The PLCache [30] facilitates such

a partitioning by allowing processes to dynamically lock and unlock their own data in the

cache. When a process locks a sensitive cache line, it cannot be evicted by another process’s

cache access. Attacks like Flush+Reload, Pericval’s Attack, and Prime+Probe are therefore

thwarted, as in their reload/probe steps, they will always observe that the victim had accessed

the sensitive cache line.

As discussed in the previous section, many cache attacks require inclusive caches to

properly work. The Relaxed Inclusion Cache [13] observes this requirement and thus proposes
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to relax the cache inclusion property for critical data used by cryptographic algorithms. By

making such data non-inclusive, most cache attacks, which rely on cache inclusivity, now

fail.

Since a multitude of cache attacks rely on timing cache reloads or accesses, preventing

the attacker from precisely timing such latencies is another mitigation strategy. TimeWarp

[21] achieves this by introducing randomness to the value returned by fine-grained timing

instructions (e.g. RDTSC).

Other mitigation techniques include the Secure Hierarchy-Aware Cache Replacement

Policy (SHARP) and the Prefetch-Obfuscator to Defend Against Cache Timing Channels

(PrODACT) [31, 6]. SHARP modifies the LLC cache replacement policy such that “inclusion

victim” creation is reduced. The mitigation defines inclusion victims as addresses that

are evicted from a victim process’s L1 Cache when they are evicted from the LLC. By

eliminating inclusion victims, victim data will reside in the L1 cache even after an eviction,

in turn confusing the probe/reload steps of cache attacks. PrODACT on the other hand,

dynamically analyzes the miss conflict patterns in the LLC and identifies cache sets that are

likely being attacked. Once it identifies a possible victim cache set, it uses the prefetcher to

obfuscate the victim’s accesses.

In order for the design and implementation of timing secure caches and cache attack

mitigations to be practical, tools for automatic security verification and debugging are a

necessity. Without such tools, the designer is prone to making errors and wasting resources

during the design and implementation phases. For example, we know that the PLCache

contains a previously unknown subtle timing side-channel that relies on manipulating the

cache’s LRU policy [3]. Even if the designer can guarantee that their overall design is secure,

they still need these tools to verify that the design’s actual implementation in Hardware

Description Languages (HDLs) like Verilog is secure. Therefore, in order to develop secure

caches, it is extremely important for the designer to exhaustively verify and debug the

implemented mitigations through the use of automated tools.
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2.4 Other Insecure Hardware

While Caches are a major source of timing-related security bugs, they are not the only

hardware components that are timing insecure. Ardeshiricham et al. have shown that

an RSA core leaks data through timing variations in its modular exponentiation step [1].

They have also demonstrated that shared bus architectures such as WISHBONE allow for

the leakage of sensitive information among connected hardware components through timing

variations. In general, any hardware core that exhibits timing variations based on their

inputs or operations may leak sensitive data. Therefore, all hardware that suffers from

timing variations, not just caches, should be verified for timing flow security. Current formal

hardware verification strategies such as Information Flow Tracking (IFT) are able to do just

that.

2.5 Information Flow Tracking

Hardware Information Flow Tracking (IFT) is a pre-silicon security verification technique

that assigns sensitivity labels to data in a hardware design. Labels that indicate sensitive

data usually assume a high value and are called tainted. Those that have low values are called

untainted. As the data propagates, or flows, throughout the system during a simulation, the

labels’ values are also propagated depending on the operations involved (flow tracking). This

label propagation allows for the verification of security properties. For example, one might

want to verify that sensitive information, such as a secret key, has not leaked into some

output data by asserting that the output data’s label is not tainted. In this section, we

discuss current works in hardware IFT and works that utilize IFT to ensure the creation of

secure designs.
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2.5.1 Timing vs. Functional Flows

Oberg et al. [22] identify two types of information flows: functional and timing. According

to them, “a functional flow exists for a given set of inputs to a system if their values affects

the values output by the system (for example, changing the value of a will affect the output

of the function f(a, b): = a + b)” [22, p. 5]. Note that the “system” they refer to doesn’t

need to be a function or module. Functional flows can occur in computations as simple as

one variable propagating its value to another. Meanwhile, a “timing flow exists if changes

in the input affect how long the computation takes to execute” [22, p. 5]. For example, a

simple counter function that executes for its input value of cycles possesses a timing flow.

In this paper, we adopt Oberg et al’s information flow terminology. As we are interested

in sensitive data leakage through timing variations, we will primarily focus on timing flows

in this paper. We now provide several examples of information flow tracking techniques,

including one whose approach we will utilize in this paper.

2.5.2 Single Label IFT Techniques

Gate Level Information Flow Tracking (GLIFT) [28] is a technique that tracks information

flow through a CPU’s gates. This technique assigns security labels with value 1 to indicate

data containing sensitive information and value 0 to indicate data containing non-sensitive

information. For every gate, GLIFT implements shadow logic that uses both the incoming

data and labels to infer the label value of the output. These shadow logic units can be

composed to form any larger shadow functional unit, meaning that a wide range of hardware

designs can be monitored for security with GLIFT. Moreover, Oberg et al. [22] have shown

that GLIFT is able to track all information flows, that is, both timing and functional.

Register Transfer Level Information Flow Tracking (RTLIFT) [2] possesses the same data

flow tracking idea as GLIFT, but tracks data at a higher abstraction level: Register Transfer

Language (RTL) Level. RTLs model the relationships and signal flows between registers

in hardware. RTLIFT’s higher abstraction level allows it to achieve less complexity, faster
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verification, greater flexibility, and fewer false positives compared to GLIFT. As with GLIFT,

RTLIFT is able to track both timing and functional flows.

Figure 2.1: Procedural block of a divider module that generates and blocks sensitive timing
flows. Example is based on the pseudo code found in Figure 1 of the Clepsydra paper [1].

2.5.3 Multiple Label IFT Techniques

While GLIFT, RTLIFT, and other techniques can track all forms of information flows, both

timing and functional, they usually employ only one type of label, which is not enough to

differentiate between flows that are caused by timing (e.g. timing variations) and functional

insecurity (e.g. secret key bytes affecting cipher text). If we wanted to track only timing

flows, then we would run into many false positives. For example, the output of an RSA

core would always have a high label value since it is always affected by the sensitive key.

We would not specifically know if the RSA core has timing variations that depend on the

input. Clepsydra and VeriSketch [1, 3] define an IFT approach that solves this problem by

separating information flow labels into functional and timing (thus, all data has two labels).

The papers define and then prove specific rules that account for the generation, propagation,

and blocking of tainted timing flows. Tainted timing flows are generated by unbalanced
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conditional assignments to registers that are controlled by signals with tainted functional

flow. According to Ardeshiricham et al, an unbalanced assignment, or “unbalanced update

means that there exists a clock cycle where register v can either maintain its current value

or get reassigned” [3, p. 6]. Moreover, the researchers determine that tainted timing flows

propagate to a register if its assigned value or one of its assignment’s control signals possesses

tainted timing flow. A control signal is one that plays a role in deciding which value should

be assigned to a register at clock edges. Tainted timing flows are blocked at a register if

at least one of its control signals is non-sensitive and fully controlling. A control signal is

non-sensitive if its functional and timing flows are not tainted. According to Ardeshiricham

et al., a control signal for a register is fully controlling when “the register gets a new value

if and only if the controller gets a new value” [1, p. 3].

To illustrate how tainted timing flow generation and blockage works, we examine Figure

2.1, which shows the procedural block of a timing secure division module. This example is

based on an example corresponding to Figure 1 in the Clepsydra paper [1, pg. 3]. Note,

however, that we extend it with real Verilog code. Assume that reg working dividend

initially possesses a tainted functional label and an untainted timing label. Also assume that

all other registers’ labels are untainted. Note that the register reg quotient fix is the output

register for the module. The registers reg working quotient and reg working dividend are

unbalanced since at every cycle, they can either be updated or remain the same (unbalanced

update at lines 13 and 14). Moreover, reg working dividend, which has tainted functional

flow, is one of reg working quotient’s and reg working dividend’s control signals at lines

13 and 14 respectively. Thus, tainted timing flow is generated at reg working quotient and

reg working dividend when reg working dividend ≥ reg working divisor. Conceptually,

the two registers having tainted timing flows make sense because the time at which their

output values update depends on the value of sensitive data. Even though at line 19 reg

quotient fix is assigned reg working quotient’s value, the tainted timing flow from the

latter register is blocked from propagating to the former register. The timing flow from reg
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working quotient to reg quotient fix is blocked because reg done is a non-sensitive and

fully controlling signal of reg quotient fix’s updates. reg done is non-sensitive because it

lacks a tainted functional flow. The controller is also fully controlling as it only updates when

reg quotient fix is updated: when the counter, reg count, becomes 0. This timing blockage

example conceptually makes sense because the output is always written at a constant time,

meaning that there are never any timing variations.

IFT is a powerful tool for automatically detecting sensitive data leakage in hardware

designs. However, as IFT is primarily a hardware verification tool, it does not, in its current

form, find the origin of such bugs. If the programmer wishes to fix the bug, they must

manually analyze the design through methods such as waveform analysis and check pointing.

These methods are often inefficient and time consuming, especially when the hardware design

is large. Tools that can efficiently and automatically find a bug’s location are therefore sorely

needed.

2.5.4 Using IFT to Ensure Secure Hardware Designs

If the introduction of security bugs can be eliminated entirely during the construction of a

design, then debugging and thus bug localization would not be required. In addition to its

IFT approach, VeriSketch is also an automated hardware verification and synthesis technique

[3]. That is, this system is able to automatically verify whether an incomplete design written

in VeriSketch’s sketch syntax conforms to some behavioral and security specifications. The

technique does so by using SAT solvers to find an input whose corresponding simulation on

the design violates some IFT security properties. If the design fails verification, VeriSketch

automatically modifies the sketch in an attempt to satisfy the invariants (synthesis step). If

the modified design passes verification, VeriSketch outputs the design in Verilog. However,

if the design fails verification, it is modified again in the synthesis step. This cycle con-

tinues until VeriSketch outputs or fails to produce a design. Note that it was through the

VeriSketch’s analysis on the PLCache that we know that the mitigation has a timing-related
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vulnerability. After it detected a security bug in the PLCache design, VeriSketch’s authors

manually found a side-channel in the mitigation that is induced by its eviction policy: when

a locked line is accessed by an unlocked line, the locked line becomes the most recently used.

This is a problem because while the attacker’s data has not been evicted, it is now preferred

to be evicted. A modified version of Percival’s attack was able to exploit this behavior and

induce security breaking timing leakage. While VeriSketch is an effective synthesis tool, it

lacks the scalability to large and complex designs. For example, VeriSketch took around six

to eight hours to synthesize a secure cache design. The application of VeriSketch on any

larger and/or more complicated designs (e.g. an entire processor) could therefore require

hours or days. In addition, while VeriSketch allows the programmer to customize the per-

formance and behavior of a synthesized design through user-provided soft constraints, the

user does not possess full control over the specific structure and behavior of the design. The

designer must also learn to write designs in VeriSketch’s sketch syntax, which is not a trivial

task. Finally, there is a chance that VeriSketch fails to synthesize a design that conforms to

the specifications, requiring the designer to perform more work to either modify the design

sketch or specifications. All of these problems therefore lead us to believe that widespread

use of VeriSketch is unlikely.

Researchers have also extensively explored the idea of specially designed HDLs that

employ IFT approaches to prevent the designer from ever violating some defined security

properties. The HDLs SecVerilog and Caisson [34, 15] implement IFT-based typing systems

that are used to verify a hardware design’s security. Sapper [16] is an HDL that enforces

a design’s security by inserting information flow checking logic during code compilation. A

wide adoption of such HDLs would greatly reduce the number of security bugs and thus the

need for automatic bug localization. However, programmers would have to learn how IFT

works [2, 1], how to code in different languages than common HDLs, and the more restrictive

design patterns enforced by these new languages. Moreover, as these languages require some

overhead to enforce IFT rules, their synthesized designs are not as optimized or scalable as
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those from common HDLs like Verilog. We therefore currently do not foresee the widespread

adoption of these new HDLS.

VeriSketch’s and the HDLs’ problems and potential lack of adoption lead us to believe

that, for the foreseeable future, it will be up to the designer to manually find and fix security

bugs. As these bugs are often subtle and difficult to find, tools that can help to localize a

bug in a hardware design are a necessity.

2.5.5 Bug Localization

One of the most naive methods for localizing timing-related security bugs is manual debug-

ging through the use of wave forms, checkpointing, replaying, code analysis, incremental

code/variable modifications, etc. However, manual localization methods are often tedious

and inefficient, especially for large designs, as the programmer likely has to analyze thousands

of signals and an exponential amount of data paths over a multitude of cycles. Moreover,

the designer has to know the design’s structure very well, which may not always be true.

Automated and efficient techniques are therefore a necessity to help the designer construct

secure designs. We now discuss some more automated and efficient localization techniques.

Automatic location and root cause detection has been explored and demonstrated in the

post-silicon debugging world. IFRA [24] is an instruction trace-based debugging strategy

for CPUs. It utilizes recorders to catch instruction footprints as they leave the processor’s

pipeline stages. During the hardware testing phase, applications or synthetic traces are

run on the CPU. IFRA stops the CPU when some errors are detected (e.g. segfault) and

outputs the last few thousand instructions in each recorder. The technique then combines all

of the traces offline and then analyzes them against four main heuristics: Data Dependency,

Program Control Flow, Load/Store Value, and Instruction Decoding Invariants. In doing

this, IFRA is able to determine the location and time of a bug with high accuracy. However,

because IFRA relies on four set heuristics to localize a bug, the types of bugs it can localize

are limited.
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Coppelia [35] is a pre-silicon verification technique that utilizes backward symbolic exe-

cution, a technique in which the engine starts at an error and traverses an execution flow

tree backwards, to automatically find and then programatically generate CPU exploits. The

exploit programs that Coppelia generates are often extremely small, which means that deter-

mining the flaw’s location is made easier. However, the designer must still manually analyze

the exploit program to determine the location of the bug (e.g. through replaying or eye

level analysis). Moreover, Coppelia can only find and generate functional exploits since its

backward symbolic execution must start at an invalid architectural state; timing exploits are

not related to invalid states.

Thus, while there have been works in or methods for localizing bugs in hardware, those

works/methods are limited in scope, lack full automation, are inefficient, and/or, most im-

portantly, cannot localize timing-related security bugs. To the best of our knowledge, our

work is one of the few, if not only, works in the area of automated timing-related security bug

localization. Moreover, it is the first work that uses IFT to localize timing-related security

bugs. We now describe in detail our main research problem and goals.

2.6 Research Problem and Goals

As we have seen, a multitude of hardware designs such as caches, cache-attack mitigations,

and cryptographic cores may suffer from timing-based security vulnerabilties. We can uti-

lize IFT strategies to verify that hardware-based mitigations satisfy side-channel mitigation

invariants. However, localization of a detected timing bug must still be done manually. For

example, there is no automatic localization procedure in VeriSketch. Moreover, current so-

lutions that ensure secure designs lack the flexibility and simplicity for widespread adoption.

Therefore, we seek to solve the following problem:

• Assuming that there exists timing-based leakage in a hardware design, how can we

automate the localization for that bug?
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Our main goal is thus:

• Develop an automated simulation-based strategy that utilizes VeriSketch’s/Clepsydra’s

IFT approach in combination with faulty simulation traces to accurately localize a

detected timing-related security bug in a hardware design.

We provide the following contributions in this paper

1. We construct two automated simulation-based techniques, one simple (Simple Tech-

nique) and one of our own design (Aggregated Graph Walk Technique), that under

some assumptions, localize security bugs by analyzing the IFT behavior during faulty

simulations.

2. We experiment the two techniques on multiple hardware designs.

3. We discuss both techniques’ strengths and weaknesses both with and without some

assumptions. We determine that the Simple and Aggregated Graph Walk Techniques

are either inefficient or cannot achieve high localization accuracy in more complex

designs. Note that in addition to comparing the two techniques between themselves,

we also compare them to other naive, “brute force”, techniques.

4. Based on the insights gained from the analysis on the two techniques, we propose and

theoretically evaluate two new techniques that in theory, can more accurately localize

timing-related security bugs. We provide a theoretical discussion on their localization

accuracy and efficiency. Finally, we leave the implementation, extension, and empirical

evaluation of these two techniques as future works.
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CHAPTER 3

DEFINITIONS AND ASSUMPTIONS

We construct two techniques that localize security flaws in Verilog RTL hardware designs

by analyzing the IFT signals and behavior of security violating (faulty) simulations. In this

section, we describe our definitions and assumptions for these techniques. Note that terms

we define here will apply in subsequent sections of this paper.

3.1 Assumptions

We discuss our conjectures and technique under the following assumptions:

1. We assume that the designer has already instrumented the debugged design with

Clepysdra’s/VeriSketch’s IFT rules [1, 3] for security verification.

2. We assume that the design contains no bugs, both security and functional, other than

timing-related security bugs.

3. The inputs to the design do not contain tainted timing flow that affect the outputs’

timing flow labels. We assume this as we are primarily interested in how bugs are

generated by the hardware itself.

4. The design possesses only one security bug (see definition below).

5. No timing flow blockage points, i.e. registers that have fully controlling control signals,

exist in the design.

3.2 Definitions

The definitions we provide in this section form the basis of discussion related to our technique.

• Module: Modules in a Verilog RTL design.

20



• Signal: A wire or register in a Verilog RTL design. This definition also encompasses

IFT wires or registers corresponding to security labels.

• Monitored Labels: The set of timing flow security labels that form the timing-

related security invariants of a hardware design. If during a simulation at least one

label possesses an erroneous value (i.e. high, non-zero), then the design possesses a

timing-related security bug. These labels are always monitored during a simulation

under IFT.

• Timing-Related Security Bug: A timing-related security bug occurs when there is

a violation of the monitored labels/security invariants.

• Register Adjacency: Two registers r1 and r2 are adjacent if one’s timing flow label

explicitly or implicitly depends on the other’s only through at most combinational

logic. That is, there is no other register that lies between r1 and r2.

• Register-Wire Adjacency: A wire w and r are adjacent if one’s timing flow label

explicitly or implicitly depends on the other’s through at most combinational logic.

That is, there is no other register that lies between w and r1.

• Insecure Path: A continuous path of adjacent, tainted timing flow carrying, registers

that begins somewhere in the design and ends on a register that is adjacent to and

affects at least one of the monitored signals. That is, these paths are register paths on

which the tainted timing flows propagate without blockage to the monitored label(s).

Note:

– Every insecure path contains the taint generating source.

– A bug may have multiple insecure paths as the tainted timing flow can be gener-

ated at more than one register.

– These insecure paths may overlap because registers can both propagate and gen-

erate flow at the same time.
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– By definition, any register along an insecure path affects the monitored label.

• Location of a Timing-Related Security Bug: The location of a timing flow-

related security bug is comprised of the registers whose conditional assignments gen-

erate tainted timing flows whose values, in turn, affect the values of the monitored

labels. A timing bug location, from another perspective, consists of registers that gen-

erate tainted timing flows which in turn propagate to the monitored labels without

blockage from non-sensitive and fully controlling signals. Thus, when we say bug lo-

cation, we mean the set of registers where security invariant/monitored label affecting

tainted timing flow is generated. It is important to note that the insecure path(s) are

equally as important because it helps the programmer know where to block the timing

flow. Moreover, under our assumptions and Clepsydra’s and VeriSketch’s IFT rules,

tainted timing flows can only be generated at procedural assignment to registers [1, 3].

• Faulty Simulations: Faulty simulations are those whose inputs cause the moni-

tored/asserted on IFT label security invariants to be violated.

• Data Loops: A register x is in a data loop with another register y if x affects y and

y affects x.
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CHAPTER 4

HIGH LEVEL DESCRIPTION

In this chapter, we provide a high level overview of the two timing-related security bug

localization techniques. We call the first technique the Simple Technique and the second

technique the Aggregated Graph Walking Technique. The Simple strategy consists of two

phases: Pre-Processing, Simulation and Candidate Identification. The Aggregated Graph

Walking Technique consists of four phases: Pre-Processing, Simulation and Candidate Iden-

tification, Graphing, and Filtering. Note that the Pre-Processing and Simulation and Can-

didate Identification phases are exactly the same in both techniques. We therefore describe

the techniques in parallel up to the Simulation and Candidate Identification Phase.

The techniques begin the Pre-Processing phase once a security flaw has been detected

and the appropriate inputs are identified. At the start of the Pre-Processing phase, the

techniques select from the faulty hardware design registers that affect the monitored labels.

The techniques then add logic to the design’s RTL code in order to track whether a selected

register generates tainted flow during a simulation.

In the next phase, Simulation and Candidate Identification, both strategies simulate the

design on faulty inputs. For each input, two traces are kept: one for the registers’ taint

generation behavior and one for the registers’ timing flow labels. Once the techniques finish

simulating all inputs, they analyze the traces to determine the set of registers that carry

tainted timing flow (call this set R∗) and the set of registers that generate tainted timing

flow (call this set R′). Note that R′ is exactly the subset of R∗ whose registers generate

tainted flow. Thus, R′ will always contains all the registers that are part of the bug location.

Moreover, this set of registers is more specific than the set of registers that carry tainted flow

R∗. The Simple Technique therefore stops at this phase and proposes R′ as the candidate

bug location. The description from now on only applies to the Aggregated Graph Walking

technique.

During the Graphing phase, the Aggregated Graph Walking Technique constructs a data
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dependency graph that models all timing flow relationships among the registers in the first

set. The purpose of this graph is to contextualize the bug location to the designer and serve

as a means of reducing false positives in the suggested bug location. The technique constructs

the graph by initially starting at the monitored labels and then iteratively walking to adjacent

registers that carry tainted flow. This graph, as a result, contains all of the design’s insecure

paths and ignores some (not all) taint generating registers that are “disjointed”. A register

is disjointed if the specific taints it carries never touch any monitored labels. Also note

that the graph only ignores “some” taint generating disjointed registers because there exists

an edge case that cannot be handled by the graph walking algorithm. We further explain

disjointed registers and this walking technique’s filtering and inaccuracy behaviors towards

the end of Chapter 8.

Since the Aggregated Walking Technique ignores some disjointed taint generating regis-

ters, it filters out some false positives from the set R∗ and thus R′. Therefore, during the

Filtering phase, we utilize the graph to filter out false positives in R′. Let D be the set of

registers in the dependency graph. The technique then finds and proposes R′ ∩ D as the

potential bug location.
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CHAPTER 5

THE TECHNIQUES IN DETAIL

In this chapter, we describe in detail how the Simple and Aggregated Graph Walking Tech-

nique work. Like in the high level description, we describe both techniques in parallel up to

the Simulation and Candidate Identification phase. The following definitions apply for only

this section.

Definitions:

• Let If be the set of faulty inputs.

• Let R be the set of registers monitored in the design. The initial state is empty.

• Let R∗ be the set registers in R that carry tainted flow in a faulty simulation. The

initial state is empty.

• Let R′ be the set of registers in R∗ that generate tainted flow in a faulty simulation.

The initial state is empty.

• Let U be the set of unbalanced registers that are also in R.

• For i ∈ If , let ci be the number of cycles in the simulation that takes in i as input.

• For i ∈ If , let Ti be the signal trace matrix for all r ∈ R during the simulation on i.

It will be of size |R| × ci.

• For i ∈ If , let Gi be the taint generation trace matrix for all r ∈ R during the

simulation on i. It will be of size |U | × ci.

5.1 Collecting and Comparing Registers

We have restricted our techniques to only collecting traces for register values during simula-

tions. This restriction serves multiple purposes. First, as stated previously, tainted timing
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flows can only be generated at registers. Secondly, analyzing and reasoning about registers’

behavior is easier as registers propagate their values to each other on at least a one cycle

delay. Finally, collecting only the traces of the registers is a significant optimization over

collecting both registers and wires. Wires often heavily outnumber registers in a design.

5.2 Pre-Processing

During the Pre-Processing phase, the techniques identify the registers whose timing labels

indirectly or directly affect the monitored labels. It places them in R. The techniques

then filter R down to the set of registers U that have unbalanced updates. Note that

this unbalanced register identification process is feasible as both Clepsydra and VeriSketch

statically analyze the hardware design’s AST to identify unbalanced updates to registers

[1, 3]. Based on Clepsydra’s timing flow logic descriptions and rules, we derive the following

logic for timing flow propagation and taint generation for a procedural assignment r <= r′:

rtime <= (r′time & !(ns full(s0) | ns full(s1) | ... | ns full(sn))) | (5.1)

(s0time
| s1time

| ... | sntime) | (5.2)

((s0f | s1f | ... | snf ) & !is bal(r)) (5.3)

In the logic above, the timing flow propagation logic is in lines 5.1 and 5.2, and the generation

logic is in line 5.3. Any variable subscripted with time is a timing label and any variable

subscripted with f is a functional label. The set {s0, s1, ..., sn} is the set of control signals for

r <= r′. The function ns full(si) determines whether si is a non-sensitive fully controlling

signal of r, and is bal(r) determines whether r has an unbalanced assignment. Since we

want to find the registers that generate tainted timing flow, for each register u ∈ U , the

techniques add to the design a register called u is generation, which tracks whether tainted

timing flow is ever generated at the register u. The following code is also added to the design
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for each of u’s unbalanced conditional assignments u <= x:

u is generation <= s0,f | s1,f | ... | sn,f ;

The right hand side of this logic is exactly the tainted timing flow generation logic but with-

out the unbalanced assignment checking logic. We do not include the unbalanced assignment

checking logic because we have already identified u <= x as unbalanced.

Output: A design augmented with taint generation tracking code and the register set

R.

5.3 Simulation and Candidate Identification

In this phase, the techniques simulate the design on a multitude of faulty inputs. For each

simulation, the techniques keep a trace matrix that keeps track of each register in R’s is

generation signal and timing label values. The techniques then analyze these traces to

identify candidate bug location registers. We now describe each step of this phase in detail.

5.3.1 Simulation and Collection

For each simulation of the augmented design on an input if ∈ If , we record the high-low

values of r’s timing label for all r ∈ R. We also record u’s is generation label for all u ∈ U .

Rather than terminate the simulation the moment the security invariants are violated, we let

the faulty simulation run to completion in order to capture all taint generating registers and

insecure paths. Terminating early may leave out some registers that later generate tainted

flow that in turn propagates to the monitored label. The result for each simulation consists

of the two matrices Tif and Gif . Each row of T corresponds to a register’s timing label.

Each column corresponds to a cycle of the simulation if . If a register’s timing label possesses

a non-zero (i.e. high) value for a specific cycle, then the corresponding Tif [register, cycle]
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entry in the matrix is given the value 1. Otherwise, the value in that entry is set to 0.

Similarly, each row of G corresponds to an unbalanced register’s is generation label and

each column corresponds to a cycle in the simulation. If a register’s is generation label has

a high value at a specific cycle, then Gif [register, cycle] is set to 1. Otherwise, the technique

sets the entry’s value to 0. For example, let the simulation on i0 run for 4 cycles. Moreover,

let |R| = 2 and |U | = 2. Then, we may have the two trace matrices (1 denotes high label

value and 0 denotes low):

Ti0 =

1 0 0 1

1 1 1 1

 and Gi0 =

0 0 0 0

1 1 1 1


The first row of Ti0 corresponds to one register’s timing label and the second row corresponds

to another’s. This first register’s timing label, in the first cycle, is tainted. Then the label

assumes a low, low, and finally high value. The second register, on the other hand, always

carries a tainted timing flow. The first row in Gi0 corresponds to the first register’s is

generation label. Since the row is all 0s, the first register never generates tainted flow. The

second row’s register’s is generation label, on the other hand, has a value of 1 for all cycles

and thus generates tainted timing flow at all cycles.

5.3.2 Candidate Identification

Consider all the traces that are derived from simulations on faulty inputs. That is,

{Tif | if ∈ If} and {Gif | if ∈ If}

For each register in R, the techniques search the corresponding rows in each Tif until they

find an entry with the value 1. Once it finds an entry with value 1, the register must have

carried tainted timing flow and thus the technique adds the register to the set R∗. If the

technique never finds an entry with value 1, it does not add the register to R∗.
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Similarly, for each register in R, the techniques in this step search the corresponding rows

in each Gif until it finds an entry with the value 1. Once it finds an entry with value 1, the

register must have generated tainted timing flow and thus the techniques add the register

to the candidate set R′. If the technique never finds an entry with value 1, it does not add

the register to R′. At this point, the Simple Technique proposes R′ as the candidate set and

also provides the programmer with R∗ for the security bug’s context. This technique then

terminates. However, the Aggregated Graph Walking Technique continues and thus, from

now on, we only describe the phases Aggregated Graph Walking Technique.

Output: The candidate set R′ and the set of taint carrying registers R∗.

5.4 Graphing

In order to provide the designer with context and better accuracy for the bug location, the

Aggregated Graph Walking technique also constructs a data dependency graph that models

all timing flow relationships among the registers that carry tainted flow.

Since the data dependency graph contains all registers with tainted flow, it contains all

registers along an insecure path. Now observe that set R′ may contain disjointed registers

(as defined at the end of Chapter 4). These registers are false positives because the taint

they generate is guaranteed to not affect the monitored labels. Thus, the technique attempts

to filter out these false positives by constructing the graph through a walking algorithm that

starts at the monitored labels and then walks to the adjacent registers. We now describe the

algorithm in detail.

For each signal that is one of the monitored labels, if that signal is a register, add it to the

graph. For each monitored label that is not a register, identify its adjacent registers (that

also affect the monitored label) and add them to the graph. Let this set of initial registers

in the graph be Rinitial. As a reminder, adjacency in this context depends on the timing

flow label relationships between a signal and other registers. The graph we are about to

construct is therefore conceptually a subset of the registers’ timing label data dependency
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graph. Now for each r ∈ Rinitial,

1. Determine all of r’s adjacent registers. Let this set be Ra. For each ra ∈ Ra, check if

ra’s timing label affects r’s timing label. If ra does affect r’s timing label, then add ra

to Rd. Rd is therefore the set of adjacent registers to r whose timing labels affect r’s

timing labels.

2. For each rd ∈ Rd∩R∗, add rd and a directed edge outgoing from r and incoming to rd

to the graph. This edge means that r’s timing flow label depends on rd’s. In addition

add rd into a global queue.

3. If the queue is not empty, repeat steps 1 to 3 again for each register in the queue that

has not already been visited.

4. If the queue is empty or all registers in the queue have been visited, then terminate.

The end result is a graph containing all of the insecure paths and ignoring some, if not most,

disjointed registers. Moreover, the starting nodes of the insecure paths correspond to taint

generating registers. Note that since registers can propagate and generate flow at the same

time, these insecure paths may overlap and thus the dependency graph may contain data

loops or circular dependencies.

Output: The register dependency graph.

5.5 Filtering Phase

Once the dependency graph has been generated, it should contain the insecure paths and

few, if any, disjointed registers. However, the candidate set of registers, R′ may still contain

filtered out disjointed registers that generate tainted timing flow. Thus, the technique filters

the candidate set by selecting only the registers that reside in the dependency graph. The

technique then proposes this filtered set as the bug location. It also provides the designer
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with the register dependency graph.

Output: The filtered candidate set of taint generating registers. The register dependency

graph.
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CHAPTER 6

EXPERIMENTAL METHODOLOGY

In this study, we tested the strategies’ bug localizing ability on the following buggy exam-

ples instrumented with IFT logic: a multiplier, a divider, AES cores injected with faulty

dividers, an RSA core, and a direct mapped cache. In this chapter, we first describe our

methodology for validating whether our techniques’ suggested sets were accurate. We then

detail these examples’ configuration and finally discuss our implementation of the techniques

for experimentation.

6.1 Validating Candidate Set

Once we had implemented our techniques and were ready to test them on our examples, we

needed a procedure that allowed us to check whether the techniques proposed the correct

registers. We therefore created a procedure that exhaustively goes through each register in

the tested design and checks if it is a part of the the bug location. For each of the examples,

we checked the designs’ registers for timing generation through an iterative process. We first

identified all registers with unbalanced updates U . A subset of U will be the bug location,

call it Us. In order to determine the exact subset, we did the following: let Us be empty.

Figure 6.1: Example of timing flow logic in IFT.

Figure 6.2: The tainted timing flow generation logic has been deleted. Only the propagation
logic remains.

For each register r ∈ U ,

1. Disabled all registers’ tainted timing flow generation logic except for r’s. We left the

timing flow propagation logic enabled for every register. Figure 6.1 displays a code
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example of timing flow logic and Figure 6.2 shows how we disabled its generation logic

and left on the propagation logic (labels suffixed with time are the timing labels and

those suffixed with t are functional labels). More specifically,

• We disabled its timing flow generation by simply deleting/commenting out the

taint generation part of the timing flow code.

• The timing flow propagation logic code is left enabled by simply not deleting it.

2. We compiled and ran the faulty simulations again. If the monitored labels are tainted,

then we know that the register is part of the bug location. r is therefore added to Us.

We finally conducted a check to ensure that the registers Us were the only bug generating

source by disabling their tainted flow generation logic and enabling every other registers’

generation logic. All propagation logic was left enabled. If the monitored label was not

tainted, then we knew that we identified all of the bug causing registers.

6.2 Multiplier

We experimented on a multiplier that exhibits timing variations when the multiplication

of the inputs causes an overflow. Using the validation procedure in Section 6.1, we found

that bug resides at the registers qmults.reg overflow and qmults.reg working result. The

design contained 8 unbalanced registers. In this example, we utilized 115 random faulty

inputs. In all inputs, the multiplicands contained sensitive data and thus had a tainted

functional label.

6.3 Divider

The divider design is a subtraction-based division core whose outputs exhibit timing vari-

ations depending on the dividend’s value. We found with Section 6.1’s procedure that

exact buggy registers are qdiv orig ift.reg working quotient, qdiv orig ift.reg working
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dividend, and qdiv orig ift.reg overflow. The design overall contained 7 unbalanced regis-

ters. In this example, we simulated on 181 random faulty inputs. All dividend inputs carried

tainted functional flow. That is, they contained sensitive data.

6.4 AES Cores Injected with Divider

These examples consist of AES cores injected with the divider module described above.

While the original AES core does not possess any timing-related bugs, the injected divider

module synthetically creates one. These examples include: a base example and multiple

examples with large data loops. The base example is almost the same as the original AES

core, but with an expand key 128 module called a5 injected with the previous example’s

divider core. The divider core divides the original output of a5 by a random constant and

pushes its own output to a5’s output. a5 is located at around the middle of the AES design.

Because the only buggy module in this design is the divider core, the buggy registers are the

same as in the previous example, but without the overflow register: aes 128.a5.qdiv orig

ift.reg working dividend and aes 128.a5.qdiv orig ift.reg working quotient. The overflow

register is excluded because only the quotient is used by a5, not the overflow value. That is,

the overflow register does not affect the monitored labels. In this example, we experimented

with 85 random faulty inputs.

One of our loop examples possesses a data loop between an expand key 128 module,

called a2, and the buggy module a5, whose location is the same as in the base example.

More specifically, a5’s (possibly tainted) outputs, when available, are sent backwards in the

design as a2’s inputs. We call this case “Loop 1”. The other loop example has a data

loop from an expand key 128 module ahead of a5, called a8, to the buggy expand key 128

module a5. In this example, a8’s (possibly tainted) outputs, when available, are used as

a5’s inputs. We refer to this example as the “Loop 2” example. In both cases, we added

no additional registers and the buggy registers are aes 128.a5.qdiv orig ift.reg working

dividend and aes 128.a5.qdiv orig ift.reg working quotient. We utilized 87 random faulty
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inputs for the Loop 1 case and 87 random faulty inputs for the Loop 2 case.

In all three examples, 6 registers were unbalanced. Moreover, each key and state inputs

carried sensitive data.

6.5 RSA Core

This RSA encryption core possesses a timing bug in the modular exponentiation step. Using

Section 6.1, we determined that the bug location consists of 21 registers where tainted timing

flow is generated:

1. rsacypher.count

2. rsacypher.multgo

3. rsacypher.root

4. rsacypher.done

5. rsacypher.tempin

6. rsacypher.sqrin

7. rsacypher.cypher

8. rsacypher.modreg sqrt

9. rsacypher.modreg mult

10. rsacypher.modsqr.first

11. rsacypher.modsqr.mpreg

12. rsacypher.modsqr.mcreg

13. rsacypher.modsqr.modreg1

14. rsacypher.modsqr.modreg2

15. rsacypher.modsqr.prodreg2

16. rsacypher.modmultiply.first

17. rsacypher.modmultiply.mpreg

18. rsacypher.modmultiply.mcreg

19. rsacypher.modmultiply.modreg1

20. rsacypher.modmultiply.modreg2

21. rsacypher.modmultiply.prodreg2

These 21 registers were also the design’s unbalanced registers. As in real world conditions,

we required in our experiments that the key input be sensitive. In this example, we utilized

five random inputs to run the technique on.
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6.6 Direct Mapped Cache

This direct mapped cache exhibits timing-based leakage in the output when a data access’s

address, specifically the part corresponding to the cache index, is labeled as functionally

sensitive and the cache encounters a stall. Any subsequent accesses to the same line will

continue to result in tainted timing flow in the output data. In this example, we want to

find the source of that timing-based leakage. The exact bug location, found through the

procedure in Section 6.1, are the registers: cache.MyCtrl.cache we, cache.MyCtrl.stall

cycles, cache.MyCtrl.wr cache line enabled, and cache.Mem32.mem. We utilized multiple

faulty inputs with the same general structure. The inputs first requested a data write whose

address’s index was functionally tainted, they then requested a no-operation (write/read

request register set to 0 for some cycles), and they finally requested a read from the same

cache set as the written data, but with a different address. In the design, 6 registers were

unbalanced.

6.7 Experimental Setup

The examples we tested our technique on were coded and instrumented with IFT in Verilog,

which we compiled and simulated with Icarus Verilog. We then proceeded to do the following

for each example:

1. Executed the Pre-Processing step by inserting logging statements for every monitored

label-affecting register’s timing label at every cycle. We also inserted is generation

labels and the corresponding tracking logic for each unbalanced register.

2. Conducted the Simulation and Identification phase by simulating the design on faulty

inputs and then using a Python script to analyze the simulation traces.

3. Used PyVerilog, PyGraphviz, custom Python scripts, and the simulation traces to

generate the dependency graph [27, 10].
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4. Used a script to find the intersection between the set of registers in the dependency

graph and the Simulation and Identification phase’s candidate set.
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CHAPTER 7

RESULTS

In this chapter, we present the Simple Technique’s candidate bug location and accuracy

for each example. We also present the Aggregated Graph Walking Technique’s dependency

graph and accuracy for each example. Note that the monitored signal in all of our examples

was a wire and therefore the register dependency graphs do not contain the monitored

signal. In order to enhance the reader’s understanding, we outlined the nodes that the

monitored signal is adjacent to and depends on in red. Those registers can be seen as the

“endpoints” of the insecure paths. Moreover, we highlighted in green the labels of the nodes

that corresponded to the Aggregated Graph Walking technique’s suggested bug locations.

7.1 Multiplier

Table 7.1: The IFT timing behavior of monitored label affecting registers in the multiplier
example (data collected by our techniques). Carries Tainted Timing Flow? = Whether the
register’s timing label was tainted, Is Generation? = Whether the register generated tainted
timing flow.

Register Carries Tainted Timing Flow? Is Generation?

qmults.reg overflow Yes Yes
qmults.reg working result Yes Yes
qmults.reg working result fix No No
qmults.reg multiplier temp No No
qmults.reg multiplicand temp No No
qmults.reg count No No
qmults.reg done No No
qmults.reg sign No No

7.1.1 Simple Technique

In this example, the faulty simulations executed for a total of 9 cycles. As we can see in

Table 7.1, only two registers out of the eight that affect the monitored labels ever generated
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Figure 7.1: The multiplier example’s register dependency graph.

tainted timing flow: qmults.reg overflow and qmults.reg working result. These two reg-

isters were therefore accurately proposed as candidates after the Simulation and Candidate

Identification Phase of the Simple Technique.

7.1.2 Aggregated Graph Walking

The two registers above were also the only ones to carry tainted flow, which means that the

dependency graph in Figure 7.1 only has two registers. Thus, during the Filtering phase, the

Aggregated Graph Walking Technique did not filter out any registers from the candidate set

and accurately proposed the two registers qmults.reg overflow and qmults.reg working

result as the bug location. Note that the set of unbalanced registers in the design is all the

registers found in Table 7.1 except for qmults.reg multiplicand temp.

7.2 Divider

Figure 7.2: The divider example’s register dependency graph.
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Table 7.2: The IFT timing behavior of monitored label affecting registers in the divider
example (data collected by our techniques). Carries Tainted Timing Flow? = Whether the
register’s timing label was tainted, Is Generation? = Whether the register generated tainted
timing flow.

Register Carries Tainted Timing Flow? Is Generation?

qdiv orig ift.reg quotient fix Yes No
qdiv orig ift.reg working quotient Yes Yes
qdiv orig ift.reg working dividend Yes Yes
qdiv orig ift.reg overflow Yes Yes
qdiv orig ift.reg working divisor No No
qdiv orig ift.reg count No No
qdiv orig ift.reg done No No
qdiv orig ift.reg sign No No

7.2.1 Simple Technique

During faulty simulations, the divider executed on average for 11.00 cycles. Of the eight reg-

isters in the design (which also affect the monitored labels), four registers carried tainted flow:

qdiv orig ift.reg quotient fix, qdiv orig ift.reg working quotient, qdiv orig ift.reg working

dividend, and qdiv orig ift.reg overflow (Table 7.2). Of those four registers, qdiv orig

ift.reg working quotient, qdiv orig ift.reg working dividend, qdiv orig ift.reg overflow

were accurately proposed by the Simple Technique as candidates as they generated tainted

timing flow.

7.2.2 Aggregated Graph Walking

The Aggregated Graph Walking technique utilized the four taint carrying registers to gener-

ate the dependency graph found in Figure 7.2. As qdiv orig ift.reg working quotient, qdiv

orig ift.reg working dividend, and qdiv orig ift.reg overflow were in the dependency graph,

no registers were filtered out of the candidate set during the Filtering phase. Our tech-

nique therefore accurately proposed the bug location as the set of registers qdiv orig ift.reg

overflow, qdiv orig ift.reg working quotient, and qdiv orig ift.reg working dividend.

40



Table 7.3: The IFT timing behavior of monitored label affecting registers in the AES with
divider - base example (data collected by our techniques). Carries Tainted Timing Flow?
= Whether the register’s timing label was tainted, Is Generation? = Whether the register
generated tainted timing flow.

Register Carries Tainted Timing Flow? Is Generation?

aes 128.a5.out 1 Yes No
aes 128.a6.k3a Yes No
aes 128.a6.S4 0.S 2.out Yes No
aes 128.r6.state out Yes No
aes 128.a6.out 1 Yes No
aes 128.r7.t3.t3.s4.out Yes No
...

...
...

aes 128.a10.S4 0.S 3.out Yes No
aes 128.a10.S4 0.S 2.out Yes No
aes 128.a10.S4 0.S 1.out Yes No
aes 128.a10.S4 0.S 0.out Yes No
aes 128.rf.state out Yes No
aes 128.a10.S4 0.S 0.out Yes No
aes 128.a5.qdiv orig ift.reg quotient fix Yes No
aes 128.a5.qdiv orig ift.reg working quotient Yes Yes
aes 128.a5.qdiv orig ift.reg working dividend Yes Yes
aes 128.s0 No No
aes 128.k0 No No
...

...
...

aes 128.a1.S4 0.S 1.out No No
aes 128.a1.S4 0.S 0.out No No

7.3 AES Cores Injected with Divider - Base Example

7.3.1 Simple Technique

The faulty simulations in this example ran for 32.00 cycles. Of the 413 registers in this

design that affect the monitored labels, 134 carried tainted flow. The middle-lower portion

of Table 7.3 contains simulation information about bug location relevant registers. Only aes

128.a5.qdiv orig ift.reg working quotient and aes 128.a5.qdiv orig ift.reg working dividend

generated tainted timing flow and thus were accurately proposed as candidates by the Simple

Technique.
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Figure 7.3: The AES with divider base example’s register dependency graph (truncated).

7.3.2 Aggregated Graph Walking

Figure 7.3 shows the bug location part of the dependency graph generated from the 134 taint

carrying registers as the entire graph is too large and complex to be displayed. Since the can-

didates were part of the dependency graph, no registers were filtered out of the candidate set

during the Filtering phase. The technique therefore identified aes 128.a5.qdiv orig ift.reg

working quotient and aes 128.a5.qdiv orig ift.reg working dividend as the bug location.

Thus, the Aggregated Graph Walking Technique accurately determined the bug location of

this design.

7.4 AES Cores Injected with Divider - Loop 1 Example

7.4.1 Simple Technique

The faulty simulations in this example ran for 45 cycles. During the faulty simulations,

the tainted timing flow generated in the divider module looped from a5 to a2, which in

turn tainted a large proportion of earlier registers’ labels. As a result, 270 of the 413 reg-
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Table 7.4: The IFT timing behavior of monitored label affecting registers in the AES with
divider - Loop 1 example (data collected by our techniques). Carries Tainted Timing Flow?
= Whether the register’s timing label was tainted, Is Generation? = Whether the register
generated tainted timing flow.

Register Carries Tainted Timing Flow? Is Generation?

aes 128.a5.out 1 Yes No
aes 128.a6.k3a Yes No
aes 128.a6.S4 0.S 2.out Yes No
aes 128.a2.k3a Yes No
aes 128.a2.S4 0.S 2.out Yes No
aes 128.r6.state out Yes No
aes 128.r2.state out Yes No
aes 128.a6.out 1 Yes No
aes 128.a2.out 1 Yes No
aes 128.r7.t3.t3.s4.out Yes No
...

...
...

aes 128.rf.state out Yes No
aes 128.a10.S4 0.S 0.out Yes No
aes 128.a5.qdiv orig ift.reg quotient fix Yes No
aes 128.a5.qdiv orig ift.reg working quotient Yes Yes
aes 128.a5.qdiv orig ift.reg working dividend Yes Yes
aes 128.s0 No No
aes 128.k0 No No
...

...
...

aes 128.a1.S4 0.S 1.out No No
aes 128.a1.S4 0.S 0.out No No

isters that affect the monitored labels carried tainted flow. Part of Table 7.4 displays the

bug location relevant registers and some other registers that carried tainted flow. It shows

that earlier registers such as aes 128.a2.out 1 carried tainted flow. Similar to the base

example, aes 128.a5.qdiv orig ift.reg working quotient and aes 128.a5.qdiv orig ift.reg

working dividend generated tainted flow. They were thus the candidate set, which accu-

rately predicted the bug location.
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Figure 7.4: The AES with divider - Loop 1 example’s register dependency graph (truncated).

7.4.2 Aggregated Graph Walking

The Aggregated Graph Walking technique generated the dependency graph found in Figure

7.4, which displays the bug location part of the dependency graph as the original graph is

too large and complex for display. Note that aes 128.a5.qdiv orig ift.reg working dividend

now depends on a register because of the data loop. During the Filtering phase, the two

registers in the candidate set were checked against the graph and both were found to reside

in the graph. Thus, the two registers, aes 128.a5.qdiv orig ift.reg working quotient and

aes 128.a5.qdiv orig ift.reg working dividend, were identified as the bug location. Thus,

our technique accurately determined the bug location of this design.
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Table 7.5: The IFT timing behavior of monitored label affecting registers in the AES with
divider - Loop 2 example (data collected by our techniques). Carries Tainted Timing Flow?
= Whether the register’s timing label was tainted, Is Generation? = Whether the register
generated tainted timing flow.

Register Carries Tainted Timing Flow? Is Generation?

aes 128.a5.out 1 Yes No
aes 128.a6.k3a Yes No
aes 128.a6.S4 0.S 2.out Yes No
aes 128.r6.state out Yes No
aes 128.a6.out 1 Yes No
aes 128.r7.t3.t3.s4.out Yes No
...

...
...

aes 128.a5.k0a Yes No
aes 128.a5.k1a Yes No
aes 128.a5.k2a Yes No
aes 128.a5.k3a Yes No
...

...
...

aes rf state out time Yes No
aes 128.a10.out 1 Yes No
aes 128.a5.qdiv orig ift.reg quotient fix Yes No
aes 128.a5.qdiv orig ift.reg working quotient Yes Yes
aes 128.a5.qdiv orig ift.reg working dividend Yes Yes
aes 128.s0 No No
aes 128.k0 No No
...

...
...

aes 128.a1.S4 0.S 1.out No No
aes 128.a1.S4 0.S 0.out No No

7.5 AES Cores Injected with Divider - Loop 2 Example

7.5.1 Simple Technique

The simulations in this example ran for 45 cycles. The tainted timing flow during the

faulty simulations propagated out of a8 and looped back to the beginning of a5, which in

turn tainted some labels that affect the buggy register’s label. As a result, 175 of the 413

registers tracked carried tainted flow. Table 7.5 displays the information our technique gained

from analyzing the register traces. It shows that earlier registers such as aes 128.a5.k0a
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Figure 7.5: The AES with divider - Loop 2 example’s register dependency graph part 1.

Figure 7.6: The AES with divider - Loop 2 example’s register dependency graph part 2.
Note that aes 128.a5.qdiv orig ift.reg working quotient depends on aes 128.a5.qdiv orig
ift.reg working dividend

carried tainted timing flow. The registers aes 128.a5.qdiv orig ift.reg working quotient

and aes 128.a5.qdiv orig ift.reg working dividend generated tainted timing flow and thus

comprised the candidate set, which matched the bug location exactly.
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7.5.2 Aggregated Graph Walking

The Aggregated Graph Walking Technique generated the dependency graph displayed in

Figures 7.5 and 7.6. The figures contain the bug location part of the dependency graph

generated from the 175 taint carrying registers. Note that the two highlighted registers in the

figures are directly connected to each other like they are in the previous AES examples. aes

128.a5.qdiv orig ift.reg working dividend again depends on a register because of the data

loop. All registers in the candidate set were checked against the graph during the Filtering

phase and again, both registers were in the graph. aes 128.a5.qdiv orig ift.reg working

quotient and aes 128.a5.qdiv orig ift.reg working dividend, were therefore identified as the

bug location. Thus, this technique accurately determined the bug location of this design.

7.6 RSA

7.6.1 Simple Technique

The RSA simulations ran for an extremely long time compared to the runtime of other tested

examples: 16576.6 cycles on average. Moreover, all of the registers carried and generated

tainted flow. The candidate set identified by the Simple Technique was therefore all 21

registers in the design. The Simple Technique therefore accurately found the bug location

in this example.

7.6.2 Aggregated Graph Walking

The Aggregated Graph Walking Technique generated a dependency graph that contained

all 21 registers as well. Figure 7.7 presents a very complex dependency graph laden cycles.

These cycles imply that there are many insecure paths, which makes sense because there are

twenty-one taint generating registers. The technique checked the set of candidate registers

against the graph and filtered out none. Thus, our technique accurately selected all 21

registers as the bug location.
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Table 7.6: The IFT timing behavior of monitored label affecting registers in the RSA example
(data collected by our techniques). Carries Tainted Timing Flow? = Whether the register’s
timing label was tainted, Is Generation? = Whether the register generated tainted timing
flow.

Register Carries Tainted Timing Flow? Is Generation?
rsacypher.root Yes Yes
rsacypher.modreg mult Yes Yes
rsacypher.tempin Yes Yes
rsacypher.sqrin Yes Yes
rsacypher.modreg sqrt Yes Yes
rsacypher.multgo Yes Yes
rsacypher.modsqr.first Yes Yes
rsacypher.modsqr.mpreg Yes Yes
rsacypher.modsqr.mcreg Yes Yes
rsacypher.modsqr.modreg1 Yes Yes
rsacypher.modsqr.modreg2 Yes Yes
rsacypher.modsqr.prodreg Yes Yes
rsacypher.modmultiply.first Yes Yes
rsacypher.modmultiply.mpreg Yes Yes
rsacypher.modmultiply.mcreg Yes Yes
rsacypher.modmultiply.modreg1 Yes Yes
rsacypher.modmultiply.modreg2 Yes Yes
rsacypher.modmultiply.prodreg Yes Yes
rsacypher.count Yes Yes
rsacypher.cypher Yes Yes
rsacypher.done Yes Yes

Table 7.7: The IFT timing behavior of monitored label affecting registers in the cache
example (data collected by our techniques). Carries Tainted Timing Flow? = Whether the
register’s timing label was tainted, Is Generation? = Whether the register generated tainted
timing flow.

Register Carries Tainted Timing Flow? Is Generation?

cache.MyCtrl.cache we Yes Yes
cache.MyCtrl.stall cycles Yes Yes
cache.MyCtrl.wr cache line enabled Yes Yes
cache.Mem32.mem Yes Yes
cache.MyCtrl.rst cache No No

7.7 Cache

7.7.1 Simple Technique

The faulty simulations on the cache example ran for 240.00 cycles. After analysis on the

traces, out of the five registers that affect the monitored label, the Simple Technique found
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Figure 7.7: RSA example’s register dependency graph.

Figure 7.8: Cache example’s register dependency graph.

four registers that had generated tainted timing flow: cache.MyCtrl.cache we, cache.MyCtrl.stall

cycles, cache.MyCtrl.wr cache line enabled, and cache.Mem32.mem (Table 7.7). This

technique therefore accurately identified those four registers as the bug location.
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7.7.2 Aggregated Graph Walking

The dependency graph generated by the Aggregated Graph Walking Technique shown in

Figure 7.8 contains the four taint generating registers with a multitude of cycles, indicating

overlapping insecure paths. No registers were filtered out from the candidate set as the

graph contained all four timing flow generation registers. This technique therefore accurately

selected the four registers above as the bug location.
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CHAPTER 8

DISCUSSION

In this chapter, we discuss our results from and the various insights we gained about the

techniques. We then discuss the practical usage of our techniques and compare them to

other localization approaches. We finally describe the major problems with each technique

to motivate the need for a better localization technique.

8.1 Results

Our techniques accurately found the location of each example’s timing-related security bugs.

That is, the techniques’ candidate sets of registers were exactly the bug generating locations.

Note that the dependency graphs generated by the Aggregated Graph Walking Technique

were unneeded to achieve 100% accuracy for our experimental examples. However, in many

different examples, this technique achieves greater accuracy than the Simple Technique’s.

We explain why later in this chapter (Sections 8.6 and 8.7).

8.2 Optimal Number of Faulty Simulations

We utilized varying amounts of faulty simulations during the experiments. For example, the

AES with divider experiments possessed around 80 to 90 faulty inputs. While the input sets

we utilized were large enough to expose all registers that comprise the example designs’ bug

locations, the same number of inputs may not be enough for other, more complex designs.

In the ideal case, the technique should simulate the design on all possible faulty inputs to

capture all possible insecure paths and taint generating registers. Using all possible inputs,

however, is not practical because a design can possess an infinite amount of inputs. A more

realistic approach would be to utilize at least one input from each input class. An input

class is a set of inputs whose simulations’ timing label behavior is the same. That is, the

same number of cycles executed, time and location of tainted timing labels, monitored label
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values, etc. However, identifying all input classes is a difficult task if there exists a substantial

number of input classes. Utilizing a large number of random inputs, which requires relatively

little effort to identify, may therefore be the most practical approach for now.

8.3 Using the Techniques to Fix Bugs

The Simple Technique provides the designer with a candidate set of registers and the set of

taint carrying registers (for context). The designer can therefore fix the timing-based leakage

by implementing non-sensitive and fully controlling signals, e.g. through counters, for the

flows at those registers.

The Aggregated Graph Walking Technique provides the designer with better options

for fixing timing-related security bugs. While we define the bug location to be all of the

registers that generate monitored label-affecting tainted flow, fixing the bug may be as

simple as implementing logic to block timing flows at or near a few registers. For example,

the dependency graph in the AES with divider examples indicates that simply blocking

the tainted flow at or near aes 128.a5.qdiv orig ift.reg working quotient with a counter is

enough to stop the security invariants from being violated. That is, aes 128.a5.qdiv orig

ift.reg working quotient is a tainted timing flow “choke point”. Another example is the

cache, where simply blocking timing flows at Cache.Mem32.mem with a counter is enough

to stop the monitored label from getting tainted. We therefore believe that the dependency

graph is important because it exposes these “choke points”. The designer therefore should

use both the candidate set of registers and dependency graph produced by the technique

when they wish to fix a bug.

8.4 Technique Automation

While our implementation of these techniques involved some manual effort, the strategies as

a whole can be automated with existing tools today. We mostly utilized scripts to compile,
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run, and log the simulations. The trace analysis and dependency graphing were all imple-

mented with separate Python scripts. The manual effort mostly involved post processing

and formatting the dependency graphs. Thus, the techniques can be automated by simply

combing these scripts with some additional software effort to conduct the manual work.

8.5 The Techniques Compared to More Naive Approaches

The most naive localization approach involves the use of checkpoints, wave forms, and other

debugging tools to manually track the propagation of a tainted flow. In many designs, the

generated taint can flow to every register later in a design, e.g. in the RSA or the AES with

divider examples, thus exponentially increasing the number of paths that need to be checked.

The programmer is also limited to analyzing one simulation at a time. Therefore, when the

programmer debugs large designs, they have to spend great effort manually analyzing a large

number of paths to localize the bug. Our techniques are therefore much better than this

approach because they can be automated. Moreover, both techniques are more efficient

because they effectively analyze many faulty simulations at once.

A second approach could involve automatic backtracking that starts at the monitored

labels and then walks backwards along tainted timing label paths. The only advantage that

brute force backtracking has over our techniques is that it guarantees 100% accuracy in all

cases. Brute force backtracking, however, would not be as scalable as our techniques because,

as mentioned earlier in this section, the generated taint can flow to every register later in

a complex design. The backtracking algorithm would have to consider a huge number of

tainted paths in large and complex designs, which the Simple Technique does not. The

Simple Technique’s run time mostly depends on the number of registers in a design. Note

that the Aggregated Graph Walking Technique conducts a form of backtracking when it

generates the dependency graph. However, this backtracking is executed once whereas brute

force backtracking must be conducted on each simulation. If there are different insecure

paths across simulations, then the backtracking technique would have to backtrack along a
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multitude of paths for all simulations. Note that the Simple Technique also only executes

once.

Another naive approach would involve the using the procedure from Section 6.1 to ex-

haustively check every unbalanced register for taint generation. While it can determine the

bug location with 100% accuracy, it is very inefficient. All of the simulations must be exe-

cuted for each unbalanced register. Our techniques, while less accurate, are more efficient

as the simulations only need to be run once. Note that by “less accurate” we mean that our

techniques may suggest as candidates some locations which are not actual buggy locations.

They will never miss any registers buggy locations. Even if the designer, after using our

techniques, wanted to use this brute force method to verify the candidate set, they would

have fewer registers to check. For example, in the divider, the candidate set only had 3

registers while the number of unbalanced registers was 7. The candidate sets in the cache

and AES with divider examples were also smaller than the corresponding unbalanced sets

(4/6 and 2/6 respectively).

Finally, a perfectly accurate strategy would involve uniquely identifying tainted flows

by their originating registers and then implementing logic to track them as they propagate

to other registers in a design. Each register and monitored label s would have some data

structure that keeps the unique tainted flows currently residing in s’s timing label. During

simulation with this new logic, only the bug location registers’ unique tainted flows would

propagate to the monitored labels and thus could be quickly and easily identified. While

this strategy sounds great on paper, its implementations are very inefficient. One possible

implementation makes use of arrays to store the unique tainted flows at each register and

monitored label. However, because the timing flow label of a register is potentially affected

by a multitude of other labels (e.g. control signals’ labels), the arrays must be prohibitively

large. Moreover, merging the arrays of two or more signals is extremely slow because new

memory must be allocated for each merge and extra computations are needed to dedupli-

cate elements in the merge’s output array. Another implementation could involve the use of
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pairing functions to encode unique taint IDs into a single value for each register and mon-

itored label. Pairing functions bijectively map a pair of numbers to another number, thus

allowing for the inversion of the end result to a unique pair of values. The first problem

with pairing functions is that the output values blow up very quickly. The memory footprint

would therefore blow up as in the array-based approach. Moreover, there is no good way to

avoid duplicates in a pairing function, which compounds the memory overhead problem. The

second problem with pairing functions is that they are computationally complex. For exam-

ple, the Cantor pairing function requires a division, a multiplication, and multiple addition

operations. Executing this operation for each register assignment would make simulations

on the augmented design infeasible. Our techniques on the other hand, have relatively light

memory footprints. The techniques are also not computationally inefficient to the point of

being infeasible.

8.6 Problems with the Naive and Aggregated Graph Walking

Techniques

8.6.1 Simple Technique

While the Simple Technique was able to localize bugs with 100% accuracy on the example

designs, the designs were too small and simple to expose the technique’s problems. In

differently structured designs, the technique will produce disjointed register false positives.

For example, consider the hardware design simulation found in Figure 8.1. Taint carrying

combinational logic and registers are highlighted with red. Taint generating registers are

indicated by a thick border. The input chosen at each multiplexer is identified by a green

box. If a design only has faulty simulations like the one in Figure 8.1, then r1 would be

a disjointed register that generates tainted flow. The Simple Technique would incorrectly

suggest r1 as part of the bug location since it generates tainted flow. Consider another

example in Figure 8.2. Again, if the design only has faulty simulations like the two in
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Figure 8.1: A faulty simulation on a theoretical design that results in disjointed register
false positives in the Simple Technique’s candidate set. Each rounded rectangle and each
line represents combinational logic. Taint carrying combinational logic and registers are
highlighted with red. Taint generating registers are indicated by a thick border. The input
chosen at each multiplexer is identified by a green box.

Figure 8.2, then the control flow behavior at both multiplexers would result in r1 being

proposed as a bug location even though its a disjointed register. If faulty simulations on

designs contain multiplexer behavior similar to that of the examples in Figure 8.1 and 8.2,

then disjointed taint generating registers will be produced and the Simple Technique will

incorrectly identify them as the bug location. This control flow/multiplexer behavior and

design structuring is very common in hardware designs. For example, many designs have

execution modes, which could cause a multiplexer to always select one input during faulty

simulations. This technique therefore cannot always achieve high accuracy localization on

more complex or differently structured designs.
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Figure 8.2: Two faulty simulations (a) and (b) on another theoretical design that result in
disjointed register false positives in the Simple Technique’s candidate set. Each rounded
rectangle and each line represents combinational logic. Taint carrying combinational logic
and registers are highlighted with red. Taint generating registers are indicated by a thick
border. The input chosen at each multiplexer is identified by a green box.

Note that the Aggregated Graph Walking Technique filters out the type of disjointed

registers found in Figures 8.1 and 8.2. That is, if there is a non-taint carrying register

between a disjointed register d and every register along an insecure path, the graph walking

algorithm ignores d. This is because the algorithm begins on an insecure path and walks

to adjacent taint carrying registers that its current register depends on. Thus, as we stated

in Chapter 5, in many cases, the graph walking technique will have better accuracy than

the Simple Technique. We did not see such an improvement in our tested examples because

their simulations produced no disjointed registers.
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Figure 8.3: A faulty simulation on a theoretical design that results in disjointed register
false positives in the Aggregated Graph Walking Technique’s candidate set. Each rounded
rectangle and each line represents combinational logic. Taint carrying combinational logic
and registers are highlighted with red. Taint generating registers are indicated by a thick
border. The input chosen at each multiplexer is identified by a green box.

8.6.2 Aggregated Graph Walking Technique

Figure 8.4: Dependency graph produced from the example in Figure 8.3

As discussed in the last paragraph of the previous subsection, the Aggregated Graph

Walking Technique can be more accurate than the Simple Technique (e.g. in examples like

Figures 8.1 and 8.2). However, it is not invulnerable to disjointed register false positives

caused by control flow behavior at multiplexers. If a disjointed register d generates tainted

flow that propagates along a path P to a register that is on or adjacent to an insecure path,

then the Aggregrated Graph Walking Technique will add any register along P including the

disjointed register to the dependency graph. It will also incorrectly propose d as the bug

location. This problem is a consequence of the graph walking technique’s simple walking

algorithm. Whenever the technique sees an adjacent register that carries tainted flow, it will
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walk to that register even if it is a disjointed register.

For example, consider Figure 8.3. If all faulty simulations are like the one in the figure,

then the graph walking algorithm will start at r3 and walk backwards to r1. This is because

r1 carries tainted flow and is adjacent to and affects r3. That is, r1 is adjacent to an

insecure path. The technique will incorrectly produce the graph found in Figure 8.4 and thus

incorrectly propose r1 as part of the bug location. Thus, better techniques are required to

handle disjointed register false positives caused by specific multiplexer control flow behavior.

Finally, while this technique is more efficient than automatic backtracking (as discussed

in Section 8.5), it is still relatively inefficient compared to the Simple Technique. As noted

above, this technique still conducts a form of backtracking which may take a long time to

complete in complex and well interconnected designs.

8.7 Introducing Timing Flow Blockage

Earlier in the paper, we made the assumption that timing flow blockage points do not exist

in a design. However, in reality, they exist in a multitude of hardware designs (e.g. in the

form of counters). In order to fully discuss timing bug localization, we must therefore lift

the no timing blockage assumption. The problem with lifting this assumption is that it

leads to a disjointed register problem similar to the one described in the previous section.

For example, we tested our technique on the base AES with divider example injected with

an additional timing secure divider module. This timing secure divider always blocks any

generated timing flow from reaching its output register. We placed the secure divider module

within an expand key 128 module called a2 that the a5 module, which the faulty divider

resides in, depends on. The faulty divider module’s inputs thus depend on the secure divider

module’s output quotient. Because the secure divider module blocks all tainted timing flows,

the bug location in this modified example is exactly the same as the AES with divider base

example’s. We simulated the design on 87 faulty inputs.

Table 8.1 contains the generation and taint carrying behavior of the registers in this
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Table 8.1: ”Carries Tainted Timing Flow?” and ”Is generation?” behavior from adding a
blockage point to the AES with divider base example.

Register Carries Tainted Timing Flow? Is Generation?

aes 128.a5.qdiv orig ift.reg working quotient Yes Yes
aes 128.a5.qdiv orig ift.reg working dividend Yes Yes
aes 128.a5.qdiv orig ift.reg quotient fix Yes No
aes 128.a5.out 1 Yes No
aes 128.a6.k3a Yes No
...

...
...

aes 128.a10.k3a Yes No
aes 128.a10.S4 0.S 3.out Yes No
aes 128.a10.S4 0.S 2.out Yes No
aes 128.a10.S4 0.S 1.out Yes No
aes 128.a10.S4 0.S 0.out Yes No
aes 128.a5.qdiv orig ift.reg overflow Yes No
aes 128.rf.state out Yes No
aes 128.a2.qdiv fix ift.reg working quotient Yes Yes
aes 128.a2.qdiv fix ift.reg working dividend Yes Yes
aes 128.a2.qdiv fix ift.reg quotient fix No No
aes 128.k0 No No
...

...
...

aes 128.a1.S4 0.S 1.out No No
aes 128.a1.S4 0.S 0.out No No

design. The set of taint generating were the same as those in the AES with divider base

example, but with two additions: aes 128.a2.qdiv fix ift.reg working quotient and aes

128.a2.qdiv fix ift.reg working dividend. Therefore the Simple Technique incorrectly in-

cluded aes 128.a2.qdiv fix ift.reg working quotient and aes 128.a2.qdiv fix ift.reg working

dividend in its candidate bug location. The tainted flows in these two additional registers

were always blocked by aes 128.a2.qdiv fix ift.reg quotient fix, meaning that they were

disjointed registers. On the other hand, the Aggregated Graph Walking Technique gener-

ated exactly the same register dependency graph as the one in Figure 7.3 because there was

at least one untainted register between the disjointed registers and an insecure path. The

candidate set the technique thus generated was exactly the same as the set found in the AES

with divder base example. This graph walking technique technique therefore achieved 100%
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Figure 8.5: Two faulty simulations (a) and (b) on a theoretical design with blockage points
that result in disjointed register false positives in the Aggregated Graph Walking Technique’s
candidate set. Each rounded rectangle and each line represents combinational logic. Taint
carrying combinational logic and registers are highlighted with red. Taint generating registers
are indicated by a thick border. The input chosen at each multiplexer is identified by a green
box.

Figure 8.6: Dependency graph produced from the example in Figure 8.5

accuracy in an example with blockage points.

However, like in the previous section, the Aggregated Graph Walking Technique is not im-

pervious to all disjointed registers produced by blockage points. It is vulnerable to disjointed

registers whose tainted flow in some simulations gets propagated to a register adjacent to or

along an insecure path, but is blocked from propagating onwards to the monitored labels.

The graph walking algorithm, which naively walks to adjacent taint carrying registers, is

unable to catch these edge cases and will add these disjointed registers to the bug generating
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location. For example, consider two faulty simulations on a design with a blockage point

presented in Figure 8.4. In the first simulation (Figure 8.5 (a)), the tainted flow generated

by r1 is blocked from propagating to r2. The tainted flow generated at r3 propagates to the

monitored label. In the second simulation (Figure 8.5 (b)), r1 no longer generates tainted

flow. Tainted flows are generated at r2 and r3 and then propagate to the monitored labels.

The Aggregated Graph Walking algorithm would produce the dependency graph found in

Figure 8.6, which mistakenly identifies r1 as part of the bug location. Extensive analyses

on hardware designs with timing flow blockage are therefore required to fully understand

the prevalence, behavior, and consequences of timing flow blockage points. Moreover, better

techniques are required to handle timing flow blockage points.
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CHAPTER 9

NEW TECHNIQUES

In this chapter, we utilize the insights gained from the Simple and Aggregrated Graph Walk-

ing Techniques to present two new techniques that can greatly reduce the false positives

generated by the control flow (multiplexers) and timing blockage behaviors we identified in

Chapter 8.6 and 8.7. Moreover, we compare these techniques’ efficiency with the Aggre-

gated Graph Walking Technique’s. We argue that these techniques are as or even more

efficient than the graph walking technique. Note that other than the no timing flow blockage

assumption, the assumptions we made in Chapter 3 still apply.

9.1 Probabilistic Pathing

We observed in the previous chapter that tainted flow can be stopped from propagating due

to control flow behavior at multiplexers or timing flow blockage points. We make a second

observation that if a tainted flow is often or always stopped, then the probability of it

reaching the monitored labels over all simulations should be low. The Probabilistic Pathing

Technique therefore utilizes this new observation to determine the bug generating location.

It utilizes control signal traces to compute a score that reflects the chance that a generated

taint eventually affects the monitored label. Note that this score is not a probability (though

it is the sum of probabilities). Also note that technique does not eliminate all false positives,

but it allows for the designer to make an well-informed decision as to whether a register is

likely a false positive. We now describe the technique in detail.

9.1.1 Detailed Description

This technique first executes a modified Simple Technique. The Simple Technique now also

tracks the values of all control signals in a control signal matrix (similar in structure to the

original trace matrices). In addition, the Simple Technique tracks the values of all timing
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flow blockage logic in the design. We consider each blockage point as a multiplexer with two

inputs:

1. flow of the right-hand side signals | timing flow propagation from control signals |

timing flow generation result

2. timing flow propagation from control signals | timing flow generation result

The control signal for that “multiplexer” is the value of the timing flow blockage logic. If

flows are not blocked, then the first input is chosen; otherwise, the second input is chosen.

Now for each multiplexer M and each of its inputs iM , we utilize the control signal traces

to determine the average proportion of a simulation, i.e. probability, that iM is chosen at

M . Call this probability priM . Then for each register r in the candidate set produced by

the Simple Technique, the technique:

1. Determines all paths from r to the monitored labels. Call this set of paths P .

2. For each path p ∈ P , let {M0, ...,Mn} be the set of multiplexers along the path.

Utilize the set of input probabilities at each multiplexer to calculate the probability of

that path. That is, let iM0
, iM1

, ..., iMn
be the set of inputs at the multiplexer that

constructs the path. Then,

p path probability = priM0
priM1

...priMn

3. Sum the path probabilities for all p ∈ P to get the score for r. Again, this score is a

sum of probabilities and not an actual probability itself. However, even though it is

not a probability, it tells the programmer how likely a candidate register will propagate

its flow to the monitored label.

Once all registers in the candidate set have been scored, the technique orders the registers

by score and then presents them to the programmer. It is then up to the designer to decide
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whether a register is a false positive or part of the bug location, e.g. through a scoring

threshold.

9.2 Probabilistic Pathing Evaluation

In this section, we provide a theoretical evaluation of the Probabilistic Pathing Technique’s

accuracy and efficiency. For the accuracy evaluation, we describe how the programmer can

analyze this technique’s results to achieve 100% accuracy on the false positive examples

found in Chapter 8.

9.2.1 Accuracy

This technique does not explicitly remove the disjointed register false positives. However,

with careful analysis on the technique’s output, most, if not all, false positives can be iden-

tified and removed.

Now consider the example provided in Figure 8.1. The probability of the only path from

r1 to the monitored label, r1→ r3→ monitored label is 0 because the input chosen at the

top multiplexer is always the r2 input. Thus, the score is 0. The register r6 is always chosen

at the lower multiplexer, meaning that the path r6 → r7 → monitored label will have a

probability of 1. Thus, the designer will be provided with the following ranking:

1. r6 = 1

2. r1 = 0

The programmer can then infer that r6’s taint has a very high chance of flowing to the

monitored label while r1’s taint has no chance. Thus, the designer can accurately determine

that the register r6 is the bug location.

Figure 8.2’s example is slightly different from Figure 8.1’s example because the false

positive register r1 attains a non-zero score. The probability of the only path from r1 to the
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monitored label, r1 → r3 → r5 → monitored label is 1/4 because the chance of r1 being

chosen at the leftmost multiplexer is 1/2 and the chance of r3 being chose at the rightmost

multiplexer is 1/2. Thus, the score is 1/4. The register r6 does not have a multiplexer in

front of it and thus r6 will always have a score of 1. The score ranking would therefore be:

1. r6 = 1

2. r1 = 1/4

The programmer can then deduce that r6’s taint has a very high chance of flowing to the

monitored label. Because r1’s score is non-zero, the programmer cannot say for certain that

r1’s taint will not propagate to the monitored label. The designer, however, can look at

r1’s low score and infer that its taint’s propagation to the monitored label is unlikely. The

designer would therefore accurately identify only the register r6 as the bug location.

We now consider the example in Figure 8.3. The probability of the only path from r1

to the monitored label, r1 → r3 → monitored label is 0 because the chance of r1 being

chosen at the leftmost multiplexer is 0. Thus, the score is 0. The register r3 does not have a

multiplexer in front of it and thus it will always have a score of 1. The score ranking would

therefore be:

1. r3 = 1

2. r1 = 0

The programmer can identify that r3’s taint is likely to propagate to the monitored label.

Since r1’s score is zero, the programmer can definitively tell that r1’s taint will not propagate

to the monitored label. The designer would therefore accurately identify only the register

r3 as the bug location.

The example described in Table 8.1 is a real example with a blockage point. As we

have not implemented this technique yet, we do not have the register scores. However, we

can and will describe the general behavior of the technique when it is applied to this ex-

ample. The blockage point at aes 128.a2.qdiv fix ift.reg quotient fix will cause the scores
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of aes 128.a2.qdiv fix ift.reg working dividend and aes 128.a2.qdiv fix ift.reg working

quotient to be 0. On the other hand, the scores of aes 128.a5.qdiv fix ift.reg working

dividend and aes 128.a5.qdiv fix ift.reg working quotient will be non-zero. The designer

would therefore accurately choose aes 128.a5.qdiv fix ift.reg working dividend and aes

128.a5.qdiv fix ift.reg working quotient as the bug location.

Finally, the example described in Figure 8.5 is an example with a blockage point that

causes false positives in the Aggregated Graph Walking Technique. The only path from r1

to the monitored labels, r1 → r2 → monitored label, will have a score of 0 because it is

always blocked from propagating. Both r3 and r2 will both have a score of 1 because there

are no blockage points or multiplexers ahead of them. The score ranking would therefore be:

1. r3 = 1

2. r2 = 1

3. r1 = 0

The programmer would therefore identify that r3 and r2’s taints are likely to propagate to

the monitored label. Since r1’s score is zero, the programmer can tell that r1’s taint will not

propagate to the monitored label. The designer would therefore accurately determine that

the registers r2 and r3 are the bug location.

9.2.2 Efficiency

The computational efficiency of this technique is about the same as the Aggregated Graph

Walking Technique. This is because both techniques must traverse the design’s dependen-

cy/control flow graph. Both techniques must find the paths starting from the candidate

registers and ending at the monitored labels. Note that the register scoring computations

should be relatively quick (simple arithmetic) and thus not significantly affect the run time

of the technique.
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The memory footprint of this new technique is slightly higher than the footprint of the

graph walking technique because the tracing of blockage logic and controller signal values is

required.

9.3 Bloom Filter Approach

This technique revives the idea of tracking the propagation of taints uniquely identified by

their originating location throughout a design. By tracking how specific flows propagate to

the monitored labels, we can avoid the explicit tracing of multiplexer and blockage point

behavior. We first discussed this idea in Chapter 8.5. The naive techniques that utilized

this idea were very inefficient. However, by allowing for a small false positive rate, this new

technique is much more efficient. This technique utilizes Bloom filters [4] to track the unique

taints residing in registers’ timing labels and the monitored labels. A Bloom filter is an

array of bits that stores elements for later queries. Tied to each filter is a set of k hashing

functions that determine how an element is added to the filter. When an element is added

to the filter, it is first put through the k hashing functions to determine k bit locations in

the filter. Those k locations are set to 1. When that same element is searched for in the

filter, the searching entity takes the k hashed locations and determines that the element is in

the filter if the locations all have the value 1. Bloom filters’ constant array size makes them

vulnerable to false positives during queries. However, they can usually store a multitude of

elements before the false positive rate gets too high. Note that there exists an optimal k

that minimizes the false positive rate given the number of elements in and the size of the

filter. Bloom filters are also not affected by duplicate additions since the hashing of that

element will always return the same bit positions. Moreover we can construct a new filter

that contains the union of the elements residing in two filters by simply bitwise or’ing them.

Finally, Bloom filters will never produce false negatives. That is, if we search for an inserted

element, it is always guaranteed to be found.

All of the Bloom filter’s properties, most notably the constant filter size, motivate the
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feasibility of tracking unique tainted flows through Bloom filters. The basic idea of this

technique is to assign every register r a filter that keeps track of the unique taints that have

propagated to r. If a new taint is generated at a register, then that taint is added as a unique

element to the register’s filter. The Bloom filter propagation logic mirrors the timing flow

tracking logic. Note that we only track taint at registers (and monitored labels) because

timing flows can only be blocked and generated at registers. Timing flows will propagate

without any blockage over combinational logic. We now describe the technique in detail.

9.3.1 Detailed Description

The Bloom Filter Approach first executes the Simple Technique to determine the set of

registers, R′, that generate tainted flow during the faulty simulations. We then utilize the

size of R′ and a maximal false positive rate of 5% (arbitrary rate from our own choosing) to

determine the appropriate Bloom filter size m (with upper bound of 256 bits) and number

of hash functions k. Note that a Bloom filter with 256 bits and 4 hash functions can carry

about 41 elements before its expected false positive rate exceeds 5% [11]. Then for each

register r ∈ R′, we generate a random ID number and then hash it k times to determine the

location of r’s bits in the filter. From these k locations, we generate a bloom filter id of size

m for r. Moreover, r is given a Bloom filter label of size m called r bloom filter. For each

of r’s procedural assignments r <= u, this technique adds the following logic to the design:

r bloom filter <= ((all controllers are sensitive or not fully controlling) ? (9.1)

(u′0 bloom filter | u′1 bloom filter | ... | u′n bloom filter) : 0) | (9.2)

(sr0 bloom filter | sr1 bloom filter | ... | srn bloom filter) | (9.3)

((is bal(r) & (one of (r <= u)’s control signals carries tainted functional flow)) ? (9.4)

(r bloom filter id) : 0) (9.5)

Where:
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• U = {u′0, u
′
1, ..., un} is the set of registers that are adjacent to and affect (“drive”) u if

u is not a register. If u is a register, then u′0 = u and n = 0.

• {u′0 bloom filter, u′0 bloom filter, ..., u′n bloom filter} is the set of corresponding Bloom

filter labels for each register in U .

• Sr = {sr0 | sr1| ... | srn} the set of registers that drive the control signals of r <= u.

• Correspondingly, {sr0 bloom filter | sr1 bloom filter | ... | srn bloom filter} is the

set of Bloom filter labels for each register in Sr.

The added logic is similar to the timing flow tracking logic from registers. The bitwise or’s

found in lines 9.1 to 9.3 merge the driving registers’ Bloom filters into one Bloom filter that

contains all of the unique taints that affect r’s timing label. Note that line 9.1 merges the

Bloom filters affecting u only when the tainted flow propagating from u is not blocked (thus

handling the blockage case). When a new taint is generated at r at line 9.4, line 9.5 adds to

the Bloom filter a new ID corresponding to that taint. Similarly, for every other register x

in the design, the approach adds the following logic for each assignment x <= u:

x bloom filter <= ((all controllers are sensitive or not fully controlling) ? (9.6)

(u′0 bloom filter | u′1 bloom filter | ... | u′n bloom filter) : 0) | (9.7)

(sr0 bloom filter | sr1 bloom filter| ... | srn bloom filter) (9.8)

This logic does not include a fourth or fifth line because we know that x does not generate

tainted timing flow. Finally, for each monitored label l, an m-bit sized Bloom filter called

l bloom filter is added to the design and the following logic is added (if the label is not a

register’s label):

l bloom filter <= d 0 bloom filter | d 1 bloom filter | dn bloom filter (9.9)
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where {d 0 bloom filter, d 1 bloom filter, ..., dn bloom filter} is the set of Bloom filters of

the registers that drive the value of the monitored label. This logic uses bitwise or’s to merge

all driving registers’ Bloom filters. This merge captures all unique tainted flows coming into

the monitored label from every adjacent register.

Once all of the logic has been added, the technique then simulates the design on the

faulty simulations. It keeps each simulation’s monitored labels’ Bloom filters (note that it

does not combine the filters). Finally, for each register in the candidate set proposed by the

Simple Technique, check if it is in one of the simulations’ Bloom filters. If it is, then add it

to a set Cbf . Once each register has been checked, then Cbf is proposed as the bug location.

9.4 Bloom Filter Approach Evaluation

In this section, we provide a theoretical evaluation of the Bloom Filter Approach’s accuracy

and efficiency. We also describe how this technique can achieve 100% accuracy on the false

positive examples found in Chapter 8.

9.4.1 Accuracy

As a search over a Bloom Filter can never result in a false negative, at worst, the Bloom

Filter Approach has the same accuracy as the Simple Technique and thus less accuracy than

the Aggregated Graph Walking Technique. That is, all of the taint generating registers, even

the false positives, can be found in the monitored label’s Bloom filter. However, as long as

the number of taint generating registers is less than 42, the Bloom filter should have a false

positive rate of 5% or less and thus the approach should identify very few false positives.

This false positive rarity should make this technique much more accurate than both Simple

and Aggregated Graph Walking Technique. Note that since we limit each filter’s size to a

maximum of 256 bits, if a design has a large number of taint generating registers, the false

positive rate has to increase, which leads to less accuracy. However, even if the number of
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taint generating registers is large like 100, the false positive rate is less than 30% which can

still result in better accuracy than the Aggregated Graph Walking Technique’s [11]. For

example, the Bloom Filter Approach would perform better if there exists many disjointed

registers whose generated taint propagates to registers adjacent to or on an insecure path.

We now describe how this technique would theoretically fare under the counterexamples

previously provided in Table 8.1 and Figures 8.1, 8.2, 8.3, and 8.5. For the sake of simplicity,

let the Bloom filters carry 8 bits and there only be one hash function.

Consider the example provided in Figure 8.1. Let r1’s Bloom filter ID be 00000001 and

r6’s be 00100000. Then, during the simulation r7’s Bloom filter would become 00100000.

r2, r3, and r5’s Bloom filters will be 00000000. The monitored label will therefore have a

Bloom filter of 00100000. When the technique checks the monitored label’s Bloom filter

against the set of taint generating registers, it accurately produces r6 as the bug location.

Now consider the example in Figure 8.2. Let r1’s Bloom filter ID be 00000001 and r6’s be

00100000. During the first simulation, all other registers’ Bloom filters will be 00000000. In

the second simulation, r3’s Bloom filter becomes 00000001 but every other register’s Bloom

filter remains the same value. In both simulations, the monitored label will therefore possess

the Bloom filter 00100000. When the technique checks the monitored label’s Bloom filters

against the set of taint generating registers, it accurately produces r6 as the bug location.

We now analyze the example in Figure 8.3. Let r1’s Bloom filter ID be 00000001 and

r3’s be 00000100. During the simulation, all other registers’ Bloom filters will be 00000000.

Moreover, r1’s filter does not propagate to r3’s filter because of the multiplexer’s input choice.

The monitored label will therefore possess the Bloom filter 00000100. When the technique

checks the monitored label’s Bloom filter against the set of taint generating registers, it

accurately identifies r3 as the bug location.

The example described in Table 8.1 is an example with a blockage point. Let aes

128.a2.qdiv fix ift.reg working dividend’s filter ID be 00000001, aes 128.a2.qdiv fix ift.reg

working quotient’s be 00000010, aes 128.a5.qdiv fix ift.reg working dividend’s be 00000100,
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and aes 128.a5.qdiv fix ift.reg working quotient’s be 00001000. During the simulation,

the Bloom filters from the latter two registers will propagate to the monitored label while

the first two’s filters will be blocked at the register aes 128.a2.qdiv fix ift.reg quotient fix.

The monitored label will therefore possess the Bloom filter 00001100. When the technique

checks the monitored label’s Bloom filter against the set of taint generating registers, it

accurately chooses aes 128.a5.qdiv fix ift.reg working quotient and aes 128.a5.qdiv fix

ift.reg working dividend as the bug location.

Finally, the example described in Figure 8.5 is an example with a blockage point that

causes false positives in the Aggregated Graph Walking Technique. Let r1’s Bloom filter

ID be 00000001, r2’s be 00000010, and r3’s be 00000100. During the first simulation, the

monitored label’s Bloom filter will be 00000100 since r1’s taint is blocked and r2 does not

generate tainted flow. In the second simulation, the monitored label’s filter is 00000110

since r2 now generates tainted flow. Every other register’s Bloom filter remains the same

value. When the technique checks the monitored label’s Bloom filters against the set of taint

generating registers, it accurately produces r2 and r3 as the bug location.

Thus, through our reasoning and evaluation on examples found in Chapter 8, the Bloom

Filter Approach can greatly reduce the incidence of false positive registers.

9.4.2 Efficiency

The Bloom Filter Approach is more computationally efficient than the Aggregated Graph

Walking Technique. This new approach does not conduct an expensive walk over all propa-

gation paths. Moreover, the filter propagation and insertion logic are very computationally

lightweight as they mostly consist of bitwise or’s. These operations therefore should not

introduce overhead that eclipses the overhead of the graph walking algorithm.

The Bloom Filter Approach possesses a moderate memory overhead over the Graph

Walking Algorithm’s memory footprint because an additional ID for every taint generating

register and Bloom filter for every register must be added to a design. However, this overhead
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is acceptable because it should not blow up like those of the array and pairing function-based

techniques.
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CHAPTER 10

FUTURE WORKS AND CONCLUSION

10.1 Future Works

10.1.1 Implementation and Empirical Evaluation of New Techniques

So far, we have only described and analyzed the new techniques on a theoretical level. Future

works should therefore implement these techniques in practice. Moreover, after implemen-

tation, future works should evaluate the techniques’ accuracy and efficiency on a multitude

of designs.

10.1.2 Complexity and Size of Debugged Designs

The designs we debugged in this paper were relatively simple and small, with the most

complex hardware being the cache and RSA designs. As we stated earlier, this study’s

examples were too simple to reveal common false positive cases. The longest running design

also only ran on the order of tens of thousands of cycles. Future works on the new techniques

should therefore experiment on a multitude of larger and more complex designs. Moreover,

many of the new examples should be able to produce the false positives found in the old

techniques. This application of the new techniques to these more complex designs should

test for both their localization efficiency and accuracy.

10.1.3 Probabilistic Pathing Technique Efficiency Improvements

We determined in Chapter 9 that the Probabilistic Pathing Technique possesses about the

same performance as the Aggregated Graph Walking Technique. Future works should there-

fore focus on optimizing the Probabilistic Pathing Technique’s efficiency. One promising

approach involves only choosing the taint generating registers along n high probability paths

as the bug location. The optimized technique finds common/very probable flow propagation
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paths by backtracking from the monitored labels. Whenever the technique encounters a

multiplexer, it uses its control signal trace to choose an input that has high probability of

being chosen. After finding the n paths, the technique then determines all taint generating

registers along those paths. Those registers are proposed as the bug location. This opti-

mized technique is much more efficient than the Probabilistic Pathing and Aggregated Graph

Walking Techniques; it only makes a constant number of backtracks. At the same time, this

technique runs the risk of leaving bug location registers out of its candidate set since it only

analyzes a constant number of paths. Future works should therefore also conduct extensive

efficiency and accuracy evaluations on this optimized technique with a multitude of complex

designs.

10.1.4 Non-Timing Security Bugs (Functional Flows)

As not all security bugs are timing-related, future works should examine how to localize

security bugs in general. That is, bugs related to tainted functional flows, tainted timing

flows, or a mixture of tainted functional and timing flows. The first steps toward general

localization would therefore be to develop techniques to localize functional flow-related bugs.

Functional flow possesses a few differences from timing flows. The first difference is that

tainted functional flows cannot be generated within a hardware design. They can only be

propagated from input to output. Thus, the definition of a functional flow bug must actually

be the insecure paths from input to output so that the programmer knows where to block

the tainted timing flow. Second, tainted functional flow can be blocked in combinational

logic as well.

The Bloom Filter technique will not work with functional flow-related bugs because it

is specifically built for tracking unique tainted flow generation. However, the Probabilistic

Pathing Technique may be generalizable to functional flows. It can calculate the probability

for some taint to propagate on a path to the monitored labels. This technique could thus

localize functional flow-related bugs by calculating the probability of a taint-carrying path
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that ends at the monitored labels. Future works should therefore look into modifying this

strategy to tracking tainted functional flows.

10.2 Conclusion

In this paper, we tested two automated IFT-based techniques (Simple and Aggregated Graph

Walking) that, under some assumptions, performed remarkably well in localizing a timing-

related security bug. However, upon further analysis, we identified that our examples were

too simple to expose common false positive cases in those techniques. We also identified the

cause of these false positive cases. Using the insights gained from this analysis, we developed

two new techniques (Probabilistic Pathing and Bloom Filter) designed to address these

problems. We conducted a theoretical evaluation and so far, these techniques appear to be

feasible. Thus, in future works we intend to implement and evaluate them on a multitude of

insightful examples. In the future, we also hope to see work in improving our new techniques’

accuracy, efficiency, and generalizability to all security-related bugs. This work is the first

of its kind to explore using IFT to localize timing-related security bugs. It is the first step

in the construction of a larger IFT-based bug localization ecosystem that we hope will be

heavily explored in the future.
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