[Colloquium] [Staff] Theory Seminars at Computer Science

Donna Brooms donna at cs.uchicago.edu
Tue Nov 15 07:59:02 CST 2011


    ~REMINDER~

COMPUTER SCIENCE

The University of Chicago

THEORY SEMINAR

-----------------------------------

Date:		Tuesday, November 15, 2011

Time:	3 p.m.

Place:	Ryerson 251, 1100 E. 58th Street

__________________________

Speaker:	Siavosh Benabbas

From:	University of Toronto

Title:		An Isoperimetric Inequality for the Hamming Cube and Integralilty Gaps in Bounded-degree Graphs


Abstract:
In 1970s Paul Erdos asked the following question: Consider all the boolean strings of length n. Assume that one has chosen a subset S of the strings such that no two chosen strings are different in precisely n/4 (or its closest even integer) coordinates. How big can the set of chosen strings be? Erdos conjectured that the answer is small (in a precise sense) and put a $250 prize for a solution. In 1987 Frankl and Rodl proved a strong form of this conjecture showing that such a set has to be exponentially smaller than the set of all strings of length n.

We study the following "density" variant of the above problem: Assume that one has selected a "big" subset of the strings of length n. By Frankl-Rodl we know that there is at least one pair of selected strings that are different in exactly n/4 coordinates, but can one show a stronger statement? In particular, can one show that there are "many" pairs of selected strings which are different in exactly n/4 coordinates? We answer this question positively using a proof technique very different than Frankl and Rodl's. In particular our proof relies on Fourier analysis on the cube.

We use our theorem to show that certain strong linear and semidefinite programming relaxations of the Vertex Cover and Independent Set problems in degree-bounded graphs have large Integrality Gaps, i.e. they can not be used to get approximation algorithms far better than what is currently known. Our approach lets us start with a previously known Integrality Gap for the general problem (which uses a certain underlying graph) and use a simple sampling argument to transform it to an Integrality Gap in the degree-bounded setting while mostly avoiding the hard work that goes into constructing solutions for the linear/semidefinite programming relaxation.

Based on a joint work with Hamed Hatami (McGill) and Avner Magen (formerly U. of Toronto)

---------------------------------------------------------
*Refreshments will be served prior to the talk at 2:30 in Ryerson 255*
Persons who need assistance should call 773-702-6614


-------------- next part --------------
An HTML attachment was scrubbed...
URL: http://mailman.cs.uchicago.edu/pipermail/colloquium/attachments/20111115/5658dc36/attachment.htm 


More information about the Colloquium mailing list