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ABSTRACT

Much recent research is devoted to exploring tradeoffs between computational accuracy and

energy. In particular, a number of techniques have been proposed for producing and using

approximate arithmetic units that return an inexact answer with greatly reduced energy

consumption. As the number of approximate techniques increases, the options for creating

approximate programs explodes, creating the need for tools that help programmers explore

the effects of approximation and combine different approximation techniques to achieve the

lowest energy consumption for an accuracy constraint or the best accuracy for an energy con-

straint. To address this need, we present NEAT: a PIN tool that automatically explores the

accuracy-energy tradeoff space for floating-point computation. NEAT accepts one or more

user-defined approximate floating-point implementations and rules for when to substitute

different implementations. NEAT then computes the floating-point operations in an appli-

cation using those implementations and rules. We evaluate NEAT through a case study on

8 different applications and compare a set of rules that allows only one floating-point imple-

mentation per program to a set of rules that allow one approximation per function. We find

that more of the accuracy-energy design space can be explored with the per-function rules

than the single floating-point implementation. We also find that data collected from smaller

inputs using both sets of rules is highly correlated to data collected from moderately-sized

inputs.
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CHAPTER 1

INTRODUCTION

Approximation has become an important design consideration for computing systems, as nu-

merous researchers have found ways to trade reduced program accuracy for reduced resource

usage—typically, time or energy. Early work in this area demonstrated the tremendous en-

ergy and execution time reductions that approximation techniques can acheive [6]. As this

work has matured, it has transitioned from fairly coarse-grained techniques—such as pruning

logic from funtional units [29] or running at near-threshold voltage—to more sophisticated

approaches that make a variety of functional units available—each with different levels of

approximation [10, 11].

The proliferation of different approximate functional units on a single core creates tremen-

dous opportunity, but it also creates a new problem. Specifically, how do programmers decide

which level of approximation to use at different points in their application? Just considering

moderate sized programs with 10 functions and 10 different levels of approximation, we al-

ready have an intractably large design space. Typically, the decision of which approximation

to use where would be made by an expert in numerical methods—who could pick the optimal

accuracy level for each point in the program to ensure the maximum energy (or run time)

savings. It is not reasonable, however, to ask software engineers to acquire a new skill set so

they can benefit from the growth of approximate computing. Similarly, it is infeasible to do

brute force exploration to find the best approximation per function for any reasonably sized

application.

We observe that most work on approximation has been about exploring new alterna-

tives for approximation across the system stack, but very little work has been done helping

programmers navigate the huge tradeoff space enabled by allowing multiple approximations

within a single program. This observation motivates us to propose NEAT—Navigating

Energy Approximation Tradeoffs—a tool that helps users explore different levels of approxi-
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mation within a program. NEAT accepts a user program, a set of approximate floating point

implementations, and a set of programmable rules for when to use a specific implementa-

tion. A rule, for example, could specify that an FFT function uses an approximate FPU,

while a singular value decomposition uses a full accuracy implementation. In general, the

rules are quite flexible and can be conditional on the program state. NEAT then runs the

program and dynamically replaces floating point instructions with the approximate version

as specified by the rules. NEAT outputs the program’s output, plus the number of bits used,

the floating point operations used at each point in the program, and the total number of

FLOPs per function. Thus, NEAT can be used as a tool to explore the tradeoff space of

approximate programs without requiring deep numerical expertise.

We impelment NEAT for x86 using the Pin binary instrumentation system [20]. We

demonstrate NEAT’s value through a case study where we compare the approximations

produced by two different rule sets. In the first, we simply pick one floating point implemen-

tation for the entire program; i.e., the rule is a simple one-to-one replacement. in the second,

we allow the top 10 most commonly executed functions to each use a different approxima-

tion. In this second scenario, we use a genetic algorithm to guide NEAT’s exploration of the

enormous resulting search space.

Our results show that the per-function configurations are able to explore more of the

FPU combination design space than the whole-program configurations. This proves that our

tool provides value to programmers. Our results also show that data collected from smaller

training inputs is highly correlated with data collected from reasonably-sized inputs. This

makes it easier to use NEAT because smaller inputs can be used to iteratively find optimal

points in the design space in less time than moderately-sized inputs.

In summary, this paper makes the following contributions:

• The NEAT framework that helps users explore the design space of FPU combinations.

• A case study that compares whole-program FPU configurations with per-function FPU
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configurations for a number of benchmarks.

• A discovery of the correlation of the accuracy of small inputs with the accuracy of

moderately-sized inputs for a number of benchmarks when instrumented with NEAT.
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CHAPTER 2

BACKGROUND & MOTIVATION

2.1 Prior Work

There has been a substantial amount of effort to reduce the accuracy in programs in order

to save power. However, there is a lack of solutions that allow the user to specify their own

floating-point arithmetic implementations. This paper provides such a solution.

Approximation Knobs [16] provide a way to lend performance and energy gains to existing

power knobs. These gains could be achieved by altering the accuracy level of applications

from a set of variable accuracy implementations of the application. A machine learning

algorithm is used to dynamically switch between these implementations based on a power

cap. However, our proposal lets users examine and change the accuracy of floating-point

operations manually, giving them more control over the floating-point computations in a

program.

Quora [31] is a quality programmable processors where the notion of quality is codified in

the instruction set of the processor. This is similar to our proposal, since we aim to make the

quality of floating-point arithmetic programmable. However, Quora uses precison scaling to

automatically modulate the accuracy of instructions, whereas we give users tools to examine

and change the accuracy of floating-point operations manually. Additionally, Quora does

not target floating-point arithmetic operations and our propoal does.

ApproxHadoop [14] provides a framework for creating and running approximation-enabled

MapReduce programs. This system allows user-defined approximation: the user can provide

a precise and approximate version of the code for a MapReduce task. This is similar to our

proposal, but ApproxHadoop is specialized for the domain of MapReduce programs, whereas

our proposal can be used on any binary performing floating-point arithmetic.

Another example of user-defined approximation is Green [3], which is a system that allows
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Figure 2.1: Design of Radar Application

programmers to supply approximate versions of loops and while-blocks that terminate early.

However, this tool targets loops and while-blocks for approximation, whereas our tool targets

floating-point arithmetic.

A growing body of recent work explores a variety of approximation techniques to save

power. These techniques include (a) approximate storage designs [19], (b) voltage over-saling

[11, 23, 5, 25, 15], (c) memoization [1, 2], (d) limited fault recovery [7], (e) approximate

circuit synthesis [32, 28, 26, 29, 17, 18, 9], (f) neural acceleration [12, 30, 22, 24, 33], and (g)

probabalistic computing [27]. Although these solutions report promising power benefits from

approximate computing, they do not explore replacing floating-point arithmetic operations

with user-defined implementations.

We can see from all of these proposals that approximation is an important part of program

design. However, there needs to be more help with exploring approximation design spaces so

that users can make more informed decisions about how to approximate and how much to

approximate. Most new developments in approximate computing are aimed towards finding

new forms of approximation, not helping users with approximation. Thus, this space is rich

for exploration.

2.2 Motivating Example

Consider a synthetic aperture radar. The software for such a synthetic aperture (shown in

Figure 2.1) is an embedded system, and must meet strict power constraints. Embedded

system designers are used to hand-optimizing accuracy to meet these strict constraints.

Typically they just pick one bit width for the whole application. Picking the right bit width

requires both computer science and numerical analysis skills.
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Table 2.1: Possible FPU combinations for radar application when one FPU is used for the
entire application or when one FPU is used for each function in the application.

Whole Program Per Function

Possible Implementations 24 1.7e26

Figure 2.2: Percent Error vs. Bits Used for Radar Application

Recent proposals advocate putting many different approximate FPUs on a single core

[13]. These approximate FPUs can make meeting power constraints easier, but introduce

more complications when programming. The challenge in a complicated program is how to

figure out which FPU to use in each part of the program. Previous results [10] have shown

that using a different FPU for each function in a program allows a user to explore more of

the approximation design space than only using one FPU for the entire appplication, but

this requires tedious hand-tuning.

Returning to our radar aperture, we can see an example of this challenge. Consider just

FPUs that decrease the number of bits used in the mantissa of each floating-point number

in an application. There are 23 bits used in the mantissa of a 32-bit IEEE floating-point

number, so there are 24 possible FPUs of this type. Even if we consider using only one FPU

per function in the radar application, the size of the design space of FPU combinations is

huge, as can be seen in Table 2.1. Further, all of these different FPU combinations would have
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to be coded by hand, which can use a large amount of programmer time and be error-prone.

One way to address this challenge is to restrict the design space of FPU combinations

for an application. For example, the number of FPU combinations for the radar application

could be shrinked by looking only at using one FPU for the entire application instead of

one FPU for each function of the application. However, after measuring the accuracy and

power usage of our radar application for both whole program combinations and per-function

combinations (shown in Figure 2.2), we can see that this solution will restrict the size of

the design space that we explore. If we explore more of the design space, we can find more

optimal values for power usage and accuracy loss.
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CHAPTER 3

SYSTEM DESIGN

Prior work has shown that there is a benfit to exploring the design space of different FPU

combinations in a program [10], and we have shown that this design space is huge. We

propose a tool to explore this space of approximations. This tool, named Navigating Energy

and Accuracy Tradeoffs (henceforth referred to as NEAT) allows users to collect data from

applications using custom implementations of floating-point arithmetic. This provides a

fast and easy way to collect data from the design space of FPU combinations for different

applications.

The design of this tool is shown in Figure 3.1. The main purpose of this tool is to al-

low users to replace floating-point arithmetic operations in applications. Users can specify

multiple implementations of floating-point addition, subtraction, multiplication, and divi-

sion. Further, the tool allows users to provide rules that decide which implementation to

use for each operation. These rules are supplied contextual program information obtained

from NEAT to help them make decisions. This contextual information includes the type of

operation, the operands, and the name of the function containing the operation. The rules

can also include callbacks that NEAT executes when functions are entered and exited in the

application. These callbacks can be used to keep track of more program information, such

as the current call stack of the program.

3.1 User Inputs

There are three user inputs to this tool: a user application to insturment, the desired floating-

point arithmetic implementations to use in the application, and a set of rules to choose which

floating-point arithmetic implementation to use for each operation.
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Figure 3.1: NEAT Design

Figure 3.2: FP Rules Design

3.2 Floating-Point Rules

Defining an implementation of floating-point arithmetic is fairly trivial. The computation

performed by each arithmetic operator can be defined as a function. The main challenge

with changing floating-point arithmetic implementations dynamically is the way to specify

which floating-point arithmetic implementation to use for each operation. NEAT addresses

this challenge through a set of FP rules that can be supplied by the user. The design of the

FP rules are shown in Figure 3.2. Whenever a floating-point arithmetic operation should

be computed, NEAT captures information about the current state of the application. This

information is provided to the FP rules supplied by the user. NEAT then uses these rules

to determine which floating-point arithmetic implementation is used to calculate the result

of that operation.
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Figure 3.3: FP Rules Example

We show an example of the versatility of these rules in the context of our radar application

from earlier in Figure 3.3. The radar application from earlier includes both a low-pass filter

(LPF) and pulse compression (PC). Both of these components use a fast fourier transform

(FFT). FP rules can be used to keep track of the call stack of the radar application, and use

one FP implementation for the FFT in the LPF, and a second FP implementation for the

FFT in the PC. This can all be done in a handful of lines of code.

3.3 NEAT Outputs

There are four outputs from this tool: the output from the user application, a trace of the

operands and result of every FLOP executed by the program, the total number of bits used

in FLOPs in the execution of the program, and the number of FLOPs executed per function

in the program.

The trace of the FLOPs executed by the instrumented application is written to a file

while the application is running. If floating-point implementations are supplied to NEAT by

the user, the result of each operation will be printed after the operation is calculated with

the chosen floating-point implementation. The operands and result of each operation are

printed as hexadecimal numbers so that there is no confusion in rounding the floating-point
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values.

The total number of bits used in FLOPs in the execution of the program is output to a

file after the application has finished running. The count that is output is the total number

of bits manipulated in the operands and result of every FLOP in the instrumented program.

This can be used as a platform-independent way to evaluate the approximate amount of

power used by FLOPs when instrumenting a program. Since the number of bits used in

the exponent and sign of a floating-point number vary much more than the number of bits

used in the mantissa of a floating-point number, NEAT only calculates the number of bits

manipulated in the mantissa. NEAT calculates the number of bits not manipulated as the

number of zeroes in the binary representation of the floating-point number, starting with

the least significant bit.

3.4 Implementation

The NEAT dynamic instrumentation tool was written in C++ using the Intel Pin instru-

mentation system [20]. NEAT performs run-time instrumentation to facilitate the analysis

and replacement of floating-point arithmetic operations during the execution of compiled

C and C++ binaries. Our implementation is publically available at https://github.com/

NeatTool/NEAT.

3.4.1 Pin Instrumentation System

The Pin instrumentation system was chosen as the backbone for this tool because of its clean

API and efficient implementation. The Pin API makes it possible to write instrumentation

routines to observe and alter the architectural state of a process. Pin uses a JIT compiler

to generate new instrumented code that can be executed without extra run-time overhead

from instrumentation.
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3.4.2 Floating-Point Operations

For the purposes of this tool, we identify floating-point arithmetic operations as the Stream-

ing SIMD Extensions (SSE) instructions for scalar arithmetic. These instructions are in-

cluded in a SIMD instruction set extension to the x86 architecture and operate on 32-bit

single-precision floating point numbers. More specifically, the instructions we use for our

definition of floating-point operation are ADDSS, SUBSS, MULSS, and DIVSS.

3.4.3 Floating-Point Rules

NEAT allows users to define rules that determine which floating-point implementation is

used to calculate each FLOP in a program. Every time a FLOP is about to be calculated in

the user application, NEAT will examine all of the rules that have been supplied by the user,

and use them to determine which floating-point implementation will be used to calculate the

result of the FLOP. The user can also register callbacks through NEAT that can be executed

whenever a function is entered or exited in the instrumented application. This allows more

complex information to be collected about the program state, such as the call stack of the

application.

NEAT comes packaged with three predefined sets of floating-point rules that cover many

use-cases and show off its versatility. The first set of rules uses the same floating-point

implementation for every FLOP in a program. The second set of rules allows the user to

specify a map of function names to floating-point implementations, and uses each floating-

point implementation for the FLOPs in the corresponding function. The final set of rules

also allows the user to specify a map of function names to floating-point implementations.

It uses callbacks registered with NEAT to keep track of the call stack of the program. The

floating-point implementation used for each FLOP in the program is the implementation

corresponding to the function most recently put on the call stack. If no functions in the call

stack match the names of those in the user-supplied map, a default implementation is used.
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CHAPTER 4

CASE STUDY

We performed a case study to show the expresiveness and usability of NEAT. In this case

study, we use NEAT to explore the design space of whole-program and per-function FP rules

on a number of different benchmarks.

This case study shows that NEAT provides a helpful and versatile framework for exploring

the design space of approximate FPU combinations. Without NEAT, exploring this design

space would be slow and error-prone. But with NEAT, this process just involved supplying

the right inputs to NEAT, and waiting for NEAT to collect the data with no supervision.

4.1 Benchmarks

We collected data from eight benchmarks. blackscholes, bodytrack, ferret [21], and

fluidanimate are all taken from the PARSEC benchmark suite [4]; heartwall, kmeans,

and particlefilter are all taken from the Rodinia benchmark suite; radar is a small

radar application with a design similar to Figure 2.1. For each application, we acquire a set

of representative inputs, then partition the smaller inputs into training sets, and the larger

inputs into test sets. The training inputs are used to run the NSGA-II [8] genetic algorithm

on the function-level FP rules. The test inputs are used to evaluate the benchmarks on

the whole-program FP rules and on the Pareto-optimal points for the per-function FP rules

obtained from the NSGA-II algorithm. Table 4.1 summarizes the sources of these inputs.

Data from the per-function FP rules was not collected for blackscholes or heartwall,

since they each only have one function that performs floating-point arithmetic.
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Table 4.1: Summary of Training and Test Inputs for Each Benchmark

Benchmark Training Inputs Test Inputs

blackscholes 16 options 4096 options

bodytrack 50-100 particles and 2-3 annealing layers 500-1000 particles and 3-5 annealing layers

ferret database with 100 images database with 3544 images

fluidanimate 15000 particles 35000 particles

heartwall 2 frames 3 frames

kmeans 32-128 points 256-1024 points

particlefilter 20-30 frames with 1000-2000 particles 50-100 frames with 10000-20000 particles

radar 128-512 input channels 1024-4096 input channels

4.2 Floating-Point Implementations

We used 24 different floating-point implementations to collect data from the benchmarks.

Each floating-point implementation performs normal floating-point arithmetic, but zeroes

out a different number of bits in the mantissa of the result of each operation. This allows us

to have 24 floating-point implementation that each have a different level of accuracy.

4.3 Whole Program FP Rules

The first set of FP rules we used to collect data replaces every floating-point operation in

the applications with one floating-point implementation.

4.4 Function-Level FP Rules

The second set of FP rules we used to collect data is slightly more complicated: they use a

different floating-point implementation for 10 functions in each application. There are 2410

combinations of floating-point implementations we could use for this set of rules This is far

too many combinations to explore manually, so we use the NSGA-II genetic algorithm to

help us find Pareto-optimal points in this design space. We chose this algorithm because it

has a better asymptotic runtime compared to similar algorithms [8]. More specifically, we

14



Table 4.2: Parameters for the NSGA-II Algorithm

Parameter Value

Initial population size 24

µ 10

λ 15

Crossover probability 98%

Individual crossover probability 50%

Mutation probability 2%

Individual mutation probability 10%

Number of generations 25

used a µ + λ evolution strategy with uniform crossover, uniform mutation, and NSGA-II

selection. The evolutionary parameters we supplied to the algorithm can be fund in Table

4.2.

We first used NEAT to find the 10 functions in each application that contain the most

floating-point operations. We then used the NSGA-II algorithm to collect data from each

application using the training data and a different floating-point implementation for each

of these 10 functions. A default floating-point implementation was also chosen to use for

every other function in each application. Once the algorithm had been run for a sufficeint

number of generations, the points on the Pareto-optimal front were re-collected using the

testing data.

We initialized the floating-point implementations for each of the 10 functions for each

individual to the same value. This is done for each of the 24 initial individuals, which mimics

the points collected by the whole-program FP rules. This represents a best-guess for the

initial population based on our data collected from the whole-program FP rules.
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CHAPTER 5

EXPERIMENTAL EVALUATION

5.1 FP Rules Coverage

We can approximate the energy consumed by each floating-point arithmetic operation as the

total number of bits manipulated by that operation. This includes the number of bits used

in the operands and result of the operation. We included functionality in NEAT to measure

this quantity.

If we plot the total number of bits used in floating-point arithmetic operations in an

application against the percent error of the output, we can visualize the power-accuracy

design space of the application. We can plot points in this space that correspond to different

FP rules and floating-point implementation combinations. The best points achieved by each

set of FP rules are on the lower convex hull of the set of points we measuered for these sets

of rules.

One measure of the amount of energy saved by the per-function FP rules over the whole-

program FP rules is the difference in height of these convex hulls at different points. Figure

5.1a shows the difference in height between the whole-program FP rules and per-function

FP rules using both methods of initialization for 1%, 5%, and 10% error.

We can also measure the difference between the whole-program approach and per-function

approach by calculating the difference in coverage between the points on the convex hulls of

the two approaches. This difference in coverage represents the points in the design space that

can be obtained using the per-function FP rules but not the whole-program FP rules. Figure

5.1b shows the difference in coverage between the whole-program FP rules and per-function

FP rules using both methods of initialization under 100% error.
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(a) (b)

Figure 5.1: (5.1a) The energy saved by each application at 1%, 5%, and 10% error (5.1b)
The difference in coverage between whole-program and per-function FP rules for each appli-
cation

5.2 Per Application Results

Figure 5.2 shows the convex hulls for each benchmark and set of FP rules. Data was collected

for 3 inputs from the set of test inputs for each benchmark, and the number of bits used and

percent error of the output were taken as the median of the 3 inputs. These graphs show

the lower convex hulls of these points with up to 20% error.

5.3 Training vs. Test Results

We want to show that the per-function FP rules perform better than the whole-program

FP rules for reasonably sized-inputs. However, running NEAT on these inputs takes a

considerable amount of time. It would be useful if we could gain insight about how different

sets of FP rules would affect reasonably-sized inputs by collecting data from smaller inputs.

To show that there is a correlation between these two sizes of data, we have collected the

percent error from both sets of inputs for each benchmark using the whole-program and per-

function FP rules. Data was collected for 3 inputs from each set of inputs, and the percent

error of each point was taken as the median of these 3 inputs. We calculated the correlation
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Table 5.1: Correlation Coefficients for Accuracy of Training and Test Inputs for Each Bench-
mark

Benchmark Whole-Program Per-Function

blackscholes 0.723777385384 0.723777385384

bodytrack 0.997932273171 1.0

ferret 0.970756520673 0.890890667442

fluidanimate 0.801022035884 0.907055750855

heartwall 0.999314953268 0.999314953268

kmeans 0.92734086092 0.979481949313

particlefilter 0.450245400438 0.399299721127

radar 0.997640234514 0.998818677211

coefficients for each set of collected data up to 100% error, shown in Table 5.1. From these

correlation coefficients, we can see that there is a high correlation between the percent error

collected from each set of inputs.
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(a) Bodytrack (b) Ferret

(c) Fluidanimate (d) Kmeans

(e) Particlefilter (f) Radar

Figure 5.2: Whole-Program vs. Per-Function FP Rules
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CHAPTER 6

FUTURE WORK

One possible extension of this work is exploring different combinations of FP rules using

NEAT. In our case study we only collected data using whole-program and per-function FP

rules. However, there are many more combinations of FP rules that can be used in NEAT.

Each set of FP rules creates its own FPU combination design space, which allows even more

exploration of power-accuracy tradeoffs.

Optimizing the parameters for the NSGA-II algorithm when searching through FPU

design spaces, or finding a more efficient heuristic for exploring these design spaces is another

area for future work. We chose the NSGA-II algorithm for our case study because it is widely

cited as an efficient algorithm, but did not tune the parameters for the algorithm because

it was efficient enough with the initial parameters we chose. Tuning these parameters for

different FPU combination design spaces would make the exploration of these design spaces

even faster. Additionally, research could be done to determine if there is an even better

heuristic to explore these design spaces.

Further, since heuristic techniques only provide best-guess exploration of these design

spaces, better techniques could be researched to more confidently explore these design spaces.

For example, active learning is an interactive strategy for finding optimal data points when

provided with a large amount of unlabeled data. By using better techniques for exploring

the design spaces, we can decrease the error bounds around each data point we collect and

be more confident that we are finding optimal points in these design spaces.

Finally, a compiler tool could be created to work with NEAT and compile programs using

the specified FP rules and FP arithmetic implementations supplied by a user. This would

be useful in creating a final executable with the desired accuracy and power usage from the

input program. The final executable would then be able to run directly on the hardware of

a user’s computer and not be subject to overhead from NEAT.
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CHAPTER 7

CONCLUSION

In this work, we proposed NEAT, a tool for automated exploration of approximate FPU de-

sign. NEAT provides help to programmers trying to explore the design space of combinations

of approximate FPU implementations. We performed a case study with NEAT to collect

data from multiple benchmarks with whole-program and per-function FPU configurations.

We found that the per-function configurations are able to explore more of the FPU combina-

tion design space than the whole-program configurations. We also found that data collected

from smaller training inputs is highly correlated with data collected from reasonably-sized

inputs.
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[9] Peter Düben, Jeremy Schlachter, Parishkrati, Sreelatha Yenugula, John Augustine,
Christian Enz, K. Palem, and T. N. Palmer. Opportunities for energy efficient com-
puting: A study of inexact general purpose processors for high-performance and big-
data applications. In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, DATE ’15, pages 764–769, San Jose, CA, USA, 2015. EDA
Consortium.

22
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