
Predicting Haskell Type Signatures From Names

Bowen Wang

June 28, 2018

Abstract

Neural Program Synthesis has been a fast-growing field with many exciting advances such
as translating natural language into code. However, those applications often suffer from the
lack of high-quality data, as it is fairly difficult to obtain code annotated with natural language
that transcribes its functionality precisely. Therefore, we want to understand what information
we can extract from source code to facilitate program synthesis without explicit supervision.
To ground our task more concretely, we study the problem of predicting type signatures given
identifier names. We focus on Haskell, a strongly typed functional language, and collect data
from Haskell repositories on GitHub. We use two different approaches: unstructured pre-
diction, which is based on the sequence-to-sequence model, and structured prediction, which
models the tree structure of the type signatures directly. Surprisingly, even though the struc-
tured prediction model is better at predicting the structures of the type signatures (60.46%
structural accuracy), the unstructured prediction model achieves much better signature accu-
racy (23.71%).

1 Introduction
Recent years have witnessed the great success of deep learning in various domains, including image
classification [8], machine translation [26], speech recognition [19] and so on. Such success has
inspired researchers in programming languages and natural language processing to apply deep
learning techniques to tackle program synthesis tasks previously deemed insurmountable, such as
synthesizing code from natural language specification alone [27, 18]. Even though the application
of deep learning to program synthesis has gained some success — we can now synthesize some
nontrivial programs from natural language alone [18] — we still face the biggest obstacle in any
application of deep learning: lack of data. In some sense, the task of program synthesis can be
viewed as translating human intent into code. While there are many different forms of human intent
used in programming, such as natural language, input-output examples, partial specifications, it is
extremely hard to gather high-quality data for human intent along with the huge amount of code
available on the Internet. For example, even though programmers often write comments when
coding, they usually focus on high-level ideas rather than transcribing the functionality of the code
in verbatim, thereby making it difficult to extract useful information for downstream tasks, such
as program synthesis.

The difficulty in collecting high-quality data for program synthesis pushes us to think from
another perspective: what useful information can we extract from programs per se for program
synthesis? This paper tries to provide a possible answer: names and type signatures.

While most modern programming languages provide some notion of type, the role of type
systems varies significantly across different languages. In strongly typed languages, i.e, languages
where typechecking is used to prevent runtime exceptions, type signatures often contain important
information that specify the behavior of an expression. In some cases, a type signature almost
uniquely defines the semantics of a function. For example, consider the following Haskell type
signature Maybe a → a. While placeholders like undefined and error could satisfy the given
type signature, the only nontrivial function of type Maybe a → a is fromJust, which has the
following definition:

fromJust :: Maybe a -> a
fromJust Nothing = errorWithoutStackTrace "Maybe.fromJust: Nothing"
fromJust (Just x) = x

1

Similarly, if a function has type (a, b) → a, it is very likely that the function takes the
first element of the pair, which is exactly what Haskell function fst does. In addition to the
importance of type signatures, we can often tell the corresponding type signature from the name
of an identifier, thanks to the rich information encoded in identifier names. For instance, the name
listDiff suggests that the function takes two lists and returns their difference, and is thus likely
to have the type signature [a] → [a] → [a]. The connection between identifier names and their
corresponding type signatures leads us to the question: can we predict the type of an
expression, given its name?

Formally, let Σ be the space of identifier names and T be the space of type signatures. We try
to learn a mapping f : Σ→ T . However, such a naive formulation is not applicable in practice as
such an f cannot take into consideration the new types defined by users. Therefore, it is better to
predict the type signature given some context that contains the types appear in the type signature.
As a result, f should be a function of Σ, parametrized by context c.
Challenge Even with context, predicting type signatures from identifier names is a quite chal-
lenging task. Unlike a normal sequence-to-sequence task such as machine translation, the rigidity
of type signatures requires exact matches rather than approximations. Moreover, as mentioned
before, users can often define new types as they wish, which makes the prediction an even more
daunting task. While the NLP community has developed some methods to deal with the notorious
problem of out-of-vocabulary words [24, 6, 20], those methods are often applied in settings where
out-of-vocabulary words are rare. In our task, since programmers who use strongly typed languages
can often freely define new types as they wish, there are often many more out-of-vocabulary types
appearing in a codebase that is not seen before. To make things worse, not all programmers follow
the naming convention of a particular language and some might use names that are uninforma-
tive, such as foo or bar, or names that are generic and thus ambiguous, such as applyFunc, get,
and toFun. Furthermore, unlike some other tasks that leverage the semantics of natural language
such as machine translation, the semantic information functions in a different way in our task. In
normal sequence-to-sequence tasks like machine translation, the similarity and differences in the
semantics of input usually correspond to those of the output, i.e, two sentences of similar meaning
in English should be translated to sentences of similar meaning in Spanish. However, in our tasks,
the opposite sometimes holds. Consider the following two set functions:

intersect :: Set a -> Set a -> Set a
union :: Set a -> Set a -> Set a

In terms of names, they are opposite of each other, yet they share the same type signature.
Such phenomenon appears quite often in various programs, suggesting a more complicated semantic
relationship between the input names and the output signatures. All these factors conspire to make
the prediction a quite challenging task.
Our Approach While our approach works for any strongly typed programming language, to
ground our task more concretely, we focus on predicting type signatures for Haskell, a functional
language with a powerful type system. In addition, to make data collection and processing simpler,
we only consider top-level function and variable definitions, although our approach can be easily
extended to non-top-level identifiers.

We consider two different approaches to this problem, unstructured prediction and structured
prediction. Unstructured prediction treats both the name and type signatures as a sequence of
tokens and builds the model on top of the classic sequence-to-sequence model [23]. Structured
prediction explicitly models the tree structure of the type signatures and thus is guaranteed to
generate well-formed type signatures. Both models make use of context information, which consists
of some number of previous type annotations. We mainly measure the performance of our models
on (a) signature accuracy, which measures the percentage of correct signature predictions, and (b)
structural accuracy, which measures the percentage of predictions that have the same tree structure
as the ground truth. Despite the lack of structure modeling, the unstructured prediction model
is surprisingly better at predicting entire signatures, achieving 23.71% signature accuracy. The
structured prediction model, on the other hand, does achieve better structural accuracy (60.46%)
as expected.

2

2 Related Work

2.1 Neural Program Synthesis
With the advance in deep learning in recent years, neural program synthesis, which uses deep
learning to tackle traditional program synthesis problems, has become a rapidly growing field [10].
The application of deep learning to natural language processing brings about powerful language
models [13], thereby enabling researchers to leverage natural language information for program
synthesis. Thus, unlike some of the traditional program synthesis techniques like combinatorial
search [22], synthesis from input-output examples [7, 21], and type-directed synthesis [15, 16],
neural program synthesis makes much more use of natural language. Several recent works focus on
synthesizing code from natural language descriptions [5, 11, 27, 18] and mostly take the approach
of structured prediction to better model the structure of a program. Dong and Lapata use a
sequence-to-sequence model to generate tree output by adding special tokens to model depth-first
tree generation [5]. Ling et al. propose latent predictor network to allow character-level generation
of code pieces [11]. Yin and Neubig use a generation model that follows the grammar for python
ASTs [27]. Rabinovich et al. use a modular neural network to generate output according to the
abstract syntax description language [18], an approach most similar to ours.

More recently, researchers started to combine traditional synthesis techniques, such as searching
and programming by examples, with neural networks in hope of further extending neural program
synthesis capabilities. Robust Fill [4] combines structured prediction with searching based on
examples to synthesize spreadsheet programs. More recently, Polosukhin and Skidanov propose
tree beam search to refine the seq2tree generation results [17]. Murali et al. combine neural
program generation with combinatorial search by training on program sketches [14].

The problem studied in this paper, which falls into the realm of neural program synthesis, was
first proposed by Hempel [9]. In comparison, our dataset, though also collected from GitHub, is
larger (1932 repos vs. 1000 repos, 401, 882 vs. 304,272 signatures). In terms of methodology,
unlike the simple encoder-decoder model considered in [9] which ignores the structure of type
signatures, we propose the structured prediction model to capture the tree structure of Haskell
type signatures. We also make much better use of context information through attention and
copying and our models have much better performance than the model discussed in [9].

2.2 Multi-attention
The complexity of our structured prediction model requires us to combine hidden states from
and compute attention on different modules. Zoph and Knight concatenate hidden states when
computing attention from multiple sources [29] while Zadeh et al. first compute multiple attentions
for different hidden states and combine them at the end [28]. We mostly follow the approach used
in [29] attend to multiple different sources.

2.3 Copying
Dealing with out-of-vocabulary (OOV) words has always been an obstacle in NLP applications
such as text summarization and machine translation. For example, when summarizing a piece of
text on President Donald Trump, the vocabulary gathered from training data might not have the
world "Trump", and therefore the summarization will fail miserably without copying. To address
this problem, researchers have considered copying OOV words from input. Vinyals et al. propose
the pointer network to copy from input according to the attention probability [24]. Later work
such as [6] and [20] allow both generation and copying by computing the probability of generation
at each time step. We generally follow the mechanism proposed by See et al. [20] to copy types
from context. However, unlike the text summarization task studied in [20], our prediction task may
actually benefit from token repetitions, especially in the structured prediction model, as signatures
like Int → Int and a → a → a are quite common. Therefore, we do not use the coverage loss
proposed in [20] to punish repetitions.

3 Data Pipeline
As is true with every deep learning application, the data pipeline is of paramount importance. In
this section, we describe how we collect and preprocess data for our task.

3

3.1 Data Collection
There is currently no existing dataset for this problem. To construct the dataset, we crawled
all the existing Haskell repositories on with 10 or more stars on github. We ended up with 1932
repositories and, using a standard 80/10/10 split (i.e, 80% data for training, 10% each for validation
and testing), we had 1546 repositories for training, 193 for validation and 193 for testing. All
the .hs files in the repositories were passed to a Haskell parser and we ended up with 401,882
signatures for training, 39,040 signatures for validation, and 33,997 signatures for testing 1. The
dataset has 192,606, 18,149, and 18,212 unique type signatures in training, validation, and testing
set, respectively. Among all type signatures in the dataset, the most common one is IO (), which
appears 10,189 times.

3.2 Data Preprocessing
Before we introduce the models, it is important that we discuss how we process the dataset to
prepare for training. One of the important feature unique to Haskell is the typeclass, which
allows polymorphism in an ad-hoc fashion [25]. For example, one might want to overload the
(+) operator on a number of different types including Int, Float, Double and so on. Haskell
programmer can easily deal with the overloading in a principled way by creating the Num typeclass,
which has (+) as a method. Then for each type that (+) is applicable, one just needs to implement
an instance of (+) for that particular type. In this way, Haskell programmers can easily extend
operators like (+) to user-defined types by implementing the Num class instance. However, explicitly
modeling typeclass would add more complexity and reduce the generalizability of our model to
other functional languages that do not employ typeclass. Therefore, as in Hempel [9], we choose to
remove typeclass constraints from type signatures. For example, the signature of the bind operator
»=, which is Monad m ⇒ m a → (a → m b) → m b, would simply be m a → (a → m b) →
m b after removing typeclass constraints. We also normalize the type variables to lower case letters
(i.e, the first type variable is renamed to a, the second to b, etc) to avoid unnecessary noise in the
data. Under such normalization, the signature of »= becomes a b → (b → a c) → a c.

We treat the input (function names) and the target (type signatures) differently. For input
names, since Haskell programmers usually follow the camel case naming convention, we segment
the names into tokens accordingly 2. To achieve better generalizability, we also stem each token
using the NLTK library [3]. The stemmer converts upper case letters to lower case letters to avoid
superficial differences such as that between "md5" and "MD5". It also stems verbs and nouns
to the original form. For example, "Zoned" is stemmed to "zone" and "Suffixes" is stemmed to
"suffix". Stemming reduces the number of unique identifier tokens in the training set from 44,543
to 30,361.

For type signatures, we considered two different approaches: viewing type signatures as a
sequence of string tokens without considering any structures (section 5) or exploiting the tree
structure underlying Haskell type signatures (section 6). For example, under the former approach,
the type Int → (Int , Int) is a sequence of seven tokens: Int, →, (, Int, ,, Int,) whereas
under the latter approach, the type Int → (Int , Int) is a tree shown in Figure 1.

→

Int (,) Int Int

Figure 1: Tree representation of type Int → (Int , Int)

3.2.1 Qualified identifier names

To gain more information than contained in identifier names alone, we also consider two ways of
qualifying an identifier name: prepending the identifier name with module name or the entire path
to the file containing the identifier. For example, if the function fromJust is defined in the Maybe

1The dataset will be made publicly available upon publication.
2Our segmentor can also handle other naming conventions

4

module, and the Maybe module is a file in the Prelude directory, then the module-qualified name
of fromJust is the concatenation of token representations of Maybe and fromJust, whereas the
path-qualified name of fromJust is the concatenation of token representations of Prelude, Maybe,
and fromJust. When the identifier names are qualified by module names, they may still not be
unique. In the above example, there could be another directory MyPrelude that contain the same
Maybe module. On the other hand, when identifier names are qualified by the entire path leading
to the file that contains the identifier, it is almost globally unique 3.

4 Overview of Two Approaches
We generally view the task of predicting type signatures given (qualified) identifier names as a
machine translation problem with the identifier names being the source and the type signatures
being the target. In section 5, we ignore the structure of type signatures and use a sequence-
to-sequence to model similar to classic seq2seq model [23]. In section 6, we explicitly model the
type signatures as binary trees and the model is, in principal, a sequence-to-tree model similar
to the seq2Tree model proposed in [5]. However, the information encoded in the identifier names
alone may not be sufficient to decode their type signatures and thus we also incorporate context
information (names and type signatures that appear in the same file) in both the unstructured
prediction model and the structured prediction model to achieve better accuracy.

5 Unstructured prediction
We begin with unstructured prediction, i.e., predicting the type signature as if it were a sequence.
As mentioned in section 3.2, this requires us to segment the type signature into tokens and treat
the type signature as a sequence of tokens. In this setting, the backbone of the model is the seq2seq
model proposed in [23]. Later in this section, we discuss how we add attention and copying to the
model as we take context into consideration.

5.1 Encoder
As described in 3.2, we segment and stem the function name s into a sequence of tokens (xi)1≤i≤n.
To encode the input sequence, we use a bidirectional LSTM. We concatenate the forward and
backward vector of the final hidden state to obtain the initial hidden state for the decoder.

5.2 Decoder
The decoder mainly consists of a one-layer feed-forward network on top of an LSTM. A softmax
layer is added on top of the feed-forward network to obtain the probability distribution of the
output tokens (types).

5.3 Attention
Attention has proved to be highly successful at improving the performance of sequence-to-sequence
tasks [2]. In essence, attention allows the decoder to “focus” on different parts of the input sequence
based on the current hidden state, thereby achieving higher accuracy. We mostly follow the
attention mechanism proposed by Loung et al. [12].

The attention alignment vector at is computed from the decoder hidden state ht and each of
the encoder hidden states h̄s as

at(s) =
exp(score(ht, h̄s)∑
s′ exp(score(ht, h̄s′))

where score(ht, h̄s) a scoring function that measures how much ht aligns with h̄s. We choose the
scoring function to be

score(ht, h̄s) = hTt Wah̄s

for generality (Wa is a learnable parameter matrix).
3With the exception that two different project owners might have exactly the same path names

5

From the alignment vector at we can compute the context vector

ct =
∑
s

at(s)hs,

which summarizes the attention information based on the current decoder hidden state. Given
the context vector ct and the decoder hidden state ht, we compute the attentional hidden state
h̃t = tanh(Wc[ct;ht]) where Wc is a matrix of weight parameters.

To obtain the output probability for each type at time step t, we compute

pvocab = p(yt|y<t, x) = softmax(Wsh̃t) (1)

where Ws is another parameter matrix.

5.4 Incorporating Context
One of the key insights we have is that there should be connections between the type signatures of
functions defined in the same file. Indeed, we observe that if the prediction model simply copies
the previous type signature in the same file, it can achieve more than 20% accuracy, which is a
quite high accuracy considering all the difficulties in predicting the correct signature mentioned
in section 1 such as the requirement for exact match and ambiguity in the names. In addition,
there are over 25% type signatures in the test set that contain out-of-vocabulary types, which
means that the prediction accuracy can be at most 75% if we do not consider any unseen types
that users defined or imported from other files or libraries (This could of course be done, but that
requires integrating the system with each project’s build system, which we try to avoid to keep the
project simple and self-contained). Consider the following example: we are trying to predict the
type signature of an identifier tAvgPx, in the module FIX40. The correct type signature is FIXTag,
which is not in the vocabulary gathered from the training set. However, all the identifiers in this file
has the same type signature. Thus, if we are able to copy type signatures from context, it is very
likely that we can predict the type signature of tAvgPx correctly. By incorporating context into
our prediction model, we hope to gather more information to enhance prediction and circumvent
the notorious out-of-vocabulary word problem.

It is difficult to give a precise definition of context of an identifier. We take a naive approach
and define the context of a top-level identifier f as the N preceding type signatures that appear
in the same file as f , where N is a hyperparameter. If there are less than N such type signatures,
we simply take the maximum of N and the number of type signatures that precede f . Of course
there are more refined ways of considering the context for f . For example we could consider the
types of identifiers used in the definitions of preceding top-level expressions. Such considerations
are left for future work.

5.4.1 Context Signature Encoder

We first turn the context signatures into a sequence of tokens by simply turning each type signature
in the context into a sequence of tokens and concatenate the sequences. An end token is added at
the end of each signature to serve as a delimiter. A natural way to process the resulting sequence
is to add another encoder. Similar to the encoder for the input sequence, we use a bidirectional
LSTM to encode the context.

The final architecture we used is shown in figure 2. We use g to combine the final hidden states
from the input name encoder and the context signature encoder to obtain the initial hidden state
for the decoder. g is defined as follows:

g(he, hc) = tanh(Wd[he;hc])

where Wd is a learnable parameter matrix.

5.4.2 Copying from context

As mentioned earlier, one of the advantages of incorporating context is that type signatures in the
context provide a way of coping with the out-of-vocabulary types. Out-of-vocabulary prediction
has always been one of the major difficulties in NLP applications and there have been numerous
attempts at resolving this issue [24, 6, 20], most of which proposed some way of copying unknown

6

Encoder

Context	Encoder

Input	(names)

Context	(type	signatures)

ℎ"

ℎ#

Decoder𝑔
ℎ%&

Figure 2: Model for incorporating context

words from certain context. We mostly follow the approach used by See et al. [20]. However,
there are some crucial differences: the pointer-generator network proposed by See et al. [20] is
used in the context of text summarization where the out-of-vocabulary words are copied directly
from the input text. In our case, however, the out-of-vocabulary types live in a different space
from the identifier names. Therefore, our copying mechanism are necessarily more complicated, as
it involves dealing with two disparate kinds of data: names, which are texts, and type signatures,
which consist of types.

To properly model generation and copying, we explicitly compute the probability of generation
at time step t by agglomerating information from input name encoder and context encoder. More
specifically, let c∗t be the context vector computed from attention on the hidden states of the
context encoder, and h∗t be the context vector on the hidden states of the input name encoder.
Then the probability of generation is given be

pgen = σ(wT
h∗h

∗
t + wT

c∗c
∗
t + wT

h ht + wT
x xt + b)

where wh∗ , wc∗ , wh, wx and b are learnable parameters and xt is the embedding of the decoder
input.

Since the decoder either generates a token or copies a token from context, the final probability
distribution over the extended vocabulary is given by

p(w) = pgen · pvocab(w) + (1− pgen)
∑

i:wi=w

at(i),

where pvocab is given by equation 1 and at(i) is the amount of attention on the ith word of the
context for the current output step t.

5.4.3 Loss Function

As with many sequence-to-sequence models, the unstructured prediction model use the negative
log-likelihood loss, which has the following form

loss =
1

T

T∑
t=0

− log(p(yt))

where yt is the ground-truth token at time step t.

7

6 Structured Prediction
Unstructured prediction, which treats the type signatures as sequences of tokens, fails to exploit
syntactic and semantic structure underlying Haskell type signatures, thereby generating many ill-
founded type signatures. To move towards syntactic and semantic soundness in type signature
generation, we explicitly model the binary tree structure of Haskell type signatures.

More specifically, a Haskell type can be described by the following grammar:

Type = NonArrowType
| Arrow Type Type

where NonArrowType refers to types whose type constructor is not arrow. For example, Maybe
(Int → Int) is a non-arrow type even though it contains an arrow. In contrast, Int → Int
is an arrow type. One might argue that the grammar presented above seems arbitrary in that
it distinguishes arrow from other type constructors. While it is certainly true that → is a type
constructor, it has a unique position in the Haskell type system: a type represents a function if
and only if it has arrow as its type constructor. We consider such distinction to be essential and
therefore choose to explicitly model the arrow type constructor.

6.1 Type constructors and kinds
The rich type system of Haskell allows users to freely define new types with type constructors. For
example, type Maybe is defined by:

data Maybe a = Just a
| Nothing

with type constructor Maybe and data constructors Just and Nothing. Here Maybe is a type
constructor with kind ∗ → ∗, which means it maps a ground type (of kind ∗) to another ground
type.

We explicitly model the kind of each type constructor by augmenting the type constructors
with their kinds to avoid naming collisions. For example, if there are two Maybes in the dataset
with kinds ∗ and ∗ → ∗, the first Maybe is represented as Maybe#0 while the second Maybe is
represented as Maybe#1.

6.2 Model Architecture
To model Haskell type signatures as binary trees according to the grammar presented in section 6,
our model consists of several modules, each with its own functionality. The final model is shown
in Figure 3.

6.2.1 Name Encoder

The name encoder processes the qualified function names and returns a vector representation of
the given name. Similar to the input encoder used in section 5.1, the name encoder consists of a
bidirectional LSTM.

6.2.2 Context Encoder

The context encoder has two parts: context name encoder Ecname and context signature encoder
Ecsig. Ecname is, similar to the name encoder, a bidirectional LSTM. Ecsig, on the other hand,
is a tree LSTM encoder similar to that used in [5]. It parses the type signature as a binary
tree and processes each node in DFS order. Given a context containing n (name, signature)
pairs, Ecname processes the names and outputs the hidden state hcname. Notice that, unlike the
unstructured prediction model which concatenates all context signatures due to the sequence-to-
sequence modeling, Ename processes each signature separately and average the hidden states at the
end to produce the context name hidden state hcname. Similarly, Ecsig takes in the type signatures
as trees and outputs two things: hcsig, the average final hidden states of the type signatures, and
hcstates, the hidden states of all the nodes in the n type signatures. hcstates will later be used to
compute the attention mask for the decoder.

8

Name Name	
Encoder

Context Context	
Encoder

Selector

Non-arrow	Type	
Module

Arrow	Type	Module

Com
biner

ℎ"#$%&'()

Decoder

ℎ* left
right

Figure 3: Structured prediction model. Given input name and context, the model produces
the input name hidden state hname, context name hidden state hcname, context signature final
state hcsig, and context signature hidden states hcstates. The combiner combines hname, hcname,
and hcsig to produce the combined hidden state hcombined for decoder to decode from. The decoder
selects which module to use according to the output of the module selector and starts generating
output accordingly.

6.2.3 Combiner

The combiner module, similar to that proposed in [29], combines the hidden states produced by
the different encoders to obtain a single hidden state for the decoder to decode from.

The combiner, given the hidden states hname, hcname, hcsig, produces the combined hidden
state hcombined. We consider two different ways of combining the hidden states:

1. (Weighted Sum)

hcombined = tanh(Wnamehname +Wcnamehcname +Wcsighcsig)

where Wname, Wcname, and Wcsig are learnable parameters.

2. (Projection)
hcombined = tanh(W [hin;hcname;hcsig])

where W is a matrix of learnable parameters and [a; b] denotes the concatenation of a and b.

6.2.4 Decoder Overview

Compared to the relatively simple encoder modules, the decoder is much more complex. The
grammar presented in section 6.1 suggests a natural two-module decoder: one module for handling
non-arrow types and one module for handling arrow types. Since the decoder needs to know,
at each step of generation, which module to use, we have another module dedicated to module
selection.

6.2.5 Module Selector

At each step of generation with previous node token xt and previous hidden state ht, the selector
first computes an embedding et of xt and then compute the probability for selecting each module
by pbase, parrow = softmax(fT (et, ht)) where fT is a two-layer feed-forward network with ReLu
nonlinearity. The module with larger probability is chosen for the next step of generation.

9

6.2.6 Non-arrow Type Module

The non-arrow type module first computes the new hidden state ht = LSTM(ẽt−1, ht−1) where

ẽt−1 = attn(et−1, hname, hcname, hcsig)

is the attention output of the previous embedding et−1. The attention mechanism is similar to
that used in [29]. We concatenate hname, hcname and hcsig to feed into the attention module and
compute the attention accordingly. Based on ht, the module computes pvocab = softmax(fT (ht))
where fT represents a feed-forward network. Then, depending on whether there is context available,
the module behaves differently.

When context is available, the module has two modes: generation and copy. Thus, it needs to
compute the generation probability, which, similar to that in [20], is given by

pgen = sigmoid(whht + wnhcname + wshcsig + weet−1)

where wh, wn, ws and we are learnable parameters. The copy probability of tokens, pcopy, is given
by the normalized attention score of ht on hcstates (see section 6.2.2). Thus, the final probability
over the tokens are computed by

pfinal = pvocab ∗ pgen + pcopy ∗ (1− pgen).

When the context is not available, the module computes the output token probability in a
similar fashion to the decoder in unstructured prediction: the probability is computed as the
softmax output of a feed-forward network on the attention output of ht on the input hidden states
hin.

With the final probability over tokens pfinal available, the next token anext is selected as
argmax(pfinal). If anext is not a ground type, we recursively call the decoder with the corresponding
number of steps to make sure a valid type is generated.

6.2.7 Arrow Type Module

The arrow type module is in charge of generating a type using the Arrow Type Type grammar. It
first computes the new hidden state ht = LSTM(et−1, ht−1) where et−1 is the embedding of the
previous token generated by the decoder and ht−1 is the previous hidden state. Then the module
recursively generates the left subtree and the right subtree by calling the decoder with new hidden
state and the arrow embedding, i.e,

Treeleft, hleft = Decoder(ht, earrow)

hright = tanh(W [hleft, ht])

Treeright, hfinal = Decoder(hleft, earrow)

where earrow is the embedding for the arrow token 4. The generation starts with a special start
token. Notice that the hidden state for generating the right tree is a combination of the left hidden
state and the parent hidden state. Such arrangement follows the idea of parent feeding used in [5]
and also allows the model to carry information from the left subtree to facilitate the generation of
the right subtree, since the left subtree often contain information vital for the the generation of
the right subtree. For example, consider the type signature (a → b) → a → b, the left subtree
a to b contains the types that the right tree a → b needs and therefore we believe that carrying
such information over is conducive to generating better type signatures.

6.2.8 Controlling Recursion Depth

Unlike the classic sequence-to-sequence model [23], our model does not use a special end token
to signal the end of generation. Instead, the generation stops when a complete tree has been
generated. However, due to the recursive nature of the decoder, it is possible that, when not
well-trained, the decoder could keeps generating subtrees infinitely. To prevent this, we add a
hyperparameter rec_depth to control the recursion depth of the decoder.

4Note that we do not explicitly generate the arrow token as it is embedded in the tree structure of the output.

10

Model Signature Accuracy (%) Structural Accuracy (%) Well-formedness (%)

Hempel [9] 10.00 – –
Baseline 23.39 49.78 100

Unstructured 23.71 42.23 65.99
Structured 7.92 60.46 100

Human 25.33 57.33 100

Table 1: Overview of final results

6.2.9 Loss Function

Unlike the relatively simple unstructured prediction model that only use the negative log-likelihood
loss on the target tokens, the structured prediction also incorporates a topology loss, similar to
that proposed in [1],

lossttopo = − log(p(mt
i))

where p(mi) denotes the probability of choosing module i (i = 0, 1) at time step t. The structural
loss pushes the model the learn the structure of type signatures. The final loss for each step t is

losst = lossttoken + λlossttopo

where lossttoken is the usual negative log-likelihood loss and λ is a hyperparameter.

7 Experiments
We conducted multiple experiments for both unstructured prediction model and the structured
prediction model to study the influence of some critical hyperparameters such as the number of
context names and signatures, as well as different choices for module structures in the structured
prediction model. However, due to time and resource limitations, we were unable to study the
influence of some hyperparameters. Throughout the experiments, we use a embedding size of
128 and hidden size of 256. The LSTMs all have one layer. We use Adam to optimize for both
unstructured and structured models. The learning rate for unstructured prediction model is set to
3× 10−4 and is reduced to half of its value when the dev loss plateaus. For structured prediction
model, we use a fixed learning rate of 2× 10−4.

8 Results
We mainly measure the performance of our models on the following three criteria: signature
accuracy, structural accuracy, well-formedness. Signature accuracy refers to the percentage
of correct signature predictions. A predicted signature must match the ground truth exactly to
be considered correct. Structural accuracy refers to the percentage of predicted signatures
that have the same tree structure as the ground truth under the grammar presented in section
6.1. For example, if the ground truth is Int → Int and the prediction is String → Int, the
prediction is structurally correct. Well-formedness refers to the percentage of the predicted
signatures that follow the grammar presented in section 6.1. Note that this only applies to the
unstructured prediction model, as structured prediction model is guaranteed to generate well-
formed type signatures. An overview of the final results is presented in Table 1. Table 1 also
includes the result reported in [9], which does not measure structural accuracy and well-formedness.

8.1 A Strong Baseline
As mentioned in section 5.4, there is a very strong rule-based baseline: copying the previous
signature in the same file. In the case that there is no preceding type signatures, this baseline
predicts nothing. The baseline is able to achieve 23.39% signature accuracy and 49.78% structural
accuracy on the test set.

11

Context Num Signature Accuracy (%) Structural Accuracy (%)

0 5.15 20.45
1 17.13 30.48
2 23.01 39.07
3 23.23 40.20
4 23.03 40.79
5 22.62 39.22

Table 2: Impact of the number of context annotation used on the unstructured prediction model

Context Num Signature Accuracy (%) Structural Accuracy(%)

0 3.31 50.35
1 7.10 62.04
2 7.84 61.73
3 7.49 61.74
4 7.19 61.51
5 7.22 61.00

Table 3: Impact of the number of context annotations used on the structured prediction model

8.2 Unstructured Prediction Results
As shown in Table 1, the best result for unstructured prediction is 23.71% signature accuracy,
42.23% structural accuracy, and 65.99% well-formedness. In addition, we also study the influence
of context on the performance of the model, as context is an important component of the model.
The result is presented in Table 2.

8.3 Structured Prediction Results
As shown in Table 1, the best result for unstructured prediction is 7.92% signature accuracy,
60.46% structural accuracy. The structured prediction model is guaranteed to have 100% well-
formedness. Similar to the structured prediction model, we are interested in how the amount of
context information available affects the performance of the model. Since the loss function for
structured prediction model consists of both the token loss and the topology loss, i.e, (loss =
losstoken + λlosstopo), we are interested in how the hyperparameter λ affects the performance of
the model.

First we keep λ = 1 and vary the number of context annotations. The result is shown in Table
3.

Then we keep the number of context annotations used to 3 and vary λ. The result is show in
Table 4.

8.4 A Human Perspective
In addition to tackle the prediction task using machine learning techniques, we are also curious how
a Haskell programmer, given the same information, would perform on the same task. More specif-
ically, we have one researcher (the author) who is familiar with Haskell complete 300 predictions.
For each prediction task, the researcher is given the module name, the identifier name, and three
previous annotations (including both name and signature). The tasks are randomly selected from
the test set used for the machine learning models. The resulting signature accuracy and structural
accuracy are 25.33% and 57.33%, respectively.

9 Analysis
The experiment results are quite surprising. In this section, we shall compare and analyze the
performances of unstructured prediction model and structured prediction model, as well as the
baseline and the human benchmark.

12

λ Signature Accuracy (%) Structural Accuracy (%)

0.5 7.45 61.75
1 7.49 61.74
5 7.69 61.60
10 7.28 61.56
100 7.73 62.1

Table 4: Impact of λ on structured prediction model

9.1 Baseline
Even though discussed in section 5.4, it is worth emphasizing the effectiveness of the rule-based
baseline that simply copies the previous type signature. As shown in Table 1, our machine-
learning-based model barely beats such a naive baseline. Considering that our model uses context
that contains up to three type annotations whereas the baseline only needs one annotation, the
simple baseline works really well. Again, the performance of the baseline indicates the connection
between type annotations that are spatially close to each other and the importance of context
information.

9.2 Human Benchmark
In terms of signature accuracy, the human performance (25.33%) is the highest in Table 1. However,
it should be noted that the human benchmark is produced by a single researcher who also designs
the models on a small test set consisting of only 300 type annotations. Therefore, it is expected that
the numbers we collected here cannot accurately represent how Haskell programmers in general
would perform on this task. Nevertheless, the human benchmark provides some insight into the
difficulty of the task — even the researcher who is very familiar with the task and understands
the effectiveness of the baseline, i.e, copying the previous signature, only achieved 25% signature
accuracy, which is not much higher than the performance of the baseline.

9.3 Unstructured Prediction
The unstructured prediction model achieved 23.71% signature accuracy, which, by itself, may
not be surprising given that the rule-based baseline also has a signature accuracy of 23.39%.
However, if we view the signature accuracy in the context of the other two measures, 42.23%
structural accuracy and 65.99% well-formedness, the 23.71% signature accuracy seems really good.
Conditioned on predicting a well-formed signature, the model has a 64% chance of producing a
structurally correct signature. In comparison, the baseline, which copies the previous signature
directly, although always produces a well-formed signature, only has a 50% chance of producing a
structurally correct signature. Similarly, the unstructured prediction model produces the correct
signature over 56% of the time given that it predicts the structure of the signature correctly. The
results suggest that the unstructured prediction model has learned the semantics of type signatures
well but falls a bit short on getting the syntax right.

9.4 Structured Prediction
The structured prediction model produced disappointing results. We expect that it should outper-
form the relatively simple unstructured prediction model by a large margin. However, the 7.92%
signature accuracy suggests quite the opposite. We notice that the structured prediction model
tends to make more “simple” mistakes than the unstructured prediction model. For example, when
the context signatures are all Int → HappyReduction, it is pretty clear that the model should just
copy that signature for the prediction. However, the model would sometimes produce results like
[Int] → HappyReduction. On the other hand, the structured prediction model does have the
highest structural accuracy in Table ?? and does much better in that regard than the unstructured
prediction model, which is expected given that the structured prediction model explicitly models
the tree structure of the type signatures. From Table 2 and Table 4 we can see that the important
hyperparameters like context number and topology loss factor λ do not impact the performance of

13

the model significantly. It remains to be seen whether the structured prediction model can achieve
a good signature accuracy.

9.5 Context
As mentioned in section 5.4, the context information is crucial because it not only provides in-
formation about new types that are not seen in the training data, but also allows one to boost
the probability of the types that appear close to the current type annotation through attention.
Indeed, the usefulness of context information is clearly shown in Table 2 and Table 3. Both ta-
bles reveal that, if we do not include any context, both unstructured and structured prediction
model perform quite poorly (5.15% and 3.31% signature accuracy, respectively). In contrast, even
if we just use the previous type annotation as context, the performance of both models improve
dramatically (5.15% → 17.13% for unstructured prediction model, 3.31% → 7.10% for structured
prediction model), again indicating the effectiveness of context information. However, we also no-
tice that the performance starts to decrease once the number of context annotations reaches three.
We suspect that this is because the previous three type signatures usually contain the sufficient
information for the model see the new types and understand what types are “important” for the
prediction and having more signatures in the context makes it harder to the model to learn to copy
the correct types. Indeed, we investigated the relation between number of signatures in the test
set that contain unseen types and the number of context annotations used (types that appear in
the context are considered known types). The results are shown in Table 5.

Context Num % signatures containing unseen types

0 25.43
1 12.16
2 10.69
3 10.06
4 9.66
5 9.39

Table 5: Relation between number of context annotations and number of unseen types

It is clear that adding context greatly reduces the number of signatures that have unseen types.
The results also reveal that, when the number of context annotations reach two, adding more
context information has diminishing returns, which echoes with the performance of the model
shown in Table 2 and Table 3.

9.6 Name qualifications
As mentioned in section 3.2.1, we consider two ways of qualifying identifier names — module-
qualified name and full-path qualified name. We investigate whether the two ways of qualification
has an impact on the performance of the model. The result is shown in Table 6. For unstructured
prediction, using qualification yields better results and module-qualified names perform better than
path-qualified names. For structured prediction, however, using names without any qualification
works the best, although the performance is very close to that of module-qualified names.

10 Conclusion & Future Work
In this paper, we study the problem of predicting type signatures from identifier names. We use
two different approaches: unstructured prediction, which ignore the structure of type signatures
and treat both identifier names and type signatures as sequences of tokens, and structured pre-
diction, which considers both the syntax and the semantics of type signatures. The unstructured
prediction model has better performance in terms of signature accuracy (23.71%) while the struc-
tured prediction model has higher structural accuracy (60.46%). For both of our models, we study
the influence of context information, which consists of previous type annotations of the signature
to be predicted. Our experiments show that, for both structured and unstructured prediction, the
use of context information greatly improves the performance of the models.

14

Model Qualification Signature Accuracy (%) Structural Accuracy (%)

Unstructured No qualification 21.22 38.02
Unstructured Path-qualified 22.66 42.35
Unstructured Module-qualified 23.71 42.23
Structured No qualification 7.96 61.66
Structured Module-qualified 7.92 60.46
Structured Path-qualified 7.36 58.29

Table 6: Impact of different ways of qualification on the performance of prediction models

However, it remains unclear why the unstructured prediction model performs much better than
the structured prediction model in terms of signature accuracy, especially given that structured
prediction model yields a much higher structural accuracy. It could be the case that the architecture
proposed in this paper cannot efficaciously address the prediction task. Future work can focus
on understanding the problems with the current architecture and propose better ones to further
improve the signature accuracy.

The signature accuracy can be potentially further improved by resolving aliases and checking
the types that are in scope. In the data processing phase, we consider aliases to be different types
to simplify the problem, but this makes the embedding for types larger and harder to learn, as
we often see aliases that are not semantically close to each other in natural language (Name =
String for example). Also, when predicting the type signatures, we didn’t check to make sure
the predicted types are actually in scope. Doing so is possible but requires much more effort to
wrangle the Haskell compiler for our use. Future work on the same topic may benefit from these
two considerations.

More broadly, future work can also investigate the same task for different languages, especially
those with different naming conventions to understand the applicability of our models.

A more interesting direction is to consider how the predicted type signatures can help with
program synthesis in general. Our results are clearly not good enough for the models to be used
for downstream tasks like synthesizing a whole program. However, we could imagine incorporating
more natural language information such as comments or specifications would probably improve
the performance and make the models useful for other tasks. In a similar vein, we can imagine
a personalized interactive system where a programmer can actively correct mistakes made by the
prediction model and give feedbacks to improve the model.

References
[1] David Alvarez-Melis and Tommi S Jaakkola. Tree-structured decoding with doubly-recurrent

neural networks. In Proc. ICLR, 2017.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. In Proc. ICLR, 2015.

[3] Steven Bird and Edward Loper. Nltk: the natural language toolkit. In Proc. ACL on Inter-
active poster and demonstration sessions, 2004.

[4] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In Proc. ICML,
2017.

[5] Li Dong and Mirella Lapata. Language to logical form with neural attention. In Proc. ACL,
2016.

[6] Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK Li. Incorporating copying mechanism in
sequence-to-sequence learning. In Proc. ACL, 2016.

[7] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proc. POPL, 2011.

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proc. CVPR, 2016.

15

[9] Brian Hempel. Context-sensitive prediction of haskell type signatures from names. 2017.

[10] Neel Kant. Recent advances in neural program synthesis. In arXiv preprint arXiv:1802.02353,
2018.

[11] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš Kočiskỳ, Andrew Senior,
Fumin Wang, and Phil Blunsom. Latent predictor networks for code generation. In Proc.
ACL, 2016.

[12] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to
attention-based neural machine translation. In Proc. EMNLP, 2015.

[13] Gábor Melis, Chris Dyer, and Phil Blunsom. On the state of the art of evaluation in neural
language models. In Proc. ICLR, 2018.

[14] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch
learning for conditional program generation. In Proc. ICLR, 2018.

[15] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed completion
of partial expressions. In Proc. PLDI, 2012.

[16] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from poly-
morphic refinement types. In Proc. PLDI, 2016.

[17] Illia Polosukhin and Alexander Skidanov. Neural program search: Solving programming tasks
from description and examples. In Proc. ICLR (Workshop Track), 2018.

[18] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code gener-
ation and semantic parsing. In Proc. ACL, 2017.

[19] George Saon, Hong-Kwang J Kuo, Steven Rennie, and Michael Picheny. The ibm 2015 english
conversational telephone speech recognition system. In arXiv preprint arXiv:1505.05899, 2015.

[20] Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summarization with
pointer-generator networks. In Proc. ACL, 2017.

[21] Rishabh Singh. Blinkfill: Semi-supervised programming by example for syntactic string trans-
formations. In Proc. VLDB, 2016.

[22] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. In Proc. ASPLOS, 2006.

[23] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. In Proc. NIPS, 2014.

[24] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Proc. NIPS, 2015.

[25] Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In Proc.
POPL, 1989.

[26] Mingxuan Wang, Zhengdong Lu, Jie Zhou, and Qun Liu. Deep neural machine translation
with linear associative unit. In arXiv preprint arXiv:1705.00861, 2017.

[27] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose code
generation. In Proc. ACL, 2017.

[28] Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij, Erik Cambria, and Louis-Philippe
Morency. Multi-attention recurrent network for human communication comprehension. In
Proc. AAAI, 2018.

[29] Barret Zoph and Kevin Knight. Multi-source neural translation. In Proc. NAACL, 2016.

16

	Introduction
	Related Work
	Neural Program Synthesis
	Multi-attention
	Copying

	Data Pipeline
	Data Collection
	Data Preprocessing
	Qualified identifier names

	Overview of Two Approaches
	Unstructured prediction
	Encoder
	Decoder
	Attention
	Incorporating Context
	Context Signature Encoder
	Copying from context
	Loss Function

	Structured Prediction
	Type constructors and kinds
	Model Architecture
	Name Encoder
	Context Encoder
	Combiner
	Decoder Overview
	Module Selector
	Non-arrow Type Module
	Arrow Type Module
	Controlling Recursion Depth
	Loss Function

	Experiments
	Results
	A Strong Baseline
	Unstructured Prediction Results
	Structured Prediction Results
	A Human Perspective

	Analysis
	Baseline
	Human Benchmark
	Unstructured Prediction
	Structured Prediction
	Context
	Name qualifications

	Conclusion & Future Work

